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Abstract

Most integral membrane proteins, both in prokaryotic and eukaryotic cells, are co-translationally inserted into
the membrane via Sec-type translocons: the SecYEG complex in prokaryotes and the Sec61 complex in
eukaryotes. The contributions of individual amino acids to the overall free energy of membrane insertion of
single transmembrane a-helices have been measured for Sec61-mediated insertion into the endoplasmic
reticulum (ER) membrane (Nature 450:1026—1030) but have not been systematically determined for SecYEG-
mediated insertion into the bacterial inner membrane. We now report such measurements, carried out in
Escherichia coli. Overall, there is a good correlation between the results found for the mammalian ER and the
E. coli inner membrane, but the hydrophobicity threshold for SecYEG-mediated insertion is distinctly lower

than that for Sec61-mediated insertion.

© 2013 The Authors. Published by Elsevier Ltd. All rights reserved.

Introduction

Most inner membrane (IM) proteins in the model
bacterium Escherichia coli require the SecYEG
translocon for correct insertion into the membrane.’
The ribosome—nascent chain complex is first recog-
nized by the signal recognition particle, targeted to
the signal recognition particle receptor FtsY, and
finally transferred to SecYEG. During further chain
elongation, periplasmic parts of the polypeptide are
translocated across the IM with the help of the
peripherally associated SecA ATPase, while trans-
membrane a-helices (TMHSs) are released laterally
into the lipid bilayer.?

In previous studies, we have sought to identify the
pertinent sequence characteristics that drive the
integration of TMHs into the membrane of the
endoplasmic reticulum (ER) in mammalian and
yeast cells®® and into the mitochondrial IM.®
These studies have led to a detailed quantitative
understanding of how much an individual amino acid
X in position i in the TMH affects the overall
membrane-insertion efficiency, expressed as its

individual contribution (AG;(F',;,) to the overall apparent
free energy of membrane insertion of a polypeptide
segment (AGgpp). To date, only one comparable
study has been performed for bacterial IM proteins,
using a YidC-dependent, SecYEG-independent
model protein.” Thus, no quantitative data exists for
SecYEG-dependent insertion of TMHSs into the IM.
Given that the ER membrane and the bacterial IM
differ in terms of lipid composition, ° lipid asymmetry
between the two leaflets of the bilayer,'® and the
absence/presence of a membrane electrochemical
potential,'" it cannot be taken for granted that the
quantitative aspects of TM helix integration are the
same in the two systems.

To be able to quantitatively compare AGgp, values
between the mammalian ER and the bacterial IM, we
have undertaken a detailed analysis of how individual
amino acids affect AG,,, for SecYEG-dependent
membrane proteins in E. coli. Using a new mem-
brane-insertion assay developed specifically for E.
colilM proteins, we report AGap,, values for a library of
designed and natural hydrophobic polypeptide seg-
ments (H segments) inserted into a SecYEG-
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dependent host membrane protein. The results show
good agreement with the results obtained in the
mammalian ER. However, we find that the hydro-
phobicity threshold for membrane insertion is dis-
tinctly lower in E. coli, with possible implications for
topology prediction schemes and for heterologous
expression of mammalian proteins in bacterial hosts.

Results

Model protein and experimental setup

Our membrane-insertion assay is based on a new,
engineered version of the E. coli IM protein Leader

