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Abstract

This review examines the utilisation of waste pidifrom three sectors (industry, agriculture, aadstruction and demolition) in filters for
the removal of contaminants from water. Sand isroomly used in drinking water filtration in wateeatment plants. However, the use of
alternative, low-cost materials could address thetdtions of sand, particularly for the removal @ierging contaminants, and address
European legislation which fosters the developnodra ‘circular’ economy, in which materials are dssfectively. This review assesses the
suitability of potential media by quantifying theadsorption potential across a variety of commankdrg water contaminants. The media
investigated were fly ash, Bayer residue, grounahglar blast furnace slag, coconut shell, tea/eoft@aste, rice husk, crushed concrete,
masonry waste, and wood waste. There is a potdatithe use of these media in the water treatrseator, although certain precautions must
be taken to ensure any concerns are mitigated, asioblease of metals into water. Recommendatiolhswing this review, include testing the
media in large-scale applications, and also coosi filters so as potential media are placedayets to harness their contrasting adsorptive

potentials.



Keywords: Media utilisation, water treatment, sustainabjldgst-efficiency; filtration; review

1 Introduction

The European Union (EU) produces 2.3 billion tonakwaste annually, of which 10% (or 250 milliomtees) includes municipal waste, and
90% includes industrial, commercial, agriculturahd other business related waste (Ruggiero, 20d3griculture, wastes are generated at
production, post-harvest and processing stageéit(Rdral., 2010), and amount to 1.3 billion tosnger year worldwide (FAO, 2011). About
850 million tonnes of construction and demoliti@&D) waste is generated in the EU per year, reptasg 31% of the total waste generation
in the EU (Fischer and Werge, 2009). However, &well of recycling and reuse of C&D waste variesatiye(between less than 10% to over
90%) across the EU. The concept of a ‘zero wasi@ustry is not feasible, and while industries sashthe C&D industry have a policy of
reduction, reuse, recycle and disposal (Yuan amwh S2011), there is a tendency amongst stakehdiolensly consider the use of wastes within
the same sector (Duran et al., 2006), without cmsig their use in other sectors. One such avémuthe use of these wastes is in the water
treatment sector, particularly as less than hafpbpulation of some countries in the developingldvbave access to clean, potable water
(FAO, 2015), and as a need has been identifieddst-effective and robust solutions to improve walgrification in both the developed and
developing world (Shannon et al., 2008). Althougiking water improvement trends are increasin@dt5, 663 million people were deprived

of good quality drinking water, leaving much scdpeimprovements (WHO/UNICEF, 2015).

Improvements must include sophisticated stratetfiesombine water and energy savings, while strivimgthe ultimate goal of a circular

economy (Bagatin et al., 2014). Although a ‘zercstgasociety is not yet achievable, steps in tlisation are continuing. Total recycling of



used products and an entirely circular economy matybe realistic in all scenarios, but it is pobsito achieve a sustainable future by
attempting to reach this goal (Reh, 2013). It soamportant to maintain environmental and econdbeaicefits while investigating material

recovery concepts (Dahlbo et al., 2015), and dheeidisposal or use post-treatment must also Isidered to ensure a holistic design
approach. It is also necessary to ensure new ptioduyarocesses do not create extra environmengahats, which could even undermine those

beneficial changes found by utilizing waste prodyMirabella et al., 2014).

Sand filtration is commonly used in drinking wagenification. However, it can have shortfalls redjag the removal of certain contaminants
(Water_Team, 2012). The use of a multi-layer fitentaining a variety of media may have the poéént tackle problematic contaminants.
Anthracite and coal are most commonly used in riajer filters, but these are costly and unsustdeadsorbents (EPA, 1995). The use of
adsorption is evolving, as it produces satisfact@gults while being cost-efficient and easy toiglesaind operate (Bibi et al., 2015). The
exploration of different adsorbents, both manufeextuand recycled, is paving the way for a new garar of filters, containing a variety of

as adsorbents allows for the development of sustéenand effective treatment technologies. Thealisgaste from certain processes could
provide a more sustainable alternative for wateatment systems than abstraction of sand, for ebealnpproviding a use for an otherwise

landfilled waste material.



There is increasing interest in the utilisatiornw@fste materials, and there is a gap in knowledgerms of the application to water treatment
processes. This paper investigates a variety ofiarfeoim three sectors (industry, agriculture andBJ&hat could be used in filters for the

removal of contaminants from water.

1.1 Adsorption classification and contaminant definitions

The potential adsorption capacity of media canlbssdfied mathematically using a number of adsorptsotherm models (Foo and Hameed
2010), allowing for a comparison between the thimakadsorption capacity of novel versus tradidlbmedia. In turn, these data would allow
the relative efficacy of one type of filter mediaeo another to be evaluated. There has been coabldeesearch into the adsorption capacities
of a huge variety of media to adsorb a varietyasftaminants, such as clays, zeolites and chitazanitrate removal (Bhatnagar and Sillanpaa,
2011), carbon nanotubes, biosorbents and low dssirbents for heavy metal removal (Fu and WanglR@nd agricultural wastes for water
purification (Bhatnagar et al., 2015). However, thoe purposes of this review, common drinking watertaminants will be investigated against

a selection of media arising from industrial, C&ind agricultural sectors.

The legislation discussed in the current reviewrigh drinking water legislation (SI No 278 of 2Q0Z007); however, this is based on the
European Communities (Drinking Water) (No 2) Regaleas 2007. Discrepancies between these and USiés regulations, where they arise,
are stated in the current paper. The European Contigsl set out clear quality standards for waterifoman consumption. A total of 39

parameters must be tested for on a regular bagis9%6 of samples must comply with the regulatidinere are further requirements for those



samples which do not pass. To allow for a broadwe® of media and contaminants, a small seledtias been chosen on which the review is

based.

Phosphorus (P) is not currently legislated for urdtenking water quality legislation. However, givéhat most potable water uses surface- or
ground-water as its abstraction source, P is likelype found in abstraction water. The Water FraorkvDirective (2000/60/EC; EC, 2000)
states the threshold level of P in water to be .08 L. However there is a likelihood that certain looas in the EU will not meet this
objective, based on current trends (EPA, 2015a)spHorus causes detrimental eutrophication effgbtn present in surface water sources,
and can have negative effects following human caongion. Phosphorus is also likely to cause problembke water distribution network, with

excessive amounts increasing microbial growth (fifieh et al., 1997).

Nitrogen (N) can be present in water as ammoniutd4{NN), nitrate (NQ™-N) and nitrite-N (NQ-N) and organic nitrogen. The maximum
allowable concentration (MAC) for NfN in drinking water is 0.3 mgt The presence of NfN in water treatment plants can have a
negative impact on (i) disinfection by resultingimcreased chlorine consumption or reducing thecefdf chlorine-based disinfection systems
(Wilczak et al., 1996) and (ii) both pH and dissmvoxygen (DO) in the distribution system (Fenglet 2012). The MAC for N@-N in
drinking water is 11 mg £ Nitrate can enter drinking water abstraction sesrfrom anthropogenic sources, generally from nipai
wastewater treatment plants where denitrificatias wicomplete, and from agricultural land (Bagatiral., 2014). The MAC for NON in

drinking water is 0.5 mg L, and its presence has also been linked to blug-bgthdrome (Fan and Steinberg, 1996). Nitrogen @stm



commonly removed at filtration stage by a combmabf biological and chemical removal mechanismi#) the biological activity occurring at

the surface of the filters.

