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Abstract
Misfolding and aggregation of the intrinsically disordered protein α-Synuclein (αS) in Lewy body plaques are
characteristic markers of late-stage Parkinson's disease. It is well established that membrane binding is
initiated at the N-terminus of the protein and affects biasing of conformational ensembles of αS. However, little
is understood about the effect of αS on the membrane lipid bilayer. One hypothesis is that intrinsically
disordered αS alters the structural properties of the membrane, thereby stabilizing the bilayer against fusion.
Here, we used two-dimensional 13C separated local-field NMR to study interaction of the wild-type α-Synuclein
(wt-αS) or its N-terminal (1–25) amino acid sequence (N-αS) with a cholesterol-enriched ternary membrane
system. This lipid bilayer mimics cellular raft-like domains in the brain that are proposed to be involved in
neuronal membrane fusion. The two-dimensional dipolar-recoupling pulse sequence DROSS (dipolar
recoupling on-axis with scaling and shape preservation) was implemented to measure isotropic 13C chemical
shifts and 13C–1H residual dipolar couplings under magic-angle spinning. Site-specific changes in NMR
chemical shifts and segmental order parameters indicate that both wt-αS and N-αS bind to the membrane
interface and change lipid packing within raft-like membranes. Mean-torque modeling of 13C–1H NMR order
parameters shows that αS induces a remarkable thinning of the bilayer (≈6 Å), accompanied by an increase in
phospholipid cross-sectional area (≈10 Å2). This perturbation is characterized as membrane annealing and
entails structural remodeling of the raft-like liquid-ordered phase. We propose this process is implicated in
regulation of synaptic membrane fusion that may be altered by aggregation of αS in Parkinson's disease.

© 2013 Published by Elsevier Ltd.
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Introduction

Parkinson's disease is a debilitating neurological
disorder that increasingly afflicts the aging populations
of industrialized countries.1 The symptoms of the
disease arise from neuronal cell death and are
associated with a drastic impairment of the dopami-
nergic system.2 A characteristic trait of Parkinson's
disease is misfolding and aggregation of the protein α-
Synuclein (αS). This intrinsically disordered protein
undergoes a series of membrane-dependent confor-
mational transitions3 that may be implicated in
neurodegeneration. Ultimately, αS aggregates into
fibrillar plaques—known as Lewy bodies—that accu-
mulate in dopaminergic neurons within the substantia
nigra. Yet, the biological function of αSand its definitive
0022-2836/$ - see front matter © 2013 Published by Elsevier Ltd.
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connection to Parkinson's disease remain largely
unknown.4,5 One hypothesis for the function of αS is
that it stabilizes synaptic membranes against fusion in
the complex processes of neurotransmission that go
awry during Parkinson's disease.6,7 The current study
aims to further investigate the structural correlates of
this proposal, thus adding to our understanding of αS
interactions with the raft-like neuronal membranes.
Chemical signaling in neurons is regulated by fusion

of synaptic vesicles with the active zone of the nerve
terminal plasmamembrane.8 The proteinαS is known
to exhibit specific interactions with the presynaptic
membranes,9–11 including small synaptic vesicles,
and the presynaptic active zone. A hallmark feature of
these membranes is compositional heterogeneity12

involving both lipid species and phase behavior of the
J. Mol. Biol. (2013) xx, xxx–xxx
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Fig. 1. Membrane model shows
biophysical mechanism for how αS
interacts with synaptic vesicle lipids.
αS is a presynaptic neuronal protein
found in Lewy bodies that occur in
Parkinson's disease. The proposed
annealing of raft-like membrane
defects by αS is depicted. (a) Raft-
based membranes constitute a het-
erogeneous system that is non-
ideally mixed on the nanometer
scale. Clusters of POPC lipids
(purple) or EYSM lipids (green)
with cholesterol (Chol; brown) co-
exist with mixed POPC/EYSM/Chol
regions, giving rise to local mem-
brane defects. (b) Natively unfolded
αS binds to raft-like defects due to
sphingomyelin and cholesterol.
Annealing by αS involves transient

association with interfacial sites, which perturbs stabilizing lipid packing interactions. Changes in the hydrophobic
membrane environment entail remodeling of the liquid-ordered (lo) phase of POPC and EYSM with cholesterol, yielding a
liquid-disordered (ld) phase with a smaller bilayer thickness (DB).

2 Annealing of Raft-Like Membranes via αS
Q2
bilayers. In particular, a key feature promoting the
interaction of αS with membranes is the presence of
detergent-insoluble microdomains (rafts)—coexis-
tence regions of liquid-disordered (ld) and liquid-
ordered (lo) lipid phases—that are favored by the
presence of cholesterol, sphingomyelin, and unsatu-
rated lipids.13–15 Binding of αS to raft-like membranes
and curved single-phase bilayers is initiated by
association of the N-terminal consensus sequence
(N-αS) with the membrane interface, leading to a coil–
helix conformational transition of the protein.16 Asso-
ciation of αS to suchmembranes yields an inhibition of
vesicle fusion that involves a general restructuring of
the lipid membrane by modulating membrane
curvature,17 so as to remove lateral phase defects in
compositionally or topologically heterogeneous
systems.7,16,18–20 These observations underlie our
hypothesis that αS fulfills a regulatory function in
synaptic neurotransmission by structurally remodel-
ing neuronal raft-like membranes (Fig. 1).
In this article, we focus on the interaction of wild-

type α-Synuclein (wt-αS) and N-αS with a canonical
raft-like mixture comprising 1-palmitoyl-2-oleoyl-sn-
glycero-3-phosphocholine (POPC), egg yolk sphin-
gomyelin (EYSM), and cholesterol (Chol) using solid-
state NMR spectroscopy.21 We characterize the
membrane lipid behavior upon association of αS by
two-dimensional (2D) separated local-field (SLF)
NMR under magic-angle spinning (MAS). The SLF
experiment DROSS (dipolar recoupling on-axis with
scaling and shape preservation)22 permits site-
specific and simultaneous measurements of 13C
isotropic chemical shifts and 13C–1H residual dipolar
couplings (RDCs) of the headgroup, backbone, and
acyl chains of the membrane phospholipids.21,23–28

