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Abstract10

The share of intermodal transportation, which is often considered as a sustainable transportation
alternative, is rather low compared to road transportation. There are several reasons for this situation,
including the increased need for coordination of scheduled transport services and the reduced reliability
of intermodal transport chains in case of disruptions. In this regard, developing an advanced algorithmic
approach can help to handle real-time data during the execution of transportation and react adequately
to detected unexpected events. In this way the reliability of intermodal transport can be increased, which
might help to increase its usage and to minimize the negative externalities of freight transportation. This
paper proposes a novel real-time decision support system based on a hybrid simulation-optimization
approach for intermodal transportation which combines offline planning with online re-planning based
on real-time data about unexpected events in the transportation network. For each detected disruption,
the affected services and orders are identified and the best re-planning policy is applied. The proposed
decision support system is successfully tested on real-life scenarios and is capable of delivering fast
and reasonably good solutions in an online environment. This research might be of particular benefit
to the transport industry for using advanced solution methodologies and give advice to transportation
planners about the optimal policies that can be used in case of disruptions.

Keywords: Real-time planning, intermodal freight transportation, disruption management,11

simulation-optimization12

1. Introduction13

With the increasing internationalization of trade, the tasks of transportation planners are becoming14

more complex (Bontekoning et al., 2004). Whereas the efficiency in the past meant the minimization of15

transportation costs (Agamez-Arias and Moyano-Fuentes, 2017), the discussions about negative influ-16

ence of transportation operations on environment and society have put more focus to sustainability in17

recent years (Hoen et al., 2014). In this respect, especially the consideration of greenhouse gas emis-18

sions (GHGs) in road transportation planning in form of CO2 or CO2-equivalent (CO2e) emissions is an19

evolving field (see, e.g., Demir et al., 2019b; Moghdani et al., 2020).20

Even though transportation plans can be optimized by available Transport Management System21

(TMS) software, the exact execution of these plans in real life cannot be guaranteed. Since the infrastruc-22

ture capacity is limited, small disturbances in traffic flow (e.g., accidents, congestion, road maintenance)23

can cause delays and infeasibility of any transportation plan. Besides that, the occurrence of unexpected24

events can also lead to disruptions lasting for several hours or even days (e.g., due to severe weather)25
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(Xia et al., 2013), which should be dealt with within disruption management. However, disruption26

management is often not seen as an important point by the managers since they have to focus on other27

problems within their responsibility area (Ludvigsen and Klaeboe, 2014).28

Reactions to disruptions are relatively easy in case of road transportation, which is the mostly used29

transportation mode in freight transportation in Europe (Eurostat, 2018a). Various approaches have30

been applied to mitigate the influence of disruptions on short-haul transportation. However, extensive31

use of long-distance road transportation might not be suitable for reducing the negative externalities of32

transportation, especially the increasing amount of CO2e emissions (Eurostat, 2017; Van Fan et al., 2018).33

One of the alternatives is intermodal transportation, combining multiple transportation modes and34

using standardized loading units in order to facilitate the transshipment of goods between different35

modes (Crainic and Kim, 2005). In this setting, more environmentally friendly transportation modes36

such as rail or inland waterway can be used to transport goods for longer distances, which reduces the37

overall negative environmental impacts of transport. Although this option offers numerous advantages,38

the usage of intermodal transportation within the European Union (EU) is still relatively low (Eurostat,39

2018b). There are multiple reasons for this situation, including the current situation on the European40

railway market, which is still dominated by big state-owned companies (De Langen et al., 2017), or41

geographical reasons, where often the goods are transported over relatively short distances where it is42

not competitive to use the intermodal transport (Frémont and Franc, 2010). Moreover, most of the ports,43

which are used for import and export of goods, are located in the Western Europe, therefore the density44

of the intermodal network is much higher there than in the Eastern Europe (UIC, 2019). However, in45

addition to these strategic reasons, there are also operational issues in intermodal transport planning,46

since it requires higher effort to coordinate all involved actors and to ensure reliability and flexibility of47

transportation (Grue and Ludvigsen, 2006). Therefore this paper focuses mainly on the operational level48

of planning, where it proposes a novel planning approach that should support the planners by including49

disruption management techniques and in this way help to increase the usage of intermodal transport.50

To be able to respond to potential transportation disruptions, it is necessary to identify unexpected51

events as potential sources of disruptions and to analyze their influence on transportation. Moreover, an52

appropriate re-planning strategy should be proposed to minimize the impact of such events by offering53

a fast and effective alternative solution. For this purpose it is necessary to integrate planning with54

transportation execution and monitoring in order to achieve the desired results (Fazi et al., 2015). As a55

response to this problem, we propose a decision support system (DSS) based on a hybrid simulation-56

optimization to integrate different phases of the transportation process at the operational level.57

Hybrid simulation-optimization is a viable option for dealing with such complex networks. For the58

distribution network design of third party logistics (3PL) service providers, Ko et al. (2006) proposed a59

hybrid simulation-optimization model using genetic algorithm for optimization and capturing uncer-60

tainties in several performance measurements in simulation. Another application of hybrid simulation-61

optimization model is studied by Zeng and Yang (2009) for loading operations in container terminals. In62

another study, De Keizer et al. (2015) studied a cost-optimal network design problem under product qual-63

ity requirements using mixed-integer linear programming combined with simulation. Hrušovský et al.64

(2018) used hybrid simulation-optimization approach for offline intermodal transportation planning65

problem in a stochastic environment. The contributions of this research are listed as follows.66

• The proposed DSS focuses on intermodal freight transportation and analyzes the effect of unex-67

pected events on individual transportation orders, in contrast to the available literature where68

the focus is put on passenger transportation and global impact of unexpected events (see, e.g.,69

Cacchiani et al., 2014; Mattson and Jenelius, 2015).70

• The hybrid simulation-optimization model integrates various phases of transportation planning71

and execution process. It starts with the optimization of transportation plans and continues with72

real-time transportation monitoring where unexpected events can be detected and their impact73
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can be analyzed. Afterwards a re-planning approach is applied to obtain alternative plans for74

transportation orders which are disrupted by an unexpected event.75

• Within the online planning, several basic policies are defined to obtain alternative plans within a76

short time. The applicability of these policies is then analyzed based on scenarios with different77

event durations. As a result, important insights could be gained with regards to the situations in78

which the policies can be used.79

• The proposed DSS is applied to a real-world case study covering several European countries, which80

is based on realistic schedules and integrates three transportation modes, i.e. road, rail and inland81

waterway. In this extensive case study, important managerial insights could be derived regarding82

the disruption management based on the characteristics of the unexpected events.83

The rest of the paper is structured as follows. Section 2 gives a short overview about possible84

disruptions and methods used in disruption management literature. Section 3 defines the problem and85

discusses factors which need to be considered in defining the DSS. In Section 4 the proposed DSS is86

described. Section 5 focuses on the application of the proposed methodology to a case study based on87

real-life European intermodal transportation network. Conclusions are provided in Section 6.88

2. Literature review89

Intermodal transportation planning needs to address a number of interrelated and important plan-90

ning problems covering strategic, tactical and operational level decisions as discussed by Macharis and91

Bontekoning (2004). As shown in the review of Mathisen and Hanssen (2014), numerous optimization92

models have been developed to solve such complex problems. However, the operational level of plan-93

ning, especially disruption management in this context, is still not sufficiently covered (SteadieSeifi et al.,94

2014). This section provides a brief literature review on synchromodality and disruption management95

in transportation and highlights the differences between the available literature and this paper.96