There is no MAC for dissolved organic carbon (DO®ith legislation stating “no abnormal change” mhstobserved. However, the presence
of organic carbon in water can, following disinfeat result in the formation of multiple disinfeati by-products (DBP) (EPA, 2012). Total
trihalomethanes (TTHM) are the most commonly odngrdisinfection by-products, and are the only omeggilated by legislation, with a MAC
of TTHM in Ireland of 0.1 mg Lt (SI No 278 of 2007, 2007) and in the United Stafe8.08 mg ! (USEPA, 2009). Disinfection by-products
are carcinogenic and have been linked to reprogeicssues and birth defects (Richardson, 2003).cbineposition of DOC has an impact on
the formation potential of DBP, with the hydropholiiaction, comprising mainly humic substances, tlikely to form DBP (Tran et al.,
2015). Humic acid is a constituent of natural ofganatter in surface and ground water sources,iadten used in adsorption studies. The
potential formation will also differ depending centperature, rainfall, pH, alkalinity, surroundingls, and time of year (EPA, 2012). For the

purposes of this paper, the focus is on DOC adsorptather than the by-products.

Metals are most likely to enter drinking water ahstion sources by anthropogenic sources, suchiraegndrainage, corrosion of pipes (EPA,
2015b), and by industrial processes (Mohod and &113). In legislation, each metal has a diffeMAC, depending on the severity of the
effects on human health. For example, the MAC ofrahium (Al) is 200 pg L}, chromium (Cr) is 50 ugt, copper (Cu) is 2 mgt, lead (Pb)
is 10 pug [, and iron (Fe) is 200 pug'L The presence of metals in water can be assoaiatednany physiological illnesses attacking thgana

organs of the human body (Mohod and Dhote, 2013).



Although adsorption of individual contaminants omtious media is well examined in the literatusyjews tend to group the literature based
on a single contaminant or in terms of wastewagatinent, and often investigates commercial adatsb&his review focuses on a variety of
drinking water contaminants, solely from the paftview of reusing by-products or waste materiahd at provides researchers and
practitioners with a comprehensive overview on mber of different materials. This would not onlyoatl for improved water treatment, but

also improvements for the environment as a wholaiiming to reduce waste products and disposahmies

2 Methodology

A detailed literature search was carried out biyahy selecting several key words. Those useduitke! adsorption, waste products, waste reuse,
water treatment, regeneration, agricultural-basdsodoents, construction-based adsorbents, and tiredisased adsorbents. Each media
mentioned was also included in a search. The see@sHimited to papers published in the last tearyewhere possible. Exceptions were made
for highly cited papers and areas where there waisetl research available. No geographical limitasi were applied. Search engines used
included databases such as Scopus, as well asipeibspecific search engines such as ScienceDRegtal Society of Chemistry, American
Chemical Society, and Materials Research Societgl, the Boolean operator “AND” was used to incluéeesal keywords in one search.

References from selected papers were also expioredievant information.

Articles were selected based on relevance to thiewe with a focus on the selected media from itigusagriculture, and construction and

demolition sectors. Particular attention was paithbse contaminants of concern, although all gudisor studies were considered for inclusion.



Post-treatment use and regeneration were alsodmedi when selecting articles. A total of 210 refiees were selected, of which most are

journal papers from chemistry, engineering, andenmgtscience research areas. A small number dfdand reports were also included.

3 Industrial waste

Industrial activities generate products and resduem both production and consumption. As indabfactivity continues to increase, so too
does the creation of excessive waste. In 2012, dBtétal waste in the EU was disposed, and the irea was either recycled, or used for
energy recovery, backfilling or incineration (Eulds 2015). The utilisation of industrial by-prodsicand wastes in water treatment is
infrequently examined in the literature. The wadtest will be considered in this paper are fly astd ground granular blast furnace slag
(GGBS), and Bayer residue. Fly ash was chosencasnprises 85% of all ash produced in coal combngiroducts (CCP), with approximately
780 million tonnes produced worldwide (Heidrichaét 2013). Ground granular blast furnace slag etasen as it is a product of over 1 billion

tonnes of steel produced (Juckes, 2011), and Bag&tue because of the increasing accumulationeofvaste (EAA, 2013).

3.1 Flyash

Fly ash (specifically coal fly ash) is a waste protdof the incineration process. It is defined ama-hazardous mineral combustion waste, with
coal fly ash falling under the category of slagd ashes from thermal treatment combustion (Euro2@dt0). It has a recognised potential use
as a raw/construction material in applications sashcement and concrete addition (ESB Moneypoidi2p with more than half of the
concrete used in the USA containing fly ash (Wddldal Association, 2015). The current utilisationerdor fly ash use in the EU is

approximately 43%, leaving over 17 million tonnesdisposal or stockpiling (Ecoba, 2015).



Fly ash is produced by the incineration processnwdmal is burned as a power source, and in indioeraf municipal solid wastes, sugar cane
bagasse, rice husks and tea dusts. For many yeatagion has exceeded utilisation capabilitiesammeg a large proportion is landfilled
(Ecoba, 2015). For the purposes of this reviewygrcstation fly ash (coal combustion) is of mogerast, as it is the largest source of fly ash
production (lyer and Scott 2001). The major commbsare silica, Al, Fe oxides, carbon, calcium (Gaagnesium (Mg), and sulphur in
varying amounts, depending on the original soulger (and Scott 2001). Chemical characteristicsomtailed in Table 10. With such a large

variety of elements, fly ash has potential for masgs (Figure 3), and efforts should be made taddaadfilling.

3.1.1 Current Uses

In the construction industry, fly ash is mostly dise concrete addition (35.9% of total use of fihan 2010), with other uses including blended
cement, road construction and concrete blocks (&c@0B15). Research has been carried out on inogedlse amount of fly ash in certain
concrete mixtures to increase performance (Meli@2R This must be cautioned however, as fly ashamsorb concrete surfactants which
may have negative effects on the mixture (Ahmed Hiatid, 2014). The fine nature and elemental conipasif fly ash has led to
investigations into the use of fly ash as a feili(Jala and Goyal, 2006) and for soil conditignimhich has demonstrated positive results on a
short-term basis (Kalra et al., 1998), though #hisuld only be used where the fly ash will not coonise the soil quality (Pandey and Singh,

2010).



