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Abstract

AE1 mediates electroneutral 1:1 exchange of bicarbonate for chloride across the plasma membrane of
erythrocytes and type A cells of the renal collecting duct. No high-resolution structure is available for the AE1
membrane domain, which alone is required for its transport activity. A recent electron microscopy structure of
the AE1 membrane domain was proposed to have a similar protein fold to CIC chloride channels. We
developed a three-dimensional homology model of the AE1 membrane domain, using the Escherichia coli CIC
channel structure as a template. This model agrees well with a long list of biochemically established spatial
constraints for AE1. To investigate the AE1 transport mechanism, we created point mutations in regions
corresponding to E. coli CIC transport mechanism residues. When expressed in HEK293 cells, several
mutants had CI7/HCO3 exchange rates significantly different from that of wild-type AE1. When further
assessed in Xenopus laevis oocytes, there were significant changes in the transport activity of several AE1
point mutants as assessed by changes in pH. None of the mutants, however, added an electrogenic
component to AE1 transport activity. This indicates that the AE1 point mutants altered the transport activity of
AE1, without changing its electrogenicity and stoichiometry. The homology model successfully identified
residues in AE1 that are critical to AE1 transport activity. Thus, we conclude that AE1 has a similar protein fold
to CIC chloride channels.

© 2013 The Authors. Published by Elsevier Ltd. All rights reserved.

AE1 is composed of two domains, a 43-kDa N-
terminal cytoplasmic domain and a 55-kDa integral

Introduction

AE1, also known as Band 3 or SLC4A1, is a
member of the SLC4 family of bicarbonate
transporters.’ More specifically, AE1 belongs to a
sub-family of 1:1 electroneutral chloride/bicarbonate
exchangers, which includes AE2 and AE3." In
erythrocytes, AE1, which comprises 50% of mem-
brane protein, is essential to maintain the biconcave
disc structure and to maximize the HCOj3 carrying
capacity of the blood.? In the renal collecting duct,
AE1 functions in bicarbonate reabsorption to prevent
systemic acidosis.' Mutations in AE1 cause blood
and renal diseases, including hereditary spherocy-
tosis and distal renal tubular acidosis, respectively. '

membrane domain with 12-14 transmembrane
segments.® The AE1 cytoplasmic domain forms
numerous protein—protein interactions that anchor
the erythrocyte cytoskeleton to the plasma mem-
brane,? while the membrane domain alone is
responsible for AE1 transport activity.* Although
there is a 2.6-A-resolution structure of the AE1
cytoplasmic domain,® structural information on
the membrane domain is far more limited. Many
studies have investigated the togology,&g‘15 oligo-
merization, '® helical packing,'”"'® and overall three-
dimensional structure of human AE1,'92°® as a
result of its abundance and ease of purification from
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erythrocytes.?* Structural studies of human erythro-
cyte AE1 membrane domain yielded several low-
resolution structures of AE1."%?'2% Thus far, the
highest resolution structure (7.5—-16 A) was obtained
by two-dimensional crystallization and electron
microscopy. ' This resolution does not allow deter-
mination of helical packing of the entire membrane
domain and the placement of individual amino
acids. Still, structural similarity between short
regions of AE1 and CIC led to the proposal that
AET1 has the same fold as the CIC family of chloride
transporters. '°

The CIC family of chloride transporters comprises
nine isoforms in humans that divide into three sub-
families: vesicular 2CI7/H* exchangers, plasma
membrane CI~ channels, and ambiguous CIC
transporters.?® Structures of prokaryotic and eu-
karyotic CIC proteins led to a model for the transport
mechanism of CICs.?57?8 Much of the structural and
functional data available are from the Escherichia
coli CIC protein, which is thus the focus of the current
study. Three CI™ binding sites were identified in CIC
structures.?°~2® At the external CI~ binding site, an
extracellular glutamate gate (E148) is required for
the transport activity.?® Protonation of this site is
proposed to open or close the gate, allowing
movement of CI~ through the transporter.?” In the
central CI™ binding site of E. coli CIC, the side chains
of S107 and Y445 and the main-chain amide groups
of 1356 and F357 together coordinate the Cl~ ion.?®
An intracellular glutamate gate, E203 of E. coli CIC,
is involved only in the coupling of H* exchange to
Cl~ transport.?® This gate is distant from the
intracellular CI~ translocation pathway, and the
mechanism of H™ transport to this site is not known.

While AE1 and CIC proteins do not have a high
sequence similarity, which is often considered a
requirement for homology modeling, the proteins
share many other similarities. CIC proteins and AE1
both form dimers whose monomers function inde-
pendently.'¢%°3" E coli CIC performs 2CI7/H*
exchange at a rate of 2.1 x 10° ions/s,®* which is
much faster than classical membrane transporters;
AE1 has a transport rate of 5 x 10 ions/s,®® and is
even faster than E. coli CIC, but still slower than an
ion channel flux. The proposed CIC transport
mechanism is amenable to a fast transport rate, as
it only requires subtle movements of residue side
chains and not whole helices. CIC and AE1 are also
involved in CI~ transport coupled to the exchange of
a H* equivalent, H* for CICs and HCO3 for AE1.
Interestingly, two other bicarbonate transporters,
SLC26A3 and SLC26A6, have been modeled on
the structure of the E. coli CIC.** The SLC26
proteins, however, arose from a different evolution-
ary lineage than SLC4 proteins and thus do not
share sequence homology with SLC4 proteins.”

