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a b s t r a c t

This article presents a novel multi-criteria decision analysis (MCDA) model for performing robust indi-
cator weighting in Life Cycle Assessment (LCA) and Social Life Cycle Assessment (S-LCA). This model
integrates stochastic weights analysis with preference information that utilizes the value judgements of
decision makers, benefitting from the diversity of interests and familiarities of decision makers regarding
each indicator. The model considers all decision makers on an equal basis but does not assume they have
the same importance. The MCDA model was applied to support the evaluation of the overall environ-
mental and social impacts of manual and mechanical sugarcane harvesting in Brazil based on LCA and S-
LCA. Brazilian experts were surveyed on the weights of relevant environmental and social indicators. The
novel MCDA approach explores all the possible convex combinations of the weights provided by the
surveyed group. The results of the MCDA model show that mechanical harvesting compared to manual
harvesting had lower environmental life cycle impacts at the end-point level and better social impacts
for all these convex combinations. Decision-making based on environmental impacts at the mid-point
level is less clear: manual harvesting is more likely (67% of the convex combinations of the weights)
to be considered better than mechanical harvesting; but the advantage of mechanical harvesting over
manual harvesting can be greater than the reverse (almost twice as large). This article recommends
presenting both mid-point and end-point LCIA results for a thoroughly informed decision-making. The
MCDA model developed in this article can also be used to support weighting in future comparative LCA
or S-LCA studies.

© 2019 Elsevier Ltd. All rights reserved.
1. Introduction

Brazil, the world's largest sugarcane producer, has seen a rapid
expansion of its sugarcane planted area over the past decade, with
an annual growth rate of 6.5% (UNICA, 2017). The center-south
states of Brazil were responsible for 93% of total production in
the 2016/2017 harvest, producing 652 million tons of sugarcane
and feeding the production of 38.7 million tons of sugar and 27.3
billion liters of ethanol (UNICA, 2017). The operations of Brazilian
sugarcane production have also evolved, with increased use of
mechanical harvesting. This change is largely driven by govern-
ment incentives; for instance, the Green Protocol, a voluntary
omics, University of Coimbra,
agreement between the Government of S~ao Paulo and the Sugar-
cane Agro-industrial Sector, was established to phase out pre-
harvest burning, resulting in an increase in mechanical harvesting
(UNICA, 2010). The adoption of mechanical harvesting is expected
to reduce environmental impacts and public health risks, but
concerns regarding its social impacts have been raised, namely, job
loss among sugarcane cutters (Arbex et al., 2007; Cançado et al.,
2006; Duarte et al., 2013; Galdos et al., 2013; Viana and Perez,
2013).

Life cycle assessment (LCA) is a widely applied method for
assessing the environmental impacts associated with the life cycle
of a product (or service), from cradle to grave. According to ISO
standards (ISO, 2006a), LCA is organized into four phases: i) goal
and scope definition, where the system boundary and functional
unit are defined; ii) life cycle inventory analysis (LCI), where the
input/output data of the product system are quantified; iii) life
cycle impact assessment (LCIA), which associates LCI data with
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specific environmental impact categories and category indicators;
and iv) interpretation, where results are summarized and discussed
as a basis for conclusions. LCIA methods can be organized as
midpoint (also known as problem-oriented) or endpoint methods
(also known as damage-oriented), according to the level of the
cause-effect chain. Adopting a life cycle perspective avoids the
shifting of burdens among life cycle phases, impact categories, re-
gions or generations (Guin�ee et al., 2011). Derived from LCA, social
life cycle assessment (S-LCA) is an emerging method to evaluate
social impacts of supply chains (Du et al., 2014). Compared to other
social impact assessment tools, S-LCA focuses on a product (or
service) level and considers the entire life cycle and a broader range
of stakeholders (UNEP/SETAC, 2009).

Several LCA and S-LCA studies have assessed the environmental
and the social impacts of the mechanization of Brazil's sugarcane
sector (Chagas et al., 2016; Du et al., 2018a; Galdos et al., 2013;
Macedo et al., 2008; Souza et al., 2016). None of these studies
considers both environmental and social impacts in the same study.
Moreover, their results are presented following characterization
based on a set of environmental or social indicators, with no further
analysis with regard to supporting decision-making. A notable
exception in this panorama is the recent work of Cardoso et al.
(2018), which uses a computer-based simulator to assess environ-
mental, social, and other indicators to demonstrate how multi-
criteria decision analysis could inform decision-making.

LCA or S-LCA results provide information on the environmental
and social impacts of alternative scenarios, but analyzing trade-offs
among multiple indicators to determine which alternative is pref-
erable can be difficult for decision makers. Normalization,
weighting and aggregation are optional steps in LCIA, where
characterized results are converted to comparable measures and
then aggregated into a single score based on the weights allocated
to each indicator (Guin�ee, 2002). Weighting is subjective and im-
plies a value judgement which may influence the results of an LCA.
As stated in ISO14044 (ISO, 2006b), “weighting shall not be used in
LCA studies intended to be used in comparative assertions intended
to be disclosed to the public”. However, weighting is commonly
used in studies due to its practicality for comparing the impacts of
different products or scenarios, supporting decision-making and
results communication (Pizzol et al., 2017).

Giving equal weights to all indicators is a common workaround
in LCA (Huppes and van Oers, 2011; Pizzol et al., 2017); however,
this arbitrary choice ignores the preferences and knowledge of
decision makers or experts. Multi-criteria decision analysis (MCDA)
has been considered a promising tool to aid weighting in LCIA and/
or interpretation of LCA or S-LCA results. MCDA methods using
outranking approaches (Domingues et al., 2015; Prado-Lopez et al.,
2014; Rogers and Seager, 2009) or additive aggregation approaches
(Dias et al., 2016; Miettinen and Hamalainen,1997; Myllyviita et al.,
2012) have been applied to LCA and S-LCA studies to rank, select or
categorize products based on their environmental and/or social
impacts. Dias et al. (2016) adopted stochastic weights in an additive
aggregation model with partial preference information. This
approach allows identifying robust conclusions, but it does not
utilize the preferences and knowledge of decision makers and ex-
perts. Other studies based on additive aggregation often elicit
weights through a survey, with the final weight of an indicator
usually being calculated by averaging the weights given to that
indicator by all respondents (Doderer and Kleynhans, 2014;
Lipuscek et al., 2010; Narayanan et al., 2007; Pastare et al., 2014).
This approach ignores the different levels of interest in and famil-
iarity with the topic of each indicator among decision makers.
According to a recent survey conducted among LCA practitioners
(Pizzol et al., 2017), further development is needed to improve
uncertainty and robustness of weighting in life cycle studies.
Ideally, the knowledge of decision makers or experts would be
considered, but weights allocated to decision makers in group
decision-making are often unknown (Sarabando et al., 2019). A
robust aggregation approach of group decision-making based on
LCA and/or S-LCA results is lacking.