3.1.2 Potential for usein water treatment

Fly ash has been well recognised for its efficaxpm@madsorptive material for various contaminamigueous solutions (Ahmaruzzaman, 2010).
Table 11 gives an overview of the adsorption padénivased on adsorption isotherm modelling, tangein particular those contaminants of
interest in this review. Fly ash also has the gbilo uptake metals, such as Pb and Cu (Alinnof720and zinc (Zn) and manganese
(Nascimento et al., 2009) from aqueous solutions, ies capacity may be improved by the presenchuofic acid in water (Wang, et al.,
2008a). Metal removal using fly ash can also bearobd by coating with chitosan (Adamczuk and Kotettg, 2015). Lignin removal can be
achieved by fly ash (Andersson et al., 2011), as mlsenanthrene (An and Huang, 2012). Little rese&as been carried out on NEN

adsorption, other than cation exchange capacityC(Givestigations with synthesised zeolite fromdkh.

Many studies have been carried out to investigateetficacy of zeolite that is synthesised fromdkh (ZFA), for example to remove heavy
metals from wastewater (Querol et al., 2002), phatgpfrom an aqueous solution (Chen et al., 200&),for humic acid removal from water
(Li et al., 2011). Synthetic zeolites from fly asave been shown to have a CEC of up to 3 nie@itpwing for the uptake of heavy metals and
cations such as NF+N (Querol et al., 2002). Wu et al. (2006) investil the increase of CEC of ZFA by salt treatmant, simultaneous P
and NH;"-N removal, which was particularly effective at l@@ncentrations. A mild acid treatment has beenvaho have a similar effect on

ZFA (Zhang et al., 2007).

The main disadvantage to using fly ash in wateatinent is the potential for metal leaching. Bynigdure, metals are an intrinsic characteristic

of fly ash (Chou et al., 2009). However, with threduction of some precautionary measures, whecegssary, this can be mitigated. Measures



may include a leaching behaviour test (for examplegre systems may contain other adsorptive mefdieded extraction, immobilisation of

elements, and destruction of persistent pollut@Mang and Wu 2006).

Acid, heat, and activation all have a positive effen the adsorption capacity of fly ash (Li et aD06). However, for the most sustainable and
cost-effective approach, the raw state is generstiyed to be most desirable (Alinnor, 2007). Phoggs and humic acid can also be
successfully removed from water (Table 11) usiryga8h. However, there is little investigation ofadsorption and contaminant interaction.
Wang et al. (2008a) studied the positive effechwiic acid presence on metal adsorption, but topcehensively assess the potential for the

use of fly ash in a sustainable technology, itdsassary to study the raw water contaminants omemed and natural environment.

3.2 Ground granulated blast furnace slag
Ground granular blast furnace slag is a waste mtoofithe steel production industry. It is non-haloaus, and is a finely ground powder. Similar
to fly ash, GGBS falls under the category of mihe@mbustion wastes, and is hazardous if it costéixic heavy metals (Eurostat, 2013).

Over a billion tonnes of steel is manufacturedgrerum, leading to the availability of a large antafifGGBS (Juckes, 2011).

Ground granulated blast furnace slag is produceah folast furnaces used in Fe production. Molteg &gproduced when iron-ore, coke and
limestone are melted in a blast furnace. Slagdloatthe molten iron, and once removed, is graedlahd ground to produce GGBS (Siddique
and Bennacer, 2012). Ground granulated blast ferrsdag typically contains oxides of calcium, siligd and Mg in varying proportions

(Ecocem, 2012).



3.21 Current Uses

In Europe, almost 18 million tonnes of GGBS is euntly used in the cement and concrete industriesd&m, 2015). This is the most common
use for GGBS. It acts as a direct replacement éonent, and has many advantages including extertimdife cycle of concrete, making

concrete more durable, and reducing the carboneaedgy footprint of concrete production (Ecocem]l30 Blended cements (GGBS and

ordinary Portland cement) have a superior resistémsulphates and an increased chloride bindipgaity (Siddique and Bennacer, 2012).

3.22 Potential for usein water treatment

Ground granulated blast furnace slag has not bemngoisly identified as an adsorptive material, &tilé research has been carried out in this
regard. The chemical composition of GGBS would ¢atk potential for a strong CEC for cation and inatisorptions. Grace et al. (2015)
found that GBS (granular blast furnace slag) hamtgadsorption properties but solidified upon imnregsn water, which would counteract the
usefulness in a water treatment system. Furthearel is necessary to investigate pre-treatmentshwiould allow the adsorption potential of

GGBS to be harnessed and utilised.

3.3 Bayer residue
Bayer residue (also called bauxite residue or rad)rs a primary waste product of the Al productindustry. Accumulation of the residue is
estimated to be increasing by 110 million tonnasgoeum, with 2700 million tonnes already in steray 2010 (EAA, 2013). Bayer residue is

highly alkaline and has a fine patrticle size, legdio environmental issues around disposal andgtor



Aluminium is most often refined from bauxite orehieh is readily available all over the world. The @ontains high levels of Al oxides, which
can be extracted by the Bayer process. This ingdheating the bauxite in caustic soda under higipégature and pressure, to form sodium
aluminate and an insoluble residue - known as Bagsidue (Deelwal et al., 2014). The sodium aluteina further treated to form Al
hydroxide or oxide. The Bayer residue typically @ams Fe oxide, Al oxide, titanium oxide, calciuride, silica oxide and sodium oxide

(EAA, 2013).

3.3.1 Current Uses

Bayer residue is stored at or close to the alumtmaaufacturing facility in a bauxite residue storagea or in dry stacking facilities (Nikraz et
al., 2007). Bauxite residue storage areas shoulcabefully controlled, with hydrosphere monitorityavoid any negative environmental or
ecological impacts (EAA, 2013). It is a concerniggue for many nations; indeed the Chinese govenhset a target of utilising 20% of fresh
mud by the end of 2015 (Liu et al., 2014). Approatetly 110 million tonnes of Bayer residue are pastland stored worldwide annually
(EAA, 2013), and amount currently in storage iseotpd to increase to 4 billion tonnes by 2015 @mnad Naidu, 2014). Therefore, it is the
subject of ongoing research to identify potentigksi and alternative disposal mechanisms such &samselioration, construction and
groundworks restoration (EAA, 2013). Work has bearried out on the use of Bayer residue as a amigin additive or filling material
(Deelwal et al., 2014). Limited work has been @rout on the use of Bayer residue as a coagutaag an industrial catalyst, showing it may
have potential in this area (Wang, et al., 2008fr) example to purify a bio-diesel waste streams@®ele et al., 2013). Work has also been

carried out on iron recovery from Bayer residuai(&nd Naidu, 2014).



3.3.2 Potential for usein water treatment

Previous studies indicate that Bayer residue hésngial as an adsorptive material for removal aftaminants from water supplies, and it has
been suggested that exhausted material be re-ngbéd construction sector (Ali and Gupta, 2006)tdMeemoval from aqueous solution has
been examined successfully (Hua et al., 2014)pagh further work is required to understand the aemh techniqgues and consequences
(Brunori et al., 2005). Phosphorus removal is \effgctive using Bayer residue (Table 12Table 18y kmited studies of N&-N, along with
other anion adsorption studies (Bhatnagar et BIL1P have produced positive results. Gaps exishénadsorption potential of NHN and
DOC, although Lopez et al. (1998) observed;NN removal from secondary effluent from a wastewtatment plant. Bayer residue can also
achieve more than 90% bromate removal from aqueolusions (Chen et al., 2016). The positive resultiscate that further research should be

carried out to assess the removal capabilitiessplegtrum of contaminants.