An important aspect is that isotopic enrichment is not
Please cite this article as: Leftin, A. et al., Solid-State 13C NMR Revea
the Intrinsically Disordered Protein α-Synuclein, J. Mol. Biol. (2013)
required, thus providing a distinct advantage over
complementary solid-state 2H NMR experi-
ments.29,30 Using our approach, the isotropic 13C
chemical shifts and RDCs monitor association of
both truncated N-αS and wt-αS with the lipid
membrane interface. We show that this experiment
reveals large structural changes in the hydrocarbon
region of the membrane. The 13C–1H RDCs are
evaluated in terms of 13C–1H segmental order
parameters (SCH) using a simple mean-torque
model for bilayer structural properties.31 Both the
full-length protein and the N-terminal αS peptide elicit
disorder in the phospholipid hydrocarbon chains,
resulting in thinning of the raft-like lipid membranes.
Binding of αS acts oppositely to cholesterol because
it anneals the ordered raft-like membranes. In the
context of Parkinson's disease, raft-like membrane
lipids may play an important role in regulatory
neurotransmitter release. The remodeling or anneal-
ing of the raft-like phase observed by solid-state 13C
NMR addresses a molecular mechanism suggested
by previous research, whereby αS stabilizes mem-
branes against fusion. A corollary is that misfolding
and aggregation of αS into toxic oligomers may lead
to defective membrane remodeling and therefore
misregulation of membrane fusion giving rise to
symptoms of Parkinson's disease.

Results

2D SLF 13C NMR experiments probe membrane
lipids at natural isotopic abundance

The 2D 13C–1H correlation experiment DROSS
targets membrane components exclusively at 13C
ls Annealing of Raft-Like Membranes Containing Cholesterol by
, http://dx.doi.org/10.1016/j.jmb.2013.04.002
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3Annealing of Raft-Like Membranes via αS
Q2
natural isotopic abundance. MAS allows one to
investigate site-specific features and phase charac-
teristics of complex biomembrane systems, without
the need of isotopic labeling as required in 2H NMR
spectroscopy.32–39 Thus far, the DROSS experi-
ment has been implemented for the benchmark
saturated glycerophospholipid DMPC,22 for mix-
tures of the symmetric monounsaturated glycero-
phospholipid DOPC with cholesterol,25 and for
polyunsaturated lipid species.39 To further test the
performance of DROSS on the asymmetric glycer-
ophospholipid POPC and the sphingolipid EYSM,
we recorded 2D spectra and extracted the 13C NMR
isotropic chemical shifts and 13C–1H RDC line-
shapes for these components in raft-like membrane
lipid mixtures. Figure 2a shows the structures and
carbon assignments for the POPC and EYSM
phospholipids. The respective single-component
data sets obtained at 48 °C are shown in Fig. 2b
Please cite this article as: Leftin, A. et al., Solid-State 13C NMR Revea
the Intrinsically Disordered Protein α-Synuclein, J. Mol. Biol. (2013)
and c where both phospholipids are in the ld phase.
This temperature is ≈10 °C above the solid-ordered
(so) to ld phase transition temperature TM of EYSM
bilayers. The DROSS experiment is restricted to
experiments conducted above the TM of lipid
membranes due to the inefficiency of the INEPT
magnetization transfer in so systems. The chemical
shift spectra report on the nonpolar bilayer interior
(0–45 ppm), the polar aqueous interfacial region
(50–80 ppm), and sites of unsaturation of the acyl
chain (115–135 ppm). The large chemical shift
dispersion allows unique assignments to be made
for the entire phospholipid molecules, which is not
the case in 2H NMR spectroscopy. Large differences
in breadth of the RDC lineshapes for each of the
isotropic chemical shift positions are observed for
both POPC and EYSM phospholipids. Note that the
RDCs of EYSM are larger than those of POPC, as a
consequence of greater acyl chain ordering and the
Fig. 2. SLF 13C NMR investi-
gates raft-forming EYSM and
POPC phospholipids at natural
isotopic abundance. (a) Chemical
structures of the glycerophospholi-
pid POPC having palmitoyl (p) and
oleoyl (o) chains, and sphingolipid
EYSM with fatty acyl (f) and
sphingosine (s) chains. 2D dipo-
lar-recoupled NMR spectra ob-
tained under MAS at 48 °C are
shown for (b) POPC and (c) EYSM
bilayers. Spectral planes are
assigned to unsaturated (115–
135 ppm), headgroup plus back-
bone (50–80 ppm), and acyl chain
(0–40 ppm) resonances. Both
phospholipids are in the liquid-
disordered (ld) phase. Site-specific
differences of 13C isotropic chem-
ical shifts and 13C–1H RDCs indi-
cate the applicability of using the
DROSS pulse sequence to follow
these spectral features in complex
raft-like ternary membranes at nat-
ural 13C isotopic abundance.
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4 Annealing of Raft-Like Membranes via αS
Q2
higher order–disorder transition temperature TM
(POPC, −2 °C; EYSM, 38 °C). Interactions respon-
sible for the difference in the chain melting transition
temperatures are attributed to van der Waals
contacts and hydrogen bonding, in accord with 2H
NMR experiments.30,40–42

Raft-like phase coexistence in ternary lipid
membranes is evident from solid-state
13C NMR spectroscopy

An equimolar mixture of the phospholipids POPC
and EYSM with cholesterol is useful as a
paradigm for raft-forming membranes. This ternary
membrane exhibits biphasic, fluid–fluid (liquid-or-
dered, lo; liquid-disordered, ld) phase coexistence
over broad temperature and compositional ranges,
according to fluorescence spectroscopy and small-
angle X-ray scattering.43–46 In addition, solid-state
2H NMR has resolved the spectral signatures of
cholesterol-enriched POPC and EYSM in distinct
microenvironments.30,42

We performed the DROSS experiment to further
characterize the behavior of the raft-like membrane
Please cite this article as: Leftin, A. et al., Solid-State 13C NMR Revea
the Intrinsically Disordered Protein α-Synuclein, J. Mol. Biol. (2013)
lipids in aqueous dispersions prior to investigating
the αS-ternary interaction system. Figure 3a shows
the 2D SLF spectrum obtained at 48 °C for the raft-
like mixture. The 13C–1H RDC lineshape pro-
jections and isotropic 13C NMR chemical shifts
from the 2D SLF experiment are shown in Fig. 3b.
In the 13C solid-state NMR experiments, the
chemical shift interval between 29 and 32 ppm is
associated with the (CH2)n acyl chain segments.
The broad spectral region in this instance reports
on the heterogeneous raft-like microenvironments
of the ternary lipid mixture. These domains are
attributed to locally enriched pools of POPC or
EYSM with cholesterol.14,43,47–49 To substantiate
the compositional heterogeneity of this system, next
we obtained reference 13C NMR chemical shift
spectra for binary POPC/Chol, EYSM/Chol, and
POPC/EYSM membranes corresponding to the
microdomain environments. These binary mixtures
provide a basis for interpreting the chemical shifts
and for assessing the mixing behavior of the lipids in
the ternary system.40,41,50–55

