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Abstract

The search for more efficient and sustainable m®E® has become the cornerstone of any
production system. It is within this framework thigits highly relevant to propose improvement
actions based on a detailed eco-efficiency analykidifferent facilities so that roadmaps for
more sustainable processes are considered. Theugerof Life Cycle Assessment (LCA) and
Data Envelopment Analysis (DEA) appears to be gm@piate methodology to assess the eco-
efficiency of multiple units, providing targets abénchmarks for inefficient ones. This work
advances in this direction by integrating both wsial methodologies in the calculation of
environmental indicators associated with milk pretchn for a large group of farms, nearly 100
decision-making units. Twenty-one dairy farms weatentified as efficient, and the average
efficiency score of the inefficient farms was 0.B&sed on the comparison of current operation
levels with target levels, it was possible to qugrdverage reductions of up to 53% for input
consumption levels, resulting in average impacticédns of 49% in carbon footprint and 55%
in water footprint. Comparing the outcomes of teisdy with those reported in 2011 for
Galician farms (Northwest Spain), a slight decreiaseco-efficiency was noted in the dairy
sector. This study shows how the Galician dairy@esust address sustainable development
objectives, especially those established in Age2@20 to achieve constant improvement and

sustainable and efficient production.
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Life Cycle Assessment; Data Envelopment Analysigiry farms; Eco-efficiency; Carbon
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1. Introduction

The concept of sustainable development is onlyipless all people are food secure and well-
nourished (Caron et al., 2018). The world popufati® expected to increase to 9.7 billion
people by 2050 (United Nations, 2017), which implieat the demand for food will increase by
70% (FAO, 2012). This growth framework must be miatised in active and concrete policies
developed to reduce environmental impacts in faodyxction, in order to ensure a constant and

sustainable production chain (Coscieme et al., 2020

The environmental impacts of the food industry Emgely driven by livestock production,
which accounts for 3-8% of total energy consumptod emits 14.5% of total anthropogenic
GHG emissions worldwide (Eurostat, 2020), assodiatith emissions of nitrous oxide {8)
and methane (CH from enteric fermentation, fertilisation actigd and manure storage
(Aguirre-Villegas et al., 2015). Despite their nedace, the impacts of this sector on other
environmental aspects, such as eutrophicationjfiaeition and water scarcity, should not be

ignored (Gonzéalez-Garcia et al., 2013).

Today, milk is one of the most widely produced fead the world (Ugtg, 2019), with dairy
products being a fundamental pillar of the humaat @livang et al., 2018). In the context of the
European Union, Spain is the seventh largest perdo€ cow milk, with 5% of the total
(Eurostat, 2019). In Spain, the dairy sector is gheond most important of all the livestock
sectors. The latest data published by the Spargshran Guarantee Fund (FEGA, 2019) show
that the Spanish dairy industry processes more Thanillion nt of milk. Galicia, a region in
northwest Spain, produces 38% of the national mpitdduction (MAPA, 2019), making it the
ninth largest dairy region in Europe, with a renadnlke turnover of 800 million euros and more
than 25,000 people employed. Given this contexis itlesirable to propose strategies for

environmental improvement in livestock and milk gwotion.
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Among the different methods to evaluate the enwrental performance of milk production,
Life Cycle Assessment (LCA) has been applied irmégears for a wide range of production
systems in different countries (Baldini et al., @0Berton et al., 2020; Djekic et al., 2019; Egas
et al., 2020; Escribano et al., 2020; Famiglidttale 2019; Knudsen et al., 2019; Woldegebriel
et al., 2017). Noya et al. (2018) evaluated theirenmental burdens of milk production in
facilities of Northeast Spain. Although a wide rangf environmental indicators were
calculated, the study focused mainly on the wabetprint according to the Water Footprint
Network (WFN). The capital importance of feed prcilon in the water footprint was
demonstrated due to characterisation factors oicagural products. Baldini et al. (2018)
compared the environmental profile of three Itali@iry farms within two different scenarios.
On one side, the direct gaseous emissions weraastl according with the Intergovernmental
Panel on Climate Change (IPCC) and European Envieotal Agency (EAA) guidelines. On
the other hand, emissions measured in other papens taken as input data to quantify the
emissions associated to manure management. Thésretiowed the importance of the
emission factors since IPCC equations underestimatanure management emissions while
overestimated ammonia related emissions. Pirlo kolti (2019) carried out a different
comparison, eight conventional and six organicydaims from Italy. This study concluded that
conventional production is slightly higher that angc (9,004 vs. 7,736 kg/cow per year,
respectively). However, the differences in enviremtal impacts in terms of GWP, ACP and
EUP categories were not significant. Other autiorais their research on establishing the
environmental performance of milk production baseda single indicator. Thus, numerous
papers on carbo footprint (Finnegan et al., 201otyito et al., 2020; Laca et al., 2020; Morais
et al., 2018; Vida and Tedesco, 2017) or waterpiaat (Lu et al., 2018; Mekonnen et al., 2019;

Payen et al., 2018; Usva et al., 2019) were pubdish recent years.