Synchromodality is a promising concept to promote modal shift by motivating logistics service97

providers (LSPs) to move from a single mode to multimodal (intermodal) transportation. In this concept,98

transportation of goods is carried through the most reliable transportation mode. It also helps to reduce99

transportation costs, improve utilization and offer environmentally-friendly transportation. This topic is100

studied in the literature by several researchers but it is still limited. Lin et al. (2016) proposed a decision-101

making system for perishable good LSPs to reduce loss of freshness using synchromodal transportation.102

Extensive simulation experiments illustrated how the proposed approach can improve the quality and103

reduce the operation time during the transportation processes. In another study, Resat and Turkay (2019)104

presented a multi-objective mixed-integer programming problem for integrating various characteristics105

of synchromodal transportation. The authors investigated three different objective functions including106

total transportation cost, travel time and GHGs emissions. The authors solved the proposed linear107

model by using a customized implementation of the epsilon constraint method. In related study, Qu108

et al. (2019) provided a mixed-integer programming model to replan hinterland freight transportation,109

based on the framework of synchromodality. The authors showed that the replanning can benefit from110

a high operational flexibility and coordination via a split of shipment and aligning the departure time111

of service flows with the shipment flows. Interested readers are referred to the survey on real-life112

developments on synchromodality by Giusti et al. (2019).113

Transportation operations are negatively influenced by unexpected events that cause vulnerability114

and reduced serviceability of transportation networks (Mattson and Jenelius, 2015; Pizzol, 2019; Hong115

et al., 2019). The impact of the event depends on its type and duration, since different events pose116

different risks to the network. As an example, a small accident on a local road usually has a smaller117

impact than a tree blocking an important railway corridor. Therefore the events should be distinguished118

based on their frequency and impact.119

3

Jo
urn

al 
Pre-

pro
of



Risk sources for unexpected events can be classified into different categories. Treitl et al. (2013)120

differentiate between human failures, exogenous factors, endogenous factors and other events. Out of121

these, exogenous factors cannot be influenced by the responsible managers/planners, so that reaction to122

these events is only possible after their occurrence. These events include mainly natural disasters and123

adverse weather conditions that can range from low-impact events up to blockages of multiple days (see,124

e.g., Brazil et al., 2017; Ludvigsen and Klaeboe, 2014). Another important category is the endogenous125

factors which include transportation mode-specific disruptions. In this context, Amrouss et al. (2017)126

studied the influence of disruptions on road transports in forestry, Azad et al. (2016) and Gedik et al.127

(2014) dealt with rail disruptions and potential disruptions in inland waterway transportation (IWT)128

were analyzed by Eberdorfer and Wolfinger (2010).129

Despite the high variety of unexpected events, their impact can be summarized to three categories:130

demand changes due to changing order quantities (see, e.g., Lium et al., 2009), capacity restrictions due131

to vehicle problems (see, e.g., Wang, 2016; Soltani-Sobh et al., 2016) or changed travel times due to delays132

(see, e.g., Kalinina et al., 2013). Whereas the first two categories have been extensively investigated in133

the literature, consideration of travel time uncertainties is still an emerging field.134

Possible travel time uncertainties can already be considered in the planning phase where historical135

data or statistical travel time distribution help to create more reliable plans. This has been applied by136

Colicchia et al. (2010) for various stages in a global supply chain and Kalinina et al. (2013) analyzed137

the impact of uncertain delivery times in an intermodal network. In addition to that, Demir et al.138

(2016) integrated travel time uncertainty into the service network design approach for creating reliable139

intermodal transportation plans and Hrušovský et al. (2018) extended the model by developing an140

integrated simulation-optimization approach. The results and differences between the last two models141

were then compared in Demir et al. (2017). However, these models are only able to cover smaller142

disturbances since including long delays would lead to extensive buffer times in transportation chains143

resulting in high costs. Consequently, approaches dealing with long delays by adjusting infeasible plans144

according to the actual traffic situation in real-time need to be developed.145

The topic of re-planning and dynamic adjustments of plans to unexpected changes in freight trans-146

portation was mainly discussed in vehicle routing problems (see, e.g., Ichoua et al., 2000; Pillac et al.,147

2013; Ferrucci and Bock, 2014). In contrast to that, the publications in intermodal freight transportation148

context are rather limited and focusing more on overall network reliability than on the specific solutions149

for individual transportation orders (Rosyida et al., 2018; Fikar et al., 2016). However, disruption man-150

agement has been extensively studied in the area of passenger transportation, which can be also helpful151

for freight transportation.152

In passenger transportation context, the models are generally classified according to the severity153

of unexpected events (i.e., disturbances and disruptions) and the level of details (i.e., microscopic and154

macroscopic models). As described by Cacchiani et al. (2014), disturbances can be defined as small155

delays with minor impact on transportation operations, whereas disruptions are events with major156

impact where re-planning is necessary. Louwerse and Huisman (2014) state that the available literature157

is rather concentrated on disturbances and studies on dealing with disruptions are scarce. In case of158

microscopic models, all infrastructure details, including factors such as number of tracks, signaling159

equipment, etc., are considered (Corman et al., 2017; D‘Ariano et al., 2007). Infrastructure modeling in160

macroscopic approaches is more abstract and therefore usually used for disruptions, where detours and161

changes on multiple links within the network might be necessary (Zhan et al., 2016; Binder et al., 2017).162

The definition of disruptions and their duration is highly dependent on the analyzed case. Whereas163

Khosravi et al. (2012) find delays between 15 and 30 minutes as sufficient for disrupting passenger164

railway services, Fischetti and Monaci (2017) consider disruptions lasting for 15–60 minutes. Binder165

et al. (2017) found out that average disruption duration for Dutch railways was 1.7 hours and Zhan166

et al. (2016) analyzed the impact of disruptions lasting for two hours. However, such short delays167

might not have high impact on intermodal services, where the frequencies of services are much lower168

and transshipment times in terminals are longer. Therefore, in intermodal context, Burgholzer et al.169
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(2013) studied disruptions lasting between two and 24 hours, Ludvigsen and Klaeboe (2014) identified170

12 hours as critical for dividing services into different priority categories and Fikar et al. (2016) dealt171

with disruptions of 24 and 72 hours.172

When developing a re-planning model that reacts to network disruptions, the speed of obtaining a173

solution is more important than the efficiency of the plans, since the involved actors have to be informed174

as fast as possible (Cacchiani et al., 2014). According to Fischetti and Monaci (2017), solutions should175

be obtained within two to 10 seconds whereas Sato and Fukumura (2012) give an overview of available176

models that are able to deliver a solution within 120 seconds. In order to achieve such short solution177

times, pre-defined policies are usually used as a solution approach, with a pre-defined simple rule178

used in case of a disruption. These policies usually include waiting, rerouting, changing transportation179

modes, canceling some of the affected services or using emergency services which should help to solve180

the problem (Louwerse and Huisman, 2014; Zhan et al., 2016; Binder et al., 2017).181

Since the literature review shows that the topic of disruption management is not sufficiently covered182

in intermodal context, this paper aims to analyze the best possibilities to react to disruptions in real-time183

and to create alternative plans in a fast way. The focus is put on individual transportation orders and184

services which have to be re-routed in the available transportation network, therefore the macroscopic185

approach is suitable for this research. In order to be able to analyze the reactions to disruptions, it is186

necessary to create the transportation plans at the beginning and then to monitor the transportation and187

identify potential disruptions. Therefore a hybrid simulation-optimization approach is created which188

integrates the different phases of the transportation process as described in the next sections.189