peptidase (Lep)—the same protein used in the ER
studies—that allows us to measure the insertion
efficiency into the IM of the same H segments that
we previously analyzed in the mammallan ER®**and
in a YidC-dependent E. coli IM protein.” Lep has two
N-terminal TMHs (TMH1, TMH2) and a large
periplasmic domain (the P2 domain). It is co-
translationally inserted into the IM, adopting a
topology W|th both the N- and the C-terminus in the
periplasm.'?'3 The short N-terminal tail is translo-
catedina Y|dC -dependent but SecA/SecY-indepen-
dent way, '*'® while the insertion of TMH2 and the
translocation of the P2 domain are strictly dependent
on SecA and SecY.' " In the new Lep version,
which we call Lep“®®Y, we have introduced two
hydrophobic segments in the P2 domain: an H
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Fig. 1. TM helix insertion assay. (a) Schematlc representation of the in vivo helix insertion assay, including Lep“2°Y I, T,
and Ts processing and degradatlon The Lep“2°" model protein contains two natural TM helices (TMH1, TMH2, black), an
engineered H segment (red), and a “reporter’” R segment corresponding to TMH2 in LacY (blue; the transmembrane part is
underlined in the amino acid sequence). The GlpG cleavage site in the R segment is indicated. The loop between TMH2
and the H segment is ~150 residues long, S|gn|f|cantl longer than the ~60 residues required for SecA-dependent
translocation.' (b) Representative Western blots: Lep LacY constructs with nLeu/(19 - n) Ala H segments (n = 0—4; lanes
1-6), with n = 0 and a stop codon in the GlpG cleavage site (lane 10) and with n = 0 and a mutated GlpG cleavage site in
the R segment (lane 11), were expressed in the E. coli strain MC1061. Lep-®°" constructs in lanes 7-9 were expressed in
the Keio strain JW5687-1 (AglpG757::kan). Note that the moblllty of full-length Lep“3°Y(T + I) increases slightly with the
hydrophobicity of the H segment. (c) Expression of Lep "™"2"R, in which the second TMH in Lep has been replaced by the R
segment, in strain MC1061.
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segment (approximately 150 residues downstream
of TMH2) and a “reporter” TMH (R segment;
approximately 40 residues downstream of the H
segment and 45 residues upstream of the C-
terminus) (Fig. 1a). The R segment is identical with
the second TMH in the E. coli IM protein lactose
permease (LacY) and has previously been shown to
be cleaved by the intramembrane rhomboid prote-
ase GIpG if taken out of its natural context and
inserted into the IM with an Ny —Ci, orientation."

The idea behind the assay is that an efficiently
inserting H segment will cause the R segment to be
inserted with an inverted N;,—C,; orientation in the
IM (or possibly confine it to the cytoplasm) and
hence prevent its cleavage by GIpG yielding the
“inserted” full-length form Lep~2°"(l); in contrast, if
the H segment is translocated across the IM, the R
segment will mtegrate in the No.—Ci, orientation
lyielding the ‘“translocated” form Lep-2“Y(T)] and
subsequently be cleaved by GIpG [yielding
the “small translocated” form Lep-°Y(Ts)]. By
comE)arlng the relative fractions of Lep-®°"(l) and
Lep-2°"(Ts) molecules, we can determine the
degree of membrane insertion of the H segment.

All constructs were expressed in the E. coli strain
MC1061 for 75 min at 37 °C, after which cells were
directly lysed and analyzed by NuPAGE and
Western blotting with a Lep antiserum. Cells
expressing different Lep"°" forms grow at compa-
rable rates up to at least 90 min (Fig. S1a), and
75 min is an adequate time to ensure that Lep-2¢Y
expression, processing, and degradation reach
steady state, as evidenced by the constant fraction
over time of processed Lep-®°Y(Ts) for a construct
with a OL/19A H segment (Fig. S1b). Results for a set
of H segments of increasing hydrophobicity are
shown in Fig. 1b. The R segment |s efficiently
cleaved (91% cleaved form) in a Lep-2°Y construct
with a weakly hydrophobic H segment of composi-
tion OL/19A (lane 2); despite the 9% uncleaved
protein, we assume that this H segment is complete-
ly translocated across the membrane because a
construct with a strongly polar lysine residue placed
in the middle of the poly-Ala H segment (composition
1K/18A; see Supplementary Table S1) gives almost
the same amount of uncleaved protein (13%). As the
hydrophobicity of the H segment is increased by
changing one or more Ala residues to Leu, the
degree of cleavage is progressively reduced (lanes
3-5), and there is essentially no Lep-**Y(Ts) seen
for a 4L/15A H segment (lane 6). As expected, no
cleavage is seen for the construct with a OL/19A H
segmentin a glpG™ strain (lanes 8 and 9) or for a OL/
19A construct with a mutated GIpG cleavage site
(SD - LH)"?in the R segment (lane 11). As a further
control, we replaced Lep TMH2 with the R segment
such that the latter should insert with an N;,—Cgut
orientation; in this case, no cleavage of the R
segment is seen (Fig. 1c¢), showing that GlpG