The most relevant disadvantage to using Bayer uesid water treatment processes is reflected iir@mwental concerns (Liu et al., 2011). Its
chemical and mineralogical characteristics requeatment before storage and it is important taueng does not further pollute water or leach

contaminants. The adsorption potential may outwghghconcerns, and carefully designed systems goitigate any possible concerns.

4 Agricultural waste
The agricultural sector is constantly growing, jgaitrly as trade relations strengthen between tmsand demographics continue to put
pressure on food production systems. Thirty-eigircent of the EU budget is spent on agricultureh wkports steadily rising and currently

estimated to have a value of €122 billion (Europ€ammission, 2015a). Globally, trade flow valuesenancreased fivefold in the past 50



years (United Nations, 2015). Twelve percent ofttital land area of the world is used for crop piithn in the agricultural sector (United
Nations, 2015). This produces many different typewastes and by-products. In this review, thossn@red are coconut shell, tea and coffee

wastes, and rice husk.

4.1 Coconut Shell
Coconut shell is frequently used as a carbonacsowse for activated carbon, as it results in @ngfr dense carbon (Cooney, 1999). Although
powdered coconut shell can be used for adsorgt@rnost common use is as an activated carbonesolines is a successful adsorbent, but the

activation process can be expensive, and usintathenaterial as is would be a more sustainablecambr.

Activated carbon is manufactured in a two-step @sscFirst, raw materials go under a carbonizgirogess in an inert environment, and then
the carbonized product is activated with oxidisgages (Hu and Srinivasan, 1999). The oxidationga®erodes a network of internal channels

and pores, while creating a surface of oxidestoeiase the surface area and make the materialsuibable for adsorption (Cooney, 1999).

4.1.1 Current Uses
In developing countries, coconut shells have peattises such as bowls and utensils, but the neosthon large-scale use for coconut shell is
the production of activated carbon. More than 6llioni tonnes of coconuts are grown worldwide anhlyahost commonly used for drinking,

coconut oil, and dessicated coconut (UNCTAD, 20T8)s volume of raw material gives much scope fdivated carbon production. Coconut



shells have also been used in construction, tde@aonut shell aggregate concrete; howeverjgmst commonly used (Gunasekaran et al.,

2012).

4.1.2 Potential for usein water treatment

Table 13 presents a selection of previous studiesstigating adsorption using coconut shell in gwh relevant contaminants for drinking
water treatment. Coconut-based adsorbents arestuglled in terms of biosorption for water treatmesttatnagar et al. (2010) reviewed a
variety of coconut biosorbents for removal of mgtalyes, pollutants, anions and radionuclides fwater, concluding that the potential for use

is great, although knowledge gaps still exist imig of real effluent use, regeneration and recosgrgties.

Coconut shell has been successfully used in adsorpt metals such as Cu, Pb, cadmium (Cd) andStuga et al., 2010), and dye adsorption
(Cazetta et al., 2011), various anions such asthmntioned in Table 13, and fluoride (Sathish.e2807). Nickel can also be adsorbed using
coconut shell (Vocciante et al., 2014). Adsorptadrdyes can be indicative of an adsorbent’s affibit adsorb various molecular weights of
organic matter (Zhang et al., 2007), thus activatathon from coconut shell has good potential soda natural organic matter (NOM). Studies
have shown that the presence of NOM in agueousiaoducan inhibit or at least compete with adsorptf other trace organic compounds that

are commonly found in drinking water by pore blogiand site competition (Quinlivan et al., 2005).

Evidence suggests that coconut shell-derived aetivearbon is useful in terms of water treatmermweler, the carbonization and activation

process can be expensive and technology-intensieaning that it is not as sustainable as otherrbgiyets. It is also likely to become



saturated and exhausted, requiring a regeneragainient. Coconut shell could be combined with la@roadsorbent to reduce the need for

regeneration yet achieve effective and sustainabter treatment.

4.2 TealCoffee wastes

Worldwide coffee and tea production is a large stdy with the total coffee production per crop iy@814/15 at 141.7 million 60 kg bags
(ICO, 2015) and world tea crop production in 2018swb.3 million tonnes (FAOSTAT, 2015). The chemicamposition of tea varies
depending on the type, but the largest proportienegally comprises polyphenols, as well as sugamsie amino acids, lipids and some
minerals (Harbowy et al., 1997). Similarly, coffesries depending on the type, but major constigiarg fatty acids, hydrocarbons and sterols

(Pujol et al., 2013).

4.2.1 Current Uses

Coffee and tea grounds/leaves are most commonposksl of in compost or in landfill disposal. Coffg®ins can be beneficial for vermi-
composting, by allowing the kitchen waste to beconoge stable for earthworm populations (Adi and N@009). Biofuel production has also
proved successful with coffee grains (Caetano.ef@ll4). However, if a potential use is identifigdvould reduce the need for landfill. Studies
have also been carried out to investigate the paéipa of activated carbon from these wastes bylypgis (Reffas et al., 2010) and acid

impregnation for improved adsorption of dyes (Md &@uyang, 2013).



4.2.2 Potential for usein water treatment

Coffee grounds (Safarik et al., 2012) and tea graeve been used successfully in dye adsorptiosufidaet al., 2010), which can be used to
indicate a potential for use in cationic adsorptiequirements (Franca et al., 2009). Metal rembealbeen achieved using both coffee grounds
and tea leaf wastes (Djati Utomo and Hunter, 20BBg&nol removal has also been successful withaetivcarbon prepared from coffee residue

(Lamine et al., 2014). Wang et al. (2014) repoeddiOs -N removal efficiency of almost 52% using greenegaact.

The above evidence would suggest that there isesfyiea and coffee wastes to be used in a teagpdbr water treatment, particularly for

adsorption of cationic compounds; however, furtirealysis is required on nutrient and carbon adsorpo fully understand the benefits.

4.3 Ricehusk
Rice husks (hulls) are the outer covering on tleéngiseparated from rice during milling. In Asi®07million tonnes of rice husk are produced
annually (Santiaguel, 2013), accounting for 92%hefworldwide rice production (Ricehusk.com, 201%)e chemical composition of rice husk

includes cellulose, hemicellulose, lignin, silieah, and protein (Krishnani et al., 2008).

4.3.1 Current Uses
Rice husk was generally considered a waste pro@uttin recent years, it has become a commodity,has uses such as power production

(from biomass gasification) and a raw materialdioopstick manufacture (Santiaguel, 2013). It cao &k used in horticulture, animal bedding,



and as a material in composites (Ricehusk.com, )200ftermal treatment of the husk can aid in oil galova et al., 2011) and petroleum

adsorption (Kenes et al., 2012).