On the basis of an AE1 topology model, created
using an E. coli CIC structure as a template,*® we

constructed a three-dimensional AE1 homology.
This model agrees well with existing biochemical
constraints, and residues corresponding to CIC
transport mechanism residues were in large part
similar. When these potential transport mechanism
residues were mutated in AE1, there was a
significant effect on AE1 transport activity. We
propose that AE1 has a similar protein fold and
transport mechanism as CIC chloride channels.

Results

Creation of an AE1 model structure

We set out to develop a three-dimensional
homology model of the human AE1 membrane
domain. The GenTHREADER programf predicts
that the E. coli CIC structure is a candidate for AE1
homology modeling (Supplementary Table 1). Other
candidate proteins were either from the importin/
exportin family of nuclear transport proteins or from
integral transmembrane transport proteins (Supple-
mentary Table 1). The importin/exportin protein
family was excluded since they are soluble proteins,
which bind to macromolecules (such as RNA) and
are transported through the nuclear pore complex.
The remaining candidate structures were used to
create crude sequence alignments and homology
models. Even with manual adjustments, the AE1
homology models created, using these structures as
templates, did not satisfy basic biochemical con-
straints for AE1 (not shown). All of these models had
incorrect orientations of the N-terminus, C-terminus,
or glycosylation site relative to the lipid bilayer. In the
list of candidates generated by GenTHREADER,
only E. coli CIC acted as a template producing a
satisfactory model. This provides the first evidence
that CIC proteins provide a suitable structural model
for AE1.

Further evidence for structural similarities between
AE1 and CIC were provided by a recent 7.5- to 16-A
structure of AE1 suggesting that AE1 has the same
fold as CIC chloride channels. '® A subsequent paper
elaborated on an alignment between AE1 and E. coli
CIC.%® Here, this alignment was modified to create a
sequence alignment between E. coli CIC residues
and the human AE1 membrane domain (amino acids
388-911, Fig. 1). Sequence alignment gaps be-
tween AE1 E480-S525 and T728-G838, corre-
sponding to CIC V122-D171 and G316-A404,
respectively, were minimized to increase the amount
of sequence similarity. In addition, minimization of
sequence alignment gaps in AE1 E480-S525
allowed for AE1 E508 to directly correspond with
the CIC extracellular glutamate gate (Fig. 1). Alter-
ations to sequence alignment gaps in AE1 T728-
G838 also increased the agreement between the
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AE1 389 -----------—--- RYPYY SDITDAFSPQVN\UTIZTYF LSPAIT
CiC 17 RRRQLIRQLLERDKTPLAT[EFMAAVVGTLVGEAAYAFDKGVEAWLQNQRI
l c
AE1 425 G[E--LGEKTRNQMGYSEMLISTAVQGIL| ALLGAQPLLVV PLLVFE
CIC 67 VHTADNYPLLLTAFRCSAVLAMFGY|[§LVRK--YAPEAEGSEIPEIEG
S465/S107
AE1 473 EAFFSFCETNGLEYIVGRVWI FWLI LVV VAFHESFLVRFISRYTQE
CIC 115 ALEDQRPV--RWWRVLPVKFFEGLGTEGGGMYLGRHEPTVQIGGNIGRMV
E508/E148
¢ 1
AE1 523 IF------ SFLISLIFIYETFSKRIKIFODHPLQKTYNYNVLMVPKPQGP
CIC 163 LDIFRLKGDEARHTLLATGAAAGRAAAENA----------—-————————-
———
AE1 567 LPNTALLSLV[EMAGT(gFF LRKIZKNSSYFPGKLRRVIGDFGVPISHMLI
CIC 193 --------- PEAGIL[FITE[AYRPQERYTLI----------- SIKAVFIGV
M586/E203
——
AE1 617 MVLVDFFIQDTYTQK®SVPDGFKVSNSSARGWVIHPLGERSEFPIWMMFA
CIC 223 IMSTIMYRIFNHEVARIDVGKLS------------ DAPENTLWLYLILGI
L [ K
AE1 667 SALPALLVFILIFEESS ITTLI SKPERKMVKGSGFHLDLLLVV{EMGGVA . . .
cic 261 IFGIFGPIGNKWVIGMEDLLHRYHG------ GNITKWVLMGGATHGLCGL Fig. 1. AE1 and CIC amino acid
sequence alignment. The se-
T ] m quences of the human AE1 mem-
C L] [ brane domain (amino acids 388-—
AE1 717 TTVRSVTHANALTVMGKASTPGAAAQIQEVKEQRISGLLV . .
cc 305 G ENLIPIATIG NESMG 911) and E. coli CIC were aligned
_______________________ on the basis of a published struc-
tural alignment, 35 with minor manu-
L ] ; ; ; ;
al adjustments. Identical residues in
AE1 767 AVLVGLSILMEPT] SRIPLAVLF L GVTSLSGIQ DRILLLFKgP the sequence alignment are black
idues involved in the CIC transport
L (® 1 | Q mechanism and the corresponding
AE1 817 KYHPDVPYVKRVK—TWRMHLFTGIQIICLA {RWVVKSTPASBALPFVLIL AE1 residues are red, with the
CIC 382 YHLEAGTFAIAGMGALLAASIRAPLTGIILYSEMTDNYQLIPMIITGLG corresponding residue numbers in-
dicated beneath (AE1/CIC). Trans-
membrane-spanning segments,
AE1 866 TVPIR- RVLLPLI RNVELQCDADDN KATFDEEEGRDEYDEVAMPV following the assignment in the
cic 432 ATLMAQFTGGKPL SAILAR AKQEREQ-------——=——————=—- original CIC crystal structure,26 are