cleaves the R segment only when it spans the IM
in an No,+—C;, orientation.

The different Lep"®°Y forms are rather unstable,
and a range of smaller degradation products
accumulate for LeELaCY Ts) (Fig. 1b, lanes 2 and
10) but not for Lep-2°¥(l) (lane 6). These fragments
are not seen in a glpG™~ background (lane 8) and are
largely absent in a degP~ background (Fig. S2),
suggesting that the cleavage product generated by
GlpG is further degraded by the periplasmic prote-
ase DegP. To be able to accurately calculate the
fractions of Lep-2°" with inserted and non-inserted H
segment, we measured the degradation rates of the |,
T, and Ts forms by pulse-chase experiments W|th
radlolabeled Lep“®°Y constructs: to generate pure
Lep-2°¥(l), we used a very hydrophobic H segment
of the composition 7L/12A; to generate pure
Lep“®°Y(T), we used the mutant version of the R
segment that cannot be cleaved by GlpG together
with the weakly hydroehoblc OL/19A H segment; and
to generate pure Lep-? , We introduced a stop
codon at the GlpG cleavage site in the R segment
and used the weakly hydrophobic OL/19A H seg-
ment. As seen in Fig. S3, the degradation of the |, T,
and Ts forms can be weII approxmated as first-order
reactions A(f) = A(0) e™ ", where A(1) is proportional
to the amount of LepLaCY I, T, or Ts relative to the
outer membrane protein OmpA (which is stable over
the course of the chase) at time t, and r is the
degradation rate. We found that the three degradation
rates are different (r,=0.013s™', rr=0.019s7",
rrs = 0.007 s™'; see Fig. 1a) (Fig. S3) and could
further determine rT F7s = = 0.059 s~ from the Western
blot data for Lep-®Y with a OL/19A H segment see
Materials and Methods). Notably, Lep™°"(Ts) is
significantly more stable than the other forms, wh|ch
may at least in part explain why there is little or no
increase in the amount of Lep Y(T + 1) correspond-
ing to the decrease in Lep LacY(Ts) as the hydropho-
bicity of the H segment is increased (Fig. 1b). From
these degradation rates, and assuming steady-state
conditions, we corrected the Western blot quantitation
as described in Materials and Methods to obtain the
fraction of molecules with membrane-inserted H
segment, f, and with translocated H segment, f =
1 — #. Finally, we calculated the apparent free energy
of membrane insertion of the H segment AGap, =
—RTIn(f/f), where Ris the gas constant and Tis the
absolute temperature (T = 310 K).

Hydrophobicity threshold and derivation of a
biological hydrophobicity scale for SecYEG-
mediated insertion of H segments into the IM

Using the Lep-®*“Y-based assay, we measured
AGgpp for a set of 19-amino-acid long H segments,
separated from the rest of the protein by GGPG...
GPGG flanking tetrapeptide sequences intended to
break any secondary structure and ensure that all H
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segments are retained in a fixed position relative to
the IM.® AG,, values have previously been
obtained for the same or very similar H segments
in the mammalian and yeast ER membrane,®>2° for
a YidC-dependent proteln in the E. coli IM,” and in
the mitochondrial IM.® All H segments analyzed here
are listed in Supplementary Table S1.