All these studies present differences in the sieledh the FU, system boundaries, allocation
factors... These are precisely the characteristias meke LCA a versatile tool, but whose

methodology still lacks a comprehensive approacdhitio production systems.



80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

Since the use of high-quality data is essentialaf@tudy to be transparent and reliable, it is
often necessary to collect inventory data from eddht similar facilities to ensure the
representativeness of the data. A common soluttonmianaging a large volume of data is to
establish an average. However, the high degrearadhility that results from such a system can
lead to uncertainty in the results obtained. Aeralitive approach to dealing with these cases is
to conduct individual analyses for each inventdipwever, this approach makes the results
difficult to interpret. It is therefore necessary use methodologies that allow performance
indicators to be determined for the operating sysas a whole, considering all facilities. Data
Envelopment Analysis (DEA) is a linear programmivggsed technique to assess the relative
efficiency of a set of similar units known as Démis Making Units (DMU), which considers
multiple inputs and multiple outputs simultaneou8Booper et al., 2007). This is how the
combined use of the LCA and DEA methodologies cambeut, which allows for the
assessment of the eco-efficiency of similar prodacsystems that enables the environmental
and operational assessment of similar productiatesys. According to the World Business
Council for Sustainable Development (WBCSD), ediigicy is defined as "the delivery of
competitively priced goods and services that satsfman needs and provide quality of life,
while progressively reducing ecological impacts aadource intensity throughout the life-
cycle, to a level at least in line with the earésimated carrying capacity” (Schmidheiny et al.,

2000), or more generally “doing more with less”.

The first joint use of these two methodologies gldtem a scientific publication in which a 3-

step procedure was established to determine aoredhip between operational efficiency and
the environmental impacts of a sample of 62 musskivation racks (Lozano et al., 2009).

Over time, other researchers have expanded andwepithis methodology to a 5-step method
that allows for the environmental assessment akatiand virtual DMUs. This 5-steps method
has been widely applied in different productionteyss: WWTPs (Lorenzo-Toja et al., 2015),
organic blueberry orchards (Rebolledo-Leiva et 2017), grape production (Mohseni et al.,

2018), grocery stores (Alvarez-Rodriguez et all,9®r farm-scaled biogas plants (Lijo et al.,



107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

2017). This methodology was applied to Galiciamydaidustry in 2011 to evaluate the eco-
efficiency of a set of 72 farms (Iribarren et &011). This study demonstrated that farm size
had no influence on the efficiency score. Howeteere was a tendency for small inefficient

farms to perform worse than medium and large farms.

The main objective of this study focuses on thdieaiion of LCA + DEA methodology to a
group of 96 dairy farms throughout Galicia to ewtduthe eco-efficiency of the Galician dairy
sector. This last decade has been strongly infeeriy a society concerned for sustainable
production, which causes consumers to be increlgsttemnanding with environmental aspects
in production methods. A secondary objective isstablish the “hot-spots” in milk production
process by determining two widely used environmenticators: Carbon Footprint (CF) and

Water Footprint (WF).
2. Materials and methods
2.1. Definition of the case study

Galicia is the leading Spanish autonomous regionsiilk production at national level since
2001, with 38% of the total Spanish productionfdot 39% of the Spanish dairy farms are
located in the Galician region (MAPA, 2019). Thargandustry is the most important food
industry sector in Galicia, followed in terms ofriaver by the canning industry (Torres Lépez
et al., 2017). Galician dairy farms are charaoteridike all agricultural and livestock farms, by
a great variability in the consumption of materiaisdd production models (Aguirre-Villegas et
al., 2017). Thus, it is necessary to include asynfarms as possible in the analysis so that the
sample is characteristic of the Galician dairy @ecfaking this premise as a key element in the
analysis, 96 farms distributed throughout Galicexemconsidered. All the farms studied have an
agricultural area around the farm within a 5 kmiwado grow mainly corn and grass, which is
subsequently stored in silos and used as catthe fHais agricultural land is managed by the
farmers themselves and was included within theesydioundaries. In this way, the processes
of grass and maize cultivation were modelled cargid the use of machinery, the time of use

per hectare, the consumption of diesel and othéennads, such as fertilizers or agrochemicals.

5
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In some cases, dry grass is also cut for hay ptantucAll farms also use concentrate as cattle
feed, to a greater or lesser extent. The compasifahis feed is variable for dairy cows, dry
cows and heifers, but in general it is compose8086, 26%, 17% and 12% maize, soybean,

rapeseed and barley respectively, in addition herominor components.

