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ABSTRACT

This research presents a decision support methodology for the multi-criteria supplier selection and order
allocation problem. The proposed approach supports purchasing managers in assembling mid-term
supplier portfolios while making them aware of the trade-offs between the supplier sustainability, the
purchasing costs, and the overall supply risk. First, we propose a multi-objective optimization model
with three objectives: to maximize the supplier sustainability, to select the supplier portfolio with the
lowest purchasing costs, and to minimize the supply risk. Our model extends existing mathematical
approaches that follow the portfolio theory fathered by H. Markowitz by integrating the aspect ‘risk’ into
the supplier selection problem. Secondly, since we allow for integer variables in our model—in contrast
to the classical Markowitz portfolio theory—we use the e-constraint method to visualize the efficient
surface. The possibility of considering the non-dominated set of supplier portfolios is advantageous for
purchasing managers as they gain a picture of the different optimal supplier portfolios and are able to
analyze the trade-offs between the different purchasing goals before making a decision. Finally, we
illustrate the applicability of the proposed methodology in a real-world supplier selection and order
allocation case from the automotive industry. In the example case, we identify 1754 optimal supplier
portfolios that may be assembled based on the eight available suppliers. Our analyses show that each
optimal portfolio consists of two suppliers, with one specific supplier being included in each portfolio.
Furthermore, four suppliers are not part of any optimal solution.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

selection criteria have been used in research and in practice pro-
jects (Ho et al., 2010; Kannan and Tan, 2002; Verma and Pullman,

High purchasing costs, a strong trend toward outsourcing in
various industry sectors (Vahidi et al., 2018), and the proven effects
of supplier selection on a company's business performance are
inducing manufacturing firms to select their suppliers very care-
fully (Boer et al., 2001; Kannan and Tan, 2002; Koufteros et al.,
2012; Krause et al., 1998; Spina et al., 2013; Weber and Current,
1993; Wetzstein et al., 2016). The selection of the ‘right’ suppliers
is becoming increasingly crucial because many firms tend to have
fewer but at the same time reliable suppliers with whom they have
long-term relationships (Ho et al., 2010).

From a methodological point of view, supplier selection presents
a multi-criteria decision making problem. Various supplier
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1998). According to Ho et al. (2010), the most popular criteria
considered by decision makers for evaluating and selecting sup-
pliers are quality, delivery, and cost. For supplier quality and de-
livery, the important risk dimension (Torres-Ruiz and Ravindran,
2018) can be referred to as supply risk.

An increasing number of studies are focusing on sustainability
considerations (Aktin and Gergin, 2016; Gharaei et al., 2018a; Park
et al., 2018; Trapp and Sarkis, 2016; Vahidi et al., 2018). Kannan
et al. (2015), Huang et al. (2016), Rezaei et al. (2016), Gupta and
Barua (2017), and Yazdani et al. (2017) address supplier selection
issues by focusing on environmental aspects. In fact, the combi-
nation of awareness about greenhouse gas (GHG) emissions, and
environmental and social legislation—such as the Paris Agreement
from 2016, the French Grenelle II (Article 225), or the Danish
Financial Statements Act of 2008—is forcing companies to manage
sustainability aspects. Anthropic GHG emissions are a major
contributor to global warming, atmospheric changes, and climate
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disruptions, and logistics activities are major sources of GHG
(McKinnon et al., 2015). Thus, by enhancing the level of sustain-
ability standards, especially in supply chains, new legislations such
as those mentioned above can be addressed (Bai and Sarkis, 2010a;
Govindan et al., 2013; Luthra et al., 2017).

Several organizations have published guidelines on how to
quantify GHG emissions (COFRET, 2011) and on how to report on
sustainability issues (GRI, 2016). Nevertheless, a globally accepted
standard for measuring and reporting the sustainable impact of
supply chain activities remains absent. The Global Automotive
Sustainability Guiding Principles (GASGP) promoted by the Euro-
pean Automotive Working Group is an internationally-accepted
guideline on how to enhance the sustainability performance in
supply chains.! This guideline aims to achieve excellence, innova-
tion, and performance in a sustainable manner and addresses as-
pects of business ethics, the environment, working conditions, and
human rights in supply chains. As environment-friendly, social, and
economic suppliers are crucial for achieving sustainable develop-
ment and increasing the performance of supply chains (Frostenson
and Prenkert, 2015), we present a new integrated framework for
supplier selection based on the GASGP.

Various approaches have been suggested for processing the
different criteria that are relevant in the supplier selection pro-
cess to thus solve the supplier selection problem: mathematical
programming, data envelopment analysis (DEA), fuzzy set theory,
the analytic hierarchy process (AHP), the analytic network pro-
cess (ANP), case-based reasoning, artificial intelligence/neural
networks, and any of their combinations (Chai et al., 2013; Ho
et al, 2010; Singh, 2014). Nevertheless, selecting suppliers
based on these models often ends with the selection of a single
supplier, without, however, determining order shares, i.e., the
number of studies investigating the order allocation problem in
sustainable supplier selection is rather limited (Goren, 2018).
Recent contributions in the field of supplier selection (Gaonkar
and Viswanadham, 2007; Hosseininasab and Ahmadi, 2015;
Kellner et al., 2019; Lee and Chien, 2014) show that the mathe-
matical framework of the portfolio theory following Harry
Markowitz (1952, 1959) supports supplier selection and order
allocation decisions effectively—especially when the aspect ‘risk’
needs to be taken into consideration. Thus, it is possible to
assemble supplier portfolios that reduce the long-term risk of
failure. In this context, a ‘supplier portfolio’ reflects the selected
suppliers and the proportions of the purchasing company's total
demand that are ordered from these sources. In this paper, we
combine the sustainable supplier selection with the theoretical
concepts of portfolio optimization to compute optimal order
shares.

This paper provides a new decision support methodology for
the multi-criteria supplier selection and order allocation problem.
Our approach supports purchasing managers in assembling mid-
term supplier portfolios while making them aware of the trade-
offs between the purchasing costs, sustainability, and the over-
all supply risk. Our contribution is threefold: Firstly, we present a
multi-objective optimization model for the supplier selection and
order allocation problem. Our model extends existing mathe-
matical models that transferred the portfolio theory fathered by
Markowitz (1952, 1959) to the supplier selection case (Gaonkar
and Viswanadham, 2007; Hosseininasab and Ahmadi, 2015;
Kellner et al., 2019; Lee and Chien, 2014). Secondly, we use the

! The European Automotive Working Group on Supply Chain Sustainability is
supported by most of the larger automotive manufacturers, i.e., BMW Group,
Daimler, Ford, Jaguar, Land Rover, PSA Peugeot Citroén, Scania, Toyota, Volkswagen,
and Volvo.

e-constraint method to visualize the efficient surface for the
proposed multi-objective optimization model. The possibility of
drawing the efficient surface proves advantageous for purchasing
managers as they gain a picture of the available optimal supplier
portfolios and are able to analyze the trade-offs between the
different purchasing goals before making a decision. Thirdly, we
apply our methodology to a real-world supplier selection and
order allocation problem from the automotive industry to
demonstrate its applicability. What sets this real-world applica-
tion apart is the fact that the supplier sustainability scores are not
‘self-made’ sustainability indicators. Instead, we obtained the
results of a self-assessment questionnaire that is a standard for
rating the sustainability performance of suppliers in the auto-
motive industry.