We first measured AG,p, for a series of H
segments of composition nL/(19 — n)A (Figs. 1b
and 2). We found that AG,,, depends linearly on n
(Fig. 2b), and AGgpp = 0 kcal/mol (i.e., the H
segment is inserted into the IM in 50% of the
molecules) is obtained for nsge, = 2.0. This is
significantly lower than what has been measured
for Sec61-mediated TM helix insertion into the
mammalian ER membrane (nsqe, = 3.5°) and a little
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Fig. 2. Determination of the threshold for membrane
insertion. (a) Fraction of membrane-translocated Lep-®Y
(fr) plotted as a function of the number of Leu residues (n) in
the H segment. fr was calculated from Western blot
quantitations of Lep-®*Y(l + T) and Lep“®®Y(Ts) and cor-
rected as described in Materials and Methods. Uncorrected
data, that is, the measured fraction of Lep-2°Y(Ts), are
shown in light gray. (b) Hydrophobicity threshold for
insertion of H segments into the IM of E. coli. AGapp =
- RTIn(f/fr), plotted as a function of n. Standard errors are
indicated. The linear fit is calculated from the n = 1-3 data
points, since reliable AG,pp values can only be obtained
when 0.15 < f < 0.85.

higher than the value found for YidC- medlated TMH
insertion into the E. coli IM (Nsge, = 1.57).

Since AGgpp depends linearly on n, and smce there
is little positional dependence in the AG25, values for
non-polar amino acids,* we can calculate the
contribution of a single alanine and a single leucine
to the overall AG,p, of the H segment usmg the data in
Fig. 2b: AGapy=-1.1n+22=n AGsp + (19 - 1)
AG% = n (AGgpp — AGhpp) + 19 AGhyp, Which gives
AGapp = 0.11 kealimol and AGhyp = - 0.9 kcal/mol.

To estabhsh a full “b|olog|cal” hydrophobicity
scale® for the bacterial IM, we further measured
the contribution to AGapp of each of the 20
naturally occurring amino acids (X) when placed
in single copy in the middle of an H segment of
composition nL/(18 — n)A/1X. For each of the
amino acids, we adjusted n such that the mea-
surement was carried out near the point of
maximum sensitivity of the assay, that is, at
AG,p, ~ 0 keal/mol. Assuming that the contribution
of the GGPG...GPGG flanking regions can be
ignored,® we calculated the contribution of amino
aC|d X (AG;‘pp) to the overall AGyp, from the relation

f o =AGapp — N AGy, (18—n) AGhy,, (with
AGapp - ~0.99 kealimol and AGSpp = 0.11 kcal/mol).

The results are shown in Fig. 3a. There is a
good overall correlation with the AGp vaIues
measured in the mammalian ER membrane®
(slope = 1.0; R?=0.9) (Fig. 3b) with non-polar
residues having negative AGx,, values and polar
and charged residues having positive values. It is
worth pointing out that, as in the ER, Pro strongly
reduces membrane insertion (AGhp, = 2.7 kcal/mol),
presumably reflecting the importance of an a-helical
structure of the H segment when inserted into the
membrane.

The AGJ,, values measured for SecYEG- and
YidC-mediated TM segment insertion into the
bacterial IM also correlate rather well (slope =1.7;
R? = 0.8) (Fig. 3c). Of note, however, is that the
AGZ,, values are more similar for the non-polar and
weakly polar residues (dotted line; slope = 0.8;
R? = 0.8) than for the strongly polar and charged
residues (Q, N, H, E, D R, and K), which have
considerably larger AG2,, values on the YidC scale
compared to the SecYEG scale. The simplest
interpretation is that there is an energetic difference
between insertion of polar/charged residues through
the YidC and Sec-type translocases, but this needs
to be confirmed by further studies.