The size of the different farms is variable; theaBest farm is composed of 13 animals with
annual production around 20,000 kg of milk, while tlargest farm has 520 animals and
produces 3,000,000 kg of milk per year. Althouglkrig the main objective of the farms, meat
production should not be neglected. Thus, the mriolu obtained from old cows slaughtered

for meat has been considered a co-product of tinesfa

In relation to manure management, due to its higbumt of nutrients, it is used as an organic
fertiliser in the agricultural land. The direct essions produced during the storage of the
manure and its subsequent application to the lawveé been estimated. Infrastructure related to
the farm has not been included, as it has an impet can be considered insignificant
throughout its useful life (Castanheira et al., @08le Léis et al., 2015). However, the
manufacture of tractors and implements used inschas been computed within the production
of on-farm feed (grass and maize). The main charnatts of each of the farms evaluated
(number of animals and production of milk and mezdh be found in Table S1 of the

Supplementary material.
2.2. LCA methodology

Life Cycle Assessment is a fundamental element @a®lao determine the impacts and give a
global vision of the environmental performance dli@an dairy farms. The environmental
performance of dairy farms was analysed, and thén aotspots” of the process were
determined using LCA methodology. The methodologijoived the principles established in

the 1ISO 14040 and 14044 standards for CF and 1d@4#@lard for WF.

2.2.1. Goal and scope definition
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The main objective of the study is to determine #wslution of eco-efficiency in milk
production in Galicia by comparing the outcomeghaf analysis with those reported in 2011.
To this end, the environmental impacts of a modeinfwill be analysed to determine which
elements are the determining factors in the enmmertal impact and in the eco-efficiency
score. The study was carried out under a “cradigate” perspective. Figure 1 is a block
diagram of an average farm, representative of ¢heotinstallations evaluated, in which the
limits of the system are identified, as well astign elements, inputs and outputs. All relevant
processes related to milk production, includingrgp@&nd material consumption during milking
and farming activities were considered such astretég for machinery use and lighting and
different cleaning and chemical agents: detergeasler, acid solution or disinfectant. In
addition, other inputs considered were the produotif feed, paper, plastic for silos, containers
for chemical products, refrigerant and the manageroé the waste produced, and transport
activities. Gaseous emissions from enteric fermemastorage of manure and its application as

organic fertiliser for crops were estimated.

Background System Crops

1
1
1
\ | Fossil fuels | | Electricity | [ Chemicals ‘Water Plastics Maize Barley Soya Others
i
[

Off-farm feed

i
i
I
i
= |

i
|
i On-farm feed | Foreground Systemi !
: ) | : Fodder Yeast Lime Molasses
: Maize Dairv £ b
| B . Soybean
: : | Paste Molasses ):)il Protein feed
. i
| o o !
I |
E Dry grass 5| H Culled Cows :
1 |
: e LD
1
I
I
I
I
]

¢
¢
4

Waste to Wastewater  Emissions to Air,
Antibiotics treatment Water & Soil
Figure 1. System boundaries for the dairy farm model evellidh this study. Legend: T:

Transport.

2.2.2. Functional Unit (FU) and allocation approach
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In the present study, following the guidelines@FI(2015) when a study is conducted on-farm,
the quantity of Fat- and Protein- Corrected MillP@EM) produced in one year, corresponding
to the campaign Aprl8/Marl9, has been taken a$utietional unit (FU). To convert the raw

milk weight to FPCM, Eg. (1) was followed:
FPMC (kg/yr) = P (kg/yr) * [0.1226*FC% + 0.0776*PC%00.2534] (2)
Where: P: Production; FC: Fat content; PC: Pratemtent.

In accordance with ISO standards, the allocatiormiironmental loads should be avoided as
much as possible by giving priority to the divisiohunits into subsystems or the expansion of
the system boundaries to include other co-prodoctimctions. However, since the units
assessed are considered to have a multi-outputnsysilocation is unavoidable. Following the
guidelines of IDF (2015), biophysical allocatiortween the two products produced — milk and

meat — has been considered, according to Eq. (REgn(3):
AFygar = 1 — AFyx (3)

Where: Ak is the allocation factor for milk; BMR is the @atMyear/Mmik; Mueat IS the

sum of live weight of all animals sold; and\ is the sum of total FPMC.

Section S2 of the Supplementary material showgtle@omic, mass, and biophysical allocation

factors calculated for each farm.
2.2.3. Data collection

The quality of the inventory data is a key elemangnsuring the accuracy and reproducibility
of LCA studies. A consistent environmental assessmexjuires high quality baseline data. To
ensure this data quality, priority should be giterthe use of primary sources, minimising as
far as possible the use of secondary data fronbdsés and/or similar sources. In this context,
most of the information provided in the life cydterentory was constructed from primary data
collected through questionnaires completed by wsrkeThese questionnaires collect

information on all relevant aspects of the farnghsas operational characteristics, general data

8
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on location and degree of technology used, numbanimals in the farm, feed consumption,

use of machinery or production of waste, correspantb the campaign Apr18/Mar19.