F878/Y44

AE1 homology model and data from AE1 cysteine-
scanning mutagenesis studies.®” This alignment
method was used instead of traditional sequence
alignment algorithms, since the sequence similarity
between human AE1 and E. coliCIC is too low (9.8%
identical and 18.4% similar). As a result, traditional
sequence alignments had large gaps in transmem-
brane-spanning helices, and the models generated
using these sequence alignments did not satisfy
basic AE1 biochemical constraints.

The amino acid sequence alignment (Fig. 1) was
used to generate a homology model of AE1, on the
basis of the E. coli CIC structure.2® The AET
homologéy model, created using the program Model-
er v9.7,7% is shown with the template E. coli CIC

indicated and labeled from B to R.

structure overlaid (Fig. 2). The root-mean-square
deviation between the AE1 homology model and
the template CIC structure is 0.8 A, as determined by
the pairwise structural allgnment function on the
Dali serveri.

Evaluation of the AE1 homology model by
comparison to substituted cysteine accessibility
data and blood group antigens

AE1 cysteine-scanning mutagenesis studies mea-
sured residue acceSS|b|I|t¥ to biotin maleimide
(Supplementary Table 2).>%7'" To assess the
agreement of the AE1 homology model with these
biochemical spatial constraints, we plotted the
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Fig. 2. Homology model of the AE1 membrane domain,
using the E. coli CIC structure. A homology model of the
human AE1 integral membrane domain (residues 388—
911) was created using Modeller v9.7. The AE1 homology
model is shown as a dimer in teal and the template CIC
structure is shown in beige. Three views of the structure
are shown, looking parallel to the lipid bilayer, to the
extracellular side, and to the intracellular side.

biotinylation levels of cysteine mutants on the AE1
homology model (Fig. 3). The degree of biotinylation
by biotin maleimide correlates with aqueous acces-
sibility of the residue. All AE1 cysteine-scanning
mutagenic studies were normalized to the amount of
Y555C-AE1 biotinylation, a site that is highly
aqueous accessible.>5”'” In the AE1 homology
model, the majority of cysteine mutants with <10%
biotinylation are located within the plane of the lipid
bilayer as expected. In contrast, the majority of
cysteine mutants with >50% biotinylation are located
in extracellular or intracellular accessible regions of
the AE1 homology model. Cysteine mutants with low
levels of biotinylation (10-30%) or moderate levels of

biotinylation (30-50%) clustered in regions near the
interface between the plane of the lipid bilayer and
extra/intracellular surfaces of the AE1 homology
model.

In addition, all eight blood group antigens attribut-
ed to an AE1 sequence (Supplementary Table 2)
and the N-linked glycosylation site (N642) were
appropriately located on the extracellular surface of
the AE1 homology model (Fig. 3b).'%"53" Thus, the
AE1 homology model is fundamentally consistent
with previously published biochemical data gathered
from cysteine-scanning mutagenesis and blood
group antigen mapping.

Identification of residues possibly involved in
the AE1 transport mechanism

Interestingly, although the amino acid sequence
alignment shows low sequence similarity, all of the
residues involved in the CIC transport mechanism are
identical with or similar to the corresponding residues
in the AE1 homology model (Fig. 4). The sole
exception is the intracellular glutamate gate (E203)
in CIC, located 13 A away from the central Cl~ binding
site, which corresponds to M586 in AE1 (Fig. 4).
Since this residue is not similar to the intracellular
glutamate gate of CIC, we considered two other
candidate residues that could fulfill this role. The
closest acidic residue in the AE1 primary sequence is
D607, which is located 27 A away from the central CI~
binding site in the homology model (Fig. 4c). In
addition, AE1 E681 has a key role in AE1 transport
activity®**° and is 14 A away from the central ClI~
binding site (Fig. 4c). The extracellular glutamate gate
of CIC is E148, and the corresponding residue in the
AE1 homology model is E508. S107 and Y445 form
the central CI™-binding site of CIC through their side-
chain moieties, and the corresponding residues in the
AE1 homology model are S465 and F878 (Fig. 4).