Positional dependence of AG2p,

The contribution of polar and charged amino acids
to AG,pp as measured in the ER system depends
strongly on the position of the residue in the H
segment.* To obtain comparable data for the E. coli
IM, we measured AG,,, for H segments with the
composition nL/(18 - n)A/AX (X =D, E, H, K, N, P,
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segments of the general composition nLeu/(18 — n)Ala/1X (X being any of the natural amino acids, with nchosen such that
—0.5 kecal/mol < AGgpp < 0.5 keal/mol) were expressed in E. coli MC1061. fr values were calculated from Western blot
quantitations with subsequent correction as described in Materials and Methods. AGprp values (averages of >5
independent experiments; standard errors are indicated) were calculated as described in the main text. (b) Correlation
between AGX,, values measured for SecYEG-mediated TMH integration into the IM and for Sec61-mediated TMH
integration into the mammalian ER.2 (c) Correlation between AG;(pp values measured for SecYEG- and YidC-mediated”
TM helix integration into the IM of E. coli. The value for lysine on the YidC scale given in Fig. 3 of Ref. 7 has been corrected
to AG;(pp = 6.2 kcal/mol (cf., Fig. 2 in the same paper). The dotted line shows the linear correlation including only the non-
polar and weakly polar residues (L, I, F, V, M, A, C, W, Y, T, G, S, and P).

Q, R, W, Y), with the X residue placed in positions 1,
3,6, 10, 14, 17, and 19. AGX,, depends strongly on
position for polar and charged amino acids, and the
aromatic amino acids tryptophan and tyrosine are
most favorable for membrane insertion when located
near the ends of the H segment (Fig. 4). Overall,
these findings agree quite well with the results for the
mammalian ER, except for AGap, ", which appears
to have a stronger positional dependence in the ER
than in the IM.

AG;, for marginally hydrophobic TMHs in E. coli
IM proteins of known three-dimensional structure

Due to the lower hydophobicity threshold for H
segment insertion (Fig. 2) and the differences found
for both the hydrophobicity scale (Fig. 3) and the

single amino acid scans (Fig. 4) when comparing the
E. coli IM and mammalian ER data, we measured
A Gy, for a collection of natural TMHs in the bacterial
IM and compared the results with AG,pp values for
the same TMHs previously measured in the ER
system.

Twelve “marginally hydrophobic” TMHs (i.e.,
TMHs with a predicted AGgp,p, > 1.4 kcal/mol accord-
ing to the “AG predictor’*) from bacterial membrane
proteins of known three-dimensional structure were
previously tested for insertion into the ER mem-
brane, and 11 were found to have AG,p, > 0.9 kcal/
mol.?" Interestingly, and in agreement with the lower
hydrophobicity threshold for membrane insertion in
the IM, all 11 TMHs had an appreciably lower AGgp,
(between —0.5 and 0.5 kcal/mol) in the E. coli IM
(Fig. 5), although only one (CyoC TMH4) inserted
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Fig. 4. Positional dependence of AG;(pp- Selected amino acids (X = D, E, H, K, N, P, Q, R, W, and Y) were “scanned”
along the H segment. Ala residues in positions 1, 3, 6, 9, 14, 17, and 19 were replaced by an X residue in an H segment
with composition nLeu/(19 — n)Ala where nwas chosen such that —0.5 kcal/mol < AGgp,, < 0.5 keal/mol with the given X
residue located in position 10. Lep-2°" harboring the H segments were expressed and f was quantified from Western blots
with subsequent correction as described in Materials and Methods. AGa,, values were calculated as described in the main
text (averages of >4 independent samples; standard errors are indicated). Broken lines show comparative data obtained
for Sec61-mediated integration of H segments into mammalian rough microsomes.*

efficiently; this TMH also had the lowest measured
AGgpp value in the ER system.