When rice husk is burnt, it produces an ash, withigh silica content, that can be used in concpgteluction and insulation products
(Singhania, 2004). The ash has also been usedrification methods, such as the preparation of ieel from frying oil (Manique et al.,

2012). Similarly, oil polluted water can be cleanmsthg the ash (Vlaev et al., 2011).

4.3.2 Potential for usein water treatment

From various studies and reviews, it is clear tlta husk is a successful adsorbent (AhmaruzzamarGapta, 2011XK: Freundlich adsorption

capacity factor
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Table 14 details the previous adsorption studigb@fitontaminants examined in this review,

indicating that rice husk can be used in a treatrteminology.

Rice husk has proven to adsorb metals from wasesvgatccessfully, particularly when used
as a starting material for activated carbon pramargDaifullah et al., 2003). A partial alkali

digestion of rice husk also improved the metal lmgdability, showing a good affinity for

eight different heavy metals (Krishnani et al., 80Mohan and Sreelakshmi (2008) found
that treating rice husk with P increased its affifior metal adsorption. Other studies confirm
the affinity of rice husk for adsorption of metaigch as Cd (Ye et al., 2010), nickel and Zn
(Srivastava et al., 2007), and Pb and mercury (fe¢rad., 2004), and also for dye adsorption
(Kumar et al., 2014). Rice husk ash can also bd ase precursor to activated carbon, which

has been successful for dye removal (Liu et all220

To further assess the potential of using rice hwsk water treatment technology, it is
necessary to compare the advantages to its curisest to ensure it is a viable adsorption
source. It is also necessary to assess the chavofg to modify the husk, compared to using

a raw, untreated material.

5 Construction and demolition waste

Construction and demolition wastes encompass a vadety of media, from wood, metals
and plastics, to textiles and paper, oils and raise(Eurostat, 2013). Figure 4 shows the
composition of C&D wastes, for EU member statesclieking Estonia and Finland
(European Commission, 2011). Large quantities oDG&aste is produced every year and it
accounts for 25-30% of all waste in the EU (Europ&ommission, 2015b). Although
recycling efforts are substantial (greater than Ra#ere is still a necessity for further re-use

of some of this material (Fischer and Werge, 20002012 in Europe, 40 million tonnes, of
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a total 295 million tonnes, of mineral waste from&IC was deposited onto or into land,
meaning there is a large quantity of potential mahevaste available (Eurostat, 2015). This
will allow for compliance with the EU Waste Framaw®irective (2008/98/EC; EC, 2008),
which states that recycling efforts must be raigedt least 70% (Fischer and Werge, 2009).
To aid in reaching this target, it is necessargxamine the potential for certain C&D wastes
for other purposes, such as water and wastewatainient. The wastes of interest in this

review are crushed concrete, masonry waste and waste.

5.1 Crushed Concrete

Crushed concrete is a waste product from the C&lsiry, resulting from the demolition of
buildings and concrete structures. Crushed cona@teprises the largest fraction of C&D
waste (Figure 4), so finding an alternative usexgremely important. It comprises the
standard components of a concrete mixture, aggegatater, cement and sand. This results

in a chemical composition of Ca oxides, Al oxided &e oxides (Egemose et al., 2012).

Production of crushed concrete arises from the rteededuce landfill waste from all

industries, including the C&D industry, with crusgi meaning it is more suitable for use
elsewhere. Debris and rubble from buildings thavehdgeen damaged in destructive
earthquakes, along with regeneration demolitiow, @uilding roads and runways result in
large amounts of waste. The debris is crushed emehg using various techniques dependent

on the required use (Topcu apengel, 2004).

511 Current Uses

A certain amount of old concrete from the C&D sedstill goes to landfill. Crushed concrete
can be reused as a form of aggregate; howevenniinss be done with caution, as increasing
amounts of waste concrete aggregate can decreamsstydeworkability, hardness and

compressive strength (Topcgu, 1997).
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5.1.2 Potential for usein water treatment

Table 15 details previous work on adsorption stidi®ing crushed concrete. Egemose et al.
(2012) investigated the use of crushed concretefdter material for urban and agricultural
runoff. The study found that it was effective imdPoval, but observed that caution must be
taken to ensure the pH and alkalinity of the effiluis controlled. During a column study to
treat secondary effluent wastewater from a municizestewater treatment plant, Berg et al.
(2005) discovered that although crushed gas can¢lightweight concrete) was effective at
reducing the concentration of P by 80-100%, the D&&3 unchanged, meaning crushed
concrete may not be effective as a stand-alorer fitedia, depending on the contaminants in
guestion. Crushed concrete has shown potentialnfetal adsorption, with successful
adsorption of Cu, Zn and Pb (Coleman et al., 200Bgre are indications that crushed
concrete may be a successful filter media for reahadf contaminants from aqueous
solutions, but further work would have to be catrieut across a broad spectrum of

contaminants to fully assess its potential.

5.2 Masonry

Masonry waste comprises a large proportion of t&@® Qvaste generated in the EU (Figure
4), approximately 30%, and is classified under sane waste stream as concrete and
gypsum-based materials. It refers to a mixed westeprising bricks, tiles and ceramics, and
any other masonry rubble; and can arise from cocistm of civil infrastructure, or from
demolition (European Commission, 1999). The progerbf masonry, both physical and
chemical, vary depending on the proportions ofdbmponents present in any one sample
(del Rio Merino et al., 2010). It can also vary eeging on location, given that different
regions may use different types of bricks. In saraentries, such as Pakistan, brick powder

is readily available and may have few costs aststiwith its use (Bibi et al., 2015). In
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general, it comprises silicate minerals, rich ircen, Al oxides and hydroxides (Naceri and

Hamina, 2009).

5.2.1 Current Uses

Masonry waste from the C&D industry can be reusethe same industry, particularly as
aggregate for concrete production, mortars, roemeints, concrete blocks and concrete tiles
(del Rio Merino et al., 2010). There have also bgtenlies carried out to investigate the use
of masonry waste as a replacement of clinker inecgr{Naceri and Hamina, 2009), and as a

pozzolonic admixture (Lavat et al., 2009).

5.2.2 Potential for usein water treatment

Table 16 details the studies which have investidjab®se contaminants of interest in this
review. Crushed brick has been used to remove dy® faqueous solutions effectively
(Hamdaoui, 2006). Metals, such as Cu (Djeribi aramidaoui, 2008) and mercury (Labidi,
2008), have also been removed from aqueous sotutisimmg crushed brick. Brick has also
been used for microbiological adsorption, w@tostridium beijerinckii found to adsorb onto
the surface (Qureshi et al., 2000). Ceramics hbseelseen used in contaminant removal from
agueous solutions. Fluoride has been successfidigraed by granular ceramic (Chen et al.,
2011), and silica ceramic has been used to remenia from aqueous solution (Salim and
Munekage 2009). Brick powder has also been suadbsssed for both fluoride and arsenic

removal (Bibi et al., 2015).