Transport activity of AE1 point mutants
assessed in HEK293 cells

To test the validity of the AE1 homology model, we
mutated all of the identified candidate AE1 transport
mechanism residues to alanine. As well, D607 was
mutated, since it is an AE1 intracellular glutamate
gate candidate. We chose not to investigate AE1
E681, although it is also an AE1 intracellular
glutamate gate candidate, since the role of E681 in
AE1 transport activity is established.*®*° To exam-
ine whether the effects on AE1 transport activity
were directly attributed to a functional role of the
single point mutation, or if the point mutation was
located in a region sensitive to mutagenesis, we also
mutated the four residues flanking each candidate
transport mechanism site (Fig. 4).

Transport activity of AE1 mutants was assessed
by CI/HCO3 exchange activity assays (Fig. 5).
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Fig. 3. Evaluation of the AE1 homology model, using existing biochemical constraints. AE1 spatial constraints from
published cysteine-scanning mutagenesis studies were used to examine the validity of the AE1 homology model.
Mutagenized amino acids in AE1 were colored according to the level of biotin maleimide incorporation (corresponding to
aqueous accessibility).>®7"'” Cysteine mutants with <10% biotinylation are in red, those with 10-30% biotinylation are in
orange, those with 30-50% biotinylation are in green, and those with >50% biotinylation are in blue. Gray (a) or white (b)
indicates no data available. (a) An AE1 homology model monomer, with three different orientations parallel to the lipid
bilayer. C marks the cytosolic C-terminus of AE1, broken lines represent the approximate boundaries of the lipid bilayer,
and EC3 marks AE1 extracellular loop 3. In the middle panel, the N-terminus of transmembrane helix J is indicated with
an arrowhead. The dimer interface of the AE1 homology model faces the reader in the right panel. (b) Topology model
of AE1, based on the three-dimensional homology model. Transmembrane-spanning segments are indicated and labeled
from B to R. The N-linked glycosylation site is indicated by a large branched structure and sites of blood group antigens
(Supplementary Table 2) are indicated by an asterisk (*). The N-terminus and C-terminus are indicated by N and C,
respectively.

HEK293 cells grown on glass coverslips were
transiently transfected with cDNA encoding wild-
type (WT)-AE1, an AE1 point mutant, or vector. Cells
were subsequently loaded with the pH-sensitive dye,
BCECF-AM [2',7'-bis-(2-carboxyethyl)-5-(and-6)car-
boxylfluorescein, acetoxymethyl ester], and cells
were alternately perfused with CO»-bubbled CI™-
containing and Cl -free Ringer's buffer. In AE1-
transfected cells, switching from a Cl™-containing to

a Cl™-free Ringer's buffer induced cytosolic alkalin-
ization due to AE1-mediated CI~ efflux and HCO3
influx (Fig. 5a). In comparison, vector-transfected
cells had a low background rate of alkalinization,
following the switch from Cl™-containing to Cl -free
Ringer's buffer (Fig. 5b). Bicarbonate transport rates
were calculated by linear regression of the initial rate
of cytosolic alkalinization upon switching to Cl™-free
Ringer's buffer. Bicarbonate transport rates were
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Fig. 4. I|dentification of possible transport mechanism residues. (a) In the E. coli CIC topology model, residues involved
in the transport mechanism of CIC are colored beige. (b) In the AE1 topology model, candidate transport mechanism
residues are colored red and flanking residues are colored blue. The N-terminus and C-terminus are indicated by N and C,
respectively. (c) Three-dimensional structure of the central CI~ coordination site, with two different views (left and right
panels). The CIC structure is shown in beige and the residues involved in the transport mechanism are indicated in brown.
The AE1 homology model is shown with residues corresponding to residues in CIC involved in the transport mechanism
indicated in red and flanking residues indicated in teal. A yellow sphere represents a Cl™ in the central Cl~ coordination site.
In the right panel, distances between AE1 residues and CI™ are marked by black lines and indicated in red below the
corresponding AE1 residue.
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Fig. 5. Transport activity of AE1 alanine point mutants. HEK293 cells were grown on glass coverslips and transiently
transfected with cDNA encoding WT-type AE1 (a), an AE1 alanine point mutant, or vector (b). Cells were loaded with the
pH-sensitive dye, BCECF-AM, and fluorescence was monitored as cells were alternately perfused with Ringer's buffer
containing sodium chloride (open bar), or chloride-free Ringer's buffer (black bar). Transport rates were monitored by the
rate of alkalinization induced upon switching to chloride-free medium. (c) Anion-exchange activity was measured for WT-
AE1 and alanine point mutants, with the corresponding CIC transport mechanism residues indicated in the topology
models. The bar graph shows transport rates corrected for background and normalized to protein expression and cell
surface processing. Anion-exchange activity was measured and plotted relative to WT. Error bars represent SE (n = 3-6),
and asterisk (*) indicates a significance difference from WT (p < 0.05).

subsequently corrected for background in vector-
transfected HEK293 cells and normalized for the
amount of protein expressed at the cell surface
(Supplementary Figs. 1 and 2).