3. Problem description190

As mentioned in the previous sections, planning and execution of intermodal transportation is highly191

complex due to the need for coordination of different transportation modes with specific characteristics192

in one transportation chain. As an example, some modes (e.g., rail) are running according to fixed193

schedules and/or have only limited network available (e.g., IWT), whereas others have a quite dense194

network and flexible departure times (e.g., road). These factors influence planning as well as possible195

reactions to disruptions. Consequently, an appropriate TMS is needed in order to cover all these issues.196

In this research, our aim is to develop a decision support system which covers all important phases197

of a transportation process, including planning, monitoring of execution and disruption management.198

In this way, the system should support transportation planners and facilitate their decisions since it199

should show them available alternatives and suggest the best possibility how to deal with an occurred200

unexpected event.201

In this context, two planning phases can be distinguished: offline planning and online planning.202

Within offline planning, a transportation plan has to be created for each order received from a customer203

before the transport is started. For this, a network of terminals connected by transportation services is204

used to find the best route for each order according to its characteristics (origin, destination, pick-up and205

delivery time, etc.) and objectives (e.g., minimal costs or CO2e emissions). Consideration of unexpected206

events in this phase is rather limited since the models are either deterministic (see, e.g., Crainic, 2007)207

or include demand or travel time uncertainty to increase the reliability of the plans (see, e.g., Demir208

et al., 2016; Hrušovský et al., 2018). However, these plans are only resistant to smaller disturbances since209

extensive buffer times and capacities would be needed for including all possible disruptions.210

Major disruptions are handled in online planning, which is activated whenever a plan becomes211

infeasible. This usually happens during transportation execution, when a new plan has to be found212

in a fast way, so that vehicles can be rerouted before they arrive to the disruption location. Moreover,213

it is important to consider only services and orders which are really affected by the disruption instead214

of re-optimizing the whole network, since frequent changes of plans could cause chaos in the system.215

Therefore, an effective re-planning approach has to be used in order to find new plans for affected orders.216
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Offline and online planning require diverse inputs and granularity, as shown in Figure 1. In general,217

the network consists of different types of nodes that are linked together. The basic intermodal terminals218

represent the nodes which are origins and destinations of the available planned intermodal services.219

In addition to these basic terminals, there might be additional transshipment nodes without regular220

services or simple waypoints where two links are crossing. In general, each service has a strictly defined221

route including all links located between its origin and destination node. However, this granularity222

is not necessary in offline planning, where the task is to find the best sequence of services connecting223

the origin and destination of an order, whereby the number of available services can be high and the224

details about the exact route of a service are not necessary. Therefore in offline planning a service is only225

considered as a direct connection between two terminals in order to decrease the network complexity.226

This is also shown in Figure 1a for Service 1 and Service 2.227

A

Route Service 1

Route Service 2

Basic intermodal terminal

A

C

B

(a)
a) Offline planning network

A

C

B
T2T1

T3

A

Route Service 1

Route Service 2

Basic intermodal terminal

Additional transhipment node

Waypoint

Network link

T2

(b)
b) Online planning network

Figure 1
Transportation network representation for offline and online planning

When it comes to transportation monitoring and online planning, it is necessary to adapt the network228

and consider the exact route with additional nodes and links as shown in Figure 1b. Although this229

network representation is more complex, it allows a quick identification of possible alternative routes. In230

addition to that, it also shows which links are used and shared by the planned services. As an example,231

despite the fact that Service 1 and Service 2 are treated as separate services for offline planning, Figure232

1b shows that they use the same network links between additional transshipment node T2 and their233

destination B. Therefore, if an unexpected event occurs on this part of the route, both services might be234

potentially affected. However, this might not be necessarily the case as shown in the following example,235

which is based on the network from Figure 1b and illustrated in Figure 2.236

In this example, it is assumed that both Service 1 and Service 2 are rail services. As shown in Figure 2,237

an unexpected event occurs on the last link before terminal B at the moment when Service 1 already left238

node T2 and Service 2 is close to its origin C. For Service 1 this means that it will probably be delayed,239

since it is close to the event location. Therefore, it is necessary to evaluate possible reactions to this event.240

In this case, the service can either wait (Alternative 1) and arrive with delay to terminal B, or alternative241

routes can be used - either detour via another waypoint (Alternative 2) or detour to node T3 and from242

there using another service (e.g., road) to terminal B (Alternative 3). The best alternative is dependent243

on the event duration and the planned following services for orders transported by Service 1 and has244

to be chosen within the online planning process. For Service 2, the situation is different - since it is still245

quite far away from the event location, it might not be affected at all if the event duration is relatively246

short. Even if the event duration is longer and Service 2 is affected, there are much more links and nodes247

available for alternative routes than it is the case for Service 1.248
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A

C

B
T2T1

T3

Route Alternative 1

Route Alternative 2

Route Alternative 3

A1

A3

A2

A3

A2

A1

Location of unexpected event

Service location

Figure 2
Online planning example

As also illustrated by the example, the effect of an unexpected event on the services and orders has to249

be evaluated individually in order to avoid re-planning of orders which are not affected and find the best250

solution for affected orders. This can help transportation planners to find an alternative solution quickly251

and immediately communicate it to drivers of the vehicles en route, so that changes can be implemented252

very fast. However, before looking at transportation monitoring and online planning, it is necessary to253

create offline plans, since they are the basis for each transport. Therefore the proposed decision support254

system combines offline and online planning as it is described in the next section.255

4. Decision support system based on hybrid simulation-optimization256

A hybrid simulation-optimization approach is used combining offline planning, transportation mon-257

itoring, detection of unexpected events and online planning. The components of the model and the258

connections between them are depicted in Figure 3 and will be described in this section.259

Simulation
model

Transportation 
monitoring

Offline planning Online planning

Database

Unexpected
events

Optimization model

Figure 3
Components of the proposed DSS model

The simulation model mimics the transportation system and the influence of planning and unex-260

pected events on transportation execution. Here, the transportation network and movements of vehicles261

and orders are modeled in real time. Simulation time is stopped every time when offline or online262

planning is started so that changes can be implemented immediately. The model combines agent-based263

and discrete-event simulation, where separate agents are created for each node, vehicle and order within264

the network. The agents for vehicles have their own internal statecharts which regulate the travel speed,265
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the links which the vehicle is traveling on, and possible changes or intermediate stops on the route. It can266

be distinguished between vehicles with fixed (e.g., rail, IWT) and flexible (e.g., road) departure times,267

where in case of flexible departure the vehicle agent is responsible for waiting until all orders are ready268

to be picked up. The discrete-event elements are used to model the loading and unloading processes in269

terminals, the transportation of goods as well as sourcing of vehicle and order agents.270

The whole system is coordinated by the transportation monitoring component which is responsible271

for controlling the model execution. This includes calling offline planning in regular intervals, updating272

the database and creating unexpected events which trigger the online planning process.273

All components are connected to the database, where all necessary information is stored either as274

static or as dynamic data. The static data defines all nodes, services and orders with their characteristics.275

Examples for dynamic data are available service capacities, transportation plans for orders, changed276

arrival times and delays due to disruptions or changes in routes and costs due to online planning.277

The actual process starts with the offline planning component, which is responsible for creating278

offline plans for received orders. The arriving orders are stored in the database and the plans have to279

be created for all orders received until the time of planning. Offline planning is repeated in regular280

intervals in order to reflect the work of planners who are usually planning the orders on a daily basis.281

In order to limit the size of the planning instance, the number of services is limited since only services282

departing within a certain planning horizon from the time of planning (e.g., one week) are included.283