It is clear that there is potential in the use adsonry waste as an adsorbent for water
treatment. With the ability to adsorb such a vgra@tcontaminants, the next step would be to
assess its potential to adsorb multiple contam@asimultaneously. The biggest

disadvantage, however, is the lack of uniformityepBnding on the source, the masonry

waste composition could have a huge variance, whitthin turn affect the potential for use.
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53 Wood waste

Although wood waste only accounts for 2% of the E&D waste (Figure 4), it is a relevant

waste to investigate, given that in certain coestthis figure may be higher. For example, in
Ireland, in 2010, wood accounted for 5% of total[C&aste collected, amounting to 45,000
tonnes (EPA, 2010). Wood waste can arise from dischtreated and untreated wood
products, off-cuts, shavings, chip and dust fronoavprocessing and virgin wood mixed in

with waste wood (EPA, 2013). The composition of da@ries depending on the source of
the timber. It is imperative to encourage the usav@od in a material recovery sense, as

currently a significant proportion is used in enefDahlbo et al., 2015).

5.3.1 Current Uses

Waste wood has many different uses, including flehdscaping, bedding, composite

boarding manufacture, landfill cover and compostihgan be used both as biofuel and as a
fuel in its raw state (Lippke et al., 2012). Howewhe use of waste wood as fuel brings
environmental concerns, given the likelihood ofoganated organic compounds or heavy

metals to be present, following preservation mesh&PA, 2013).

5.3.2 Potential for usein water treatment

Wood waste, in the form of wood chips, has beegessgfully used in adsorption of dye from
agueous solutions (Nigam et al., 2000). Sawdusbkas successfully used in the same way
(Hanafiah et al., 2012). Wood also has good capadibr metal adsorption (Rafatullah et al.,
2012). Alternative methods for using wood wastevater treatment would be as a biochar,
for nutrient (Wang et al., 2015), perchlorate (Fah@l., 2014), or metal adsorption (Jiang et
al., 2015); or as an activated carbon, for dye @¥lal., 2014) and metal adsorption (Lo et al.,
2012). Table 17 details adsorption studies thatehbeen carried out using relevant
contaminants, mainly in the form of biochar adsorptindicating that there is a possibility
of using this material, though further researchusthde carried out.
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It is clear that waste wood does have potentialgar in water treatment. However, there will
be a lot of variability depending on the origingbé¢ of wood used. Another issue could be
the release of organics into the water. To avordlease, a pre-treatment could be advised

and perhaps the use of a multi-media technolodpatoess different sorption capacities.

6 Post-treatment use of media

It is clear from the review of previous studiestttize scope for alternative media use as
adsorbents in water treatment is broad, encompgaasamy types of media and contaminants.
However, a problem still remains with disposaltté media post-treatment. The recycling of
waste does often create larger environmental bsngdarticularly than energy recovery

methods, but this is not always the case and shibeldarefully analysed (Dahlbo et al.,

2015). Although adsorption can create a purpose aforotherwise discarded material,

adsorption is not an infinite solution. Once usedmn adsorption system in water treatment, it
will be necessary to either regenerate or findfa desposal mechanism for the media. This

will also ensure any contaminants adsorbed ontonigia will not pollute land or water.

The use of the media post-treatment depends onath&ituents of the water it was used to

treat. If the raw water contained heavy metals rtecessary to ensure that metals would not
pose a threat to the next purpose of the medihercase of adsorption of organic pollutants,

successful regeneration and desorption technicuues, as biological degradation, chemical

desorption, oxidation, and thermal desorption, t@ysed to restore the quality of the media
(Zhu et al., 2009). Where nutrients are problemetictaminants, land fertilisation may be a

potential area of utilisation post-treatment. Thisuld be doubly beneficial as it would

improve the land quality and provide a useful psgpftor what is otherwise a waste material.
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6.1 Regeneration

It is recognised that there exists a knowledge @ajarge-scale regeneration of adsorbents,
particularly non-carbonaceous adsorbents (Omoregi@., 2014). Traditional regeneration
techniques include thermal, chemical, and bioreggiom. Emerging regeneration techniques
include electrochemical, ultrasound, oxidation, ang@ercritical fluid methods (Duan et al.,
2013). Although many of these techniques have prefkective, it is necessary to implement
large-scale regeneration of media, for both econ@nd environmental benefits (Omorogie

et al., 2014).

Regeneration of metal oxides, such as fly ash aagkBresidue, has not been extensively
studied. The studies which have been carried oud te refer to treated media, such as
impregnated fly ash (Yang et al., 2016) or actigdatarbon prepared from fly ash (Aslam et
al., 2015). However, it has been found that whéesé¢ media have been used to adsorb
various metals, it can make the media more staldeukowicz-Sobala et al., 2015). It has
also been shown that methods such as thermal diesogan be used to restore the media to
its previous condition (Yang et al., 2016). This casult in the media being used for land
reclamation, or in construction methods such asehmentioned in the “current uses”
sections above. Fly ash, once exhausted from peat#sorbents, can be used as a filler in
paper-making with few side-effects (Saakshy et28l15). Although similar studies have not
been carried out in relation to GGBS, the chemmahposition would suggest similar
potential. The United States Environmental Probecihgency (USEPA) have developed a
number of tests which can be used to investigagttential leaching and toxicity of spent

sorption material and suitability for use on ladddqukowicz-Sobala et al., 2015).

Regeneration of coconut shell activated carboneis iesearched, with up to five adsorption-
regeneration cycles being tested. For adsorptiogastous sulphur, complete regeneration
can be achieved using water vapour (Shi et al.5R0¥icrowave regeneration was not as
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effective when used to regenerate from benzendaunene adsorption, achieving just 50%
removal efficiency after five cycles (Mohammed &t 8015). Thermal regeneration with
0.1M NaOH was very effective for regeneration fr&m removal, with removal efficiencies
of over 90% after cycling (Iltodo et al., 2014). &tlactivated carbons have been regenerated
successfully by electrical-assisted acid washingerfgvet al., 2014), supercritical carbon
dioxide operating conditions (Carmona et al., 2014), andtgyactivated sodium persulfate

oxidation (Liang and Chen, 2010).

Similar to the other agricultural wastes, severafjeneration techniques have proved
successful for both tea wastes (Fadhil et al., P@I®l coffee wastes (Plaza et al., 2012).
These wastes can be used as a source materiattiieated carbon and so respond well to
regeneration. Although regeneration can still méaa pollutant is present, it becomes
concentrated, and thus may be more easily dispafs@€yzas, 2012), while the material can
be returned to its original state. Alternative displ mechanisms include manufacturing
blended fuel briquettes from tea and coffee washes,to high calorific values (Nandal et al.,

2014).