In order to demonstrate the sensitivity of the 13C
NMR experiment to compositional phase behavior,
Fig. 3. Dipolar-recoupled 13C
NMR spectra of POPC/EYSM/Chol
raft-like membranes. (a) Site-re-
solved 2D DROSS NMR spectra
are shown for raft-like POPC/
EYSM/Chol (1:1:1) lipid membranes
at 48 °C. Spectral planes include
unsaturated (115–135 ppm), head-
group plus backbone (50–80 ppm),
and acyl chain (0–40 ppm) reso-
nances of the phospholipids and
cholesterol. (b) Experimental
13C–1H residual magnetic dipolar
lineshapes and theoretical fits are
shown together with 13CNMRchem-
ical shift projections for raft-like
membranes and resonance assign-
ments (cf. Fig. 2a).
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5Annealing of Raft-Like Membranes via αS
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we show in Fig. 4 the 13C chemical shift spectra in
the range 15–45 ppm for these systems, corre-
sponding to the central bilayer region. Additional
spectral details for the mixed lipid systems are found
in Figs. S1–S3 of Supplementary Data, and tabula-
tions are given in Tables S1–S8. The binary EYSM/
POPC system exhibits a spectrum resembling the
superposition of single-component spectra, consis-
tent with the presence of demixed sphingolipid and
glycerolipid components.43 The binary POPC/Chol
and EYSM/Chol spectra exhibit distinct polymethy-
lene regions that arise from heterogeneous phos-
pholipid–phospholipid and phospholipid–cholesterol
interactions within the lo sphingolipid and glyceroli-
pid pools. Linear combination of the binary spectra
reproduces the salient features of the ternary
spectrum recorded at 48 °C. Here, the POPC and
EYSM polymethylene chemical shift regions yield
significant contributions to the ternary membrane
spectrum. This observation suggests that spectral
overlap of the (CH2)n region is due to chemical shift
nonequivalence arising from heterogeneous phos-
pholipid–phospholipid and phospholipid–cholesterol
microenvironments of the POPC and EYSM lipid
systems.
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Fig. 4. Isotropic 13C NMR chemical shift spectra
demonstrate heterogeneity of raft-like membranes. 13C
INEPT-MAS NMR spectra are for single-component
POPC and EYSM, as well as mixtures of EYSM/Chol
(1:1), POPC/Chol (1:1), EYSM/POPC (1:1), and ternary
POPC/EYSM/Chol (1:1:1) mixtures obtained at 48 °C.
Note that the sum of binary spectra (1:1:1 linear
combination) reproduces the raft-like POPC/EYSM/Chol
(1:1:1) ternary spectrum. The spectral agreement supports
the presence of cholesterol-enriched POPC and EYSM
domains in the compositionally heterogeneous bilayer.

Please cite this article as: Leftin, A. et al., Solid-State 13C NMR Revea
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Natural abundance 13C chemical shifts indicate
selective interactions of αS with raft-like
lipid membranes

It has been reported that αS interacts preferentially
at biomembrane interfaces,56–58 leading to structur-
ing of the protein due to a coil–helix transition.
Isotropic 13C chemical shifts recorded in the 2D
DROSS correlation spectra at 48 °C presented in
Fig. 5a show that monomeric αS causes a significant
spectral change, both within the membrane and at
the membrane interface of the ternary POPC/EYSM/
Chol (1:1:1) system. Notably, our experiment does
not resolve 13C chemical shifts for natural abun-
dance sites of N-αS and wt-αS in the protein/lipid
ratio used (1:250). Further, the INEPT polarization
transfer of the DROSS pulse sequence was found to
be ineffective for the majority of cholesterol sites,
precluding meaningful analysis of these resonances.
Therefore, we focus solely on POPC and EYSM in
this system. Striking differences between the 29–
32 ppm (CH2)n region in the raft-like mixture alone
(Fig. 3b) and in the presence of wt-αS (Fig. 5b) are
observed. In this range, the chemical shift overlap is
greatly reduced, giving a spectrum that resembles
that recorded for the lipids in binary membranes
(Fig. 4). These chemical shift changes are nearly
identical for both the wt-αS and N-αS species (see
Figs. S3 and S4 of Supplementary Data). Site-
specific evidence for interfacial association is pro-
vided by a unique change at the α position of the
choline headgroup, common to both POPC and
EYSM phospholipids, in the presence of the wt-αS
(Fig. 5b). We observe two peaks at 59.8 and
59.5 ppm, suggesting two magnetically or chemical-
ly distinct populations. The resonances may be
tentatively assigned to αS-bound and unbound
fractions of the lipid pool. An estimate of the lifetimes
for these two states is obtained from 1/Δδ = 26 ms,
where Δδ is the difference in chemical shift of the two
resonance lines. The choline α carbon position is
proximal to the phosphate group and is the site of
phospholipase D conversion of glycerophospholi-
pids to phosphatidic acid and choline. Such a site-
specific marker of the interaction of wt-αS with the
membrane may be a corollary of the phospholipase
D inhibition by αS shown previously in biochemical
studies.59 However, this α-splitting does not occur
with the N-αS peptide, suggesting that interactions
between the protein and peptide with the membrane
interface are not equivalent, which can be ascribed
to the reduced binding partition coefficient of the
small peptide compared to the full-length protein.16

Differences in the degree and lifetime of this specific
interfacial association can arise from contributions of
the unstructured C-terminus, additional lysine-en-
riched repeats of the wild-type protein, and the
hydrophobic sequence domain referred to as non-
amyloid beta component (residues 61–95). The
ls Annealing of Raft-Like Membranes Containing Cholesterol by
, http://dx.doi.org/10.1016/j.jmb.2013.04.002
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Fig. 5. SLF NMR reveals αS
interactions with raft-like lipid mem-
branes. (a) 2D 13C chemical shift
dipolar coupling correlation spectra
for raft-like POPC/EYSM/Chol
(1:1:1) membrane lipids containing
wt-αS (protein/lipid molar ratio
1:250) at 48 °C. Spectral planes
correspond to unsaturated sites
(115–135 ppm), headgroup plus
backbone (50–80 ppm), and satu-
rated carbon segments of phospho-
lipids and cholesterol (0–40 ppm),
and exhibit pronounced differences
compared to raft-like spectra in
Fig. 3. (b) Isotropic 13C chemical
shifts (below) and 13C–1H dipolar
lineshapes (above) extracted from
2D planes. Resonance assign-
ments correspond to Fig. 2a.