Discussion

The bacterial SecYEG and the eukaryotic Sec61
translocons are closely related in sequence and
structure, and both mediate membrane translocation
of soluble proteins and membrane insertion of
integral membrane proteins.? But how closely
related are the sequence characteristics that deter-
mine the efficiency of membrane integration of a
TMH in the two systems? Quantitative data exist for
insertion into the ER membrane of mammalian and
yeast cells®® and for YidC-mediated insertion into
the E. coli IM,” but not for SecYEG-mediated

insertion. We have now established a new in vivo
assay, based on cleavage of a “reporter” TMH by the
rhomboid protease GIpG, to measure the SecYEG-
mediated insertion of polypeptide segments (H
segments) into the IM of E. coli.

Analyzing a large collection of Leu/Ala-based H
segments in this new E. coli system, we find a good
correlation between the contributions of the 20
natural amino acids to the total apparent free energy
of membrane insertion, AG,pp,, between the SecYEG
and Sec61 systems (Fig. 3b). However, we also find
some quantitative differences between the two
systems. Most importantly, the hydrophobicity
threshold for membrane insertion is significantly
lower in the bacterial SecYEG system compared to
the Sec61 system (Fig. 2). This is also apparent from
the fact that certain “marginally hydrophobic” TMHs
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found in membrane proteins of known structure
insert better in the SecYEG system than in the
Sec61 system (Fig. 5). The positional dependence of
the contributions of individual polar and charged
residues to the overall AG,p, is similar when

comparing the SecYEG and Sec61 systems (Fig. 4).

There is also a good correlation between the
SecYEG and YidC data, especially for the non-polar
and weakly polar residues (Fig. 3c). It appears,
however, that strongly polar and charged residues
have considerably larger AGX,, values in the YidC
system, possibly pointing to a difference in the way
transmembrane segments interact with the two types
of translocons. One obvious difference between the
SecYEG translocon on the one hand and the Sec61
and YidC translocons on the other is the involvement
of SecA in the former. Structural studies suggest that
SecA can help induce opening of the lateral gate in
SecY,?? which could conceivably affect the hydro-
phobicity threshold for membrane insertion.

Nevertheless, the overall similarity between the
results obtained with the Sec61, SecYEG, and YidC
systems suggests that the underlying physical
chemistry is the same, in line with the idea that the
primary determinant for membrane insertion can be
described in terms of a thermodynamic partitioning
of the TMH between the translocon and the
surrounding membrane.?® Given this similarity, it is
also not surprising that topology prediction methods
perform rather well across the board;?* however, the
small but significant differences between the sys-
tems that we have uncovered suggest that some
marginal improvement in prediction performance
might be gained by training predictors separately
on membrane proteins that use one or the other
translocon. Finally, it is possible that some of the

difficulties experienced when attempting to produce
eukaryotic membrane proteins in E. coli may reflect
these underlying, albeit minor, differences in the
workings of the Sec61 and SecYEG translocons.

Materials and Methods

Enzyme and chemicals

All chemicals were from Sigma-Aldrich, except glycerol
from Merck and [3*S]methionine from PerkinElmer. All
restriction enzymes were from Fermentas, the Phusion
DNA polymerase for amplification of H segment oligonu-
cleotides was from Finnzyme, and the QuikChange™ Site-
Directed Mutagenesis kit and the deoxyribonucleotides
were from Stratagene. The anti-rabbit antibody was from
GE Healthcare.