After all necessary data is prepared for planning, the optimization model is called by the offline planning284

component.285

The optimization model is based on the service network design approach, which is suitable for286

representing specific characteristics of different transportation modes (see, e.g., Crainic, 2007). Since287

this paper focuses on the combination of optimization and simulation and on the online planning, we288

adopted a mixed-integer linear programming model previously used by Hrušovský et al. (2018), which289

is in detail described in their paper. This model combines multiple optimization objectives (i.e. costs,290

time, emissions) and takes into account the specific constraints of intermodal transport, such as (partly)291

fixed schedules, transshipments or limited capacities of the different services.292

When the offline plans are created, they are added to the database and the free capacities of each293

used service are decreased accordingly, so that the booked capacity cannot be used for further planning.294

Besides that, the departure times of services with flexible departures are adjusted according to the results295

from planning. Afterwards, the transportation execution process is simulated, where all activities are296

monitored in order to be able to identify every deviation from the plan.297

The deviations are usually caused by unexpected events occurring randomly on different locations298

within the network. Each unexpected event affects a certain pair of links between two nodes (one link299

in each direction) whereby its exact location on the link is chosen randomly. In addition to the location,300

the event is characterized by its duration and its starting and ending time, which are assumed to be301

deterministic and known. Each unexpected event can potentially cause a disruption of the transportation302

plan, therefore each unexpected event automatically triggers the online planning module.303

The online planning module is responsible for reactions to disruptions. However, since not every304

unexpected event might lead to a disruption causing infeasibility of the plan, the first step is to find305

out whether and for which orders a new plan has to be found. The identification of affected orders is306

the task of the so-called feasibility check, where the aim is to reduce the number of orders and services307

considered in online planning and to reduce the number of changes in the network. When affected308

orders are identified, the re-planning process can be started. Since these two phases of the online309

planning process are one of the main contributions of this paper, they are described in more detail in310

Section 4.1 and Section 4.2. They are also shown in Figure 4 and a pseudocode of the whole process is311

given in Algorithm 1 and Algorithm 2.312
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Unexpected event
detected

New potential disruption
defined

Affected services defined

Affected orders defined

Does the unexpected event
influence the travel time on the

link?

Are there services passing the
disruption location during its

duration?

Do the transport plans of orders
become infeasible due to delays

of affected services?

Find an alternative plan

Policy 1:
Wait

Policy 2:
Transship-

ment at the
next node

Policy 3: 
Detour

Choose the plan with the lowest
total costs

Implement the new plan

No re-
planning
needed

YES

NO

NO

NO

YES

YES

FEASIBILITY CHECK RE-PLANNING PROCESS

Figure 4
Online planning process

Algorithm 1: Feasibility Check
input : Unexpected event UE defined by link pair x, time of occurrence STEx and end time ETEx, set of links L including start time STl

and end time ETl of the last recorded unexpected event at link l, set of services S including set of links RLs included in the
route of each service s, set of planned orders O including set of services OSo used by each order o, order origin ORo and order
planned departure time DTo

output: List of affected services AS and affected orders AO
1 Let AS be the set of services affected by UE and AO be the set of orders affected by UE
2 if ETEx > ETx then
3 ETx ← ETEx and STx ← STEx
4 else
5 return

// Identification of affected services
6 for s ∈ S do
7 if x ∈ RLs then
8 Calculate planned time PTAsx when service s will arrive to link x and PTDsx when service s will leave link x
9 if PTDsx > STx or PTAsx < ETx then

10 Calculate planned delay DELs due to unexpected event and add it to planned travel time for x and all links between x
and service destination

11 Add s to AS

12 if AS == ∅ then
13 return

// Identification of affected orders
14 for s ∈ AS do
15 for o ∈ O do
16 if s ∈ OSo then
17 Calculate buffer time BTsr between planned arrival of affected service s and following service r or planned delivery time

if affected service is the last planned service
18 if BTsr < DELs then
19 Add o to AO

20 if AO == ∅ then
21 return

4.1. Feasibility check313

Before the effect on services and orders is investigated, the feasibility check starts with the affected314

link pair and searches for potential active events on that link (lines 2-5 of Algorithm 1). If there is still315

an active event from the past which ends after the end time of the current event and is located before316
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the new event in the transportation direction, then the new event does not have any effect at all, because317

the services using the link are blocked by the previous event. In this case no re-planning is needed and318

the process terminates, in all other cases a new potential disruption is defined and its time of occurrence319

and end time are saved to the affected link. Afterwards, the feasibility check continues with the search320

for affected services.321

In order to identify a service as affected (lines 6-13), it is necessary to know whether the affected link322

is included in its route and what is the exact location of the service when the unexpected event occurs.323

Therefore, the planned arrival times to each intermediate node on the route are stored in the database324

and the exact service location on each link based on the planned travel time can be detected. In this way325

it can be decided whether the service will arrive to the affected place before the planned end time of the326

unexpected event or, if the service is already on the affected link, whether it still did not pass the affected327

place before the event has occurred. In these cases the service is affected and the planned delay is added328

to its travel time. This delay is the time which the service has to wait until the disruption is resumed,329

whereby it is assumed that the service can continue with its planned speed until the event location330

and then wait there until the event is resumed. The delay is added to the planned arrival times of all331

intermediate nodes on the rest of the route and the expected arrival time to the destination is adjusted.332

Finally, the service is added to the set of affected services and the process continues with the next step.333

When the new expected arrival time of the affected service is known, the last step is to identify the334

affected orders (lines 14-21). Since containers need to be transshipped between services with mostly335

fixed schedules, offline plans usually include some buffer time between two planned services. If the336

planned delay is shorter than this time, then the original plan of the order is not affected, since the next337

planned service can be used without problems. However, if the delay is longer than the buffer time,338

the order is affected and a new plan is needed. When all orders transported by an affected service are339

checked, the feasibility check is concluded and the affected orders are further treated in the re-planning340

process.341

4.2. Re-planning process342

The aim of the re-planning process is to find a new plan for the affected orders in a fast way based on343

the current network situation. The plans are optimized by the same optimization model that is used for344

offline planning. However, since a quick solution is needed, the number of considered services has to be345

reduced. In order to achieve this, pre-defined policies in form of simple rules are used which define how346

the affected service will continue. Since all orders on a service are transported together on one vehicle,347

only one policy can be chosen for all orders on a particular service. In this paper, three possible policies348

are considered: waiting, transshipment at the next node, and detour. The applicability of these policies349

is dependent on the position of the vehicle at the time when the event is announced. It is assumed that350

the vehicle cannot turn back easily and therefore if the vehicle is already on the affected link, only the351

waiting policy is applicable. If the vehicle did not reach the affected link yet, all policies can be used352

(lines 5-9 of Algorithm 2).353

Policy #1 (Waiting, lines 1-4 ): In case of the waiting policy, the service uses the planned route, waits354

in front of the disruption location and arrives to the destination with delay. As a consequence, the orders355

need a new plan from the destination of the service. Therefore, the service destination is set as a new356

origin of the order and the delayed service arrival time is set as a new order release time. Afterwards the357

optimization model is used to find a new plan whereby the number of services is reduced including only358

services which have not started yet. The advantage of this policy is that re-planning can be started earlier359

and therefore available capacities, which might be already blocked by other orders at the time of arrival360

to the destination, can be used. Moreover, if no feasible plan can be found within the existing network,361

an emergency truck service can be organized for the direct delivery of goods to their destination.362

Policy #2 (Transshipment at the next node, lines 10-15): The second policy can be applied if there is a363

transshipment terminal on the route before the vehicle reaches the affected link. In such case the vehicle364

can be stopped at this node and containers can be transshipped to an alternative service. In this case the365
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Algorithm 2: Re-planning process
input : Set of affected orders AO, set of affected services AS
output: Updated plans of all affected orders