6 Annealing of Raft-Like Membranes via αS
Q2
latter has a critical role for nucleation of the
aggregation process,60 which has been shown in
solid-state MAS NMR measurements to involve
binding to lipid membranes.61

RDCs and order parameters from solid-state
13C–1H NMR spectroscopy reveal membrane
perturbation by αS

From the 2D DROSS spectra, we extracted slices
corresponding to RDC lineshapes of the chemically
shifted resonance positions. The experimental and
fitted RDC spectra in Fig. 6a and b are shown for
selected headgroup and acyl chain positions,
respectively. Note that the narrow RDC lineshapes
of the phosphocholine headgroup increase in
breadth in the presence of αS, while the acyl chain
RDCs decrease. The interfacial RDC lineshapes are
well above the isotropic limit, and increases of the
RDCs indicate that the angular averaging of these
segmental positions is reduced, or that the average
conformation is changed through interfacial associ-
ation. Another indication of this interaction is the
baseline oscillations of the headgroup RDC line-
shapes (Fig. 6a). Periodic artifacts arise from
Please cite this article as: Leftin, A. et al., Solid-State 13C NMR Revea
the Intrinsically Disordered Protein α-Synuclein, J. Mol. Biol. (2013)
truncation of the free induction decay prior to Fourier
transformation when long spin–spin relaxation times
of the segments are present. The long relaxation
times reflect greater isotropic motion of the head-
group sites. Upon interaction with αS, the truncation
oscillations are diminished in frequency, suggesting
an increased local-field magnetic dipolar contribution
to the transverse nuclear spin relaxation from
peptide and protein binding. The residual magnetic
dipolar couplings of the raft-like membrane acyl
chains without αS are characteristic of liquid-
ordered, cholesterol-rich membrane phases, as
seen in corresponding solid-state 2H NMR studies
that afford higher resolution of individual segments
within the chain region.30 In contrast to the increase
of headgroup RDCs, for these chain positions, the
presence of both the wt-αS protein and N-αS peptide
leads to a reduction of the breadth of the RDC
linewidth, suggesting that disordering of the chains
occurs. This hitherto unobserved change accompa-
nying the binding of αS is addressed in detail below.
To further characterize the structural perturbation

at all resolved phospholipid positions and evaluate
the local changes at the nonpolar hydrocarbon,
backbone, and headgroup regions caused by αS, we
ls Annealing of Raft-Like Membranes Containing Cholesterol by
, http://dx.doi.org/10.1016/j.jmb.2013.04.002
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Fig. 6. Experimental 13C–1H re-
sidual dipolar couplings indicate
wt-αS and N-αS interactions with
raft-like membrane phospholipids.
(a) Experimental 13C–1H DROSS
dipolar lineshapes and theoretical
fits for phosphocholine α, β, and γ
headgroup positions of POPC (P)
and EYSM (E) at 48 °C in the
presence of wt-αS and N-αS (pro-
tein/lipid molar ratio 1:250). The
increase in RDCs for headgroup
positions is due to αS interaction.
(b) RDCs of palmitoyl (p), oleoyl (o),
fatty acyl (f), and sphingosine (s)
chains of POPC and EYSM in raft-
like membranes in the presence of
wt-αS and N-αS at 48 °C. Note that
for the acyl chains, there is a
decrease in RDCs due to mem-
brane interaction with αS.

7Annealing of Raft-Like Membranes via αS
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summarize in Fig. 7 the RDCs as order parameter
profiles of |SCH| versus carbon position. These
profiles allow for site-specific evaluation of peptide
and protein-induced changes to phospholipids that
may be probed in both the SLF and 2H NMR
experiments.28,62–64 In general, cholesterol order
parameters of ring carbons are also expected to
change as a function of membrane environment,
though in the DROSS experiment, we could not
accurately measure these values due to inefficiency
of the INEPT polarization transfer at rigid cholesterol
sites. Focusing on the phospholipids, the absolute
13C NMR order parameter profiles of EYSM and
POPC show that in the presence of αS, the
interfacial SCH values increase while the acyl chain
SCH values decrease. The observation of these
changes substantiates that αS interacts with the
biomembrane interface and leads to disordering of
the hydrocarbon chains, oppositely to the effect of
cholesterol in the raft-like system (see below).
Please cite this article as: Leftin, A. et al., Solid-State 13C NMR Revea
the Intrinsically Disordered Protein α-Synuclein, J. Mol. Biol. (2013)
To interpret the changes in |SCH| for the raft-like
membranes, we obtained the absolute order param-
eter profiles for single-component and binary phos-
pholipid/phospholipid and phospholipid/Chol
membranes. The large differences of the POPC
and EYSM single-component order parameters are
due to the phase behavior and chemical properties
of the lipids (see Supplementary Data). Mixing of
POPC and EYSM causes an increase in the values
of |SCH| for POPC and a decrease for EYSM. In the
single-component and binary POPC/EYSM disper-
sions, the SCH values indicate that the membrane
lipids are in the ld phase. For binary POPC/Chol and
EYSM/Chol membranes, cholesterol acts to con-
dense the lipids, yielding similar large order param-
eters for both POPC and EYSM in lo phases (Fig. 7).
The absolute order parameters for membrane lipids
in the raft-like ternary system are similarly large,
indicating cholesterol-enriched lo lipid pools. Com-
pared with these lipid membrane order parameter
ls Annealing of Raft-Like Membranes Containing Cholesterol by
, http://dx.doi.org/10.1016/j.jmb.2013.04.002
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Fig. 7. Segmental order profiles
characterize annealing of raft-like
phospholipid ternary mixture by αS.
Order parameters |SCH| (absolute
magnitude) are plotted against car-
bon position for (a) POPC and (b)
EYSM in (▼) ternary POPC/EYSM/
Chol (1:1:1), (◄) POPC/EYSM/Chol
(1:1:1) + N-αS, and (►) POPC/
EYSM/Chol + wt-αS membrane
mixtures at 48 °C (protein/lipid
molar ratio 1:250). Interfacial αS
association with lipid sites produces
large-scale structural changes
throughout the hydrophobic acyl
chain region. Order parameters are
compared to liquid-ordered (△)
phospholipid/Chol (1:1) mixtures.
The results support αS-induced
changes from liquid-ordered to liq-
uid-disordered states.
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profiles, the phospholipid chains in raft-like mixtures
containing wt-αS and N-αS exhibit order parameters
trending towards lower |SCH| values characteristic of
the ld phase. As noted above, this decrease is
opposite to the increase of phospholipid order
parameters caused by cholesterol. A possible
cause of the change in order parameters is a
disordering of the raft-like lo membrane hydrocarbon
environment, leading to an ld-like phase, which is
also supported by the change in appearance of the
chemical shift spectrum of the ternary lipid system in
the presence of αS or N-αS. Thus, we propose that
αS antagonizes the condensing and ordering effect
that cholesterol has on phospholipids through a
disordering mechanism presented in the Discussion.
The change of interfacial order parameters lends