The life cycle inventories of the background systehremicals, fossil fuels, electricity, water...)
were taken from the Ecoinvent® database version @B&sidering the consumption of each
element according to the information collectedha guestionnaires. In this way, the processes
of electricity production (Spanish electricity mixjleaning agents, fuels, lubricants, fertilisers
pesticides correspond to Ecoinvent inventory daféhéus et al., 2007; Dones et al., 2007;
Hischier, 2007; Spielmann et al., 2007). Regardimgstock feed, two main sources for feed

production were considered:

- Concentrate, which is formulated with the same awsitipn as considered in Iribarren
et al. (2011). Thus, a content of 30% maize, 26Ybsan, 17% rape meal, 12% barley
and 2% wheat were considered, as well as a cextacunt of chemicals and additives.
The production of the background processes was tiken the Ecoinvent database.

- Another source of livestock feed is grass and magimevn by farm owners on the
surrounding farmland. These productions were medeihdividually considering the
primary information provided by the farmers. Thelfaonsumption for the machinery
used on the crops was calculated based on the ngpddpacity of the machinery at
each stage (h/ha) and the corresponding fuel capsom (I/h). The activities
considered in each of the crops have been thealygliages of any cereal crop: organic
fertilisation, land clearing, grading, sowing, gmation, weed control, mineral
fertilisation, harvesting and storage (Noya et 2015). In addition, direct emissions
related to diesel combustion in agricultural maehynduring cultivation activities were
also estimated from the Ecoinvent databd@¥esel, burned in agricultural machinery-
(Nemecek and Kaggi, 2007). In some cases, the @uinudtural production does not
meet the requirements for feeding livestock. A camrpractice among Galician farms
in this case is to gain surplus production fromrbgdarms. In these cases, and given

that the production of neighbours can be consideiedlar, no differentiation was
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made between the maize or grass produced butraespbrt to the farm was taken into

account.

In some cases, farmers allow their cattle to gfaze few hours a day. In addition, those farms
did not report any material consumption relatethtzse pastures. According to the information
provided by the farmers, in any case, these grdaimds do not require any care or consumption
of materials. For this reason, no environmentatlbns were specifically attributed to grazing
land, though animal emissions with grazing feedkatare fully accounted for within the annual

per-head emission factors applied.

Finally, emissions of methane (@QHdinitrogen monoxide (pO) were obtained following the
guidelines established by the IntergovernmentakPan Climate Change (IPCC, 2006). £H
emissions from enteric fermentation as well fromnore storage and subsequent field
application were calculated by combining the Tiendthod and primary data collected through
guestionnaires. Direct nitrogen emissions duringum@ management and soil application were
also calculated, following the Tier 1 approximatuture to lack of reliable data. Indirect nitrogen
emissions in form of NHHand NQ were also estimated (Denier van der Gon and Bleeke
2005). In more detail, Section S3 of the Supplearg¥aterial lists the procedures followed in

accordance with the IPCC guidelines for the esionatf gaseous emissions.
2.2.4. Life cycle inventory

It is important to highlight the significant volunoé data handled in this study, corresponding to
96 farms. The inventories were classified accordimdarm size and total milk production.

Thus, small farms with a production below 408 medium farms between 400 and 1,000 m
and large farms for production above 1,000 Im this study, the impacts of the life cycle of a
simulated farm were evaluated in detail (Table This simulated farm corresponds to an
average farm of all farms included in the mediure sMedium size farms were chosen for this
purpose due to this size is the most humerous mithé sample evaluated. However, this life

cycle environmental impact analysis was carriedf@auéach of the 96 farms evaluated.

10
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Table 1. Life cycle inventory data per functional unit (thaantity of FPCM produced during

the campaign Aprl8/Marl9)

Inputs from Environment

Raw materials L Land ha
Water 3,110,141 Crops 48
Inputs from Technosphere
Animal feed kg Crops ha
Concentrate dairy cow 249,363 Maize 21
Concentrate dry cow 6,507 Grass 27
Concentrate heifer 32,422 kg
Straw 62,279 Seeds 1,541
Cleaning agents L Plastics kg
Detergent 2334 Silage plastic 807
Acid solution 98 Bottles 137
Disinfectant 112 Fossil fuels L
kg Lubricant oil 60
Kraft paper 122 kg
Sealer 237 Diesel 2,678
Chemicals L Energy kwh
Refrigerant 1 Electricity 27,645
Pesticide 68 kg
kg Butane 26
Mineral fertiliser 18,29 Transport t-km
Calcium carbonate 26,763 Lorry 28,829
Outputs to Environment
Air emissions kg Water emissions kg
CHg-enteric fermentation 10,000 N@nanure management 408
CHz;-manure management 2,100 N®oil management 8756
N,O-manure management 29
NHs;-manure management 1,006
N,O-soil management 576
NHz-soil management 2,161
Outputs to Technosphere
Products kg Waste to treatment kg
FPCM 654,441 Plastics to recycling 944
Beef 3,514.30 Paper to recycling 124
Co-products m? Municipal Solid Waste 201
Manure 2,686 m?
Wastewater 759