The paper is organized as follows: Section 2 provides a literature
review on the supplier selection problem. Section 3 presents our
multi-objective optimization model and the procedure for
computing the non-dominated set. Section 4 contains an illustra-
tive real-world application case. Section 5 discusses the decision
support methodology, and Section 6 concludes the paper.

2. Literature review

Several researchers view supplier selection as one of the most
important processes in the purchasing and supply management
function and as a fundamental management responsibility (Amid
et al,, 2011; Golmohammadi and Mellat-Parast, 2012; Kaufmann
et al.,, 2010; Parthiban et al., 2013; Wetzstein et al., 2016). Thus, it is
not surprising that supplier evaluation and selection problems have
been studied extensively during the last decades. Boer et al. (2001),
Chai et al. (2013), Degraeve et al. (2000), Ho et al. (2010), and Weber
et al. (1991) provide comprehensive literature reviews on these
topics.

2.1. Supplier selection criteria

Supplier selection decisions involve the evaluation of the per-
formance of potential suppliers against a wide range of often-
conflicting criteria (Lee and Chien, 2014). Ho et al. (2010) find
that the most popular evaluation criteria are quality, delivery, price/
cost, manufacturing capability, service, management, technology,
research and development, finance, flexibility, reputation, rela-
tionship, risk, and safety and environment. Additionally, quality,
delivery, and the net price are among the criteria of ‘extreme’ or
‘considerable importance’ for vendor selection criteria and
methods (Weber et al., 1991). Kannan and Tan (2002) study the
impact of supplier selection and assessment on business perfor-
mance and report survey results that rank the quality level, the
service level, on-time delivery, quick response time in case of
emergency, flexibility to respond to unexpected demand changes,
the correct quantity delivered, and the price/cost of the product
among the most important factors. Lienland et al. (2013) confirm
the substantial importance of the aspects ‘quality,” ‘delivery,” the
‘performance history, and the ‘price’ in the supplier selection
process.

Our paper incorporates these findings as it presents a supplier
selection model that processes the above named criteria. The pro-
posed model considers the following aspects: quality, delivery, the
performance history of the suppliers, price (cost), and the flexibility
to respond to unexpected demand changes, the manufacturing
capability, expertise in research and development, and the supply
risk. It should be noted that the proposed model can easily be
extended with additional criteria.
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2.2. Multi-objective supplier selection

Many approaches have been suggested for solving the multi-
criteria supplier selection problem (Lee and Chien, 2014). Chai
et al. (2013) and Ho et al. (2010) identify various decision making
techniques that have been used for supplier selection so far. These
methods include DEA, TOPSIS, DEMATEL, ELECTRE, PROMETHEE,
mathematical programming, AHP and ANP, fuzzy set theory, case-
based reasoning, neural networks, and genetic algorithms. Be-
sides the ‘individual’ decision making techniques, numerous ‘in-
tegrated’ approaches have been proposed, such as AHP & DEA, AHP
& goal programming, ANP & TOPSIS, DEA & linear programming,
and TOPSIS & DEMATEL.

The methodology of our approach belongs to the class of
models that formulate the multi-criteria supplier selection prob-
lem as a multi-objective decision making model (cf. Chai et al.,
2013; Ho et al,, 2010). This means that the most important sup-
plier selection criteria are considered as goals that have to be
minimized (e.g., cost) or maximized (e.g., sustainability), and that
have to be balanced, as the achievement of one goal typically
prevents decision makers from achieving the maximum/minimum
values in the other goals. Multi-objective decision making ap-
proaches for solving the supplier selection problem have previ-
ously been presented, for instance, by Gharaei et al. (2018b),
Karpak et al. (2001), Kull and Talluri (2008), Narasimhan et al.
(2006), Wadhwa and Ravindran (2007), and Yu et al. (2012).
Gharaei et al. (2018b) present an optimal integrated lot sizing
model in a multi-level supply chain with imperfect quality prod-
ucts. Karpak et al. (2001) construct a goal programming model
considering three goals: cost, quality, and delivery reliability. Their
approach determines the optimal amount of products ordered,
subject to the purchasing company's demand and the suppliers’
capacities. Narasimhan et al. (2006) develop a multi-objective
programming model to select the optimal suppliers and to deter-
mine the optimal order quantity. Their model has five objectives,
which may be grouped into three classes: cost minimization and
maximization of quality and of delivery-performance. Wadhwa
and Ravindran (2007) present a multi-objective programming
problem with three objective functions, namely minimization of
price, lead time, and the number of rejects. Yu et al. (2012)
investigate a multi-objective vendor selection program under
lean procurement based on cost and delivery schedule violation
minimization and the maximization of the quality level of the
purchased quantity. Kull and Talluri (2008) find that firms are
increasingly recognizing the importance of including supply risk in
the evaluation and selection of suppliers for strategic partnerships.
Therefore, they propose a goal programming approach for supplier
selection in the presence of supply risk measures.

Techniques for solving multi-objective optimization models can
be categorized according to the moment in time when the decision
makers (e.g., purchasing managers) express their preference for the
different objectives (Hwang and Masud, 1979; Marler and Arora,
2004; Mavrotas, 2009): (1) techniques with a priori articulation
of preferences, (2) techniques with a posteriori articulation of
preferences, (3) interactive techniques, (4) techniques with no
articulation of preferences, and (5) variations of these. We imple-
ment an a posteriori approach because this allows the user to forgo
an ex ante articulation of preferences, identify the trade-offs be-
tween the objectives, and study how the different aspects of sup-
plier portfolio configuration may be balanced. From the decision
maker's point of view, this means that firstly, all Pareto efficient
solutions are computed and visualized graphically. Then, a specific
portfolio can be chosen in accordance with the purchasing com-
pany's supply strategy.

2.3. Multi-objective portfolio models for supplier selection

Recent research shows that the multi-objective optimization
framework of the Markowitz (1952, 1959) portfolio theory can be
applied effectively for the supplier selection case. This allows de-
cision makers to assemble supplier portfolios that reduce the mid-
to long-term risk of failure because the suppliers selected are those
that compensate each other with respect to the service delivered,
i.e.,, when a certain supplier performs poorly, the others perform
well.