Bioregeneration has successfully been used for higgk regeneration (Aktas and Cecen,
2007), as have chemical techniques. Chemically fieadrice husk for mercury adsorption

was successfully regenerated using 0.1M HCI, amdynlg 10% adsorption capacity (Song et
al., 2016). Regeneration by NaOH has been sucdlysséed for rice husk that has been used
for arsenate (Luo et al., 2016) and Pb adsorptMaspumi et al., 2016). Rice husk ash, a
product of the incineration of rice husk, has masgs including catalyst carriers, fillers in

cement, fertilisers, and production of gels ang/pars (Kumar et al., 2016). This would be a
useful post-treatment use of rice husk, provideat the contaminants would be contained

and not leached to the environment.
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Construction and demolition wastes are not welleaeshed in terms of regeneration
processes. Where an activated carbon was produm@diood waste, regeneration would be
most likely successful. For concrete and masonmgpedding on the source water
contaminants, there is potential for use as agtgega fill in the construction industry.

However, extensive testing would be necessary surenno damage would occur to the

environment.

6.2 Economic and environmental outlook

When considering regeneration techniques, it isom@mt to recognise the economic and
environmental costs of regeneration techniques.ré/beid regeneration is used, it can be
corrosive and difficult to store. Thermal regenierattechniques can require complex
instrumentation and large capital expenditure (A&slket al., 2015). Regeneration can also
produce a high concentrate waste stream, whichbecang about further issues of waste

management (Igunnu and Chen, 2012). Therefores important to analyse filter media

holistically, including potential regeneration amosts, to ensure the most sustainable

approach is taken.

It is important ensure that the use of the mediavater treatment does not devalue the
original product. Desorption techniques may be usegkstore the product, although it may
create another issue regarding waste creationeapdiutant will now be concentrated. In
some instances, the original product may becomes rstable, and may still be useful in its
current uses. In other cases, for example when fasatutrient capture, the media may then
be used as a fertiliser. The ultimate use of theiawill depend on the raw water being
treated, and how that impacts on the media. Howevés clear that this is an area worth

researching with clear gaps in knowledge evident.
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The notion of a ‘circular economy’ requires prodycinaterials, and services to be
maintained within the economy for as long as pdssidind is a major step towards a zero-
waste society (European Commission, 2015c). Althabheg utilisation of these products does
not result in an infinitely long solution, and foer disposal mechanisms must be
investigated, it does result in a more sustainabiefor waste products. Evidently, in certain
circumstances, regeneration of adsorption matesial possibility, although there is a large
scope for further research in this area. The Ewop8ommission have identified waste
management as a critical aspect of the circulan@my, and recognises the need to involve
public authorities, businesses, and investors (Ean Commission, 2015c). In order to fully
engage these entities, it is important to haveahlgisolution to a difficult-to-solve problem.
If the media can be sufficiently exploited to treatter in a sustainable fashion, those entities
will have an invested interest in aiming to devetbp technologies to their full potential.
There is a recognised lack of studies considenmmiystrial symbiosis, logistics and large-
scale operation (Mirabella et al., 2014), and itlsar from the review that there is a large
scope for development in this area. In this instatite combination of research and industry,
along with public authorities, could work togetherfully develop a sustainable method of
removing contaminants from water, while avoiding tbreation of waste, and therefore

leading towards a circular economy.

7 Conclusion

A brief summary of the advantages and disadvantafjesch media, along with the raw
material availability, is presented in Table 18. & definite amounts are not available,
figures for the parent material have been givens Taview indicates that there is a large
scope for use of media in water treatment, theeefoitigating current environmental issues
such as waste disposal and storage, while aimingnfmove water treatment services

globally.
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It is important to note that some media can alsosbecessfully regenerated, once the
adsorption potential has been reached, meaninghédilter can be used incurring much less
cost than a full replacement. With the use of aliéve media, clogging should also be
considered. Certain media, although successfulrbdsts, may have too fine a particle size,
and become clogged within a short period of opamnatrhis can be tested fully at a pilot-

scale test.

It is, however, important to proceed with cautiegarding some of the media, where there is
a potential release of toxins or where the prettneat costs may not allow for a sustainable
approach to be taken. Further recommendationgvioip this review, are to test the media
at larger scale, both individually and also in altrayer configuration, where it would be

possible to harness the varying adsorptive qualdfedifferent media.
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Figure and Table Captions

Figure 1 Disposal and utilisation of fly ash in the constioic industry and underground
mining in Europe (EU 15) in 201&coba, 2015)

Figure 2 Composition of C&D waste from EU member states @diclg Estonia and Finland
(Adapted fromEuropean Commission, 2031)

Table 1 Media Characterisation

Table 2 Previous studies of fly ash adsorption

Table 3 Previous studies of Bayer residue adsorption

Table 4 Previous studies of coconut shell activated cadmtsorption
Table5 Previous adsorption studies using rice husk

Table 6 Previous adsorption studies using crushed concrete
Table 7 Previous adsorption studies with masonry waste
Table 8 Previous studies of adsorption using wood waste

Table 9 A brief summary of media potentials
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Table 10

Bayer Coconut Coffee Crushed Masonry
Fly Ash GGBS Rice Husk
Residue Shell Waste Concrete Waste
SO, 44.5-67% 35% 5-30% 66.52%
Al;,03 22.2-30.7% 10% 10-22% 14.2%
Fe,03 1.1-14.4% 20-45% 5.45%
CaO 0.4-4.2% 40% 0-14% 6.06%
BaO 0-0.5%
MgO 0.3-1.6% 8% 2.35%
Na,O 0.2-0.9% 2-8% 0.67%
K20 0.5-2.9% 2.09%
TiO, 0.9-1.9% 4-20%
P.Os 0.1-2.7%
SO; 0.1-0.5% 0.75%
Carbon % 48.6 57-59 85
Hydrogen % 6.5 7.1-7.6 4-5
Oxygen % 44.6 26-23 31-37
Nitrogen % 0.1 1.2-1.3 0.23-0.32
Sulphur % 0.1 0.04-0.08
Ash % 22-29
Moisture 8-9
Cagkg? 240-551
Fegkg® 17-29
Al gkg? 18-30
P gkg* 1-13
Cu mg kg* 37-87
Pb mg kg™ 33-87
Cr mg kg* 22-115
Cd mg kg* 1-20
Reference Ward & Ecoce Naceri &
EAA Daud Pujol et Kumar etal. Egemose et
French m Hamina
(2013) (2004)  al. (2013) (2012) al. (2012)
(2006) (2015) (2009)
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Table11