2.2.5. Impact assessment

11
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The selected assessment method for the calculatithe environmental impacts of the system
was the ReCiPe Midpoint (H) (Huijbregts et al., @01n particular, the impact assessment step
followed the guidelines established in the 1ISO dtaids (ISO 14040, 14044, 14046). ISO 14046
states that, to calculate the water footprint ef $fistem, an environmental study based on ISO
14040 and ISO 14044 standards must be carriednoltim the impact stage, categories related
to water consumption must be analysed. Therefdre, @nvironmental results have been
presented in terms of Global Warming and Water Gowmgion impact categories for the
estimation of the CF and WF indicators, respectivéhe inventories were carried out using

Simapro 9.0 software (PRé Consultants, 2017).
2.3. Description and selection of DEA methodol ogy

Data Envelopment Analysis (DEA) is a methodologgdzhon linear programming models. The
most widely used models are the slacks-based meaxfuefficiency (SBM), as it allows
efficiency scores to be calculated independentlthefunits of measurement used for the set of
inputs and outputs (Tone, 2011). Another featuréhsf model is that it follows a non-radial
approach, assuming conditions of convexity andabditly to obtain the efficient production
frontier (Lozano and Gutiérrez, 2011). In addititimie SBM model provides targets to reduce
inputs and/or maximise outputs based on the diffaewith the efficient production frontier
established by the model, so this model is ideabfmlysing data from matrices with low or no
correlation between their elements (Lij6 et al.1 20 The specific DEA model used in this
work was an input-oriented SBM model with constattirns to scale (SBM-I_CRS). The same
model as that used by Iribarren et al. (2011) wassen in order to establish a consistent
methodological basis on which to compare the reqbtained and establish a time trend. The
computational implementation of the DEA matrix etSBM-I model was performed through

the DEA-solver Pro software (Cooper et al., 2007).
2.4. LCA + DEA framework

In this study, the five-step LCA + DEA method (Vaeq-Rowe et al., 2012) was selected to

assess the eco-efficiency of 96 dairy farms, atlngaeach farm as one DMU. Is important to

12
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note that DEA and LCA input/output elements are thet same. The limits of the LCA are
broader than the considered in the DEA. Thus, #tecton of the elements included in the
DEA was based on the importance in the environnhemtafile. The DEA matrix was
completed in order of priority, from those with theeatest impact on the environmental profile
to the elements with least influence. A reasonabimber of inputs and outputs that allow the
convergence of the model were taken into accounsidering the total number of DMUs
analysed. The DEA matrix was composed of 7 inpitzoncentrate (kg), ii) grass silage
(kwh), iii) maize silage (kg), iv) electricity (kWhv) diesel (kg), vi) silage plastic (kg) and vii)
water (rm); and 5 outputs, four of them undesirable and moeuct: i) CH (kg), i) N,O (kg),

iii) NH 3 (kg), iv) wastewater (f) and v) raw milk (). It is important to note that the direct
emissions and the wastewater have been modellegas (Lozano et al., 2009). The complete

DEA matrix is shown in Section S4 of the suppleragnmaterial.
3. Results and discussion
3.1. Carbon and water footprint of an average medium-size dairy farm

Figure 2 shows the distribution of the differergmaénts that contribute to the carbon and water
footprints associated with the operation of a déaryn. The carbon footprint is 1.33 kg €@er
kg of FPCM, while the water footprint is 52.5 L pgeyof FPCM. To facilitate analysis, some of

the inputs were grouped into global elements:

- Waste treatment: This category includes both the treatment of sebdte produced on
the farm and the treatment of the wastewater gwawbreSolid waste includes plastic
packaging, paper and cardboard waste and munsafidl waste.

- Fossil fuels: It includes the production of diesel, lubricating and butane. It is
important to note that the diesel quantified irstbategory is different from that used for
crops, which is considered in animal feed categbhg diesel considered in this category is
used for non-feed related activities, such as rgixiperations or additional machinery.

- On-farm emissions: This element is composed of direct emissions of, @O, NH;

and NQ directly derived from enteric fermentation, slurmanagement and soil
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application. This category also included emissidesived from diesel consumption in

different operations than feeding. It is importémtifferentiate the environmental impacts
from production and combustion of diesel. Environtaéburdens of diesel production are
guantified in animal feed or fossil fuels categsridepending on diesel use. While gas
emissions from diesel combustion are considereaimihis category.

- Others: It includes the rest of the elements inventoriedhe farm that are not included

in another category, highlighting the productiond anmse of detergent, acid solution,

disinfectant, sealant, plastics, refrigerants, etc.