Gaonkar and Viswanadham (2007) study supplier non-
performance in terms of the complete failure of a supplier to
deliver components or the inability to deliver components at the
promised price. They present a model with two objectives: mini-
mizing the expected cost of operating the supply chain and, at the
same time, minimizing the risk of variations in the total supply
chain cost. Hosseininasab and Ahmadi (2015) develop a two-phase
supplier selection procedure. In the first phase, the potential
sources are assigned a comparable value based on a set of criteria.
In the second phase, this value is fed into a multi-objective port-
folio optimization model. The model determines a supplier port-
folio by maximizing the expected value and the development of
the suppliers, and by minimizing the correlated risk. Unlike
Hosseininasab and Ahmadi (2015), we do not use a composite
indicator expressing the ‘global value’ of a supplier because the
traditional purchasing goals of cost, quality, delivery, flexibility,
and supply risk (Kraljic, 1983; Krause et al., 2009) cannot be
analyzed separately and the trade-offs cannot be studied. There-
fore, we suggest an a posteriori approach to support decision
making, which goes beyond the model of Hosseininasab and
Ahmadi (2015). Kellner et al. (2019) present an optimization
model with four objectives: to minimize the purchasing costs, to
select the supplier portfolio with the highest logistics service, to
minimize the supply risk, and to order as much as possible from
those suppliers with outstanding sustainability performance. As
their model is a non-standard portfolio selection problem with
three linear and one quadratic objective function, they employ a
novel algorithm that analytically computes a set of non-dominated
solutions and provides graphical decision support through a
visualization of the complete and exactly-computed Pareto front.
While this algorithm allows the processing of linear and quadratic
objective functions, it can only be used in optimization models
with continuous decision variables. Finally, Lee and Chien (2014)
present a supplier portfolio model with three objectives: maxi-
mizing the performance of the selected vendors, diversifying the
portfolio risk, and minimizing the total cost. According to Lee and
Chien (2014), there are two types of risks in the supplier selection
problem: vendor's performance risk and delivery risk. The re-
searchers suggest minimizing the covariance of the performance
in a portfolio to address performance risk and using stochastic
programming to handle uncertain deliveries. To solve the supplier
selection problem, a probabilistic and a robust optimization model
are developed.

Summing up, studies effectively integrating the mathematical
framework of the portfolio theory into supplier selection exist;
however, they are few in number. Kellner et al. (2019) is the only
contribution in line with our intention of proposing an approach for
a posteriori decision making. However, the algorithm used by
Kellner et al. (2019) does not support decision problems that limit
the number of suppliers to a certain range, contain minimum
ordering quantities, or describe the characteristics of the suppliers
with binary or integer variables (Hoseini Shekarabi et al., 2018;
Kilic, 2013). Therefore, we apply the e-constraint method to draw
the efficient surface for processing integer variables and general-
izing the a posteriori application of the portfolio theory for the
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Table 1

Overview of research proposals for integrating sustainability into supplier selection.

Methodological approach

Example

AHP & quality function deployment; AHP & multi-objective linear programming

ANP

Fuzzy logic, fuzzy numbers, fuzzy inference systems, and/or fuzzy TOPSIS
ANP-VIKOR

Multi-objective optimization

Multi-agent systems approach

Grey approach; grey system and rough set theory

Dai and Blackhurst (2012)

Dou and Sarkis (2010)
Govindan et al. (2013)

Liu et al. (2018)

Govindan and Sivakumar (2016)
Ghadimi et al. (2018)

Bai and Sarkis (2010b)

supplier selection case.

2.4. Integrating sustainability into supplier selection

Sustainability considerations are receiving increased attention
in the supplier evaluation and selection process, both in practice
and in research. Strategies on how to measure the effectiveness of
organizational strategies are provided by Sobhanallahi et al.
(2016a) and Sobhanallahi et al. (2016b). Examples of companies
that are rating the sustainability performance of their suppliers
include Apple, BMW, and Walmart (for more information, see the
company websites). In addition, researchers propose diverse ap-
proaches that support the supplier evaluation and selection process
(Table 1). These concepts comprise single- and multi-echelon
supply chains. Gharaei et al. (2017), Gharaei and Pasandideh
(2017a), Gharaei and Pasandideh (2017b), and Gharaei and
Pasandideh (2016) provide a comprehensive overview on the lat-
est developments.

We present an approach for multi-objective supplier selection
and order allocation that also takes sustainability into account.
However, unlike the aforementioned proposals, the sustainability
performances of single suppliers are not indicated by self-made
sustainability scores but rather the sustainability ratings are
based on a self-assessment questionnaire that is standard in the
automotive industry. The details are explained in Section 4.

3. Methodology

At the heart of the proposed decision support methodology is a
multi-objective optimization model that is based on the investment
portfolio theory fathered by H. Markowitz. This model transfers the
traditional risk-expected return trade-off to the supplier selection
and order allocation context and extends the classical model
through the addition of objective functions and constraints with
integer variables (Section 3.1). To solve the multi-objective opti-
mization problem, i.e., for the computation of the non-dominated
set, we suggest using the e-constraint method (Section 3.2). As
will be shown in the numerical example in Section 4, different
analyses may be carried out for the non-dominated set. These an-
alyses provide deeper insights into the decision-making problem at
hand (Section 4.3). Finally, we show how the identification of the
most preferred supplier portfolio may be facilitated by means of an
interactive dashboard (Section 4.4).

3.1. Multi-objective supplier selection and order allocation model

The proposed optimization model has three objectives: to
minimize the overall purchasing costs, to source as much as
possible from those suppliers with an outstanding sustainability
performance, and to reduce the supply risk.

Indices
ij 1..N Suppliers
t 1..T Time periods
Decision variables
X; €[0,1] Proportion of the total demand ordered from
supplier i
Vi <{0;1} Takes the value 1 if supplier i is part of the
portfolio, 0 otherwise
Parameters
cv; €R Per unit selling price of supplier i (variable cost)
cf; €R Fixed costs of sourcing from supplier i
log; €[0,1] Indicator of supplier i's logistics performance
log;, <[0,1] Indicator of supplier i's logistics performance
during period t
STS; €[0,1] Supplier i's sustainability performance
(sustainability rating score)
ajj €R Covariance of the logistics performance in
suppliers i and j
CAP; <[0,1] Capacity of supplier i (share of the total
demand that can be sourced from i)
MOQ; <[0,1) Minimum order quantity of supplier i
(in percent of the total demand)
strat; {0;1} Takes the value 1 if supplier i is a ‘strategic’
supplier, O otherwise
reg; {0;1} Takes the value 1 if supplier i is a regional
supplier, O otherwise
D €R Demand of the purchasing company
B €R Budget of the purchasing company
L <[0,1] Minimum logistics service desired
Ninax ez Maximum number of suppliers in the portfolio
Nstr eZ Number of strategic suppliers in the portfolio
Nreg eZ Number of regional suppliers in the portfolio
Objectives
Costs min " (cvi-X;-D + cf;-y;) (1)
i
Sustainability max Zsrs,- -X; (2)
i
Supply risk  miny gjj-X;-X; (3)
y
Constraints
Demand satisfaction > x; =1 (4)
i
Supplier capacity x; < CAP;-y; Vi (5)
Minimum order quantity MOQ;-y; < x; Vi (6)
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Budget Z(Cvi-xi~D+cﬁ-y,-) <B (7)
1

Zf -logi

Logistics service L < > log;-x; = Z (ti -Xj (8)
i P\ D
t
Dual sourcing 2 < Sy; 9)
i

Maximum number of suppliers > y; < Nmnax (10)
i

Nb. of strategic suppliers Ny < E y;-strat; (11)
i

Nb. of regional suppliers Nreg <> y;-Teg; (12)
i

Equation (1) minimizes the overall purchasing costs, which
consist of variable and fixed costs. Variable costs are calculated as a
function of the per unit selling prices cv;. Fixed costs cf; are costs for
building up and maintaining the relationship to the supplier during
the period under consideration.