// Policy 1: Waiting
1 for o ∈ AO do
2 Set new origin of o equal to the destination of the affected service s used by order o
3 Set new departure time to the delayed arrival time of the affected service s to the destination
4 Find an alternative plan AP1o for order o between the new origin and planned destination

// Checking availability of Policy 2 and 3
5 Identify the current link cl on which service s of order o is located at the time of occurrence of UE
6 if cl == x then
7 Policy 2 and 3 not available
8 else
9 Identify the next node n to which the affected service s used by order o will arrive

// Policy 2: Transshipment at next node
10 if n is a waypoint then
11 Policy 2 not available

12 else
13 Set new origin of order o equal to n and new departure time of o equal to the arrival time of service s to n
14 Add truck services from n to all other basic nodes to the set of services
15 Find an alternative plan AP2o for o between the new origin and planned destination

// Policy 3: Detour
16 Find an alternative path from n to the planned destination of the affected service s
17 Calculate the additional costs of this path and the new arrival time to the destination
18 Save the new plan to AP3o

// Choice and implementation of the new plans
19 Choose the plan with the lowest cost (i.e., min{AP1o,AP2o,AP3o})
20 Implement the new plan
21 Cancel the parts of original plans which became infeasible due to UE
22 Block capacities on the newly used services
23 Release capacities on services from canceled plans
24 return

arrival time to this node is known and it is assumed that the service waits in the terminal until containers366

are unloaded. However, the service has to continue to its destination, as the vehicle might be planned367

for another service starting from the service destination. Therefore there still exists a possibility to use368

the original service for orders which are loaded on the vehicle but are not affected by the disruption, but369

additional delay is possible. However, the unplanned stop offers additional possibilities for re-planning370

of affected orders. In order to find a new plan, the intermediate node is set as a new order origin and the371

arrival time to that node is set as a new order release time. Moreover, since this node might not have any372

regular services, additional truck services from this node to all basic network nodes are considered in373

addition to planned services in order to facilitate the search for the new route, including also the direct374

emergency truck, since the destination of each order is always a basic terminal.375

Policy #3 (Detour, lines 16-18): Within the third policy, a detour is used to bypass the affected link.376

The detour is defined as the shortest path which minimizes the increase in total costs and reduces the377

planned delay. The costs are calculated based on average costs for each link and the travel time is based378

on average speed of the vehicle according to the planned travel time. If a detour can be found, then the379

delay can be reduced, which means that orders can be transported according to the original plan or can380

use services with departures between the arrival time of the detour policy and the arrival time of the381

waiting policy.382

The optimal plans for each applicable policy are created separately and the total costs based on the383

preferences of the customers are calculated for each plan and policy. When all plans are available, they384

are compared and the plan with the lowest total costs is chosen as relevant plan for implementation.385

This plan is then valid for all orders loaded on the affected service (line 19).386

The last step within the online planning component is the implementation of the chosen plan (lines387
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20-24). This means that the route of the service has to be adapted if the third policy is chosen, arrival388

times to all nodes on the route have to be changed, and possible delay in the intermediate terminal if the389

second policy is chosen has to be considered. The changed plans for orders mean that the capacities of390

the original services which are not used anymore and the capacities of the newly used services have to391

be changed accordingly. Moreover, the new route is implemented and additional costs, times and CO2e392

emissions connected to the new route are recorded for each order. Analogically, the costs, times and393

emissions for the services in the canceled part of the route are not considered in real total costs. In this394

way the additional costs caused by the disruption and the need for re-planning can be calculated.395

5. Case study: Disruption management in European intermodal network396

To investigate various planning stages of the proposed solution methodology, we developed a case397

study based on real-life network. Intermodal transportation is mainly used for long-distance routes,398

therefore intermodal services of various European countries are included. These services are not only399

used for intracontinental transports, but represent also hinterland network of intercontinental transports400

going through the port of Hamburg. The basic network was already used for a case study in Demir401

et al. (2019a), but it has been extended for this paper by increasing the number of services and possible402

connections as well as by developing the detailed network with its links and intermediate nodes. The403

transportation network, input parameters as well as the results are described in the following subsections.404

5.1. Transportation network and inputs405

The intermodal transportation network includes 30 basic terminals, which are located in Germany,406

Austria, Czech Republic, Slovakia and Hungary. Each terminal, which can be both a starting and an407

ending point for transportation orders, is connected to other terminals by means of road, rail or inland408

waterway transportation (IWT), depending on the available infrastructure and schedules. As a result,409

only selected connections are available, which are summarized in Table 1. The position of all basic410

terminals in the network is depicted in Figure 5.411
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Figure 5
An illustration of basic terminals in the network
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Table 1
Basic terminals with available transportation modes and connecting services

Terminal Terminal Road Rail IWT
Connecting services by

no name Road to terminals Rail to terminals IWT to terminals
1 Hamburg x x 2,3,4,5,6,7,8,9,10,11,12,13,14,16,17,20,22 29
2 Duisburg x x x 3 1,4,8,13,15,17,20,22,23 7
3 Göttingen x x 2,7,29 1
4 Leipzig x x 28 1,2,5,13
5 Schwarzheide x x 4,22 1
6 Cologne x 1,11,12,13,14
7 Frankfurt x x x 3 1 2,10
8 Ludwigshafen x x 9 1,2,13,15
9 Mannheim x x 8,12 1
10 Nuremberg x x x 12,29 1,13 7,28
11 Ulm x x 13 1,6
12 Kornwestheim x x 9,10 1,6
13 Munich x x 11,14,19,28 1,2,4,6,8,10
14 Basel x x 13 1,6
15 Wels x x 18,19 2,8,17,20
16 Enns x x 18,24 1
17 Vienna x x x 21,27 1,2,15,25 18,20
18 Linz x x 15,30 17,28
19 Salzburg x x 13,15 23
20 Budapest x x 1,2,13,15,17,21 17
21 Dunajska Streda x x 17,26 20,25
22 Lovosice x x 5,23 1,2
23 Prague x x 22 2,19,24,25
24 Plzen x x 16 23
25 Ceska Trebova x 17,21,23,26,27
26 Ostrava x x 21 25
27 Zlin x x 17 25
28 Regensburg x x 4,13 10,18
29 Magdeburg x x 3,10 1,30
30 Riesa x x 18 29

The available connections are served by transportation services running at different intervals ranging412

from once per week up to multiple times per day. Thereby rail and IWT services are operated based on413

real-world fixed schedules (Metrans, 2019; Kombiverkehr, 2019) which are repeated in weekly cycles .414

These services are extended by flexible truck services that cover mainly the areas with insufficient rail415

and IWT connections.416

In order to show the ability of the proposed methodology to adapt online as well as offline plans417

according to occurred unexpected events, the planning and monitoring processes over a longer time418

horizon need to be considered. Therefore, the simulation is run over one month, with services departing419

on each of the 31 days. In total, 2,792 services are available during one month, out of which 74% are rail420

services, 21% are road services and 5% are IWT services, covering mainly the rivers Danube and Elbe.421

This means that on average 90 services are dispatched per day with higher number of services during422

the working days and lower number during the weekends. We define service with its origin, departure423

and travel time, costs and CO2e emissions (per container) and destination information.424

Transportation costs and CO2e emissions for each service are pre-calculated before the simulation is425

started. As a result, a fixed cost factor and a fixed emission factor per TEU is calculated for each service.426

The cost factors are dependent on the distance, travel time, vehicle characteristics (e.g., engine, capacity,427

utilization, traction) and route characteristics (e.g., gradient, infrastructure charges). The necessary428

parameters are calculated based on PLANCO (2007), via donau (2007) and PTV (2019). In case of CO2e429

emissions, a specific method for each transportation mode is used for calculation. As also described in430

detail by Hrušovský et al. (2018), the important factors are again vehicle and route characteristics. As431

an example, emissions for trucks are mainly dependent on the fuel consumption and vehicle utilization,432

whereas train emissions are influenced by the traction (diesel or electric) and total weight of the train.433