further insight into the disordering function of the
protein. For the phosphocholine headgroup α, β, γ
segments, the order parameters increase in the
presence of wt-αS and N-αS, indicating that both the
N-terminal peptide and full-length protein interact
with the membrane interface.16,58,65,66 Moreover,
the order parameters for the glycerol sn-1, sn-2, and
sn-3 positions (Fig. 7a), as well as the resolved
sphingosine S4 and S5 segments (Fig. 7b), increase
in the presence of both N-αS and wt-αS. As an
estimate of the depth of αS penetration into the
membrane, the headgroup thicknesses for glycer-
olipids and sphingolipids are 9 Å and 7 Å, respec-
tively. These thicknesses can be approximately
separated into phosphocholine (≈3–4 Å) and back-
bone (≈7–9 Å) depths. In the case of wt-αS, the
change of order parameter is greatest at the
zwitterionic phosphocholine headgroup, suggesting
Please cite this article as: Leftin, A. et al., Solid-State 13C NMR Revea
the Intrinsically Disordered Protein α-Synuclein, J. Mol. Biol. (2013)
that the protein is approximately localized to the
upper b3–4 Å region of the bilayer. For N-αS, order
parameters of the glycerol backbone and the
segmental sites proximal to interfacial hydrogen
bonding sites of EYSM are affected more than the
headgroup, indicating further penetration to b7–9 Å
into the bilayer interface. Such changes at the lo
membrane interface may involve disruptions of
hydrogen bonding for EYSM and close packing of
lipids for both POPC and EYSM. These interactions
contribute to the raft-like heterogeneity of the ternary
membrane,47–49 and their disruption can facilitate
alteration of van der Waals hydrophobic contacts in
the bilayer core leading to ld states.

The intrinsically disordered protein αS remodels
raft-like membranes containing cholesterol

Local molecular perturbations as discussed above
can also give rise to larger-scale changes in
membrane structure. These changes may be char-
acterized according to two structural quantities
derived from the segmental SCH order parameters
obtained at uniquely resolved chemical shift sites of
the phospholipid hydrocarbon chains using the
mean-torque model.31 The first quantity is the
average cross-sectional area 〈AC〉 and the second
is the volumetric hydrocarbon thickness per phos-
pholipid chain DC. For a given phospholipid type, the
value of 2DC gives the overall thickness of the
membrane bilayer DB, neglecting headgroup contri-
butions DH for the monolayer leaflets. In addition, the
total interfacial cross-sectional area per phospholipid
may be estimated as 2〈AC〉 = 〈A〉, since order
ls Annealing of Raft-Like Membranes Containing Cholesterol by
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parameters of both chains at the membrane inter-
face are treated equivalently in the NMR data
reduction. Any perturbation affecting hydrogen
bonding, electrostatics, or van der Waals interac-
tions of the membrane lipids yields a change in SCH
and will alter the structural quantities accordingly.
The 〈AC〉 and DC values are presented in Fig. 8a and
b, respectively, for the αS-containing raft-like mix-
tures, as well as the ternary raft-like mixture at 48 °C
(see Table S13). The 〈AC〉 andDC results for binary lo
and ld phases at 48 °C are also shown to assist in
understanding the structural perturbation of the raft-
like membrane caused by αS interaction.
By applying the mean-torque model,31 the cross-

sectional areas determined for each phospholipid in
the raft-like membrane mixture are found to be 〈A〉 =
57.6 Å2 for POPC and 〈A〉 = 56.4 Å2 for EYSM. The
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Fig. 8. Mean-torque model yields average cross-sec-
tional areas and hydrocarbon thickness for POPC and
EYSM lipids showing αS-induced annealing of raft-like
membranes. (a) Average chain cross-sectional area 〈AC〉
and (b) volumetric hydrocarbon thickness DC for indicated
mixtures at 48 °C. Both DC and 〈AC〉 are calculated for
individual acyl chains, that is, EYSM fatty acyl (N-
palmitoyl) and sphingosine chains, and POPC palmitoyl
and oleoyl chains. Structural parameters for binary POPC/
EYSM (1:1), POPC/Chol (1:1), and EYSM/Chol (1:1)
membrane support the proposed lo–ld structural change
of ternary POPC/EYSM/Chol (1:1:1) membranes in the
presence of wt-αS and N-αS. Thinning of DC and an
increase of 〈AC〉 in the αS-perturbed ternary system
characterize the membrane annealing process.
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slightly smaller cross-sectional area for EYSM
reflects larger contributions to inter-lipid packing
due to hydrogen bonding and favorable hydrophobic
matching between saturated chains. These cross-
sectional areas per phospholipid compare closely
with 2H NMR values determined for perdeuterated
sn-1 palmitoyl chains30 and also monolayer mea-
surements obtained at 30 mN/m surface tension for
the same raft components.67,68 For POPC in the raft-
like system, DC values of 15.6 Å and 17.1 Å are
found for the palmitoyl (16:0) and oleoyl (18:1,
cis-Δ9) chains, respectively, at 48 °C (Fig. 8b). The
fatty acyl chain of EYSM (N-palmitoyl, 16:0, pre-
dominant species ≈ 86%69) in the ternary mem-
brane has aDC value of 15.9 Å.We calculatedDC for
the sphingosine chain assuming an effective 16:1,
trans-Δ2 chain giving DC = 15.4 Å at 48 °C in the
ternary mixture. By considering symmetric bilayer
leaflets, and including estimates of headgroup and
backbone dimensions DH, the mixed membrane
system has nonequivalent bilayer thickness contri-
butions of DB ≈ 52.2 Å for POPC and for
DB ≈ 45.8 Å for EYSM. This reflects the larger
glycerol backbone thickness compared with the
sphingosine backbone, as well as the longer 18:1,
cis-Δ9 hydrocarbon chain length of the oleoyl chain
compared with the 16:1, trans-Δ2 sphingosine chain
of EYSM. These bilayer thicknesses and cross-
sectional areas point to an equilibrium distribution of
cholesterol-enriched, condensed complexes of
lipids70 in liquid-ordered phases, similar to the binary
phospholipid/cholesterol systems presented in
Fig. 8, which possess different phospholipid hydro-
phobic thicknesses.
For raft-like membrane phospholipids in the