Equation (2) maximizes the share of orders placed with those
suppliers that are achieving a high sustainable performance. The
sustainability performance of the suppliers is indicated by the
sustainability rating scores srs ranging between 0 and 1.

Equation (3) minimizes the supply risk of the supplier portfo-
lio. Supply risk occurs as the logistics service logj; of the single
suppliers may vary more or less strongly over the time. The lo-
gistics service logj; offered by a certain supplier i indicates the
percentage share of the deliveries that meets the ‘5 Rs in Logistics’
(the Right product, in the Right quantity, in the Right quality, at the
Right place, at the Right time) within a certain period of time t, for
instance, one month. Thus, supply risk represents the fact that
even if some suppliers offer quite a good service on average, their
performance can fluctuate to a more or less significant degree. In
accordance with Markowitz's portfolio theory, the variation in the
logistics performance of the single suppliers is indicated by the
standard deviation, and the overall supply risk is measured with
the variance of the logistics service of the supplier portfolio as a
whole. Equation (3) minimizes the supply risk of the supplier
portfolio by assembling those suppliers that compensate each
other the best, i.e, when one supplier performs poorly, the
other(s) perform(s) well—and vice versa (Kellner et al., 2019).
Thus, the desirable situation is when the performances of the
suppliers are negatively correlated, i.e., when logj; is low, logj
becomes high. As stated by Hosseininasab and Ahmadi (2015),
some suppliers are similarly affected by certain disruptions, and
assembling a portfolio of similar suppliers may be crucial for when
such disruptions occur. There are different reasons for why two or
more suppliers may break down simultaneously: (1) a natural
disaster occurs and the suppliers are geographically located close
to each other; (2) several suppliers are supplied by the same sub-
supplier; and (3) suppliers use the same means of transport
(railway, maritime, or air transport), which breaks down or is
delayed. Following the idea of portfolio theory, these interactions
in the logistics performance between two suppliers i and j are
measured with the covariance oj;.

Equation (4) assures that the total demand of the purchasing
company is satisfied. Equation (5) guarantees that no more orders

are placed at the single suppliers than the sources can deliver.
Equation (6) ensures that the minimum order quantities of the
suppliers are respected. Equation (7) limits the financial resources
spent to the maximum budget available. Equation (8) guarantees
that the minimum overall logistics service desired by the pur-
chasing company is achieved. To place more emphasis on the most
recent performance values logj, the overall logistics performance of
a certain supplier (log;) is calculated as the weighted average over
the last T periods. Thus, the performance histories of the suppliers
are taken into account. According to Equation (8), it is possible that
suppliers with a logistics performance (log;) below L may be part of
the portfolio. However, the overall performance of the portfolio is
at least L. This approach allows the selection of ‘low-performance’
suppliers who are, however, very desirable from a cost, supply risk,
or sustainability point of view. Equation (9) ensures that the port-
folio consists of at least two suppliers. This reduces the risk of
short-term supply disruptions because if one suppliers breaks
down, there is still another one who can supply the purchasing
company. Furthermore, this facilitates competition among the
vendors (Lee and Chien, 2014). Equation (10) limits the number of
suppliers in the portfolio to a predefined value. This allows decision
makers to limit the number of relationships that have to be
maintained. Equations (11) and (12) ensure that the numbers of the
strategic and regional suppliers in the portfolio are at least Ng; and
Nyeg, respectively. The term ‘strategic’ means that a supplier is
particularly important for the purchasing company for at least one
reason, e.g., because it has particular expertise in the field of
research and development, is very flexible in responding to unex-
pected demand changes, or has a certain manufacturing capability.
Clearly, Equation (11) may be ‘split,’ so that there is one equation for
each strategic property of the suppliers. Equation (12) is an illus-
trative example of this because it makes sure that there is at least
one regional supplier.

3.2. Using the e-constraint method for solving the supplier selection
model

The optimization problem presented above is a non-standard
portfolio selection model because it is a combination of the clas-
sical risk-expected return trade-off (Markowitz, 1952, 1959)—
which could be associated with the mean/expected sustainability
performance and the supply risk—and an additional third objec-
tive. Computing the efficient surface in multi-objective program-
ming is generally a broadly discussed challenge (Ehrgott et al.,
2012; Steuer et al., 2005). Due to computational restrictions, it is
difficult to determine the efficient surface in the majority of the
optimization models. Indeed, a posteriori decision making, as
intended in our study, necessitates the calculation of the non-
dominated set. Until Hirschberger et al. (2013), who present an a
posteriori method for computing the efficient frontier of invest-
ment portfolios, it had not been possible to compute a tri-criterion
non-dominated surface. However, this algorithm cannot be applied
for the optimization model presented above because it does not
allow the processing of integer variables. Thus, this research sug-
gests solving the proposed optimization model by the means of the
e-constraint method (Haimes et al., 1971). The idea is to optimize
one of the objectives while using the other objective functions as
constraints with varying binding values.

We suggest minimizing the quadratic objective function, which
refers to ‘Supply risk,’ and binding the linear functions representing
the overall costs and the sustainability performance to predefined
values, namely ecost and esysqinabitity- This results in the following
optimization problem:
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Objective
Supply risk  miny o;;-X;-X; (13)
ij
Constraints
Costs Y- (cvi-X;i*D +cfi-yi) < ecost (14)
1
Sustainability performance Y srs;-X; > esystqinability (15)

1

Equations (4)—(12) see above

For applying the e-constraint method, it is necessary to first
determine the ranges of the objective functions that are used as
constraints. While the best values are easily attainable as the op-
tima of the individual optimizations, the worst values (the nadir
values) are not (Bechikh et al.,, 2010; Deb and Miettinen, 2010;
Mavrotas, 2009). As, however, the knowledge of the exact nadir
values is not required for calculating the efficient surface, we sug-
gest the use of the optima of the ‘negative’ individual optimizations
to approximate the nadir values. This means that the nadir value for
the costs is obtained by maximizing Equation (1) subject to Equa-
tions (4)—(12), and the nadir value for the sustainability perfor-
mance is obtained by minimizing Equation (2) subject to Equations
(4)—(12). Another possibility for calculating the ranges of the
objective functions is to fall back on the payoff table, i.e., the table

with the results from the individual optimization of the objective
functions. The nadir values can then be approximated with the
minimum of the corresponding column (Mavrotas, 2009).