This article describes a novel approach to support decision-
making based on comparative LCA and S-LCA results using an ad-
ditive MCDA group decision-making model (Dyer and Sarin, 1979;
Keeney and Kirkwood,1975). The approach developed in this article
is distinguished from previous studies by its adoption of stochastic
weights accounting for the value choices of a group of decision
makers. Instead of assigning equal weights to all decision makers,
the stochastic weights analysis explores all possible combinations,
making no distinctions among the weights assigned to their opin-
ions. The advantage of this approach is to generate robust results
that aggregate the preference information of all the decision
makers. This approach was applied to support the comparison
between manual and mechanical sugarcane harvesting in Brazil in
terms of environmental and social impacts. The results of this study
shed light on the advantages of including both mid-point and end-
point categories in an LCA.

2. Methods

2.1. Life cycle assessment and social life cycle assessment of manual
vs. mechanical harvesting of sugarcane

We compared life cycle environmental and social impacts of
manual and mechanical harvesting of sugarcane by applying LCA
and S-LCA, respectively, described hereafter (Du et al. 2018a,
2018b). Based on the results of these studies, manual harvesting has
shown to have higher impacts on three out of eight mid-point
impact categories assessed, namely Climate change, Photochem-
ical oxidant formation and Particulate matter formation. At the
end-point level, manual harvesting shows worse performance on
Human health and Ecosystem diversity, but better performance on
Resource availability. Regarding social impacts, mechanical har-
vesting is expected to have lower impacts on all social themes
except for Local employment and Access to material resources.

2.1.1. Life cycle assessment
An attributional LCA of sugarcane in Brazil was performed

considering the functional unit of one tonne of sugarcane at the
distillery, encompassing cultivation, harvesting and transportation.
Two product systemswere compared, one usingmanual harvesting
(including pre-harvest burning) and the other using mechanical
harvesting (without pre-harvest burning). The life cycle inventory
was based on average conditions of the center-south region of
Brazil and extracted from the database of Brazilian Bioethanol
Science and Technology Laboratory (CTBE) (Bonomi et al., 2016).
Production and field emissions of raw materials (i.e., organic and
inorganic fertilizers, agrochemicals, diesel), transport of raw ma-
terials and final products (i.e. transporting harvested sugarcane to
the distillery), and production of capital goods including harvesters,
tractors and agricultural machineries were included in the system
boundary. Details of the applied assumptions and emission factors
can be found in Du et al. (2018a).

The LCIA method ReCiPe (Goedkoop et al., 2013) was adopted to
characterize environmental impacts at the mid-point and end-
point. The mid-point categories of Climate change, Ozone deple-
tion, Terrestrial acidification, Freshwater eutrophication, Human
toxicity, Photochemical oxidant formation, Particulate matter for-
mation and Fossil depletion were assessed. These mid-point cate-
gories were selected following previous LCA studies (e.g., Cavalett
et al., 2013; Luo et al., 2009; Seabra et al., 2011) and considering
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the importance of environmental issues surrounding sugarcane
production and agricultural practices in Brazil; for instance, water
depletion was not included because the water needed for sugar-
cane crops in Brazil is mostly supplied by rainfall. LCA results were
also calculated for the end-point categories of Human health,
Ecosystem and Resources.

2.1.2. Social life cycle assessment
A screening S-LCA was conducted to identify the social hotspots

of sugarcane in Brazil and to compare the social impacts of manual
and mechanical harvesting. A novel approach integrating the
generic Social Hotspots Database (SHDB) and content analysis was
developed. The social impacts of the sugarcane life cycle were
firstly modelled in SHDB; in this step, three country-sector pairs
were included in the system boundary after applying the cut-off
criterion of only considering country-sectors contributing more
than 1.5% of total worker hours, namely sugarcane, commerce and
business services sectors of Brazil. The sugarcane sector dominated
the social impacts in all indicators due to its large share in overall
worker hours (85%). SHDB mostly includes data at the country
level; as a result, it has a limited ability to distinguish between the
social impacts of different operations in the same sector, such as
manual and mechanical harvesting of sugarcane. Content analysis
was subsequently applied to systematically analyze relevant pub-
lications regarding the social impacts of sugarcane production in
Brazil. In total, 38 publications published in English between 2000
and 2016 were included in the final analysis. The social impacts of
manual and mechanical sugarcane harvesting were compared ac-
cording to eight social themes based on the qualitative data
extracted from the literature, including health and safety, local
employment, fair salary, access to material resources, delocaliza-
tion and migration, public commitment to sustainability issues,
safe and healthy living conditions and equal opportunity and
discrimination. These social themes were selected because they are
the most relevant social issues surrounding the sugarcane sector in
Brazil; moreover, social impacts on these issues differ between
manual and mechanical harvesting. Please refer to Du et al. (2018b)
for details regarding the methods and materials of this screening S-
LCA.

2.2. Normalization of LCA and S-LCA results

Normalization is an optional step in LCA applied after the
characterization of environmental impacts as mid-point and/or
end-point indicators. Because characterized LCIA results are
expressed in various units for various indicators, normalization can
convert the results into commensurable measures or reveal the
magnitude of impacts (Dias et al., 2016; Myllyviita et al., 2014).
Normalization can be conducted externally or internally. External
normalization relates the characterized scores of a product system
to a reference value, e.g., indicator results for a reference area or a
reference scenario (Domingues et al., 2015; Myllyviita et al., 2014).
In internal normalization, characterized values are not related to
external references but values of a baseline scenario such as a given
alternative product system. Two extreme values, i.e. minimum and
maximum values are often considered in internal normalization.
When applying MCDA approaches, internal normalization is more
commonly used, for instance in multi-attribute value theory
(MAVT) (Keeney and Raiffa, 1993) and Analytic Hierarchy Process
(AHP) (Saaty, 2008). This article deploys internal normalization
following Equation (1) in order to match the way that indicator
weights are elicited (comparing the magnitude of the difference
between manual and mechanical systems). Because only two al-
ternatives are compared in this article, the normalized values of
two alternatives on all the indicators are either 0 (best impact level)
or 1 (worst impact level).

Ij ðaiÞ ¼
Ioj ðaiÞ � Ioj;min

Ioj;max � Ioj;min
(1)

Ioj ðaiÞ denotes the characterized value of alternative ai on indicator
j, in the original units (before normalization);Ioj;min ¼ min

i
fIoj ðaiÞg

denotes the best performance on indicator j;Ioj;max ¼ max
i

fIoj ðaiÞg
denotes the worst performance on indicator j.

It should be noted that if an impact indicator is to be maximized
(the more, the better) keeping value 0 assigned to the best impact
level and value 1 to the worst impact level, then the difference
Ioj ðaiÞ � Ioj;min should be replaced by the difference Ioj;max � Ioj ðaiÞ
in the numerator of Equation (1). Although internal normalization
is the most relevant approach to this study, it is worth mentioning
that adding a new alternative may result in changes to the relative
positions of original alternatives (Dias and Domingues, 2014;
Norris, 2001). If a new alternative were added where any of its
impacts were higher than the previous maximum or lower than the
previous minimum, then the weights elicitation would have to be
repeated considering the new (wider) difference between the best
and worst impact levels.