100%

= b
- S CHy-Enteric

Fermentation

W CHy-Manure
Management

W N:O-Manure
Management

B N:0-Soil

Management

80% -

W On-farm emissions

Elcctricity

o0%- M Transport

Fossil [uels

Concentrate Barley ()
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W Wheat
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Carbon Footprint Water Foolprint
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20%-

Figure 2. Contribution of the most relevant processes irk piloduction. (a) Environmental
profile and distribution of impacts in terms of lsan and water footprint; (b) Breakdown of

carbon footprint of on-farm emissions and (c) bdeakn of water footprint of the concentrate.

Most of the contribution of GHG emissions (64.9%gswinked to on-farm emissions, mainly
CH, and NO, from enteric fermentation and manure manager(fégure 2.b). In fact, the
contribution of enteric fermentation, manure mamagget and feed production stand out in the
environmental profile of milk production. This rdisis in line with other previously published
results, which establish these same elements ae thith the highest environmental impact in
the dairy industry (Famiglietti et al., 2019; Pidmd Lolli, 2019; Vida and Tedesco, 2017).

Other previous studies obtained similar carbongdont values to those obtained in this study,

14



334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

despite small differences in the system boundattiesallocation factors and the inventory data
used. Thus, Noya et al. (2018) obtained a value3#t kg CQ eq per kg of FPCM for a similar

sized farm located in Catalonia. Similar values evéound in a study conducted in the
Netherlands, with values of about 1.4 kg gs@r kg of FPCM (Thomassen et al., 2008).
However, the CF of this farm was higher than theults of 1.02 kg C®eq per kg of FPCM

reported by Aguirre-Villegas et al. (2015) or 1KHLCO, eq per kg FPCM reported by Vida and
Tedesco (2017). These studies, despite the suffdeetices in the data inventory used, have in

common the use of economic or biologic allocatietween milk and meat production.

While other studies using other types of allocattrtained significantly different values, de
Léis et al. (2015) reported values of 0.78 kg.@Q per kg of Energy Corrected Milk (ECM)
using mass allocation while Castanheira et al. @2@btained as result 0.72 kg €€q per kg

of raw milk eq with economic-allocation. These diffnt results from different LCA studies can
be compared with caution due to the differencesvéen the specific methodologies and
assumptions used, although the general principkes lme common (Mc Geough et al., 2012).
Most of the studies consulted use as FU the pragudf a certain amount (usually 1 kg) of

FPCM, so is possible to carry out direct comparisth most of the studies.

In terms of water footprint, as observed in Fighre the impact is practically focused on feed
production (90.7%), which is logical since thisrent encompasses the production of different
crops for animal feed (barley, soybean, maize pesaed). This relative contribution is in line
with a previous study on the calculation of the ewdbotprint in a dairy farm in Catalonia
(Noya et al., 2018), in which it was determined fleed production represents 99% of the total

water footprint.

However, comparing the water footprint is an exegmcomplex task, as there is no
standardised method, as there is for the carbotpriot Although in Noya et al. (2018), the
contribution of feed is similar, the water footgriwas quantified according to the Water
Footprint Network (WFN), which is a completely @ifent methodology to ISO 14046, so the

two absolute values cannot be compared. A siméae ovas reported in Payen et al. (2018),
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which analysed two farms located in different regiof New Zealand. A system very similar to
that of the present study was established, aglitded the production of cereals and crops for
animal feed, the production of different materialsch as fertilisers, pesticides, fuels, etc.
However, the abovementioned manuscript reportegegabf 726 and 537 L per kg FPCM, for
the 53 L estimated here. The difference lies mamkihe different methods used, since Payen et

al. (2018) use the Available Water Remaining (AWgrRethodology.

Figure 2 also shows the breakdown of water footpriements. It can be seen that most of the
environmental impact (70%) comes from the cultmatof agricultural products (mainly barley,
maize, wheat, rapeseed and soybean). Howeverthi isarley crop that has the greatest impact
on this indicator, mainly because it has a highgation rate (0.75 fhper kg product) and
because it is the majority component of feed wittie agricultural products. While the
irrigation rate of wheat is similar (0.71%#kg), the proportion in feed is much lower, and the
irrigation in maize is practically negligible (on}.05 ni/kg). Another remarkable element is
the transport of raw materials (mainly those sagrecaltural products), by transoceanic freight
ship. This fact demonstrates the need for a lazad Supply that avoids the massive transport of

raw materials and products.
3.2. Environmental characterisation of dairy farms

The environmental results obtained for the compsste of farms evaluated are depicted in
Figure 3. The results are highly variable, randiogn 0.9 to 3.71 kg C®eq per kg FPCM in
the case of carbon footprint and from 18.4 to 96per kg FPCM in terms of water footprint.
The average carbon footprint of the complete sanyas 1.6 kg C@eq per kg FPCM, a
relatively high value, since the DMUs with the woenvironmental results were included
within the set. The results obtained for DMUs 85,8%d 64 are noteworthy, with CF values of
3.71, 3.23 and 2.78 kg G@q per kg FPCM, respectively. The case of DMUsSEmarkable
since it is a farm with certified organic productithat does not use concentrate for animal feed.
However, the carbon footprint presents poor reswulien put in perspective with a low milk