Once the ranges of the two linear objective functions have
been determined, these ranges are sub-divided into m intervals
with (m+1) equidistant grid points. For the calculation of the
non-dominated set, the (m+1) grid points of the cost function
and the (m+1) grid points of the sustainability function are used
as the binding values ecost and esystainabitie We then solve the
optimization model (m+1)*(m+1) times. Thus, the non-
dominated set is composed of, at the most, (m+1)* grid points,
and the objective value of Equation (13) is projected in the third
dimension. Obviously, the number of m determines the density of
the efficient surface. The higher the number of grid points, the
denser the representation of the efficient surface and the higher
the cost of computation time (Mavrotas, 2009). Fig. 1 summarizes
the procedure for solving the multi-objective supplier selection
model.

4. Application: a real-world case study

This section demonstrates the applicability of the proposed
approach using an illustrative real-world case from the automotive
industry. The example is concerned with the supplier selection and
order allocation problem for embedded navigation systems at a
leading premium automotive OEM in Germany.

Step 1:  Determine the ranges for the objectives ‘Costs’ and ‘Sustainability’
L.1) The approximated nadir value for the cost function v¥%% is obtained by solving. ..
Objective max Equation (1)
Constraints ~ Equations (4)—(12)
1.2) The optimal value for the cost function vg . is obtained by solving...
Objective min Equation (1)
Constraints  Equations (4)—(12)
1.3) The approximated nadir value for the sustainability function vlsv,f;‘it is obtained by solving...
Objective min Equation (2)
Constraints  Equations (4)—(12)
1.4) The optimal value for the sustainability function vgfstt is obtained by solving...
Objective max Equation (2)
Constraints ~ Equations (4)—(12)
Step 2:  Compute the non-dominated set
Fora=0tom
Forb=0tom
2. Set: €cost = Vst — % * (Vost — Vggstt
22) Set: Esustamability = Vost + % * (vghe, — v
2.3) Solve:
Objective min Equation (13)
Constraints Equations (4)—(12), (14)—(15)
2.4) Record: Objective value of Equation (13), €cog» Esustainability
b=b+1
a=a+t1
Step 3:  Draw the efficient surface using the values recorded in step 2.4.

Fig. 1. Procedure for solving the multi-objective supplier selection model.
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4.1. Setting and data

The example case represents a situation with a purchasing
manager who is responsible for the procurement of embedded
navigation systems and has to make decisions about the sourcing
concept for the next 24 months. This includes the selection of the
suppliers and the allocation of the order shares to the single
sources. The company that supported our research provided real-
world data—with the exception of the costs. The cost data com-
prises standardized values that correspond to the proportions of
the real-world cost data. As the purchasing company has already
worked together with the eight pre-selected suppliers, it is possible
to fall back on the suppliers’ performance histories for the last 36
months; this means that historical values for logj; are available.
Using these 36 log;; values for each of the eight suppliers allows us
to calculate the logistics service covariance matrix. Furthermore,
the supplier specific data concerning the per unit selling prices cv;,
the fixed costs cf;, the capacities CAP;, the minimum order quanti-
ties MOQ;, and the values for strat; (strategic supplier) and reg;
(regional supplier) are given. Table 2 summarizes the information
about the eight suppliers. According to the case company, the de-
viations from 100% in the logistics service log are, in general, not
associated with product quality problems but with tardy deliveries,
where a tardy delivery is defined as a delivery that does not arrive
on the day specified in the delivery notice.

Besides the supplier specific data, the general conditions of the
purchasing situation are as follows: there is a demand D of 100,000
units, the maximum budget available B is 14,000,000, and the
minimum logistics service desired (L) is 90%. Furthermore, the
maximum number of suppliers (Nmqx) is 4, and the number of the
strategic suppliers Ns; and of the regional suppliers Nieg has to be at
least 2 and 1, respectively.

Row 4 inTable 2 shows the sustainability rating scores of the eight
suppliers. What sets this study apart is the fact that it is not based on
self-made sustainability performance indicators, but rather the
sustainability scores srs are determined by means of a self-
assessment questionnaire based on the Global Automotive Sustain-
ability Guiding Principles (GASGP). The GASGP have been formulated
by the initiative ‘Drive Sustainability’ (drivesustainability.org), which
is a partnership between ten leading automotive OEMs (BMW
Group, Daimler AG, Ford, Honda, Jaguar Land Rover, Scania CV AB,
Toyota Motor Europe, Volkswagen Group, Volvo Cars, and Volvo
Group). This partnership aims to drive sustainability throughout the
automotive supply chain by promoting a common approach within
the industry and by integrating sustainability in the overall

procurement process. The self-assessment questionnaire upon
which the sustainability performance scores of the eight investi-
gated suppliers are based was developed in 2014 and represents at
present the common standard for the sustainability rating of sup-
pliers in the automotive industry. Even if the approach of deter-
mining the sustainability performance of the single suppliers by
means of a self-assessment questionnaire is, at first glance, not as
sophisticated as other approaches that have been suggested in
literature, such as TOPSIS, PROMETHEE, DEA, the AHP, or ANP, it has
several advantages:

e The assessment of the sustainability performance of third
parties (as in the case of a purchasing company rating the sus-
tainability performance of its potential suppliers) is challenging
because good knowledge of the suppliers' performance in the
different domains of sustainability is necessary. We argue that it
is easier for a company to concentrate on its own sustainability
performance (self-assessment) and communicate the results in
a standardized way.
The GASGP offer a standardized approach for the assessment of
the sustainability performance of suppliers in the automotive
industry. Based on a questionnaire consisting of more than 50
items, suppliers are asked to provide information about their
practices in different sustainability domains. The responses are
then summarized, and a sustainability rating score ranging be-
tween 0 and 1 is calculated. The fact that the sustainability
performance is measured consistently (same questions, same
rating) across the whole industry allows for a better compara-
bility of the potential suppliers.

e While more sophisticated approaches enjoy some
methodology-inherent advantages (e.g., consistency checks in
the case of AHP and ANP), they suffer from the fact that they are
not commonly accepted and that a certain expertise is required
to carry out the corresponding calculations and analyses. We
argue that this hinders an industry-wide application of these
methods. In addition, each one of the ‘more sophisticated’
methods enjoys its own comparative advantages over the other
methods. There is no single method that describes a company's
sustainability performance best, that is commonly accepted, or
that is practical enough to guarantee an industry-wide
application.

Therefore, we view the information about the sustainability
performance of the eight suppliers based on the standardized self-
assessment questionnaire as very useful.