For social impacts, the assessment of this study is based on
qualitative data. For comparative purposes, the qualitative results
of each indicator are quantified by a binary scoring rule: the best
performance is assigned 0 and the worst performance is assigned 1.
2.3. Multi-criteria decision analysis approach: an additive model
with stochastic weights

A novel multi-criteria decision analysis approach based on ad-
ditive aggregation has been developed and applied to compare the
overall environmental and social impacts of manual and mechan-
ical sugarcane harvesting in Brazil. The overall impact of an alter-
native (a product system) ai, denoted I ðai ; wÞ , is calculated by
Equation (2), which is a weighted sum of its impact on indicator j
(i.e. Ij(ai)) considering the corresponding weight wj. All the weights
are non-negative and the sum of all weights is equal to 1 (Equation
(3)).

I ðai ; wÞ ¼
Xn

j¼1

wj Ij ðaiÞ

¼ w1 I1 ðaiÞ þ…þwj Ij ðaiÞ þ…þ wn In ðaiÞ (2)

w1; w2…:wn � 0 and
Xn

j¼1

wj ¼ 1 (3)

w denotes a vector of weights for all the indicators, (w1, w2,…., wn);
ai denotes an alternative; in this case, the sugarcane product system
with manual or mechanical harvesting; wj denotes the weight of
indicator j; in this case, mid-point impact category, end-point
damage category or social theme, respectively; Ij (ai) denotes the
normalized value of alternative ai on indicator j; n denotes the
number of indicators used in the assessment.

The weight of indicator j, wj, is calculated by Eqs. (4) and (5), in
which mp represents the weight assigned to the preference of de-
cision maker p when calculating the weight of the indicators. De-
cision maker weights m1,…, mm are computed based on Monte Carlo
simulation using the software @Risk 7.5, considering a uniform
distribution over the unit simplex, according to the process
described in Butler et al. (1997). All weights assigned to decision
makers are non-negative and the sum of all weights equals 1.
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wj ¼
Xm

p¼1

mp wjp ¼ m1 wj1 þ m2 wj2 þ…þ mm wjm (4)

m1; :::; mm � 0 and
Xm

p¼1

mp ¼ 1 (5)

p indexes a decision maker;m denotes the total number of decision
makers; wjp denotes the weight of indicator j assigned by decision
maker p; mp denotes the stochastic weight assigned to decision
maker p.

It is worth mentioning that each vector of weights assigned to
decision makers, (m1,…, mm), will correspond to a vector of indicator
weights (w1, w2, …,wn) that is a convex combination of the indicator
weights provided by the decision makers. The resulting vector of
indicator weights can then be seen as a mix of the inputs provided
by different decision makers. When all the individual weight vec-
tors satisfy Equation (3), then Equations (4) and (5) guarantee that
the resulting vector (w1, w2, …,wn) will also satisfy Equation (3).

In order to collect preference information from relevant decision
makers, a survey was conducted to gather experts’ opinions on
their value choices for eight mid-point environmental indicators,
three end-point environmental indicators and eight social in-
dicators. The survey material can be found in Supplementary Ma-
terial. To obtain survey responses that represent the values of
informed decision makers, only experienced Brazilian LCA re-
searchers and practitioners (over 5 years of experience in LCA) with
knowledge of the sugarcane sector in Brazil were invited to answer
the survey. In total, 26 surveys were sent out with 7 responses
received (response rate 27%). These responses are sufficient to
illustrate the methodology proposed in this work, but do not
warrant any claims that they represent the entire universe of Bra-
zilian LCA researchers.

The survey participants were asked to give a weight (between
0 and 100) to each environmental or social indicator, considering
both the context of sugarcane production in Brazil and the
magnitude and significance of the impact of changing frommanual
to mechanical harvesting (information provided with the ques-
tionnaire). The characterized values of mid-point and end-point
environmental impacts and a summary of social performances for
each social indicator in regard to manual and mechanical harvest-
ing were provided to participants. One example of survey instruc-
tion regarding mid-point environmental impacts reads:
“Considering i) the context of sugarcane production in Brazil, and ii)
the importance of impacts due to changing frommanual to mechanical
harvesting (e.g., on climate change, reducing emissions from 38 kgCO2

eq/t of sugarcane to 29 kgCO2 eq/t of sugarcane), please assign weights
(0e100 points) to the mid-point indicators below. All assigned weights
should have a total sum of 100 points.”

It is worth noting that wj represents the importance of the
impact change on indicator j comparing mechanical harvesting to
manual harvesting rather than the importance of the indicator j
itself. On the other hand, mp simulates the weight assigned to de-
cision maker p when setting the weights for each indicator.
2.4. VIP analysis

VIP (Variable Interdependent Parameter) Analysis is based on
the additive aggregation model of value functions. It does not
require decision makers to indicate precise values as criteria
weights, and it can be used to generate robust conclusions using
every accepted combination of weights. VIP Analysis has the ability
to find the most extreme values with respect to the differences
between the overall results of two alternatives (Dias and Clímaco,
2000). The value difference between two alternatives ai and aj
can be defined by Equation (6), where Dmax(ai,aj) and Dmin (ai,aj)
indicate the highest and lowest values of D(ai,aj), respectively.

D (ai,aj)¼ { I(ai, w) - I(aj, w): w2W} (6)

In the above equation, w2W represents the set of all indicator
weights corresponding to the convex combinations of weights
assigned by different decision makers (Fig. 1). This figure illustrates
a situationwith four decision makers. The shaded area corresponds
to all possible convex combinations of weights w(1), …, w(4) pro-
vided by the decision makers. Each point in this figure corresponds
to aweighted sum (using positive coefficients m1,…, mm adding up to
1) of the extreme points defining this set. As an example, the point
highlighted in blue corresponds to the convex combination
0.50w(1)þ0.25w(2)þ0.15 w(3)þ0.10 w(4).

When D(ai, aj) is negative, it means that ai has lower impacts
than aj, since only negative impacts are considered in the LCA and
the objective is to minimize them. Likewise, ai presents higher
impacts than aj when D(ai, aj) is positive. Applying the additive
model with both stochastic weights (described in Section 2.4) and
VIP Analysis can provide complementary outputs: the former can
indicate the probability that one alternative is better than the other,
while the latter reveals how much better or worse can one alter-
native can be over the other.

2.5. Sensitivity analysis

In order to test the robustness of the results concerning the
choice of decision makers, a sensitivity analysis adopting the one-
at-a-time (OAT) approach (Czitrom, 1999) is conducted. The an-
swers of one decision maker are removed at a time, and the results
are then compared to evaluate the effect of this decision maker's
preferences on the overall output. This approach can effectively
identify outliers, although it has been criticized for its limitation in
detecting interactions between input variables (Czitrom, 1999). As
the survey is conducted independently for each decision maker,
this limitation is not relevant to this article.

3. Results and discussion

3.1. Mid-point environmental impacts

3.1.1. Comparing environmental impacts on mid-point impact
categories

The characterized values of mid-point impacts of manual and
mechanical harvesting are normalized by Equation (1). Character-
ized and normalizedmid-point LCA results are presented in Table 1.
Because the goal concerning environmental impacts is to minimize
them, a normalized value 0 represents a better performance be-
tween the two alternatives, while 1 represents a worse perfor-
mance. Mechanical harvesting is better according to the indicators
Climate change, Photochemical oxidant formation and Particulate
matter formation, whereas manual harvesting is better according
to the indicators Fossil depletion, Ozone depletion, Terrestrial
acidification, Freshwater eutrophication and Human toxicity.