presence of N-αS, the value of DC for POPC is
reduced to 14.3 Å for the palmitoyl chain and 15.7 Å
for the monounsaturated oleoyl chain. Hydrocarbon
thicknesses of the EYSM fatty acyl and sphingosine
chains are 14.1 Å and 13.8 Å, respectively. The
corresponding bilayer thickness estimates are found
to be DB = 49.4 Å for POPC and DB = 42.2 Å for
EYSM at 48 °C. An overall reduction of bilayer
thickness is accompanied by an increase in cross-
sectional area per phospholipid. We find that for
POPC, the cross-sectional area per phospholipid is
〈A〉 = 62.8 Å2 at 48 °C, which is similar to 〈A〉 =
63.4 Å2 in the case of EYSM. These relatively large
values indicate that peptide association with the
membrane perturbs the stabilizing interactions be-
tween lipids, giving rise to thinned bilayers and
disordered lipids.
Likewise, the wt-αS protein changes the mem-

brane thickness and cross-sectional area per phos-
pholipid of POPC and EYSM. At 48 °C, the values of
DC for the nonequivalent chains of POPC are 14.3 Å
(palmitoyl) and 15.7 Å (oleoyl), whereas values of
DC for EYSM are 12.9 Å and 12.5 Å for the fatty acyl
and sphingosine chains. The bilayer thickness DB =
ls Annealing of Raft-Like Membranes Containing Cholesterol by
, http://dx.doi.org/10.1016/j.jmb.2013.04.002

http://dx.doi.org/10.1016/j.jmb.2013.04.002


530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

10 Annealing of Raft-Like Membranes via αS
Q2
49.4 Å for POPC is the same as that determined for
the N-αS system, while for EYSM, DB = 39.8 Å,
indicating further perturbation. A cross-sectional
area of POPC 〈A〉 = 62.8 Å2 is found, as in the
N-αS system, while the even more pronounced
decrease of EYSM bilayer thickness is accompanied
by an increase of cross-sectional area to 〈A〉 =
69.4 Å2. These results point to an additional
interaction of the wt-αS protein with EYSM. This is
attributed to differences in the biophysical properties
of the glycerolipids and sphingolipids. One differ-
ence is the ability of wt-αS to undergo interfacial
interactions at sphingosine backbone sites through
electrostatics and hydrogen bonding. Such interac-
tions are not available to POPC at the glycerol
backbone. Nevertheless, the structural changes
observed for both phospholipids show that signifi-
cant disordering of the bilayers occurs. Large cross-
sectional areas per phospholipid and small hydro-
carbon thicknesses are found that resemble the
binary POPC/EYSM membranes presented in
Fig. 8. The mechanism by which disruption of local
molecular sites gives rise to these structural
rearrangements involves membrane annealing and
is discussed below.
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Discussion

Annealing of raft-based heterogeneity in lipid
membranes by αS

A molecular understanding of Parkinson's disease
requires delineation of αS interactions with biomem-
branes implicated in the processes of neurodegen-
eration. The protein αS undergoes multiple binding
modes, principally initiated at the amphipathic N-
terminus,16,66 with small unilamellar vesicles that are
synaptic vesicle models,16,56,57,66,71–77 as well as
large vesicles that mimic the plasmamembrane.73,78

In the physiological system, both of these neuronal
membrane targets are highly heterogeneous, which
is attributed to differences in membrane composition
and phase.72,79–81 This heterogeneity is especially
pronounced for raft-like mixtures where cholesterol
interacts differently with POPC and EYSM,48 result-
ing in compositionally distinct microdomains, albeit
in a similar ordered phase.43 Lateral compositional
heterogeneity gives rise to defects within the
membrane that facilitate protein binding, as indicat-
ed by a membrane-initiated coil–helix transition of
both wt-αS and N-αS.16,18,19 These defects expose
headgroup and backbone sites to solvent and
protein.82 The associated RDCs and SCH order
parameter values for headgroup and backbone sites
for the POPC/EYSM/Chol (1:1:1) membrane mixture
yield striking changes through binding of αS to the
bilayer.
Please cite this article as: Leftin, A. et al., Solid-State 13C NMR Revea
the Intrinsically Disordered Protein α-Synuclein, J. Mol. Biol. (2013)
The proposed restructuring of the raft-like mem-
branemixture observed using solid-state 13CNMR is
shown schematically in Fig. 1. Here, EYSM and
POPC exist in condensed ordered regions in
association with cholesterol. In the raft-like mem-
brane mixture, interfacial interactions between lipids
and cholesterol prevent lateral diffusion and self-
mixing of lipids,83 leading to a compositionally
heterogeneous lateral distribution in so-called do-
mains. Nanometer-scale demixing of locally enriched
POPC/Chol and EYSM/Chol ordered complexes,
which is unresolved in fluorescence microscopy of
this raft-like system,43 is indicated by different values
of the hydrocarbon thickness and average cross-
sectional area of the phospholipids. This separation
is attributed to local differences in interfacial electro-
statics, hydrogen bonding, and differences in hydro-
phobic volume and length between the membrane
components, for example, hydrocarbon mismatch.
Interfacial defects between these complexes likely
involve mixed POPC/EYSM/Chol regions as indicat-
ed in Fig. 1.