Table 2
Summary of the supplier characteristics.
S1 S2 S3 S4 S5 S6 S7 S8

Variable costs cv 115 100 108 107 113 110 109 101
Fixed costs cf 2.00E+06 9.00E+05 1.00E+06 1.10E+06 1.50E+06 1.10E+06 1.15E+06 9.50E+05
Logistics service log 0.992 0.753 0.859 0.878 0.979 0.906 0.858 0.799
Sustainability score srs 0.82 0.32 0.72 0.48 0.53 0.69 0.79 0.41
Min. order gty MOQ 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
Capacity CAP 1.0 0.7 1.0 1.0 1.0 0.6 1.0 1.0
Strategic sup. strat 1 0 0 1 1 1 1 0
Regional sup. reg 1 0 1 0 1 1 0 0
Covariance S1 2.3E-04 —3.2E-05 5.8E-05 1.6E-04 3.0E-04 —1.3E-04 —3.3E-04 2.3E-04
Covariance S2 —3.2E-05 1.4E-02 —2.3E-03 —4.2E-04 —4.3E-04 —5.1E-05 7.3E-04 —2.4E-04
Covariance S3 5.8E-05 —2.3E-03 3.6E-03 3.0E-05 2.3E-04 7.2E-04 —1.1E-04 —6.4E-04
Covariance S4 1.6E-04 —4.2E-04 3.0E-05 5.4E-03 6.2E-04 —1.9E-03 1.5E-03 —2.2E-03
Covariance S5 3.0E-04 —4.3E-04 2.3E-04 6.2E-04 2.2E-03 —1.6E-03 —2.7E-04 1.4E-03
Covariance S6 —1.3E-04 —5.1E-05 7.2E-04 —1.9E-03 —1.6E-03 9.5E-03 —1.9E-03 —1.8E-03
Covariance S7 —3.3E-04 7.3E-04 —1.1E-04 1.5E-03 —2.7E-04 —1.9E-03 7.1E-03 —3.1E-04
Covariance S8 2.3E-04 —2.4E-04 —6.4E-04 —2.2E-03 1.4E-03 —1.8E-03 —3.1E-04 1.4E-02
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Table 3
Effect of the parameter m on the non-dominated set and on the computation time.

m Max./theoretical number Number of feasible solutions Number of feasible unique solutions Computation time® (hh:mm:ss)
of portfolios = (m+1)e(m+1)
25 676 386 55 00:00:14
50 2601 1498 119 00:00:43
100 10,201 5815 248 00:02:42
250 63,001 35,912 693 00:16:30
500 251,001 142,783 1559 01:07:10
1000 1,002,001 570,305 3574 04:24:00

¢ Win7 64bit, Intel i7-3520 2.9 GHz, 8 GB RAM.

4.2. Visualizing the efficient surface

To determine the non-dominated set, we execute the procedure
shown in Fig. 1. All optimizations are carried out with CPLEX 12.6.1;
for the visualization of the efficient surface and for the portfolio
selection process an interactive web application has been built
based on R Shiny.

First, the optimal and the nadir values of the objectives ‘Costs’
and ‘Sustainability’ are determined by solving the corresponding
optimization models. The nadir values for the costs and for the
overall sustainability performance are 14,000,000 and 0.49,
respectively. The optimal values are 13,430,954 and 0.70. Next, the
ranges of the objectives ‘Costs’ and ‘Sustainability’ are sub-divided
into m intervals. For the parameter m, we use six different values to
observe the effect on the non-dominated set and on the compu-
tation time. The results are summarized in Table 3.

The second column in Table 3 presents the number of optimi-
zation runs started and, simultaneously, the number of portfolios
that the non-dominated set can be theoretically composed of. For
each value of m, the (m+1)? optimization runs are started while the
parameters a and b (cf. Fig. 1) are increased permanently, and the
results of each optimization run are recorded. The time for carrying
out all optimization runs is shown in the far right column of Table 3.
As can be seen from the third and the fourth column of Table 3, not
all optimization runs resulted in feasible solutions. More interest-
ingly, the number of the feasible unique solutions is relatively small
when compared to the total number of optimization runs. The

Non-dominated set (3-dimensional projection) Non-dominated set (2-dimensional projection)

SRS

Risk

Fig. 2. Efficient Surface for the Example Case (3- and 2-Dimensional Projection). These
graphs illustrate the non-dominated order share solutions in criterion space. Color
indicates the level of sustainability.

Table 4

number of the feasible unique solutions can be reduced further by
rounding off the three objective values, the logistics service, and the
shares ordered from the selected suppliers to a reasonable number
of decimals. When rounding off the supply risk, the logistics ser-
vice, the sustainability score, and the shares ordered to 4 decimals
and the costs to zero decimals, 1754 unique solutions in the case of
m=1000 remain. The further analyses rely on the latter setting
where the non-dominated set is composed of 1754 unique
portfolios.

Fig. 2 shows two views of the efficient surface: a 3- and 2-
dimensional projection. Obviously, the efficient surface consists of
three parabolas. The color scale (red-green) indicates the value of
the overall sustainability rating scores (srs), i.e., the sustainability
performances of the supplier portfolios. We measure risk with the
standard deviation of the logistics service of the supplier portfolios.
The 2-dimensional projection of the non-dominated portfolios in
criterion space shows that the portfolios with the lowest costs have
low sustainability (red curve from southeast to northwest). This
curve illustrates that costs rise with decreasing risk and a slight
increase in sustainability. The interpretation of both of the other
curves is similar and shows the trade-off between the three
objectives.

4.3. Analyzing the decision making problem

An advantage of the a posteriori decision making approach is
that it allows the analysis of the non-dominated set and, thus,
provides deeper insights into the decision making problem. Table 4
presents summary statistics for the 1754 optimal supplier portfo-
lios, and Table 5 reports statistics for the eight potential suppliers.

Table 4 shows that the costs of the optimal supplier portfolios
range between 13,430,954 and 13,849,388. However, more than
50% of the portfolios have costs in an interval ranging from
13,700,000 to 13,800,000. Furthermore, there is a significant gap
between the minimal and the maximal achievable sustainability
performance srs. The average and the median values, however,
indicate that the average realization of overall sustainability per-
formance is close to 0.6. Concerning the supply risk (Table 4, col-
umn ‘Supply risk’), the standard deviation of the logistics
performance of the portfolio with the highest supply risk is almost
two times greater than the standard deviation of the portfolio with

Summary statistics for the three objective values of the non-dominated set in the example case.