The survey results of weights of mid-point indicators are shown
in Table 2. The values are divided by 100 in the final analysis so that
all weights add up to 1. The weight vector representing the weights
assigned to decision makers for each indicator (m1, m2, …m7) is
simulated for 100,000 iterations. Since the objective is to compare
manual and mechanical harvesting systems, the results of interest
are the differences between the overall results of the two alterna-
tives. As shown in Fig. 2, obtained by performing a Monte Carlo



Fig. 1. An example of a weight space that represents the set of all the indicator weights that corresponds to convex combinations of weights assigned by four different decision
makers.

Table 1
Mid-point LCA results of manual and mechanical harvesting.

Impact category Characterized LCA results Normalized LCA results

Unit Manual harvesting Mechanical harvesting Manual harvesting Mechanical harvesting

Climate change kg CO2 eq 38.32 28.85 1 0
Fossil depletion kg oil eq 6.66 7.80 0 1
Ozone depletion kg CFC-11 eq 1.47E-06 1.75E-06 0 1
Terrestrial acidification kg SO2 eq 1.34 1.57 0 1
Freshwater eutrophication kg P eq 1.90E-03 1.99E-03 0 1
Human toxicity kg 1,4-DB eq 4.22 4.38 0 1
Photochemical oxidant formation kg NMVOC 6.83E-01 8.05E-02 1 0
Particulate matter formation kg PM10 eq 5.76E-01 2.24E-01 1 0

Table 2
Survey results of weights of mid-point indicators.

Impact category Expert 1 Expert 2 Expert 3 Expert 4 Expert 5 Expert 6 Expert 7

Climate change 25 40 50 15.1 23 25 15
Fossil depletion 20 20 20 13.2 20 22.5 13
Ozone depletion 2.5 10 5 9.4 1 17.5 8
Terrestrial acidification 10 5 0 11.3 20 5 11
Freshwater eutrophication 2.5 10 0 9.4 4 5 11
Human toxicity 20 0 0 14.2 18 5 15
Photochemical oxidant formation 5 10 5 13.2 8 5 12
Particulate matter formation 15 5 20 14.2 6 15 15
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simulation, the overall impact of the manual system is more likely
to be lower than the overall impact of the mechanical system. The
manual system is preferred to the mechanical system in 67% of
cases. Following the VIP Analysis approach, the minimum and the
maximum values, �0.26 and 0.50, respectively, indicate that,
despite the manual system having a higher possibility of winning,
the advantage at best of the manual system (0.26, i.e., the sym-
metric value of the minimum) is less than the advantage at best of
the mechanical system (0.50) (these are exact values, which
constitute a wider interval than the interval estimated by the
simulation).

Based on these results, there is no clear conclusion about which
system is preferable: for some weight vectors, it is the manual
system, while for other weight vectors it is the mechanical system.
The manual system is preferred for a fairly large majority (67%) of
the weight vectors, but the mechanical system, on the other hand,
can potentially beat the manual system by a larger margin than the
reverse.
3.1.2. Sensitivity analysis
The robustness of the previous results is assessed in terms of

whether a single participant might have a large influence on the
results. One expert (decision maker) is removed at a time, reducing
the number of experts to 6. Table 3 shows the results of the
sensitivity analysis of mid-point indicators based on Monte Carlo
simulation and VIP analysis. Regardless of which expert is removed,
the manual system is more likely to be preferred to the mechanical
system (all differences are negative for more than 50% of the
simulatedweights). However, when removing expert 3, the result is
overwhelmingly in favor of themanual system (in 99% of the cases),
winning by a margin of 0.26 at best, and losing by a relatively small
margin of 0.10 at worst. This is because expert 3 provides the
highest weights on Climate change (50%) and Particulate matter
formation (20%) out of all the experts, and the manual harvesting
system has worse performance in these indicators. When removing
expert 5, the probability of the mechanical system being preferred
increases to 49.7% (nearly 50%), and the advantage at best of the
mechanical system is almost three times larger than the advantage
of themanual system at best. In the cases of removing other experts
(i.e. expert 1, 2, 4, 6 or 7), the probability of the manual system
winning over the mechanical system ranges between 56.8% and
73.2%, and the margins in the manual system's worst cases are al-
ways larger than the margins of its best cases.
3.2. End-point environmental impacts

3.2.1. Comparing environmental impacts on end-point damage
categories

Table 4 presents the characterized and normalized end-point
LCA results of the manual and mechanical systems, in which



Fig. 2. Simulated results of overall for mid-point impacts (probability distribution functions). Top left: Impact of Manual. Top right: Impact of Mechanical. Bottom: Difference of
impacts. The y-axis represents probability; the x-axis represents units of overall impact.

Table 3
Sensitivity analysis of mid-point impacts considering the influence of a single expert.

Without
Expert1

Without
Expert2

Without
Expert3

Without
Expert4

Without
Expert5

Without
Expert6

Without
Expert7

Original
Overall

Minimum (VIP analysis) �0.26 �0.26 �0.26 �0.26 �0.16 �0.26 �0.26 �0.26
Maximum (VIP analysis) 0.50 0.50 0.10 0.50 0.50 0.50 0.50 0.50
Mean �0.01 �0.04 �0.11 �0.00 0.02 �0.01 �0.00 �0.02
Std Dev 0.09 0.09 0.04 0.09 0.09 0.09 0.09 0.08
% of cases with I (manual) -I

(mechanical) < 0
60.6 73.2 98.9 57.4 50.3 60.6 56.8 67

Table 4
End-point LCA results of manual and mechanical harvesting.

Damage category Characterized LCA results Normalized LCA results

Unit Manual harvesting Mechanical harvesting Manual harvesting Mechanical harvesting

Damage to human health DALY 2.06E-04 1.02E-04 1 0
Damage to ecosystem diversity Species*year 3.11E-07 2.38E-07 1 0
Damage to resource availability $ 1.1 1.3 0 1
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0 once again indicates better indicator performance. Mechanical
harvesting is better in terms of damage to Human health and to
Ecosystem diversity, while manual harvesting is better in terms of
damage to Resource availability.

Table 5 shows the weights of end-point indicators given by
seven experts. The values are also divided by 100 in the final
analysis and the weight vectors indicating decision maker weights
Table 5
Survey results of weights of end-point damage categories.

Damage category Expert 1 Expert 2 Expe

Damage to human health 30 30 40
Damage to ecosystem diversity 50 40 20
Damage to resource availability 20 30 40
(m1, m2, …, m7) are simulated for 100 000 iterations. Results of dif-
ferences between the manual and the mechanical systems at the
end-point are presented in Fig. 3. It is clear that, in regard to end-
point indicators, the manual system is always less preferred than
the mechanical system, with the smallest margin of 0.20 (putting
all the weight in expert 3), and the largest margin of 0.80 (putting
all the weight in expert 5). The manual system might have been
rt 3 Expert 4 Expert 5 Expert 6 Expert 7

35 50 40 40
33 40 30 30
33 10 30 30



Fig. 3. Simulated results of overall for end-point impacts (probability distribution functions). Top left: Impact of Manual. Top right: Impact of Mechanical. Bottom: Difference of
impacts. The y-axis represents probability; the x-axis represents units of overall impact.
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preferred in some instances, had a decision maker assigned a
weight of 50 or more to the single category where this system was
better (Damage to resource availability), but this did not occur in
this survey.
3.2.2. Sensitivity analysis
Table 6 presents the results of the sensitivity analysis of end-

point impacts of manual and mechanical harvesting systems. The
mechanical system always has lower impacts than the manual
system, regardless of which expert is removed. The mechanical
system possesses the smallest advantages in the range of [0.20,
0.35], and the largest advantages of [0.60, 0.80]. No particular
expert has a large influence on the overall conclusions.