In case of IWT, the sailing direction is an important factor since sailing upstream requires much more434
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energy than sailing downstream. Since the emissions are considered in form of emission costs in the435

model, a reference value of 70 Euro per ton of CO2e emissions was used to convert emissions into costs436

(PLANCO, 2007). As the described factors might vary between the services, the cost and emission factors437

are also different. Table 2 shows the ranges of used costs and emissions per TEU–km.438

Table 2
Cost and CO2e emission factors for transportation services

Transportation Transportation costs CO2e emissions
mode (EUR/TEU–km) (kg/TEU–km)
Road transportation 0.6–0.8 0.55–0.65
Rail transportation 0.2–0.6 0.15–0.30
Inland waterway transportation 0.2–0.4 0.1–0.4

Each transportation service connecting two basic nodes has assigned a certain route consisting of439

different network links and nodes which the vehicle is passing through. This is necessary to be able to440

identify the effect of an unexpected event on a specific vehicle. Therefore, the basic network consisting441

of 30 terminals is extended by 78 additional nodes, consisting of 32 additional transshipment nodes442

and 46 waypoints. The basic terminals and additional transshipment nodes can be used by multiple443

transportation modes whereas the waypoints are separate for each transportation mode. These nodes444

are connected by a total of 570 links, whereby each connection is bi-directional and includes two links.445

Each link is also transportation mode-specific. The available links are illustrated in Figure 6.446

Basic node

IWT waypoint/add. node

Rail waypoint/add. node

IWT link
Rail link

(a)
Rail and IWT network

Basic node

IWT waypoint/add. node

Rail waypoint/add. node

Road waypoint/add. node
Road link

(b)
Road network

Figure 6
Transportation network with nodes and network links

In addition to the network and services, transportation orders have to be considered. The orders447

are characterized by their origin, destination, release time and due date, penalty costs for late delivery,448

inventory costs for each hour in transit and the number of containers. They were created randomly over449

the whole simulation period, which means that the number of orders can fluctuate from day to day.450

The routes for the orders are optimized in regular offline planning cycles that are performed every451

day at midnight. Within one cycle, all orders with release times during the following day are planned452

and the planning horizon is limited to seven days, including 623 services on average. This means that453

25 offline planning cycles are performed within the one month, so that also the last cycle can have the454

full planning horizon of seven days. In total, 247 orders are considered, which means that on average 10455

orders are planned per day, fluctuating between seven and 16 orders. The number of TEU for each order456
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varies between one and 30, the planned due date is between 24 and 168 hours after release time and the457

cost factors are 10 EUR/h as penalty costs for late delivery and one euro per hour as inventory costs.458

The decision support tool is run on an Intel(R) Core(TM) i5-5300U CPU with 2.3Hz and 8GB of459

memory. The mathematical model is solved with CPLEX 12.63 (IBM ILOG, 2020) and Anylogic University460

7.2.0 was used for simulation model (AnyLogic, 2016). The analysis can be divided into two parts: at461

first, the effect of different objectives on the optimal routes is analyzed in Section 5.2. Afterwards the462

effect of unexpected events and the necessary changes in online planning are examined in Section 5.3.463

5.2. Offline planning464

The aim of offline planning is to find an optimal transportation plan for each transportation order465

based on the defined objectives. Since the optimization model combines three different objectives (costs,466

time and CO2e emissions), which can have different weights based on planner’s preferences, this section467

analyses the influence of these objectives on the resulting plans without taking the effect of unexpected468

events into consideration. For this purpose, various offline planning cycles were run over the whole469

planning horizon considering all objectives together and also each objective individually.470

In most of the considered cases the optimal plans could be found relatively quickly (up to 720 seconds471

per planning instance for one day). However, if only the time objective was considered, the increase472

in computational times was very high and often no optimal solution could be found even after more473

than 3,600 seconds, since in this case there might exist multiple alternative solutions with equal or very474

similar time costs. Therefore, this case was excluded from the analysis and the results are compared475

for the following three cases: in Case A, all three objectives are considered with equal weight for each476

objective, in Case B, only transportation costs are considered in optimization and in Case C only the477

CO2e emissions are minimized. In order to represent each objective, we now provide mathematical478

formulations for the three studied cases as follows.479

Case A: min
∑
p∈P

∑
s∈S

xspcs +
∑
j∈N

n jc j+ (1)

+
∑
p∈P

cp
t (ADp

− Γ
p
release) +

∑
p∈P

∑
s∈S

ap
delaycp

pen+

+cemi

∑
p∈P

∑
s∈S

xspes +
∑
j∈N

n je j

Case B: min
∑
p∈P

∑
s∈S

xspcs +
∑
j∈N

n jc j (2)

Case C: min cemi

∑
p∈P

∑
s∈S

xspes +
∑
j∈N

n je j (3)

where P represents the set of orders, S represents the set of services and N is the set of locations.480

We define four decision variables: (i) xsp is the number of containers of order p carried via service s, (ii)481

n j is the number of containers transshipped at terminal j, (iii) ADp is the arrival time of order p to its482

destination, and finally (iv) ap
delay shows the delay of order p at its destination.483

The parameters include the transportation costs per container and service cs (i.e., the fixed transporta-484

tion costs per service allocated to one container as well as the direct transportation costs per container)485

and transshipment costs per container (c j). The time-related costs are used to represent in-transit inven-486

tory costs for the total time spent since the release of containers at the origin until the arrival of the order487

to the destination. We also consider charges for delayed deliveries (cp
pen) in time-related costs. Γ

p
release488

shows the earliest release time of order p. Furthermore, CO2e emissions-related costs per kilogram (cemi)489

for the emissions consumed per container serviced (es) and transshipped (e j) are also included.490
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Table 3
Comparison of total costs for different optimization objectives

Case Optimization Transportation Time Emission Total Computational
according to costs costs costs costs time

(EUR) (EUR) (EUR) (EUR) (seconds)
A Costs&Time&Emissions 1,202,427 436,881 40,971 1,680,279 45–720
B Costs 1,201,925 453,134 40,952 1,696,011 20–160
C Emissions 1,269,887 460,459 37,946 1,768,281 20–160

The resulting costs and computational times are summarized in Table 3.491

The results show significant differences with regard to the resulting routes and the computational492

times needed to solve each case. The variation in computational times between the daily instances can493

be explained by the varying number of orders and services per day (see Section 5.1) and the resulting494

differences in the problem complexity. In addition to that, differences between the three cases can be495

observed: whereas Case B and Case C need only 20 to 160 seconds to solve the planning instance for496

one day, the time increases to 45 to 720 seconds in Case A. This is due to the increased complexity of the497

problem caused by including the time objective. However, the time objective has a positive impact on the498

total costs, since the optimal routes in Case A tend to minimize waiting times in intermediate terminals499

in order to reduce the inventory costs and avoid penalty costs for late delivery. This is a difference to500

optimal routes in Case B and Case C, where the optimal solution often suggests to wait for a later service501

which has slightly lower costs or emissions, since inventory and penalty costs are not considered. Case502