Total Sustainability (srs) Supply risk Logistics service Number of suppliers
costs
Minimum 13,430,954 0.4909 0.0350 0.9000 2
Mean 13,713,550 0.5906 0.0455 0.9298 2
Median 13,746,205 0.6018 0.0445 0.9305 2
Maximum 13,849,388 0.6991 0.0603 0.9600 2
Standard deviation 105,223 0.0674 0.0059 0.0169 0
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Table 5
Summary statistics for the eight suppliers over the 1754 optimal portfolios.
S1 S2 S3 S4 S5 S6 S7 S8
Minimal order share 0.00 0.00 0.00 0.00 0.2183 0.00 0.00 0.00
Average order share 0.00 0.00 0.00 0.1671 0.5389 0.0745 0.2195 0.00
Maximal order share 0.00 0.00 0.00 0.7817 0.7720 0.5146 0.6503 0.00
Frequency (in %) of being included in an opt. portfolio 0.0% 0.0% 0.0% 32.7% 100% 19.4% 47.9% 0.0%

the lowest supply risk (0.0603 versus 0.0350).

Each of the 1754 optimal supplier portfolios consists of two
suppliers. S5 receives particular attention as this supplier is
included in each optimal portfolio and has an average order share
of 53.9%. This means that, depending on the purchasing company's
preferences for the three objectives, S5 will be combined with one
other supplier. This can also be seen in Fig. 2, which shows that the
efficient surface consists of three parabolas: for each parabola, the
suppliers are the same—only the order shares change when mov-
ing along the curves. Thus, one parabola consists of the suppliers S4
and S5, another of S5 and S6, and the third of S5 and S7. Further-
more, Table 5 shows there are four suppliers that are not part of any
optimal supplier portfolio (S1, S2, S3, and S8). These suppliers may
be excluded from further considerations.

4.4. Identifying the most preferred solution

The a posteriori approach has the advantage that the decision
maker can instantly access the full picture of all optimal options
and trade-offs that are associated with the supplier selection
problem. At the same time, it does provide one challenge, namely
the selection of a specific point from the non-dominated set. In fact,
such a choice may constitute a complex task and a cognitive chal-
lenge for decision makers, which is a comprehensible reason for
why a priori approaches are often used in practice. Nevertheless, a
good solution can only be found if the decision maker is aware of

Supply Chain Monitr =

Fig. 3. Interactive Dashboard to Support the Decision Making Process. In the upper
part of the dashboard, we show the projections of the three criteria in criterion space.
The middle section of the dashboard shows the range of the values for each objective
as well as some descriptive statistics on the right hand side. The lower section of the
dashboard contains a list of the efficient portfolios with the objective values and the
portfolio weights.

alternative solutions and then selects the most appropriate one.

To facilitate the decision-making process for the purchasing
manager, we developed and implemented an interactive web
application. This web application provides different views of the
non-dominated set and allows us to set filters that exclude the
disliked options. Fig. 3 shows the interactive dashboard.

The first row of the dashboard contains three filters that allow
the preferred ranges for the three objective values to be set. The
second row shows three views of the efficient surface, a 3- and a 2-
dimenisional projection as well as a ternary plot. The third row
presents the histograms for the three objective values over the non-
dominated set plus summary statistics. Finally, the fourth row lists
the single portfolios, including the total costs, the supply risk, the
logistics performance, the srs, the supplier shares, the number of
suppliers, and the information about whether a certain portfolio is
the minimum-risk, minimum-cost, or maximum-sustainability
portfolio.

The identification of the purchasing manager's most preferred
solution is carried out in a step-wise process. In each step, the least
preferred portfolios are eliminated from the non-dominated set. In
the example case, this was carried out as follows: First, the pur-
chasing manager focused on the leftmost line of the ternary plot
(Fig. 3). This line represents supplier portfolios that are far away
from the maximum srs value achievable. Next, the manager
concentrated on the three histograms in Fig. 3 and noticed a sig-
nificant gap in the rightmost histogram representing the srs values
of the 1754 supplier portfolios. As a consequence, the manager
moved the srs lower bound filter to the right side, thereby dese-
lecting all supplier portfolios with srs values below 0.6. The result is
shown in Fig. 4.

In the next step, the purchasing manager decided to limit the
overall supply risk by moving the corresponding upper bound filter
to the middle of the scale range. She then moved the upper bound
filter for the total cost to the left, thereby excluding the high-cost

Fig. 4. Interactive Supplier Portfolio Selection: Step 1. We deselect all portfolios with
low levels of sustainability with the upper right filter. The upper graphs show how the
non-dominated set changes. The lower graphs indicate how the ranges of the objec-
tives are affected by excluding low-sustainability portfolios. The gray shadows show
the initial ranges without filters, while the colored ranges are the ones that are still
achievable after increasing the minimum sustainability level of the portfolios.
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portfolios (Fig. 5).

Having carried out these adaptations, the manager realized that
while the remaining ranges for the total costs and the supply risk
were relatively narrow, a new gap appeared for the srs. As a
consequence, the manager deselected the low-sustainability port-
folios (Fig. 6).

The manager then gradually moved the filters representing the
upper bounds for the costs and for the supply risk to the left until
only a few portfolios remained (Fig. 7).

This process was continued until one portfolio was left. In the
case of the most preferred portfolio, 49.2% of the total demand is
sourced from supplier S5, and 50.8% is sourced from S7. This
portfolio has the following characteristics: total purchasing
costs = 13,746,875; srs=0.66; supply risk=0.047; logistics
service = 91.7%.

5. Discussion
5.1. Closing a gap in research

The presented approach for supplier selection is based on multi-
objective optimization and the mathematical framework of the
investment portfolio theory. Up to now, only few studies used this
framework for the supplier selection case. Moreover, only one
study (Kellner et al., 2019) combining the classical risk-expected
return trade-off with a posteriori decision making exists. This is

Fig. 5. Interactive Supplier Portfolio Selection: Steps 2 and 3. We remove the high-risk
and high-cost portfolios (we include filters for cost and risk by decreasing their
maximum accepted levels).

Fig. 6. Interactive Supplier Portfolio Selection: Step 4. We remove the low-
sustainability portfolios.

Fig. 7. Interactive Supplier Portfolio Selection: Step 5. We further reduce the non-
dominated set.

surprising because the example case showed that the combination
of the investment portfolio theory with a posteriori decision
making is a promising approach for solving the supplier selection
problem. As the algorithm used by Kellner et al. (2019) cannot
process objective functions and constraints with integer variables,
the applicability of their approach is limited. This paper closes a gap
in research by showing how to overcome this shortcoming.

5.2. The representation of risk in the optimization model

As stated by Hosseininasab and Ahmadi (2015), a particularity of
adopting the investment portfolio theory for the supplier selection
case is the representation of supply risk: supply risk is measured
with the variation of the performance of the supplier portfolio as a
whole, and the goal is to minimize the supply risk by minimizing
the covariance of the logistics service between the suppliers. This is
achieved by grouping together those suppliers that perform well
when others perform poorly, i.e., the desirable situation is when the
performances of the suppliers are negatively correlated.