When compared to the LCA results at the mid-point, the results
at the end-point are more robust (concerning decision maker
preferences) and favor the mechanical system, which appears to
contradict the conclusions that can be drawn based on mid-point
indicators. It is even possible to note that removing expert 3 ben-
efits the manual system and removing expert 5 benefits the me-
chanical system when considering the mid-point analysis.
However, in considering the end-point analysis, the contrary occurs
(without calling into question the robust conclusion of the me-
chanical system's superiority in the latter case).

The results of this article are consistent with the general
Table 6
Sensitivity analysis of end-point impacts considering the influence of a single expert.

Without
Expert1

Without
Expert2

Without
Expert3

Minimum (VIP analysis) 0.20 0.20 0.35
Maximum (VIP analysis) 0.80 0.80 0.80
Mean 0.43 0.46 0.49
Std Dev 0.07 0.07 0.06
% of cases with I (manual) -I

(mechanical) < 0
0 0 0
perception that aggregating LCA results at the end-point may ease
the process of resolving trade-offs across indicators for decision
makers (Bare et al., 2000); however, it is also important to bear in
mind the higher uncertainties of end-point impacts compared to
the mid-point. The apparent differences we find in this study when
performing multi-criteria decision analysis using mid-point and
end-point indicators suggest including both mid-point and end-
point indicators in LCA is beneficial for informing decision-
making. However, more research is needed to understand how
mid-point and end-point can be included in a framework in a
consistent manner, and how results at two levels can be integrated
to support decision-making.
3.3. Social impacts

3.3.1. Comparing social impacts by social themes
Quantification of the social impacts of the manual and me-

chanical systems by social themes is presented in Table 7 (0 is
better and 1 is worse). A summary of the qualitative comparison
of social impacts of manual and mechanical harvesting can be
found in Table 3 in Supplementary Material. Mechanical har-
vesting is better according to most indicators: Health and safety,
Fair salary, Delocalization and migration, Public commitment to
sustainability issues, Safe and healthy living conditions and Equal
Without
Expert4

Without
Expert5

Without
Expert6

Without
Expert7

Original
Overall

0.20 0.20 0.20 0.20 0.20
0.80 0.60 0.80 0.80 0.80
0.47 0.39 0.46 0.46 0.45
0.07 0.04 0.07 0.07 0.06
0 0 0 0 0



Table 7
Quantitative S-LCA results of the manual and mechanical systems by social themes.

Subcategory Manual harvesting Mechanical harvesting

Health and safety 1 0
Local employment 0 1
Fair salary 1 0
Access to material resources 0 1
Delocalization and migration 1 0
Public commitment to sustainability issues 1 0
Safe and healthy living conditions 1 0
Equal opportunity and discrimination 1 0

Table 8
Survey results of weights of relevant social subcategories.

Social issues Expert 1 Expert 2 Expert 3 Expert 4 Expert 5 Expert 6 Expert 7

Health and safety 15 20 20 14.5 30 25 16
Local employment 5 20 20 13.5 5 22.5 16
Fair salary 25 20 20 10 20 17.5 14
Access to material resources 5 5 10 10 5 2.5 8
Delocalization and migration 25 10 0 10 0 12.5 12
Public commitment of sustainability issues 5 10 0 12 25 7.5 10
Safe and healthy living conditions 10 5 20 15 10 7.5 16
Equal opportunity and discrimination 10 10 10 15 5 5 8
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opportunity and discrimination. On the other hand, manual
harvesting is better according to the indicators of Local
employment and Access to material resources (for details, see Du
et al., 2018b).

Table 8 presents the weights provided by experts on eight social
indicators (divided by 100 in the final analysis). The weight vectors
of the weights assigned to decision makers are simulated for
100,000 iterations and the simulated results for overall social im-
pacts are presented in Fig. 4. The differences between the social
impacts of the manual and mechanical systems (subtracting me-
chanical from manual) are always positive, suggesting that the
mechanical system clearly has better overall impacts than the
manual system. The advantages of the mechanical system are quite
large, falling in the range of [0.40, 0.80].
Fig. 4. Simulated results of overall for social impacts (probability distribution functions). Top
The y-axis represents probability; the x-axis represents units of overall impact.
3.3.2. Sensitivity analysis
Table 9 summarizes the results of the sensitivity analysis of the

social impacts of the manual and mechanical systems by removing
one expert at a time. The conclusions are consistently and over-
whelmingly in favor of the mechanical system regardless of which
expert is removed. The margins of advantage in all the cases are
very close to each other, with differences of less than 0.1.

4. Conclusions

This article presented a novel MCDA model in the LCIA phase to
support group decision making, based on comparative LCA and S-
LCA results, applied to a study of sugarcane production with
manual and mechanical harvesting in Brazil. It followed a different
left: Impact of Manual. Top right: Impact of Mechanical. Bottom: Difference of impacts.



Table 9
Sensitivity analysis of social impacts considering the influence of a single expert.

Without
Expert1

Without
Expert2

Without
Expert3

Without
Expert4

Without
Expert5

Without
Expert6

Without
Expert7

Original
Overall

Minimum (VIP analysis) 0.40 0.40 0.50 0.40 0.40 0.40 0.40 0.40
Maximum (VIP analysis) 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80
Mean 0.541 0.591 0.608 0.587 0.541 0.591 0.588 0.578
Std Dev 0.0466 0.0579 0.0516 0.0590 0.0464 0.0582 0.0587 0.0517
% of cases with I (manual) -I

(mechanical) < 0
0 0 0 0 0 0 0 0
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methodology from the recent work concurrently carried out by
Cardoso et al. (2018), wherein a different set of indicators (including
technical and economic ones) and a different MCDA approach were
used, thus rendering the results not comparable. Cardoso et al.
(2018) obtained three different MCDA results by using three
different vectors of weights (used as examples) and considering all
indicators simultaneously, whereas the present study analyzed the
environmental (both mid-point and end-point) and social di-
mensions separately and obtained weights representing the views
of a sample of decision-makers.

This article utilized value choices of specific decision-makers,
but it adopted stochastic weights to explore all the possible com-
binations of the weights they provided. Sensitivity analysis is
conducted to test the robustness of the results, which consistently
show that mechanical harvesting has lower environmental impacts
at the end-point and lower social impacts. However, the results of
the environmental impacts at the mid-point were less robust and
clear: manual harvesting appears more likely (67% of the convex
combinations of the weights) to have lower impacts than me-
chanical harvesting, but the advantage of mechanical harvesting
over manual harvesting can be greater than the reverse (almost
twice as large). These findings suggest that mechanical harvesting
of sugarcane should be accelerated, especially in areas with lower
mechanization levels such as Brazil's North-Northeast since it can
reduce environmental impacts and also generate positive social
impacts by increasing average income, improving social equality
and fair salary. Despite the methodological differences between
this study and Cardoso et al. (2018), the conclusions of both are well
aligned.