The CI~ coordinating residue, S107, of CIC
corresponds to AE1 S465. Thus, we investigated

G463A, F464A, S465A, G466A, and P467A-AE1
(Fig. 5c). S465A had a significantly reduced CI7/
HCO3 exchange activity (14 + 3% compared to WT-
AE1). In comparison, flanking mutants F464A,
G466A, and P467A had transport activities not
significantly different from WT-AE1. G463A had a
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transport activity of 44 + 13%, which was signifi-
cantly different from WT-AE1. S465N and S465D
had significantly reduced transport activity, 6 + 6%
and 5 + 5%, relative to WT-AE1, respectively
(Fig. 6). Transport activity of S465T (43 = 5%
relative to WT-AE1), however, was significantly
faster than S465-AE1 transport activity (Fig. 6).

The CIC extracellular glutamate gate (E148)
corresponds to E508 in the AE1 homology model.
None of the flanking mutants had transport rates
significantly different from WT-AE1 (Fig. 5c). In
contrast, E508A has a significantly increased trans-
port rate (152 + 16% compared to WT-AE1), which
is remarkable as the transport rate of WT-AE1 is
unusually fast for a transporter (5 x 10 ions/s) so it
is exceptional to create an AE1 mutant with a higher
transport rate than WT-AE1. Similar to E508A-AE1,
E508D, E508S, and E508K-AE1 had significantly
faster transport activities (186 + 35%, 210 + 26%,
and 211 + 55%, respectively) compared to WT-AE1
(Fig. 6). Interestingly, E508Q-AE1 had a transport
activity of 75 £ 5%, which was not significantly
different from that of WT-AE1 (Fig. 6).

The AE1 residue corresponding to the intracellular
glutamate gate of CIC (E203) is M586. Alanine
mutants at AE1 M586, D607, and flanking these

sites had transport activities not significantly different
from that of WT-AE1 (Fig. 5¢), which suggests that
M586 and D607 are not the functional equivalent of
the CIC intracellular glutamate gate, E203.

We investigated the functional role of AE1 1791
and F792, since these residues correspond to CIC
1356 and F357, which are involved in CI~ coordina-
tion through their backbone amides. F789A, G790A,
I791A, and L793A-AE1 all had transport rates not
significantly different from that of WT-AE1 (Fig. 5c).
F792A-AE1 had a significantly reduced transport
activity (31 £ 6%, compared to WT-AE1). This
indicates either that the side chain of F792 is
involved in AE1 transport activity or that mutation
of F792 causes structural changes in AE1 that alter
the transport activity. Since 1791A-AE1 is a conser-
vative mutation, we assessed 1791S-AE1, which
was not significantly different from WT-AE1 (Fig. 6).
This confirms that the side chain of 1791 is not
involved in the AE1 transport mechanism.

CIC Y445 coordinates CI™ through interactions
with the tyrosine hydroxyl. The corresponding
residue in AE1 is F878. Mutants flanking AE1 F878
had no significant difference in transport activity
relative to WT-AE1 (Fig. 5c). F878A-AE1 had a
significantly reduced transport activity (4 + 1%)

Corresponds to
CIC residue

100
CI/HCO, Exchange Activity (% Relative to WT)

200 300

Fig. 6. Functional characterization of AE1 point mutations. Chloride bicarbonate exchange activity of WT and AE1 point
mutants was measured in transfected HEK293 cells. Topology models indicate the corresponding CIC transport
mechanism residues. The bar graph shows transport rates corrected for background, protein expression, and cell surface
processing. Error bars represent SE (n = 3-6), and asterisk (*) indicates a significant difference relative to WT (p < 0.05).
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compared to WT-AE1 (Fig. 5¢). A major reduction in
transport activity of F878T-AE1 (10 + 9% relative to
WT-AE1) was also observed (Fig. 6). In contrast, the
more conservative F878Y and F878L-AE1 mutants
had transport activities not significantly different
from WT-AE1 (Fig. 6). Thus, it appears that mutation
of AE1 F878 to large hydrophobic or aromatic
amino acids has no effect on transport activity, but
mutation of AE1 F878 to small hydrophobic or
small polar amino acids abolishes transport activity
almost completely.