A was also used for online planning in Section 5.3, since the unexpected events have here the highest503

impact due to the minimized waiting times in intermediate terminals.504

The results in Table 3 also show the clear dominance of transportation costs, since the optimal plans are505

different only for five orders between Case A and Case B. However, these changes lead to savings of 3.6%506

within the time costs due to faster transports and reduced penalty costs. The changes in transportation507

costs and emissions costs are not significant. If Case A and Case C are compared, differences between508

the transportation plans for 70 orders can be observed, mainly aiming at the reduction of emission costs,509

which are decreased by 7.4% in Case C. However, this also leads to increases in transportation and time510

costs by more than 5%, which means that Case C has the highest total costs.511

The changes in costs between the cases can be explained when the usage of services is analyzed. In512

each case between 650 and 700 services are used, with the highest number of services in Case A and the513

lowest number of services in Case C. The reason is that Case A uses more truck services due to the time514

costs and 76% of used services only transport one order. If the emissions are minimized, consolidation515

takes place so that only 72% of used services transport one order whereas 2–4 orders are transported by516

28% of the services. The maximum of orders transported by one service is four.517

When looking at the modal split of the used services depicted in Figure 7, it can be seen that train518

services are dominating for all three cases. However, whereas in the first two cases the share of train519

services is 45% and truck and IWT services have both about 27%, the situation changes when emissions520

are minimized in Case C. Here the share of train services increases to 58% whereas the shares of both truck521

and IWT services decrease to slightly more than 20%. This clearly shows the preference for electrical522

trains with very low emissions before the truck services. The decrease in the usage of IWT services can523

be explained by the fact that many services are sailing upstream, which also leads to increased emissions.524

The similar results for Case A and Case B can be explained by the fact that the transportation costs still525

have a very high weight for Case A and the consideration of time only leads to the situation where in both526

cases the optimal routes are the same but in Case A services on the same route with earlier departures527

(but slightly higher transportation costs) are chosen, as described before.528
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Figure 7
Modal split of used services for different optimization objectives

5.3. Online planning529

This section discusses the influence of unexpected events (UE), whereby the aim is to identify which530

policies should be used for different durations of these events. To this end, offline plans are created531

taking into account all three objectives (Case A) and the extended network from Figure 6 is used. Out532

of the 570 links in that network, 324 links are used by planned services and therefore can be possible533

locations for an UE. The rest of the links are used for detours. Out of the used links, about 75% are used534

by 1–3 services per day, but the number of services per link can go up to 15 per day. The longest service535

uses 18 links, whereby most of the services use 2–3 links and a significant number of services have seven536

and 11 links in their route. For comparing possible detours with the planned route, each link has specific537

costs and CO2e emissions assigned based on the proportional costs and emissions of services using the538

link. The travel time for a service on a certain link is based on its average speed according to its schedule.539

Unexpected events are created in regular intervals whereby the affected links and the precise location540

of the event on the link are chosen randomly. In order to increase the significance of the results, the541

model was run 10 times with different randomly chosen event locations in each scenario and the average542

results over all runs are presented in this paper. The duration and frequency of occurrence of UE have543

been chosen based on the available literature as described in Section 2. In total, four scenarios were tested544

with durations of 2, 6, 12 and 24 hours. The intervals between two UE were two hours for the first two545

scenarios, since shorter events usually occur with higher frequency. For the rest of the scenarios, three546

events per day were created as suggested by Burgholzer et al. (2013). Although the time period used547

for planning was 31 days, it took another two days until all services have arrived to their destination,548

therefore 396 disruptions were analyzed in the first two scenarios and 99 disruptions were recorded in549

the two scenarios with longer durations.550

As a first step of the feasibility check, Table 4 summarizes the affected services. In all scenarios551

multiple affected services could be identified whereby the average number of affected services per UE is552

increasing with its increasing duration. Whereas 396 events for the first scenario affect only 113 services,553

99 events with durations of 12 and 24 hours are sufficient to affect 171 and 355 services, respectively. The554

average delay per service is in all cases around half of the event duration with delays evenly distributed555

throughout the whole range, reaching from one minute up to almost the duration of the unexpected556

event. With regards to the transportation mode of the affected services, a clear dominance of rail can557

be observed in all scenarios with about 90% of affected services. This corresponds to the expectations558
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since rail services have major share on all services and usually have longer routes, which increases the559

probability that they will be affected by an UE. In contrast to that, trucks usually operate on shorter560

distances and IWT services are limited in this case study, therefore their share is much lower.561

Table 4
Effect of unexpected events on services

Duration
of UE
(hours)

Interval
of UE
(hours)

Total
number of
UEs

Number of
affected
services

Total
delay
(hours)

Average
delay
(hours)

Modal split of affected services (%)

Road Rail Inland
waterway

2 2 396 113 110.65 0.98 8.93 88.32 2.75
6 2 396 350 1,043.01 2.98 8.68 89.08 2.25
12 8 99 171 1,008.45 5.90 11.05 87.50 1.45
24 8 99 355 4,244.52 11.98 9.10 89.25 1.65

The affected services might carry orders which can be potentially affected by the UE. However, this562

might not be valid for all orders as it is also shown in Table 5. Here the potentially affected orders are563

all orders that are carried by the affected services, ranging from 16 in the first scenario up to 48 in the564

last scenario. However, if only affected orders with infeasible plans are considered, these numbers are565

reduced to five and 24 orders respectively, which means that only 30-50% of potentially affected orders566

require re-planning. As a result, only five orders out of 247 have to be re-planned on average in the567

first scenario. This also illustrates the relevance of the feasibility check, since the number of re-planning568

activities can be significantly reduced, which contributes to higher stability of the whole system.569

In addition to that, the computational time needed for optimization in the re-planning process can be570

also reduced. Whereas one offline planning cycle can last more than 10 minutes (see Table 3), the reduced571

number of orders and services in re-planning process reduces the computational time to less than 10572

seconds for one run of the optimization model. As a result, the whole re-planning process including the573

comparison of all policies and implementation of the best plan can be concluded in less than one minute.574

Table 5
Effect of unexpected events on orders

Duration
of UE
(hours)

Potentially
affected
orders

Affected
orders

Share of
affected
orders (% )

Modal split of affected orders (% )

Road Rail IWT

2 16.2 4.9 29.22 7.15 79.20 13.65
6 48.6 17.5 35.84 11.69 79.34 8.97
12 24.8 10.7 42.92 16.51 77.37 6.12
24 48.1 24.5 50.99 17.24 74.98 7.77

As described in Section 4.2, three policies are considered within the re-planning process: Policy 1575

is waiting until the problem is resolved, Policy 2 suggests transshipment at the next possible node and576

Policy 3 tries to find a detour which is more convenient than the disrupted original route. Although all577

policies are checked in every re-planning process, their availability is dependent on the affected link and578

the position of the affected service when the UE is announced. As a consequence, some policies might579

not be always available. This is illustrated in Table 6 which shows that Policy 3 was available in less than580

50% of the re-planning processes in the first scenario. The reason is the relatively short event duration581

where the vehicles are usually very close to the event location when the event is announced, mostly one582

link before or directly on the affected link. In these cases the detour possibilities are very limited. With583

the increasing event duration, vehicles are usually far away from the affected link and more detours are584

available, which results in increased availability of Policy 3. Similarly, the options to transship containers585

to other services are limited when the vehicle is very close to the affected link, therefore the availability586

of Policy 2 is also limited. In contrast to that, the waiting policy can be used in every situation.587

The limitations of the policies are reflected in the shares of the implemented policies which are also588

shown in Table 6. Although the waiting policy has the highest share in all four scenarios, its dominance589

is especially clear in the first scenario where it is used by almost 98% of re-planned orders. The reason590
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Table 6
Availability and implementation of re-planning policies

Duration of
UE (hours)

Availability of re-planning policies Implemented re-planning policies
Policy 1 Policy 2 Policy 3 Policy 1 Policy 2 Policy 3
(%) (%) (%) (%) (%) (%)