Contaminant Adsorption Capacity  Comment/Conditions | sotherm Reference
Phosphate 63.2mg d Raw Langmuir Li et al. (2006)
58.9 mg ¢ Heat activated at 700°C Langmuir
78.4 mg ¢ Acid activated with 0.25 M HCI Langmuir
2749 @ At 40°C, with initial concentration of 100 mg/L Lgmuir Ugurlu & Salman (1998)
20. mg ¢ Raw fly ash Langmuir Wu et al. (2006)
35.3mg & Salt treated zeolite synthesised from fly ash Langmuir
42. mg ¢ Raw fly ash Langmuir Chen et al. (2007)
HumicAcid 126.6 mg g zeolite synthesised from (high calcium) fly ash ~ Langmuir Li et al. (2011)
31.6mg g zeolite synthesised from (low calcium) fly ash ~ Langmuir
36.6 mg ¢ Raw, single pollutant system Langmuir Wang e{2008a)
455mg g Raw, all unburned carbon present Langmuir Wandh& 2007)
DOC 0.3mgg Hydrophobic acid fraction of DOC. Fly ash elutedangmuir Wei et al. (2011)

with methanol
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Table12

Contaminant Adsor ption Capacity Comment/Conditions I sotherm Reference
Phosphate 113.9 mg ¢ Raw Heat activated at 700°C Langmuir  Li et al. (2006)
345.5 mg ¢ Acid activated with 0.25 M HCI Langmuir
161.6 mg ¢ Langmuir
K=0.47 Acid activated with 2M HCI, experiment @ 30°CFreundlich Huang et al. (2008)
K=0.62 Acid activated with 2M HCI, experiment @ 40°CFreundlich
K=0.24 Raw, adsorption experiment @ 30°C Freundlich
K=0.33 Raw, adsorption experiment @ 40°C Freundlich
75.9mg ¢ Acid activated with 20% HCI Langmuir Pradhan et(4098)
58.1 mg § Neutralised and aggregated, 48 h study Langmuir peket al. (1998)
Nitrate 365.8 mg Acid activated with 20% HCI @ 40°C Langmuir  Cengeloglu et al. (2006)
117.8 mg @ Original red mud Langmuir
Ammonium 18 % removal efficiency Packed column N/A Lopeale(1998)

K: Freundlich adsorption capacity factor
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Table 13

Contaminant Adsor ption Capacity

Comment/Conditions | sotherm Reference

Ammonium K =449
K =1875

Nitrate 33.7 mg g
10.3mg &
18.6 mg &
55.8 mg ¢
6.2mg ¢

Phosphate  3.0mg ¢
200 mg ¢

51mgg

K =0.0001 L ¢

Activated carbon from coconut shell, at9H Freundlich  Boopathy et al. (2013)

5:3 Limestone:GAC mix Freundlich  Hussdimale (2007)

NaOH modified coconut shell powder Langmuir de aiet al. (2012)

ZnCl, activated coir pith (from coconut husk) Langmuir arasivayam & Sangeetha (2008)

Activated carbon from coconut shell, at pH 2-4  dyanuir Ohe et al. (2003)

Anion exchanger produced from coconut shell ~ Langmu Orlando et al. (2002)
Anion exchanger produced from coconut shell ~ Langmu Orlando et al. (2003)
5:3 Limestone:GAC mix Langmuir Hussain et al. (2D1
NaOH modified coconut shell powder Langmuir de aiet al. (2012)

ZnCl, activated coir pith (from coconut husk) Langmuir amhasivayam & Sangeetha (2004)

Activated carbon from coconut shell Frumkin Agraetal. (2011)

K: Freundlich adsorption capacity factor
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Table 14

Contaminant Adsorption Capacity = Comment/Conditions I sotherm Reference

Nitrate 55.6 mg ¢ Anionic sorbent prepared with rice husk Langmuir  atdd et al. (2012)
74.4mg ¢ Anion exchanger produced from rice husk Langmuir  rlao et al. (2002)
6.2mg ¢ Anion exchanger produced from rice husk Langmuir  rlao et al. (2003)
70.2mg ¢ Activated carbon prepared from rice husk Langmuir Zhang et al. (2013)

Phosphate 89.6% removal Chemically activated rice husk Nacsiied Yadav et al. (2015)
64.3% removal Raw rice husk Not specified

Ammonium  39.8 mg d Biochar prepared from rice husk Langmuir Kizitaet(2015)
2.6mg ¢ Rice husk charcoal Langmuir Han et al. (2013)
1.4mgg Activated carbon prepared from rice husk Pseudo- Zhu et al. (2012)

second order

Humicacid 45.5mg ¢ Activated carbon prepared from rice husk Langmuir Daifullah et al. (2004)

8.2mg ¢ Modified rice husk ash Langmuir Imyim & Prapalimgsi (2010)
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Table 15

Adsor ption Capacity

Comment/Conditions

|sotherm

Reference

Phosphate

19.6 mg g
17.3mg g
709 mg ¢

a:4.976 and3:0.0042

Initial P concentration of 1000 mg'L
Initial P concentration of 100 mg™L
Initial P concentration of 10 mg'L

Ordinary Portland cement

Not specified
Langmuir
Langmuir

Frumkin

Egemose et al. (2012)
Oguz et al. (2003)
Renman & Renman (2012)

Agyeile{2002)
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Table 16

Contaminant

Adsor ption Capacity

Comment/Conditions

| sotherm Reference

Nitrate

Phosphate

Ammonium

14.1mg g
18.2mg &
0.9mg ¢
112.4 mg g

35% removal

Brick with particle size <710 um
Brick with particle size <710 um
La(lll) loaded granular ceramic
Novel ceramic adsorbent

Broken brick as biofilter

Langmuir SelvargjiPushpavanam (2009)
Langmuir SelvargjiPushpavanam (2009)
Langmuir Chenle{2012)

Langmuir Zhao et al. (2013

Not specifieGavage & Tyrrel (2005)
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Table17

Contaminant Adsorption Capacity Comment/Conditions I sotherm Reference
Ammonium 5.4 mg g Biochar from maple wood, pH adjusted Langmuir Wanhgl. (2015b)
54.8 mg ¢ Biochar from mixed wood, 1400 mg "L Langmuir Kizito et al. (2015)
initially
5.3mg ¢ Untreated biochar from oak sawdust Langmuir Wara).€2015c¢)
Nitrate 8.9 mg ¢ Untreated biochar from oak sawdust Langmuir Wara).€2015c¢)
43.5mg ¢ Activated biochar from pine wood Langmuir Chintataal. (2013)
Phosphate 32mg g Untreated biochar from oak sawdust Langmuir Wara).€2015c¢)
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Table 18

Media Opportunities Advantages Disadvantages

Fly ash 17 Mt Nutrient, metal and humic acid removal Potential for metal leaching
Disadvantages may be mitigated by pretreatment

GGBS <18 M t used in Europe Limited research available olid8ication in water

Bayer residue

Coconut shell

Tea/Coffee wastes

Rice husk

Crushed concrete

Masonry

Wood waste

>2700 M t

Phosphorus and metal removal

>60 M t of coconut grown perMetal, dye and anion removal

annum

>5 M t of tea produced perMetal and cation removal

annum

>700 M t

25% of all C&D waste

30% of all C&D waste

2% of all C&D waste

Dye removal when pretreated
Metal and dye removal

Phosphorus and metal removal

Nutrient, metal and microbigikcal removal

Nutrient and metal removal

Potential for metal leaching
Potentratdataminant leaching
Expensive carbonipatiand activation

processes required

Expensive pre-treatments may be required

Expensive pre-treaiis may be required
otefial for contaminant leaching from
concrete constituents
Variation in raw material
\ation in raw material

Expensive pre-treatments may be required
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