At the methodological level, this work emphasizes the relevance
of providing to decision-makers both mid-point and end-point
when comparing the environmental impacts of different product
life cycles. It also shows a possible way of applying MCDA when
multiple decision makers indicate different weighting vectors. The
MCDA approach developed in this article can be adopted in future
comparative LCA and/or S-LCA studies to support decision-making
by utilizing expert or stakeholder preference information while
improving comparative robustness.

Acknowledgments

We thank the reviewers for their helpful comments that
contributed to improving this article. This work was supported by
the Portuguese Science and Technology Foundation (FCT) (grant
number SFRH/BD/51948/2012; project SABIOS with project iden-
tifier PTDC/AAG-MAA/6234/2014 and POCI-01-0145-FEDER-
016765). This work was developed under the framework of the
Energy for Sustainability Initiative of the University of Coimbra.

Appendix A. Supplementary data

Supplementary data to this article can be found online at
https://doi.org/10.1016/j.jclepro.2019.02.035.
References

Arbex, M.A., Martins, L.C., de Oliveira, R.C., Pereira, L.A.A., Arbex, F.F., Cancado, J.E.D.,
Saldiva, P.H.N., Braga, A.L.F., 2007. Air pollution from biomass burning and
asthma hospital admissions in a sugar cane plantation area in Brazil.
J. Epidemiol. Community Health 61, 395e400. http://doi.org/10.1136/jech.2005.
044743.

Bare, J.C., Hofstetter, P., Pennington, D.W., Udo de Haes, H.A., 2000. Midpoints versus
endpoints: the sacrifices and benefits. Int. J. Life Cycle Assess. https://doi.org/
10.1007/BF02978665.

Bonomi, A., Cavalett, O., Pereira da Cunha, M., Lima, M., 2016. Virtual Biorefinery: an
Optimization Strategy for Renewable Carbon Valorization. Springer Interna-
tional Publishing, p. 285.

Butler, J., Jia, J., Dyer, J., 1997. Simulation techniques for the sensitivity analysis of
multi-criteria decision models. Eur. J. Oper. Res. 103, 531e546.

Cançado, J.E.D., Saldiva, P.H.N., Pereira, L.A.A., Lara, L.B.L.S., Artaxo, P., Martinelli, L.A.,
Arbex, M.A., Zanobetti, A., Braga, A.L.F., 2006. The impact of sugar caneeburning
emissions on the respiratory system of children and the elderly. Environ. Health
Perspect. 114, 725e729. http://doi.org/10.1289/ehp.8485.

Cardoso, T.F., Watanabe, M.D., Souza, A., Chagas, M.F., Cavalett, O., et al., 2018.
Economic, environmental, and social impacts of different sugarcane production
systems. Biofuels Bioprod. Biorefining 12 (1), 68e82.

Cavalett, O., Chagas, M.F., Seabra, J.E.A., Bonomi, A., 2013. Comparative LCA of
ethanol versus gasoline in Brazil using different LCIA methods. Int. J. Life Cycle
Assess. 18, 647e658.

Chagas, M.F., Bordonal, R., Cavalett, O., Carvalho, J.L.N., Bonomi, A., L.S. Jr., N., 2016.
Environmental and economic impacts of different sugarcane production sys-
tems in the ethanol biorefinery. Biofuels Bioprod. Biorefining 10, 89e106.
http://doi.org/10.1002/bbb.

Czitrom, V., 1999. One-factor-at-a-time versus designed experiments. Am. Statisti-
cian 53 (2), 126e131.

Dias, L.C., Clímaco, J.N., 2000. Additive aggregation with variable interdependent
parameters: the VIP analysis software. J. Oper. Res. Soc. 51, 1070e1082.

Dias, L.C., Domingues, A.R., 2014. On multi-criteria sustainability assessment:
spider-gram surface and dependence biases. Appl. Energy 113, 159e163.

Dias, L.C., Passeira, C., Malça, J., Freire, F., 2016. Integrating life-cycle assessment and
multi-criteria decision analysis to compare alternative biodiesel chains. Ann.
Oper. Res. https://doi.org/10.1007/s10479-016-2329-7.

Doderer, C.C.C. Von, Kleynhans, T., 2014. Determining the most sustainable ligno-
cellulosic bioenergy system following a case study approach. Biomass Bio-
energy 70, 273e286. http://doi.org/10.1016/j.biombioe.2014.08.014.

Domingues, A.R., Marques, P., Garcia, R., Freire, F., Dias, L.C., 2015. Applying multi-
criteria decision analysis to the life-cycle assessment of vehicles. J. Clean.
Prod. 107, 749e759. http://doi.org/10.1016/j.jclepro.2015.05.086.

Du, C., Freire, F., Dias, L.C., 2014. Overview of social life-cycle assessment. In: 2014
avniR Conference Proceedings - Life Cycle in Practice, Lille, France.

Du, C., Kulay, L., Cavalett, O., Dias, L., Freire, F., 2018a. Life cycle assessment
addressing health effects of particulate matter of mechanical versus manual
sugarcane harvesting in Brazil. Int. J. Life Cycle Assess. 23, 787e799. https://
doi.org/10.1007/s11367-017-1334-7.

Du, C., Ugaya, C., Freire, F., Dias, L., Clift, R., 2018b. Enriching the results of screening
S-LCA using content analysis: a case study of sugarcane in Brazil. Int. J. Life Cycle
Assess. https://doi.org/10.1007/s11367-018-1490-4.

Duarte, C.G., Gaudreau, K., Gibson, R.B., Malheiros, T.F., 2013. Sustainability assess-
ment of sugarcane-ethanol production in Brazil : a case study of a sugarcane
mill in S~ao Paulo state. Ecol. Indic. 30, 119e129. http://doi.org/10.1016/j.ecolind.
2013.02.011.

Dyer, J., Sarin, R., 1979. Group preference aggregation rules based on strength of
preference. Manag. Sci. 25 (9), 822e832.

Galdos, M., Cavalett, O., Seabra, J.E.A., Nogueira, L.A.H., Bonomi, A., 2013. Trends in
global warming and human health impacts related to Brazilian sugarcane
ethanol production considering black carbon emissions. Appl. Energy 104,
576e582. http://doi.org/10.1016/j.apenergy.2012.11.002.

Goedkoop, M., Heijungs, R., Huijbregts, M., Schryver, A., Struijs, J., et al., 2013. ReCiPe
2008. A LCIA Method Which Comprises Harmonised Category Indicators at the
Midpoint and the Endpoint Level. http://www.leidenuniv.nl/cml/ssp/
publications/recipe_characterisation.pdf. (Accessed 11 March 2018).