2 100.00 77.63 49.12 97.98 1.11 0.91
6 100.00 78.97 60.67 87.13 6.77 6.11
12 100.00 85.02 73.72 73.13 4.83 22.05
24 100.00 90.28 80.49 53.72 2.75 43.53

for this is the relatively short event duration where it is more convenient to wait and accept additional591

penalty costs for late delivery than to organize a detour which is in most cases longer than the delay592

itself. Sometimes it is also possible to postpone the departure of the next service if this is a truck.593

When the event duration increases, Policy 1 loses its share in favor of Policy 3. If the event duration594

reaches 24 hours, for more than 43% of the orders a detour was the optimal solution. Although the595

transportation costs were higher for the majority of the detours, this increase was compensated by596

significant delay reductions resulting in reduced inventory and penalty costs. In some cases even faster597

and cheaper solutions than the original route could be found where the vehicle used alternative links598

that are usually not used under regular conditions. However, it cannot be claimed that the detour policy599

would be the best option in general, since its advantages are dependent on various factors.600

First, the location of the vehicle at the time of event occurrence is important. Although longer distance601

of the vehicle from the affected link is in general more convenient, if the distance is too long and the effect602

of the event on the service is thus relatively short, usually the detour is more expensive than waiting.603

Second, the network density plays an important role. In this respect it could be observed that the604

detour policy was mainly used for disruptions in Germany, where the network density is high especially605

around Munich, Frankfurt, Cologne and their links to Hamburg, so that an alternative route can be found606

easily. On the other hand, detour possibilities were limited in Austria where only the main corridor607

between Vienna and Salzburg was modeled, so that only long detours via Czech Republic were possible.608

Thirdly, the average speed of the vehicle is also important. This is especially valid for some rail609

services with very long travel times and low average speed, so that waiting is better than the detour. In610

contrast to that, fast services usually use the detour. In this way the services can be also prioritized, since611

fast services use the scarce capacity on the detour and slower services wait until the problem is resolved.612

Last but not least, the detour policy is also limited by transportation modes since vessels sailing on613

the river usually do not have any alternative routes.614

Policy 2, transshipment at the next node, has clearly the lowest share in all scenarios. This is partly615

caused by the fact that very often transshipment nodes are not available on the route, but the main reason616

is that this policy is too expensive because in most cases the solution is to use an emergency truck to the617

destination at high costs. Therefore this policy was mainly used when the vehicle was too close to the618

affected link to find a detour and the delay was too long for employing the waiting policy or in cases619

where IWT service was affected and this policy was the only option. In a few cases it also happened that620

the next node was the destination of the order, where the service should not stop according to the plan,621

but employing Policy 2 led to the earlier and cheaper delivery of the goods to their destination.622

The re-planning process and the implemented solutions also influence the total costs for the affected623

orders. Since the proportion of affected orders to all orders is rather low, the effect of changes on total624

costs of the system is also very low, ranging from 0.26% to 0.81% increase across the four scenarios.625

Therefore the focus here is put only on changes in costs of re-planned orders illustrated in Table 7.626

As the table shows, the costs are changing in accordance with the implemented policies. In the627

first scenario, the vast majority of orders used the waiting policy and therefore almost no changes in628

transportation and emission costs took place. The small negative change in transportation costs was629

caused by the orders where Policy 2 was implemented and the direct emergency trucks were cheaper630

than the original solution. The highest increase was recorded for time costs since goods arrived later631
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Table 7
Changes in costs for re-planned orders

Duration of
UE (hours)

Cost category Planned
costs (EUR)

Actual costs
(EUR)

Change in actual
vs. planned costs
(%)

2

Transportation 26,637.40 26,620.80 –0.02
Time 7,234.60 7,581.10 4.14
CO2e emission 925.88 925.31 0.00
Total 34,797.88 35,127.22 0.91

6

Transportation 96,360.40 93,878.70 –2.39
Time 24,055.10 26,487.90 10.46
CO2e emission 3,102.01 3,077.84 –0.81
Total 123,517.51 123,444.44 0.07

12

Transportation 57,843.90 57,535.50 –0.63
Time 14,752.40 16,968.60 14.09
CO2e emission 1,932.90 1,950.89 1.04
Total 74,529.20 76,454.99 2.22

24

Transportation 139,572.50 140,361.50 0.54
Time 27,275.70 33,197.90 23.53
CO2e emission 4,758.33 4,987.11 4.78
Total 171,606.53 178,546.51 4.13

than planned, but the delays were not too long due to short event duration. A similar situation was in the632

second scenario, where the share of Policy 2 was the highest among all scenarios, thus the transportation633

costs were decreasing. In the third scenario, the use of direct trucks in Policy 2 still had some influence634

on decreasing transportation costs, but the emission costs increased due to the negative impact of trucks635

on environment. In the fourth scenario a substantial increase in time costs can be observed, since the636

long delays influence the penalty costs for late deliveries. This increase was only partly mitigated by the637

time savings of orders which used the detour policy. However, some of the detours were more expensive638

than the original plan which resulted in higher transportation and emission costs.639

6. Conclusions640

Intermodal transportation is a viable alternative to single-mode transports since it combines advan-641

tages of various modes and contributes to economic as well as environmental efficiency. Despite this642

fact, its usage is quite low in Europe due to several reasons, one of them being insufficient support for in-643

termodal transportation planning and monitoring within the existing TMS software. In order to respond644

to this problem, we developed a DSS model which combines transportation planning and monitoring645

and is able to react to potential disruptions. This approach was tested on several scenarios with different646

durations of unexpected events that have occurred on different links all over the transportation network.647

Thereby different policies were employed and their suitability for different situations was analyzed. As648

the results based on a real-world case study covering wide parts of the European transportation network649

highlight, the chosen policies are helpful when dealing with unexpected events with different durations650

in intermodal transportation chains. In general, the proposed policies can be used for the following651

situations:652

• The waiting policy can be used for all scenarios, but it is especially convenient for shorter delays653

up to two hours where other policies lead to much higher costs. However, these short delays could654

be included into offline planning where uncertainties in travel times can be considered.655

• Transshipment of the goods at the next node often leads to high costs since many of the nodes do656

not have regular planned intermodal services, which means that an expensive emergency truck657

service needs to be organized, which in reality also requires additional time and effort to find a658

suitable vehicle. Therefore, this option is not preferred to react to disruptions.659
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• Increasing delays increase the usage of detour policy, if the vehicle is not very close to the affected660

link and if the network density is sufficient. Its applicability is also dependent on the affected661

transportation mode: whereas inland vessels usually do not have any option for detour, trucks can662

use the dense network and find an alternative route easily. In case of rail, even if a detour is found,663

in practice it still needs to be checked whether the train can be diverted since other factors such664

as track capacity or other barriers could cause infeasibility of this solution. However, these factors665

were not part of the developed model and would need to be considered by the actual planner.666

Generally, the consideration of real-time and stochastic data is very limited in current TMS software.667

The future developments in such software packages and platforms should enable aggregation of infor-668

mation from several sources that is shared between partners and transportation information providers.669

Using advanced models and algorithms can help improve the modal split and reduce transportation670

times and slack, as well as response times to unexpected events during transportation. Future research671

directions include:672

• More effective hybrid algorithms that can support very large-scale network simulations.673

• Incorporating well-studied complex time-space service network design problems with simulation.674

• Focusing on social impacts of intermodal transportation policies at local, regional and international675

levels.676
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Demir, E., Hrušovskỳ, M., Jammernegg, W., Van Woensel, T., 2017. Methodological approaches to reliable and717

green intermodal transportation, in: Sustainable Logistics and Transportation. Springer, pp. 153–79.718
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