production. The average CF result is within thegeaof 1.1-1.7 kg CQeq per kg of milk
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388 quantified in Baldini et al. (2018) and Famigliagtial. (2019). Once again, the high variability
389 in the determination of the environmental impadthis productive activity is evident.
390 Regarding water footprint results, DMUs 104 andsthd out with 96.74 and 91.67 L per kg of
391 FPCM, respectively. These results can be linkedotacentrate consumption, which is a key
392 factor in the environmental impact of dairy farnmsterms of their water footprint. On the
393  opposite, DMUs 70, 85 and 98 can be highlightedtffieir low water footprint. In fact, these
394 three farms have crop/concentrate feed ratio 0W#0,8reaching 100% in the DMU 85.
395 Moreover, if a ratio of concentratefmmilk produced is calculated, these DMUs preseat th
396 lowest values, always below 260 kg of forage pémofrraw milk, while the average for the
397  entire sample is 435 kg of forage petafiraw milk. As can be observed in Figure 3, tHeneo
398 clear relationship between the two indicators ugef.mainly depends on direct emissions,
399  which are related to the livestock and manure preduwhile WF depends on 90% of the
400 consumption of feed.
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Figure 3. Carbon footprint (top) and water footprint (belopgr kg of FPCM produced across

the sample dairy farms
3.3. DEA computation and efficiency scores

In order to compute the efficiency scores and tperational benchmarks, the DEA matrix
(Table S3 of Supplementary material) was implengtritethe optimisation model. Table 2
presents the efficiency scores computed for theydairms. Section S4 of Supplementary
material presents the target reduction percentegjatve to original values for all the inputs

considered in the analysis.

Table 2. Efficiency scoresd) for the sample of dairy farms

DMU  DMU o DMU @® DMU @® DMU & DMU @

1 0.33 20 0.58 40 0.54 58 1 76 0.33 93 0.29
2 0.68 22 0.70 41 1 59 0.53 77 0.67 94 0.22
3 043 23 0.78 42 0.66 62 0.51 78 049 95 0.12
4 0.35 24 1 43 1 63 1 79 0.61 96 0.41
5 046 25 0.62 44 0.31 64 1 80 0.50 97 0.24
6 042 26 0.94 45 0.33 65 0.44 81 1 98 1

7 031 27 0.64 46 1 66 0.40 82 0.57 99 0.25
8 0.44 28 0.47 48 0.14 67 1 83 1 100 0.65
12 0.61 29 0.67 50 0.64 68 1 84 1 101 0.57
13 0.51 30 0.65 51 0.35 69 0.27 85 1 102 0.28
14 0.60, 31 1 52 1 70 1 86 0.61 103 0.27
15 0.46 32 0.51 53 0338 71 0.49 88 0.40 104 0.25
16 0.60 34 031 54 0.23 72 0.72 89 0.39 105 0.37
17 0.56 35 0.49 55 025 73 0.59 90 0.22 106 1
18 1 38 0.39 56 045 74 0.24 91 0.43 107 0.58
19 1 39 0.28 57 045 75 049 92 1 108 0.49

The results show that this methodology is suitafigle identifying the link between the
operational and environmental performance of migltgimilar units. Of all the farms evaluated,
just 21 of 96 dairy farms proved to be fully eféiot (@=1). In fact, the efficiency ratio can be
considered acceptable, an average efficiency & 8.%chieved in the analysed sample, while

only 27 farms present efficiency values below &dr. those inefficient farmsb<l), important
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reduction targets are proposed. Thus, average tredsichat range from a minimum of 13.6%
in maize silage consumption to 53.7% in silage tmasre achieved Section S5 of
Supplementary material presents the operationaictehs proposed by the model for each one
of the inputs considered in the DEA matrix. If the®gsults are considered as the maximum
potential for input reduction that can be achiewedmilk production, the sample of farms
evaluated has a greater margin for improvement dther agricultural and livestock systems

previously evaluated (Lozano et al., 2010; VazogRexrve et al., 2012).
3.4. Environmental impact of virtual DMUs

The last stage of the methodology is to analyse¢daction targets set by the SBM-1 model,
which involves modifying the life cycle inventoriesf inefficient farms. In this way, a

relationship can be established between inefficagdrations and environmental impacts by
comparing the environmental profile before and raftensidering the recommendations for

reducing impacts (current and virtual dairy farng®picted in Figure 4.