Guin�ee, J., 2002. Handbook on Life Cycle Assessment Operational Guide to the ISO
Standards. http://doi.org/10.1007/BF02978897.

https://doi.org/10.1016/j.jclepro.2019.02.035
http://doi.org/10.1136/jech.2005.044743
http://doi.org/10.1136/jech.2005.044743
https://doi.org/10.1007/BF02978665
https://doi.org/10.1007/BF02978665
http://refhub.elsevier.com/S0959-6526(19)30415-9/sref3
http://refhub.elsevier.com/S0959-6526(19)30415-9/sref3
http://refhub.elsevier.com/S0959-6526(19)30415-9/sref3
http://refhub.elsevier.com/S0959-6526(19)30415-9/sref4
http://refhub.elsevier.com/S0959-6526(19)30415-9/sref4
http://refhub.elsevier.com/S0959-6526(19)30415-9/sref4
http://doi.org/10.1289/ehp.8485
http://refhub.elsevier.com/S0959-6526(19)30415-9/sref6
http://refhub.elsevier.com/S0959-6526(19)30415-9/sref6
http://refhub.elsevier.com/S0959-6526(19)30415-9/sref6
http://refhub.elsevier.com/S0959-6526(19)30415-9/sref6
http://refhub.elsevier.com/S0959-6526(19)30415-9/sref7
http://refhub.elsevier.com/S0959-6526(19)30415-9/sref7
http://refhub.elsevier.com/S0959-6526(19)30415-9/sref7
http://refhub.elsevier.com/S0959-6526(19)30415-9/sref7
http://doi.org/10.1002/bbb
http://refhub.elsevier.com/S0959-6526(19)30415-9/sref9
http://refhub.elsevier.com/S0959-6526(19)30415-9/sref9
http://refhub.elsevier.com/S0959-6526(19)30415-9/sref9
http://refhub.elsevier.com/S0959-6526(19)30415-9/sref10
http://refhub.elsevier.com/S0959-6526(19)30415-9/sref10
http://refhub.elsevier.com/S0959-6526(19)30415-9/sref10
http://refhub.elsevier.com/S0959-6526(19)30415-9/sref11
http://refhub.elsevier.com/S0959-6526(19)30415-9/sref11
http://refhub.elsevier.com/S0959-6526(19)30415-9/sref11
https://doi.org/10.1007/s10479-016-2329-7
http://doi.org/10.1016/j.biombioe.2014.08.014
http://doi.org/10.1016/j.jclepro.2015.05.086
http://refhub.elsevier.com/S0959-6526(19)30415-9/sref15
http://refhub.elsevier.com/S0959-6526(19)30415-9/sref15
https://doi.org/10.1007/s11367-017-1334-7
https://doi.org/10.1007/s11367-017-1334-7
https://doi.org/10.1007/s11367-018-1490-4
http://doi.org/10.1016/j.ecolind.2013.02.011
http://doi.org/10.1016/j.ecolind.2013.02.011
http://refhub.elsevier.com/S0959-6526(19)30415-9/sref19
http://refhub.elsevier.com/S0959-6526(19)30415-9/sref19
http://refhub.elsevier.com/S0959-6526(19)30415-9/sref19
http://doi.org/10.1016/j.apenergy.2012.11.002
http://www.leidenuniv.nl/cml/ssp/publications/recipe_characterisation.pdf
http://www.leidenuniv.nl/cml/ssp/publications/recipe_characterisation.pdf
http://doi.org/10.1007/BF02978897


C. Du et al. / Journal of Cleaner Production 218 (2019) 708e717 717
Guin�ee, J., Heijungs, R., Huppes, G., Zamagni, A., Masoni, P., et al., 2011. Life cycle
assessment: past, present, and future. Environ. Sci. Technol. 45, 90e96.

Huppes, G., van Oers, L., 2011. Background Review of Existing Weighting Ap-
proaches in Life Cycle Impact Assessment (LCIA). In: http://www.avnir.org/
documentation/e_book/BackgroundReviewExistingWeightingApprochesInLCIA.
pdf. (Accessed 11 March 2018).

ISO, 2006a. ISO 14040. Environmental Management - Life Cycle Assessment -
Principles and Framework. International Organization for Standardization.

ISO, 2006b. ISO 14044. Environmental Management - Life Cycle Assessment - Re-
quirements and Guidelines. International Organization of Standardization.

Keeney, R., Kirkwood, C., 1975. Group decision making using cardinal social welfare
functions. Manag. Sci. 22 (4), 430e437.

Keeney, R., Raiffa, H., 1993. Decisions with Multiple ObjectivesePreferences and
Value Tradeoffs. Cambridge University Press, Cambridge & New York.

Lipuscek, I., Bohanec, M., Oblak, L., Stirn, L.Z., 2010. A multi-criteria decision-making
model for classifying wood products with respect to their impact on environ-
ment. Int. J. Life Cycle Assess. 15, 359e367. http://doi.org/10.1007/s11367-010-
0157-6.

Luo, L., Voet, E., Huppes, G., 2009. Life cycle assessment and life cycle costing of
bioethanol from sugarcane in Brazil. Renew. Sust. Ener. Rev. 13, 1613e1619.

Macedo, I.C., Seabra, J.E. a, Silva, J.E. a R., 2008. Green house gases emissions in the
production and use of ethanol from sugarcane in Brazil: the 2005/2006 aver-
ages and a prediction for 2020. Biomass Bioenergy 32, 582e595. http://doi.org/
10.1016/j.biombioe.2007.12.006.

Miettinen, P., Hamalainen, R.P., 1997. How to benefit from decision analysis in
environmental life cycle assessment (LCA). Eur. J. Oper. Res. 279e294.

Myllyviita, T., Holma, A., Antikainen, R., L€ahtinen, K., Leskinen, P., 2012. Assessing
environmental impacts of biomass production chains - application of life cycle
assessment (LCA) and multi-criteria decision analysis (MCDA). J. Clean. Prod.
29e30, 238e245. http://doi.org/10.1016/j.jclepro.2012.01.019.

Myllyviita, T., Leskinen, P., Seppala, J., 2014. Impact of normalization, elicitation
technique and background information on panel weighting results in life cycle
assessment. Int. J. Life Cycle Assess. 19, 377e386.

Narayanan, D., Zhang, Y., Mannan, M., 2007. Engineering for sustainable develop-
ment (ESD) in bio-diesel production. Process Saf. Environ. Prot. 85, 349e359.
http://doi.org/10.1205/psep07016.

Norris, G.A., 2001. The requirement for. congruence in normalization. Int. J. Life
Cycle Assess. 6, 85. http://doi.org/10.1007/BF02977843.
Pastare, L., Romagnoli, F., Lauka, D., Dzene, I., Kuznecova, T., 2014. Sustainable use of

macro-algae for biogas production in Latvian conditions: a preliminary study
through an integrated MCA and LCA approach. Environ. Clim. Technol. 13,
44e56. http://doi.org/10.2478/rtuect-2014-0006.

Pizzol, M., Laurent, A., Sala, S., Weidema, B., Verones, F., Koffler, C., 2017. Normal-
isation and weighting in life cycle assessment: quo vadis? Int. J. Life Cycle
Assess. 22, 853e866. http://doi.org/10.1007/s11367-016-1199-1.

Prado-Lopez, V., Seager, T.P., Chester, M., Laurin, L., Bernardo, M., Tylock, S., 2014.
Stochastic multi-attribute analysis (SMAA) as an interpretation method for
comparative life-cycle assessment (LCA). Int. J. Life Cycle Assess. 19, 405e416.
http://doi.org/10.1007/s11367-013-0641-x.