In summary, AE1 residues corresponding to the
CIC transport mechanism residues had significant
changes in transport activity when mutated. The only
exception was AE1 M586, corresponding to the CIC
intracellular glutamate gate (E203). In the CIC
transport mechanism, this residue is only involved
in transport of H* coupled to CI~ transport and is
located distant from the central Cl~ coordination site.
We hypothesize that E681 of AE1 may fulfill a similar
role to the E203 residue of CIC, as this residue in the
AE1 homology model is also located on the
intracellular side of the lipid bilayer approximately
14 A away from the central CI~ binding site and
affects AE1 transport activity. 38404

Transport activity of AE1 point mutants in
Xenopus laevis oocytes

X. laevis oocytes were co-injected with cRNA
encoding WT or mutant AE1 and glycophorin A, or
remained non-injected (native) as a control to
investigate candidate transport mechanism resi-
dues further. Previous studies revealed that optimal
cell surface expression of AE1 in oocytes was
achieved only when glycophorin A was co-
expressed.*? Cytosolic pH and membrane potential
were monitored, using double-barreled microelec-
trodes inserted just beneath the intracellular surface
of the oocyte (Fig. 7). Upon switching from HCO3-
free oocyte Ringer's solution to high CI~ oocyte
Ringer's solution, a larger acidification was ob-
served in native oocytes than in those expressing
WT-AE1 (Fig. 7a and b). This acidification arose
from diffusion of the acid, CO,, into the oocyte. In
AE1-expressing oocytes, acidification was mini-
mized by AE1-mediated exchange of extracellular
HCOj for intracellular CI™.

Similar transport activity data were observed in X.
laevis oocytes as in HEK293 cells. In X. laevis
oocytes, M586A, D607A, and 1791A-AE1 had
transport rates similar to WT-AE1 (Fig. 7d), consis-
tent with results obtained in HEK293 cells. These
residues correspond to the intracellular glutamate
gate (E203) and the residue (1356) that coordinates
CI~ through its backbone amide in CIC. E508A,
S465A, and F878A-AE1, which correspond to the
extracellular glutamate gate and CI~ coordinating
residues, all had transport rates significantly differ-

ent from that of WT-AE1 (34 + 5%, 56 + 16%, and
23 + 5%, respectively, Fig. 7c). While S465A and
F878A-AE1 had reduced transport activity when
expressed in both HEK293 cells and X. laevis
oocytes, the reduction in transport activity was
smaller in X. laevis oocytes than in HEK293 cells.
Interestingly, the behavior of E508A-AE1 differs in
the two expression systems. In HEK293 cells,
E508A has a significantly faster transport rate
compared to WT-AE1 but has a significantly slower
transport rate in X. laevis oocytes.

Application of CO,/HCO3 and reduction of extra-
cellular CI™ concentration, respectively, did not
induce appreciable membrane currents in oocytes
expressing WT or mutant AE1. AE1-mediated
membrane current (calculated by subtraction of the
current measured in native oocytes from the current
measured in AE1-expressing oocytes), induced
upon switching from high to low CI™ oocyte Ringer's
solution, revealed no significant changes in mem-
brane current between WT-AE1 and AE1 mutants
(Fig. 7d). Furthermore, no significant differences in
oocyte membrane conductance were observed in
WT-AE1 compared to AE1 mutants (Supplementary
Fig. 3b). For all transporters expressed, G, was
around 2 pS and was not significantly different from
the G, determined in native oocytes. As for the
conductance, no changes in the reversal potential
could be detected by expression of WT-AE1 or AE1
mutant (Supplementary Fig. 3c). Thus, none of the
AE1 mutations resulted in a shift of transport
stoichiometry, which would create an electrogenic
AE1 transporter.

Discussion

We developed a three-dimensional AE1 mem-
brane domain homology model, on the basis of the
E. coli CIC X-ray crystal structure.?® Leading us to
develop this model was the recalcitrance of AE1 to
be crystallized because of protein micro-heteroge-
neity arising from proteolysis and post-translational
modifications.?® The most recent low-resolution
structure of the AE1 membrane domain led to the
proposal that the AE1 membrane domain shares the
protein fold as CIC chloride channels. '°*° We tested
the validity of the AE1 homology model by compar-
ison to published biochemical data, measurements
of transport activity, and electrical activity of AE1
mutants assessed in HEK293 cells and X. laevis
oocytes. Together, the data suggest that AE1 has a
fold similar to that of CIC proteins, as well as a similar
transport mechanism.

Structural features of the AE1 homology model

The AE1 homology model agrees well with
cysteine-scanning mutagenesis data and blood
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Fig. 7. Characterization of AE1 point mutants in X. /aevis oocytes. (a) Oocytes were co-injected with cRNA encoding
WT-AE1 or a point mutant of AE1 and glycophorin A. (b) Non-injected oocytes were used as a control (native). Current and
pH were simultaneously measured using a double-barreled microelectrode combined with two-electrode voltage clamp.
Oocytes were perfused with high CI~ (white bar) and low CI~ (black bar) solution. The application of CO,/HCOj3 is indicated
(gray bar). (c) The transport rate was monitored by the rate of alkalinization upon switching from high CI~ to low CI~ oocyte
Ringer's solution. The bar graph shows transport rates corrected for background activity in native oocytes and plotted
relative to WT. (d) AE1-mediated membrane current, induced by switching from high CI™ to low CI~ oocyte Ringer's
solution, is shown for oocytes expressing WT-AE1 and AE1 mutants. All values were corrected for the difference in current
observed in native oocytes. Error bars represent SE (n = 5—13) and asterisk (*) indicates a significant difference from WT