All environmental profiles of farms with an efficiey value below 1 have improved by
applying the DEA recommendations. The average p&xge of carbon footprint reduction is
around 49% in the set under study. However, itreach maximum reduction values of 77% in
the case of DMU 95. This farm is characterised byery low efficiency value (0.11), so
reductions in material consumption are expectetbacsignificant and, consequently, also a
reduction in environmental impacts. This DMU is id@erised by a very traditional farm, with
a low degree of modernisation, few heads of cattlg, therefore, low milk production. In fact,
it is the farm with the lowest productivity, baralgaching 2.8 fhof milk production per cow,
while the average for the rest of the sample aedlys above 9.3 frper cow. This average
production value is within the expected range 800@O00 litres/cow per year according to the
last National dairy report carried out by the Minisof Agriculture and Fisheries, Food and
Environment in 2017 (MAPAMA, 2017). In detail, tBBMU 95 does not consume concentrate,
since the cattle are fed exclusively on the gréskeosurrounding land, which means that direct

emissions are the greatest "hot spot.
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The reduction of environmental impacts is more entdin terms of WF with an average
reduction around 55% as this element is 90% deperatethe environmental impacts of feed
production. Reductions in this element have a tipmsitive impact on the environmental
performance of the farm. Thus, observing the recended percentages of reduction in Section
S5 of the Supplementary material, the farms witl kiighest reduction in concentrate are
DMUs 104, 48 and 8, with 83.8%, 74.2% and 67.6%eesvely, which imply the greatest

reduction in their water footprint: 81.7, 73.8 af18% respectively.
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Figure 4. Environmental impacts in terms of carbon footp(ieft) and water footprint (right)
per kg FPCM for real (black) and virtual (oranganiis

21



455

456

457

458

459

460

461

462

463

464

465

466

467

468

3.5. Eco-efficiency evaluation over time

Given that the sample analysed comprises a widgerahlivestock farms of different sizes, it is
interesting to establish the relationship betwearmf size and the value of operational
efficiency, as reported in Iribarren et al. (201E)gure 5 shows the efficiency scores against
farm size in terms of total raw milk production 2011 (grey square) and 2019 (orange circle).

There is an apparent correlation between farmagizkits efficiency score.
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Figure 5. (a): Efficiency scores against raw milk production 2011 (grey square) and 2019

(orange circle). (b): Relative distribution of dafarms according to their efficiency score

As shown in Table 2 and Figure 5, almost 22% ofydéarms (21 or 96) were considered
efficient (®=1). This value is lower than that obtained bydrien et al. (2011), where 31 out of
72 farms were considered efficient. This differenaa be attributed to the fact that Iribarren et
al. (2011) considered fewer elements in the DEAysawhen handling data from a smaller

sample. In both studies, two main groups wererdisished in terms of feeding system. On the
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one hand, import-based feeding refers to feed mtsdthat are produced abroad and then
imported into the farm (mainly concentrate) andttoa other hand, farm-based feeding, where
the main feed is composed by maize and grass atdtivin the farm. No relationship was found
in any case, only that a high percentage of efficiarms (22 out of 31) used maize and
concentrate as the two main feed products in 28hgway, the progression of Galician dairy

farms towards a local and sustainable diet, cangishainly of on-farm feeding and following

the principles of the circular economy, is remat&alihus, the sample of farms evaluated in
this study presents an average percentage of onfieeding above 80% and only 6 farms

present a percentage below 70%.

In addition, the overall decrease in the averageedficiency of inefficient farms in 2019
should be noted. Furthermore, the positive col@ldtetween the farm size and the operational
efficiency observed in 2011 is even more evidenhig study. This fact has been made possible
by an expansion in the total number of farms asses®id their size, pointing out that the
Galician dairy sector needs to continue carrying improvement actions that lead to better

operational and environmental performance.
4. Conclusions

The life cycle impact has been evaluated on thés ledishe carbon footprint and water footprint
of milk production in 96 livestock farms distribdtehroughout Galicia. Feed production
(mainly concentrate and on-farm maize and grass)yell as direct ClHand NO emissions
have been identified as the critical processeb@kystem. The carbon footprint for an average
medium-sized farm has been estimated at 1.33 kgpe©kg of FPCM, a value that is within

the range found in similar studies.

However, the range of environmental results foundery wide, which demonstrates the high
variability of the operational characteristics ¢iist type of production system. The water
footprint according to ISO 14046 is 52.5 L per KIM. The ecoefficiency analysis carried out
has shown that of the 96 farms evaluated, 21 aremly fully efficient. This analysis has also

made it possible to identify actions that efficiéartms should carry out. Thus, reductions in the
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consumption of silage plastic (-53.7%) and the potidn of wastewater (-49.9%) stand out as
the principal elements to improve the overall édiicy of the analysed farms. It can be stated
how the eco-efficiency of milk production has desed over the last decade, going from an
average of 0.64 in 2011 to an average of 0.58 i 2This fact marks the path that the Galician
dairy sector must follow, seeking to reduce itsimmmental impacts so that the production of a
basic foodstuff such as milk pursue the compliaoténternational standards, especially in

terms of environmental certification.
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Joint Life Cycle Assessment and Data Envelopment Analysis of 96 Gdician dairy farms
Primary inventory data were managed for al evaluated dairy farms

Determination of carbon and water footprint per kg of FPCM was carried out

Efficiency scores suggest a positive correlation with farm size
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