Antagonism of αS with cholesterol in raft-like
membranes

We propose that αS counters the condensing
effect of cholesterol within the raft-like membrane
through annealing of the lipid regions. This is a
process whereby a material is softened and homog-
enized through external perturbation, leading to a
lower energy state. Disruption of stabilizing lipid
packing interactions promotes lateral lipid diffusion84

and disorders the membrane system. Such a
rearrangement is suggested by the increase in
average cross-sectional area and reduction of
hydrocarbon thickness as the lipid domains are
disrupted. Moreover, the chemical shift spectra
reveal a homogenization of hydrophobic environ-
ment of the membrane. We propose that the
annealing likely involves αS–lipid interactions with
the negatively charged phosphodiester moiety of the
zwitterionic phosphocholine headgroup and partially
negative hydrogen-bond acceptor sites of the sphin-
gomyelin backbone. These sites can promote tran-
sient association of the protein and peptide with the
membrane, leading to the site-specific 13C chemical
shift and RDC changes of the headgroup and
backbone sites of the phospholipids. Additional
interactions with interfacial hydrogen bonding cho-
lesterol sites may play a role in the attraction of αS to
the membrane interface, but these effects are not
directly observed in our experiments due to the
inefficiency of the INEPT magnetization transfer in
the DROSS pulse sequence. We have shown
previously that amphipathic N-terminal membrane
binding initiates a protein conformational change.16

Our NMRobservations also show that while the N-αS
peptide inserts to a greater extent into themembrane,
ls Annealing of Raft-Like Membranes Containing Cholesterol by
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wt-αS causes a more pronounced perturbation of the
raft-like membrane environment, due to differences in
partition coefficient of the two species related to
additional interaction sites on the wt-αS protein. It is
possible that deep insertion of peptides or proteins
within the hydrocarbon bilayer may cause increases
of segmental order and lead to erroneous structural
conclusions regarding bilayer integrity. However, in
our measurements, we resolve an increase of head-
group and backbone order parameters while hydro-
carbon chain order reduces upon peptide and protein
interaction. Therefore, further structural analysis
using these hydrocarbon chain order parameters is
warranted. The mean-torque results provide esti-
mates of the bilayer structural dimensions, thereby
identifying a striking shift of coexisting lo phase
regions to a more ld-like phase in the raft-like
membrane. Such effects are not unexpected, since
as an amphipathic protein16,85 αS shares this feature
in common with various antimicrobial peptides.62

These peptides also perturb the membrane interface
and induce changes in the hydrophobic membrane
center.86–89 In general, the disruption of stabilizing
interfacial interactions and compositional homogeni-
zation enables membrane thinning, with a concom-
itant increase of phospholipid cross-sectional area
that can modulate spontaneous membrane
curvature.90–93 While these remodeling properties of
the membrane are not specific to αS, it is likely that in
the context of synaptic membranes and neurotrans-
mission, such interactions may play a significant role.
The site-specific 13C NMR results show that

annealing in raft-like membranes by αS involves
interfacial lipid interaction and removes so-called
defects. This is consistent with the hypothesis that αS
eliminates interfacial fusion sites associated with
compositional heterogeneity, thus reducing the
probability of fusion events. This function is sug-
gested by our in vitro results and is demonstrated in
recent in vivo studies, where the inhibition of raft-like
mitochondrial membrane fusion has been shown in
cultured cells and Caenorhabditis elegans.7 Addi-
tional biochemical evidence suggesting that αS plays
a role in exocytotic membrane fusion comes from the
observation of specific association of the C-terminus
of αS with a critical subunit of the SNARE fusion
complex (synaptobrevin), in conjunction with αS N-
terminal membrane interaction.94 The protein–lipid
interaction assists in SNARE complex assembly,94

thereby facilitating subunit tethering to lipid vesicle
membranes. The process is highly dependent on the
presence of arachidonic acid,95 a polyunsaturated
fatty acid precursor to many intracellular and extra-
cellular signaling molecules. It is interesting to note
that the plasma-membrane-associated SNARE fu-
sion complex requires raft-like membranes enriched
in cholesterol and sphingomyelin.13,15 Localization
and function of the protein complex are determined
by the balance of liquid-disordered and liquid-
Please cite this article as: Leftin, A. et al., Solid-State 13C NMR Revea
the Intrinsically Disordered Protein α-Synuclein, J. Mol. Biol. (2013)
ordered phases96 that in light of our results can be
modulated by αS binding.

Conformational plasticity of αS in neural
function and dysfunction

Importantly, the conformational plasticity of αS is
likely to be critical to its function in membrane lipid
fusion and neurodegeneration. Fusion events are
highly dynamic, whereby the protein is required to
respond rapidly and reversibly to changes in
membrane phase,19 shape,78 and electrostatic
environment.16 Such interactions have been identi-
fied as contributing to the biasing of conformational
ensembles of αS. Our results reveal membrane
perturbations caused by αS that further emphasize
the importance of raft-like, compositionally hetero-
geneous membranes as an important target for this
intrinsically disordered protein.11 Not only are the
structural states of the protein perturbed in this
interaction, but the properties of the membrane are
also changed. We find that such an interaction
occurs with raft-like membrane mixtures through
specific association with interfacial lipid sites, which
propagates large-scale structural deformation
throughout the hydrophobic acyl chain region.
These physical changes may modulate fusion, either
directly through changes in the membrane strain and
lipid distribution91,97 or indirectly by altering lateral
lipid mobility that in turn influences membrane
protein localization and organization. In this context,
the inherent flexibility of αS interaction with biomem-
branes can be altered by protein aggregation into
toxic oligomeric species, eventually leading to
impairment of neuronal signaling. The relation of
protein plasticity and biomembrane remodeling is an
important aspect that can aid in understanding
neurological dysfunction implicated in the etiology
of Parkinson's disease. How such membrane-
dependent mechanisms are related to the aggrega-
tion propensity of αS and neurodegeneration and
whether similar mechanisms are operative in other
neurodegenerative disorders such as Alzheimer's
disease are important topics for future research.
Materials and Methods