Construction of Lep-*°Y

Lep“2° was generated from a modified version of the

lepB gene in the pGEM1 vector that contained an Spel
restriction site in Lep codons 226—227 and a Kpnl
restriction site in codon 253.%* Restriction sites for Sacl
(amino acid residues 268/269) and Apal (amino acid
residues 279/280) were introduced by site-directed muta-
genesis. DNA encoding LacY TMH2 was PCR amplified
from the chromosomal lacY gene using primers that were
complementary to its N- and C-terminal flanks with
overhangs containing a Sacl restriction site (N-terminal)
and an Apal restriction site (C-terminal) and cloned into
Lep“®°Y. The whole gene was then PCR amplified with
primers complementary to the N- and C-termini of Lep-a°Y
with overhangs containing an Ncol restriction site (N-
terminal) and a Smal restriction site (C-terminal) and
subsequently cloned into the pING vector,® which was
previously modified with a new Ncol restriction site.
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Double-stranded oligonucleotides encoding H seg-
ments either were PCR amplified from previously designed
Lep constructs®* with primers complementary to the
GGPG/GPGG flanks including a Spel (N-terminal) or
Kpnl (C-terminal) restriction site or were generated by
annealing two pairs of complementary oligonucleotides
(18—48 nucleotides long) with overlapping overhangs
followed by annealing of these pairs.®2® Double-stranded
oligonucleotides encoding TM helices of membrane pro-
teins of known structure (Fig. 5) were PCR amplified with
primers complementary to their N- and C-termini with
overhangs containing a Spel restriction site (N-terminal) or
a Kpnl restriction site (C-terminal) followed by the
tetrapeptide sequence of GGPG, GPGG, respectively. All
H segment-encoding sequences were ligated into the
Spel- and Kpnl-digested pING-Lep-2°Y vector.

The introduction of a stop codon in the cleavage site of
LacY TMH2 and the silencing of the cleavage site in LacY
TMH2 were done by site-directed mutagenesis.

Expression and Western blot analysis

Single colonies of freshly transformed E. coli MC1061
with a pING-Lep“°Y construct (or in a few cases, the glpG~
or degP~ strains described in the main text) were grown as
3-ml cultures in LB (100 pg ampicillin/ml) overnight at
37 °C and diluted 20-40 times with fresh LB (100 pg
ampicillin/ml), and 1-ml cultures were grown for 90 min at
37 °C (to an OD, _ g0 Of 0.35-0.4). Lep-2°Y expression
was then induced by adding 10 pl of a fresh 20% L-
arabinose solution. If not otherwise noted, cells were
incubated for an additional 75 min at 37 °C, whereafter a
200-pl culture sample was centrifuged at 10,600gfor 2 min.
The pellet was resuspended in 120 pl of sample buffer
[140 mM Tris—HCI, pH 8.8, 14% glycerol, 4% SDS, 50 mM
DTT, 3.5 mM ethylenediaminetetraacetic acid (EDTA), and
0.02% bromophenol blue], boiled for 10 min at 95 °C,
cooled to room temperature, and incubated with 2 pl of
DNase1 for 10—15 min at 37 °C. Samples were then
directly subjected to NUPAGE (12% Bis/Tris gels) followed
by dry protein transfer onto a nitrocellulose membrane
using the iBlot system (InVitrogen). Membranes were
developed using a standard Western blot protocol [primary
antibody: Lep antiserum (rabbit), dilution 7:20,000; sec-
ondary antibody: anti-rabbit horseradish peroxidase, dilu-
tion 1:16,000]. Membranes were imaged using a Fuji LAS-
1000 system and Image reader for LAS-1000 Pro (Fujifilm,
Tokyo, Japan) and visualized using the Image Reader
V1.8J/Image Gauge V 3.45 software (Fuijifilm). A two-
dimensional intensity profile of each gel lane was gener-
ated using the MultiGauge software, and the multi-
Gaussian fit program from the Qtiplot software packagei
was used to calculate the peak areas of the protein bands
of interest in the two-dimensional intensity profile.