Rogers, K., Seager, T.P., 2009. Environmental decision-making using life cycle impact
assessment and stochastic multiattribute decision analysis: a case study on
alternative transportation fuels. Environ. Sci. Technol. 43, 1718e1723.

Saaty, T.L., 2008. Decision making with the analytic hierarchy process. Int. J. Serv.
Sci. 1 (1), 83e98.

Sarabando, P., Dias, L.C., Vetschera, R., 2019. Group decision making with incom-
plete information: a dominance and quasi-optimality volume-based approach
using Monte-Carlo simulation. Int. Trans. Oper. Res. 26, 318e339. http://doi.org/
10.1111/itor.12315.

Seabra, J.E.A., Macedo, I.C., Chum, H.L., Faroni, C.E., Sarto, C.A., 2011. Life cycle
assessment of Brazilian sugarcane products: GHG emissions and energy use.
Biofuels Bioprod. Bioref. 5, 519e532.

Souza, A., Watanabe, M.D.B., Cavalett, O., Ugaya, C.M.L., Bonomi, A., 2016. Social life
cycle assessment of first and second-generation ethanol production technolo-
gies in Brazil. Int. J. Life Cycle Assess. https://doi.org/10.1007/s11367-016-1112-y.

UNEP/SETAC, 2009. Guidelines for Social Life Cycle Assessment. http://www.unep.
fr/shared/publications/pdf/dtix1164xpa-guidelines_slca.pdf. (Accessed 5
October 2018).

UNICA, 2010. UNICA Sustainability Report 2010. http://www.unica.com.br/
sustainability-reporting/. (Accessed 5 October 2018).

UNICA, 2017. UNICADATA Project. http://www.unicadata.com.br/. (Accessed 11
March 2018).

Viana, K.R.O., Perez, R., 2013. Survey of sugarcane industry in minas gerais , Brazil :
focus on sustainability. Biomass Bioenergy 58, 149e157. http://doi.org/10.1016/j.
biombioe.2013.08.006.

http://refhub.elsevier.com/S0959-6526(19)30415-9/sref23
http://refhub.elsevier.com/S0959-6526(19)30415-9/sref23
http://refhub.elsevier.com/S0959-6526(19)30415-9/sref23
http://refhub.elsevier.com/S0959-6526(19)30415-9/sref23
http://www.avnir.org/documentation/e_book/BackgroundReviewExistingWeightingApprochesInLCIA.pdf
http://www.avnir.org/documentation/e_book/BackgroundReviewExistingWeightingApprochesInLCIA.pdf
http://www.avnir.org/documentation/e_book/BackgroundReviewExistingWeightingApprochesInLCIA.pdf
http://refhub.elsevier.com/S0959-6526(19)30415-9/sref25
http://refhub.elsevier.com/S0959-6526(19)30415-9/sref25
http://refhub.elsevier.com/S0959-6526(19)30415-9/sref26
http://refhub.elsevier.com/S0959-6526(19)30415-9/sref26
http://refhub.elsevier.com/S0959-6526(19)30415-9/sref27
http://refhub.elsevier.com/S0959-6526(19)30415-9/sref27
http://refhub.elsevier.com/S0959-6526(19)30415-9/sref27
http://refhub.elsevier.com/S0959-6526(19)30415-9/sref28
http://refhub.elsevier.com/S0959-6526(19)30415-9/sref28
http://refhub.elsevier.com/S0959-6526(19)30415-9/sref28
http://refhub.elsevier.com/S0959-6526(19)30415-9/sref28
http://doi.org/10.1007/s11367-010-0157-6
http://doi.org/10.1007/s11367-010-0157-6
http://refhub.elsevier.com/S0959-6526(19)30415-9/sref30
http://refhub.elsevier.com/S0959-6526(19)30415-9/sref30
http://refhub.elsevier.com/S0959-6526(19)30415-9/sref30
http://doi.org/10.1016/j.biombioe.2007.12.006
http://doi.org/10.1016/j.biombioe.2007.12.006
http://refhub.elsevier.com/S0959-6526(19)30415-9/sref32
http://refhub.elsevier.com/S0959-6526(19)30415-9/sref32
http://refhub.elsevier.com/S0959-6526(19)30415-9/sref32
http://doi.org/10.1016/j.jclepro.2012.01.019
http://refhub.elsevier.com/S0959-6526(19)30415-9/sref34
http://refhub.elsevier.com/S0959-6526(19)30415-9/sref34
http://refhub.elsevier.com/S0959-6526(19)30415-9/sref34
http://refhub.elsevier.com/S0959-6526(19)30415-9/sref34
http://doi.org/10.1205/psep07016
http://doi.org/10.1007/BF02977843
http://doi.org/10.2478/rtuect-2014-0006
http://doi.org/10.1007/s11367-016-1199-1
http://doi.org/10.1007/s11367-013-0641-x
http://refhub.elsevier.com/S0959-6526(19)30415-9/sref40
http://refhub.elsevier.com/S0959-6526(19)30415-9/sref40
http://refhub.elsevier.com/S0959-6526(19)30415-9/sref40
http://refhub.elsevier.com/S0959-6526(19)30415-9/sref40
http://refhub.elsevier.com/S0959-6526(19)30415-9/sref41
http://refhub.elsevier.com/S0959-6526(19)30415-9/sref41
http://refhub.elsevier.com/S0959-6526(19)30415-9/sref41
http://doi.org/10.1111/itor.12315
http://doi.org/10.1111/itor.12315
http://refhub.elsevier.com/S0959-6526(19)30415-9/sref43
http://refhub.elsevier.com/S0959-6526(19)30415-9/sref43
http://refhub.elsevier.com/S0959-6526(19)30415-9/sref43
http://refhub.elsevier.com/S0959-6526(19)30415-9/sref43
https://doi.org/10.1007/s11367-016-1112-y
http://www.unep.fr/shared/publications/pdf/dtix1164xpa-guidelines_slca.pdf
http://www.unep.fr/shared/publications/pdf/dtix1164xpa-guidelines_slca.pdf
http://www.unica.com.br/sustainability-reporting/
http://www.unica.com.br/sustainability-reporting/
http://www.unicadata.com.br/
http://doi.org/10.1016/j.biombioe.2013.08.006
http://doi.org/10.1016/j.biombioe.2013.08.006

	Robust multi-criteria weighting in comparative LCA and S-LCA: A case study of sugarcane production in Brazil
	1. Introduction
	2. Methods
	2.1. Life cycle assessment and social life cycle assessment of manual vs. mechanical harvesting of sugarcane
	2.1.1. Life cycle assessment
	2.1.2. Social life cycle assessment

	2.2. Normalization of LCA and S-LCA results
	2.3. Multi-criteria decision analysis approach: an additive model with stochastic weights
	2.4. VIP analysis
	2.5. Sensitivity analysis

	3. Results and discussion
	3.1. Mid-point environmental impacts
	3.1.1. Comparing environmental impacts on mid-point impact categories
	3.1.2. Sensitivity analysis

	3.2. End-point environmental impacts
	3.2.1. Comparing environmental impacts on end-point damage categories
	3.2.2. Sensitivity analysis

	3.3. Social impacts
	3.3.1. Comparing social impacts by social themes
	3.3.2. Sensitivity analysis


	4. Conclusions
	Acknowledgments
	Appendix A. Supplementary data
	References