Sample preparation

POPC and EYSM [predominant species N-(palmitoyl)-
sphing-4-enine-1-phosphocholine] were from Avanti Polar
Lipids Inc. (Alabaster, AL). Cholesterol was procured from
Sigma-Aldrich (St. Louis, MO). Monomeric wt-αSwas a gift
from Drs. Frits Kamp and Christian Haass, University of
Münich, Germany, and the N-αS peptide (1–25) was from
Primm Biotech, Inc. (Cambridge, MA). Multilamellar lipid
vesicle dispersions were prepared from lyophilized powder
hydrated with 2H2O at pH ≈7 (Cambridge Isotopes,
ls Annealing of Raft-Like Membranes Containing Cholesterol by
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Cambridge, MA). Additional buffering was not used, thus
avoiding salt-screening effects on the αS–lipid interac-
tions. Peptides and proteins were co-added at a low 1:250
molar ratio of N-terminal equivalents of αS to total lipid, so
as to limit protein aggregation and study changes of the
lipid membranes caused by the protein in its monomeric
state. We have shown previously16 that binding of the
protein and of the N-terminal peptide to small unilamellar
vesicles is saturated (99% and 97%, respectively) at a total
molar ratio of 167 lipids per protein (peptide). A direct
determination of thermodynamic binding constants using
multilamellar systems and the 1:250 protein/lipid ratio
described in this article was not feasible, but is likely on the
order of that observed previously. The multilamellar
vesicle dispersion was then subjected to 3–5 freeze–
thaw–mixing cycles. Lipid samples were tested for ester
hydrolysis before and after the experiments by thin-layer
chromatography with CHCl3/MeOH/H2O (65:30:5), fol-
lowed by charring with 40% H2SO4 in EtOH.
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Solid-state NMR spectroscopy

Solid-state MAS NMR experiments were conducted
using a narrow bore 11.7-T AVANCE-I spectrometer
system (Bruker BioSpin Corporation, Billerica, MA). The
SLF experiment DROSS22 was implemented with the
Bruker Topspin software platform. A triple-channel MAS
NMR probe (DSI-733; Doty Scientific Inc., Columbia, SC)
was used for all experiments. Samples were loaded in
40-μL sealing cells and placed in 4-mm thin-wall zirconium
rotors. Radio frequency pulses for 1H and 13C channels
were adjusted to exactly the same duration, 3.5 μs for the
90° pulses. Dipolar recoupling at 8 kHz MAS spinning
frequency was achieved with a chemical shift offset of ε =
0 and anisotropy scaling of χp = 0.393.22,98 Rotor-syn-
chronized sampling of the indirect dimension (t1) was
implemented using the States method with a total of 64 to
128 points.22 The sampling of the direct time dimension (t2)
was achieved using 8192 points recorded with an interval
of 10 μs under 50-kHz 1H SPINAL-32 decoupling.99

Recycle times were 3 s, with 500–5000 transients aver-
aged for each t2 value, giving total experiment times
ranging from 0.5 to 5 days. The rotor spin rate was
controlled to ±2 Hz using a Doty Scientific Inc. spin-rate
controller. Temperatures reported are accurate to ±1 °C.
The 13C NMR chemical shifts were referenced to TMS
(external).
Fourier transformation of the t1 and t2 traces was

conducted using the Bruker Topspin software and ana-
lyzed using Sparky.100 A 10-Hz exponential broadening
was applied to the t2 domain data while a 50- to 250-Hz
Gaussian apodization was applied in the F1 frequency
domain, following zero-filling to 128 points and Fourier
transformation of the t1 dimension. Chemical shift assign-
ments were based on standard additivity and stereochem-
istry relations contained in the ChemDraw (PerkinElmer
Informatics Inc.) database that assumes isotropic condi-
tions and does not include the possibility of residual
anisotropic shifts due to incomplete averaging under MAS.
Magnetic dipolar couplings were extracted from the F1
recoupled lineshapes either by direct inspection of peak-
to-peak splittings or by lineshape simulations.22,25 Fits to
13C SLF-DROSS magnetic dipolar lineshapes were
generated for 13C–1H spin systems using Topspin and
Please cite this article as: Leftin, A. et al., Solid-State 13C NMR Revea
the Intrinsically Disordered Protein α-Synuclein, J. Mol. Biol. (2013)
Matlab (MathWorks, Natick, MA) by assuming an axially
symmetric Pake lineshape.101,102 The 1H offset and
chemical shift anisotropy were taken to be zero,22 as
justified by the experimental lineshapes. The extracted
RDC values were interpreted as 13C–1H NMR segmental
order parameters and were calculated from the relation
SCH = ΔνD/χDχp = 1/2〈3cos2β − 1〉, where ΔνD is the
measured RDC, χD = (−γHγCħ/2π)〈r−3〉 is the magnetic
dipolar coupling constant (20,395 Hz) for the 13C–1H bond
evaluated at the θ = 90° orientation of the lineshape (Pake
powder pattern), and χp = 0.393 is the pulse sequence
scaling factor.22 An equilibrium averaged internuclear
13C–1H distance of 〈r−3〉−1/3 = 1.14 Å corrected for dy-
namic effects103 was assumed. The values of the
magnetic dipolar couplings were found to be consistent
over repeated experiments, with random errors being
outside of the three significant figures permitted by the
calculation of segmental order parameters.

Phospholipid structure calculations

The volumetric hydrocarbon thickness per acyl chain DC
and average cross-sectional area per phospholipid chain
〈AC〉 were evaluated from the segmental order parameters
SCH using the mean-torque structural model.31,104 Specif-
ically, the order parameters for C3 of the palmitoyl and
oleoyl chains were used for POPC calculations, and the S9
and C5 methylene SCH values were used for the
sphingosine and fatty acyl chains of EYSM (see Supple-
mentary Data). Briefly, the cross-sectional area per acyl
chain was calculated as ACh i ¼ q2VCH2=DM, where q is
the area factor,31 DM = 2.54 Å is the average inter-
methylene distance, and VCH2 is the temperature-
dependent methylene volume. The volumetric hydrocar-
bon thickness per acyl chain was DC(T) = VC(T)/〈AC〉, in
which VC(T) is the acyl chain volume at temperature T as
obtained from the methylene volume VCH2 , the methyl
volume VCH3≈2VCH2 , and the methine volume
VCH≈VCH2=1:31.

31 The effective membrane thickness
DB was DB = 2DC

max + 2DH, where DC
max is the maximum

acyl chain length calculated for either of the two chains of
the asymmetric phospholipid, and DH is the contribution of
the headgroup plus backbone segments to the thickness.
For sphingomyelin, DH ≈ 7 Ǻ,105 and for glycerophospho-
lipids such as POPC, DH ≈ 9 Ǻ106 as determined from
small-angle X-ray scattering electron densities.
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