When adopting this approach, it is not important to know the
exact reasons for why there are interactions in the logistics per-
formances of the suppliers (e.g., geographical proximity, same sub-
suppliers, same means of transport). The interactions only have to
be derived from past observations. Moreover, the method used to
manage supply risk in the supply chain can be described as ‘pre-
ventive’ (Gaonkar and Viswanadham, 2007). Despite the possibility
of installing mechanisms that reduce the chance of supplier
breakdowns or mechanisms that mitigate the consequences when
supply chain disruptions occur, the risk of a simultaneous break-
down across all suppliers is minimized. Finally, the proposed
approach is conceived for supplier selection situations with a mid-
to long-term planning horizon because the method does not reduce
the risk of short-term supply disruptions. Instead, it gathers
together those suppliers that compensate each other with respect
to variations in their performance in the mid- to long-term. To
mitigate the risk of short-term supply disruptions, the dual sourc-
ing constraint is part of the optimization model.

5.3. The integration of sustainability into the supplier selection
process

The real-world case shows that the visualization and the anal-
ysis of the non-dominated set allow the immediate identification
among all optimal supplier portfolios of those that perform well or
badly from a sustainability point of view. Thus, it is possible, for
instance, to quickly exclude portfolios achieving extremely low
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sustainability scores from further considerations. Generally, the
visualization of the efficient surface is beneficial because it gives an
overview of all trade-offs between sustainability and the other
purchasing goals. It should be noted that it would have been
possible to analyze more statistics and carry out statistical tests on
the non-dominated set; however, this is beyond the scope of this
paper. The interactive portfolio selection process presented in
Section 4.4 further shows that it is possible to immediately recog-
nize the consequences when increasing the desired level of sus-
tainability. This promotes transparency and allows for a better
understanding of the decision making process.

Concerning the rating of the sustainability performance of the
suppliers, what sets our paper apart is the fact that the supplier
sustainability scores are not ‘self-made’ sustainability indicators.
Instead, we have the chance to obtain the results of a self-
assessment questionnaire that is a standard in the automotive in-
dustry for rating the sustainability performance of suppliers. We
argue that the literature provides numerous approaches for
creating sustainability indicators for supplier evaluation and
selection—and each approach will lead to different results. While
the different approaches certainly have numerous methodological
strengths, they suffer from the fact that they do not represent a
standard for determining the sustainability performance of sup-
pliers. This makes the comparison of the different studies difficult.

5.4. The ‘a posteriori’ decision making approach: managerial
implications and insights

Another important element of the proposed methodology,
particularly with regard to the managerial implications and in-
sights, is the ‘a posteriori’ decision making approach.

The real-world case confirms that the ‘a posteriori’ decision
making approach is beneficial to purchasing managers for several
reasons. Firstly, the decision makers get the full picture of all
optimal options, and they have an overview of all trade-offs that are
associated with the supplier selection problem. This allows for a
better understanding of the decision problem and facilitates the
communication between the parties involved in the supplier se-
lection process. Furthermore, the presented approach allows users
to carry out different numerical analyses that identify, amongst
other things, the ranges of the objective values, the optimal
numbers of the suppliers, and those suppliers that will in any case
(not) be part of the selected portfolio. In the eyes of the purchasing
manager interviewed, the knowledge about the characteristics of
the non-dominated set is beneficial because the fact that none of
the potential solutions remains unrevealed strengthens the confi-
dence in the final decision. Generally, the (de-)selection of a certain
portfolio may be better justified when all optimal solutions have
been compared. Another advantage of the ‘a posteriori’ approach is
the fact that it is not necessary to predefine the weights of the
different objectives, as would be the case in an a priori setting.

However, it should also be noted that the great challenge that
comes with the ‘a posteriori’ decision making approach is the se-
lection of a certain point on the efficient surface. One way of
handling this challenge is the approach used in the case study, i.e.,
the step-wise procedure of iteratively excluding the most disliked
portfolios. In the example case, this procedure in combination with
an interactive dashboard turned out to be efficient.

6. Conclusion
6.1. Summary of the findings

In this paper, we present an ‘a posteriori’ decision making
approach for the supplier selection and order allocation problem

that takes three purchasing objectives into consideration: cost
minimization, sustainability maximization, and supply risk mini-
mization. We propose a multi-objective optimization model based
on the investment portfolio theory, and the e-constraint method is
used to solve the optimization problem. The analysis of the non-
dominated set of the example case results in some interesting
findings. First, among the uncountable number of possible supplier
portfolios that may be assembled based on the eight available
suppliers, we identify 1754 optimal solutions. Further analyses
show that each optimal portfolio consists of exactly two suppliers,
with one specific supplier being included in each portfolio.
Furthermore, there are four suppliers that are not part of any
optimal solution. In addition, we are able to indicate the ranges of
the three objective values of the non-dominated set. Finally, the
most preferred portfolio can be identified by means of an interac-
tive web application.

Prior research proved that the mathematical framework of the
investment portfolio theory may effectively be used to support
mid- and long-term supplier selection problems. In addition,
Kellner et al. (2019) showed that the combination of portfolio
theory with a posteriori decision making provides even deeper
insights into the decision making problem and, thus, supports
better decision making. As the algorithm used by Kellner et al.
(2019) does not allow the processing of integer and binary vari-
ables, we show how the e-constraint method may be applied to
overcome this shortcoming. Thus, it is possible to model and solve
more complex mid-term supplier selection and order allocation
problems that are based on the Markowitz framework.

6.2. Research limitations

Our research has some limitations. First, for the computation of
the non-dominated set, a certain amount of information has to be
collected over a certain amount of time in order to measure the
performance interactions between the single suppliers, which
could hinder decision makers who do not have long-term data
observations at their disposal. Second, our optimization model is
based on the mathematical framework of the Markowitz portfolio
theory and, therefore, uses the variance as the measure of risk.
Although variance is widely accepted as a risk measure in the
literature (e.g., Deng et al., 2005; Hirschberger et al., 2007; Leung
et al., 2001; Liu et al., 2003), there is much discussion on the
question of what the correct measure for risk is. One of the limi-
tations of variance as a risk measure lies in the fact that it measures
symmetric deviations from the mean value, i.e., it increases with
downward as well as upward deviations. If the decision maker's
target is to consider only downward deviations as risk, other risk
measures such as semi-variance could be included into the decision
model (Choobineh and Branting, 1986; Grootveld and Hallerbach,
1999; Kaplan and Alldredge, 1997; Markowitz, 1959). Finally, in
light of the generalizability of the case study results, it should be
noted that the goal of the numerical example was to demonstrate
the applicability of the decision making approach.

6.3. Further research

Future research could survey a representative sample of cases to
find out if the proposed decision making approach fits the re-
quirements of different purchasing situations. Furthermore, future
research could examine the transfer of additional mathematical
frameworks from the finance literature to decision making prob-
lems from the supply chain and operations sector. In particular,
rewards-driven systems and maintenance concepts (Duan et al.,
2018; Gharaei et al., 2015) could be promising to integrate sus-
tainability into the supplier selection process.
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