Pulse-chase assay

E. coli strain MC1061, transformed with a pING-Lep-2°Y
construct, was grown overnight at 37 °C in M9 minimal
media supplemented with 0.4% D-fructose, 0.1 mM CaCl,,
100 pg/ml thiamine, 2 mM MgSO,, amino acid mix minus
methionine, and 100 pg/ml ampicillin and then back-diluted
to an OD, - ggo Of 0.1 with fresh M9 minimal media and

grown as a 4.5-ml culture for 4.5 h at 37 °C. Lep-®Y
expression was then induced by adding 45 pl of a fresh
20% L-arabinose solution. Proteins were labeled for exactly
1 min with [3®S]methionine (10 pCi/ml culture) 5 min after
induction and the labeling was then quenched with a vast
excess of cold methionine (40 pl of 200 mM methionine per
milliliter of culture). Samples of 500 pl of culture were taken
at the time points indicated in Fig. S3, and proteins directly
precipitated in 10% trichloroacetic acid, first on ice and then
at 7 °C overnight. The sample for time point O was taken
separately at the same time by labeling for exactly 1 min
with [*®S]methionine (10 uCi/ml culture) followed directly
by protein precipitation in 10% trichloroacetic acid on ice.

Precipitated proteins were pelleted for 5 min at 20,0009
at 4 °C, washed with 800 pl of acetone, and pelleted again
for 5 min at 20,0009 at 4 °C, and the pellet was dried for
10 min at 95 °C. After resuspension in Tris=SDS (10 mM
Tris—HCI, pH 7.5, and 2% SDS), samples were boiled for
10 min at 95 °C and subsequently centrifuged for 5 min at
20,000g. The supernatant was transferred into 650 pl of
TSET (50 mM Tris—HCI, pH 8, 150 mM NaCl, 0.1 mM
EDTA, and 2% Triton TX-100) containing 5 pl of Pansorbin
solution and incubated for 30 min on ice, and Pansorbin
was then removed by a 1-min centrifugation at 8600g.
Supernatant (330 pl) was incubated with OmpA antiserum
(0.5 pl) and 330 pl with Lep antiserum (1.5 pl) for 40 min
on ice, supplemented with 15 pl of Pansorbin, and rotated
overnight at 7 °C. Pansorbin was then washed three times
(1: 10 mM Tris—HCI, pH 7.5, 150 mM NaCl, 2 mM EDTA,
and 0.2% Triton TX-100; 2: 10 mM Tris—HCI, pH 7.5,
500 mM NaCl, 2 mM EDTA, and 0.2% Triton TX-100; 3:
10 mM Tris—HCI, pH 7.5), resuspended in 20 pl of sample
buffer, boiled for 5 min at 95 °C, and finally subjected to
SDS-PAGE. Gels were dried and visualized in a Fuji FLA-
3000 phosphorimager using the Image Reader V1.8J/
Image Gauge V 3.45 software and quantified as described
under Expression and Western blot analysis.

Calculation of f; values corrected for degradation rates

Consider the reaction scheme in Fig. 1a. The total
production rate of Lep-2°Y is P, of which a fraction f, goes
into Lep™2°¥(l) and a fraction f goes into Lep“°Y(T). At
steady state, we have:

% = frP—rr[Tl=rr1e[T] = 0 2)

Solving for fi/frin terms of the rate constants and [T + 1)/[Ts]
(which can be measured from the Western blots) gives:

[T+1] I

L B
(Ts] (rr+ rr-Ts)

fro rrse(rm + FrTs)

(4)

f| = 1—f'|':>f‘|' =

1 T I
%jL ] (wnh a givenin Eq.(4))
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All rate constants except rr_ts were measured by pulse-
chase analysis (Fig. S3). rr_ts was obtained from Eq. (3)
and the Western blot data for Lep-®°Y with a OL/19A H
segment, which we assume is fully translocated (i.e.,
[T+11=[T]):

5 = N -E—r . [TS}
T-Ts — ITs [T]*Ts [T+1]

Taking [Ts)/[T + 1] from Fig. 1b (lane 2) and with rrg =

0.007 s~ (Fig. S3c), we obtain rr_rs = 0.059 s~".
Supplementary data to this article can be found online at

http://dx.doi.org/10.1016/j.jmb.2013.04.025
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