(p < 0.05).

group antigen data.®®”'%">17 Greater discrepan-
cies arise in comparing biochemical evidence for
structure of lactose permease and the correspond-
ing crystal structure.“® The “fit’ of AE1 biochemical
data may reflect the relatively small conformational
changes expected in a high turnover transporter
such as AE1. Large conformational changes, evi-
dent in the inward and outward states of major
facilitator superfamily proteins such as lactose
permease,** would give rise to biochemical data
reflecting a range of conformational states.

In the AE1 homology model, the large third
extracellular loop (between transmembrane helices G
and H) extends into the lipid bilayer (Fig. 3). When
creating the AE1 sequence alignment during homology
modeling (Fig. 1), a large gap in the corresponding CIC
third extracellular loop was added to accommodate the
large AE1 third extracellular loop. Thus, the modeling
program (Modeller) could not confidently assign a
structure to this region of AE1. While the model shows
the region in the bilayer plane, the location of this loop
is likely to extend into the extracellular space.
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Previous cysteine-scanning mutagenesis pre-
dicted M663-S690 to be an unusually long helix
extendln% past the intracellular surface of the lipid
bilayer.®*" Consistent with this, the corresponding
region in the homology model is transmembrane
helix J, which spans the lipid bilayer at an angle,
making it longer than average transmembrane
helices (Fig. 3a).

Proteolytic cleavage data also provide insight into
the AE1 homology model (Supplementary Table 2).
Several reported AE1 proteolytic cleavage sites®®
are located in aqueous accessible extra-/intracellular
regions in the AE1 homology model (Fig. 3). The
remaining sites (R514, F537, L540, and W831)%°
are located in the homology model transmembrane
helices (Fig. 3). Much of the proteolytic cleavage
data were obtained upon alkaline treatment of AE1,
which denatures AE1 maklng certain cleavage sites
more accessible.®® It is likely that the proteolytic
cleavage sites within the homology model trans-
membrane helices are only accessible upon alkaline
treatment of AE1, but the studies do not state which
cleavage sites are affected by alkaline treatment.®°
We do note that chymotryptic cleavage site AE1
W831 (located in transmembrane helix O) is
predicted to be in the plane of the lipid bilayer on
the baS|s of lack of biotinylation when mutated to
cysteine,® strongly suggesting that the proteolysis
data are somewhat unreliable in predicting topology.

Additional biochemical data provide insights into
the validity of the AE1 model (Supplementary Table
2). Fluorescein maleimide labels AE1 K430 from the
extracellular surface,’’ consistent with the AE1
homology model, where AE1 K430 is in the first
extracellular loop. AE1 histidine residues (H547,
H734, and H834), accessible to the small hydrophilic
probe diethylpyrocarbonate, '® localize to extracel-
lular loops (H547 and H734) or pore lining (H834) in
the homology model. Mutagenesis to introduce N-
glycosylation acceptor sites at AE1 G428, S633,
G637—W648 Q754, and P854 resulted in glyco-
sylation, '* indicating extracellular localization. In the
AE1 homology model, these residues are all located
in extracellular loops, consistent with the data. The
AE1 inhibitor, H,DIDS, cross-links residues K539
and K851.2% In the AE1 homology model, both
residues are located close to the extracellular sur-
face and the distance between these residues
overlaps with the central CI~ binding site. H>DIDS
is 20 A long, and in our AE1 model, residues K539—
K851 are 22 A apart. Thus, our model is in good
agreement with the ability of H,DIDS to act as an
AE1 inhibitor and cross-link K639-K851 of AE1. The
AE1 homology model also has a large cytoplasmic
C-terminal domain, and the carbonic anhydrase Il
binding 3|te (L886-D890) is aqueous accessible
(Fig. 3).*6 Taken together, we conclude that the AE1
homology model agrees substantially with biochem-
ical data.

Interestingly, the dimer interface of the AE1 homol-
ogy model, transmembrane helices H, I, P, and Q
(Fig. 3), has structural features consistent with the
dimer interface of E. coli CIC. The dimer interface of
CIC is formed by the hydrophobic interactions of small
alkyl reS|dues found in transmembrane helices H, |, P,
and Q.%° Mutation of CIC small alkyl residues in the
dimer interface (1201, L4086, 1422, and L434) to bulkg
tryptophan residues converted CIC to monomers.
While the corresponding residues in the AE1 homol-
ogy model (F584, Q840, S856, and P868) are not
small alkyl residues, there are several flanking small
alkyl residues in the corresponding helices, which may
form a hydrophobic AE1 dimer interface.

E. coli CIC and AE1 transport mechanisms

In the AE1 homology model, E508 corresponds to
the extracellular glutamate gate of CIC (E148).
E508A-AE1 had an increased transport activity
compared to WT-AE1 when expressed in HEK293
cells. In contrast, E508A-AE1 had a significantly
reduced transport activity when expressed in X.
laevis oocytes. Differences in the two expression
systems, such as changes in plasma membrane lipid
composition, membrane protein trafficking, and
experimental setup, may account for the difference
in E508A-AE1 transport activity. Four mutations at
AE1 E508 increased AE1 transport activity. Interest-
ingly, only E508Q had activity similar to that of WT-
AE1, likely due to similarity in size of glutamine and
glutamic acid moieties. Thus, the acidic nature of the
glutamic acid side chain is not required to maintain
normal AE1 transport activity, but the site is very
sensitive to changes in the size and shape of the
side chain. In contrast, E148Q-CIC, which removes
the glutamate carboxylate group, has H* uncoupled
Cl~ transport.*” In both AE1 and CIC, mutation of the
residue corresponding to the extracellular glutamate
results in significant changes in transport activity;
however, the type of changes in transport activity
observed and mutations that elicit these changes
differ between AE1 and CIC. Interestingly, changes
in transport activity of the mutants were not
associated with changes in AE1 stoichiometry,
which would make the mutants electrogenic trans-
porters (Fig. 7).

In the AE1 homology model, M586 corresponds to
the CIC intracellular glutamate gate. This Met
residue is not conserved among chicken AEf1,
human AE2, or human AE3 (Supplementary Fig.
4). Mutation of M586 and the flanking AE1 residues
had no effect on the transport activity, nor did
mutation of the closest acidic residue in the AE1
amino acid sequence (D607). While the intracellular
glutamate gate in CIC is located approximately 15 A
from the central CI™ binding site, the distance of
D607 from this site in the AE1 homology model is
almost double (27 A). For these reasons, D607 of
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AE1 is unlikely to be involved in the transport
mechanism of AE1.

This led us to AE1 E681 as the most likely
candidate to fulfill the role of the intracellular
glutamate gate. E681 is located 14 A away from
the central CI~ binding site in the AE1 homology
model, which is similar to the distance between the
central CI™ binding site and intracellular glutamate
gate of CIC. Modification or mutation of AE1 E681
alters transport activity by inhibiting monovalent
anion exchange, increasing divalent anion transport,
and eliminating H* co-transport during Cl7/SOZ~
exchange.®*4%*! Mutational studies of E203 in CIC
(the intracellular glutamate gate) demonstrated that
an ionizable side chain is essential for H*-coupled
CI™ transport by CIC but is not required for inde-
pendent Cl~ transport.® Interestingly, the intracel-
lular glutamate gate of the CIC family is only
conserved among 2CI~/H* exchanger-type CIC pro-
teins and is a valine residue in channel-like CIC
proteins. Thus, another possibility is that CI"/HCO3
exchange in AE1 may not require an intracellular
glutamate gate similar to channel-like CIC proteins.

S465 in the AE1 homology model corresponds to
the CIC Cl™-coordinating residue, S107. AE1 trans-
port activity is highly sensitive to S465 mutagenesis,
but alanine substitutions in flanking residues of S465
had no effect on transport activity of AE1, with the
exception of the G463A mutation, which may reduce
helix flexibility. Mutation of CIC S107, an important
chloride-coordinating residue, however, gives rise to
CI~ transport uncoupled from H* transport.*® No
mutagenic studies have been conducted on the
residues flanking E. coli CIC S107. Taken together,
the data suggest that AE1 S465 may be an anion
coordinating site.

In the AE1 homology model, F878 corresponds to
the CIC CI™ coordinating Y445. Mutagenesis of AE1
F878 to a large alkyl or aromatic side chain had no
effect on transport activity, but mutagenesis to a
small alkyl or hydroxyl side chain abolished transport
activity. A similar pattern of effects was observed for
CIC residue Y445;2° mutation of CIC Y445 to a large
aromatic residue did not disrupt CIC transport
activity, but mutation to a large alkyl residue
moderately disrupted H*"-coupled CI~ transport and
mutation to small alkyl, hydroxyl, or charged resi-
dues severely disrupted H*-coupled CI~ transport.
Thus, the data suggest that AE1 F878 has a similar
role as CIC Y445 in the central CI™ coordination site.

1791 and F792 in the AE1 homology model
correspond to CIC 1356 and F357, which contribute
to the formation of the central CI~ binding site
through their backbone amides. 1791A-AE1 had a
transport activity similar to WT-AE1. F792A, which is
not a conservative AE1 mutation, had a reduced
transport activity. Mutations of CIC 1356 and F357
might be expected to have no effect on function, but
these sites have not been mutated in CIC. Together,

these data are consistent with a role of 1791 and
F792 in CI~ coordination through backbone groups,
rather than side-chain moieties.

In our analysis of identified candidate transport
mechanism residues, all mutations altered AE1
transport activity, but transport stoichiometry was
unchanged on the basis of lack of changes in
electrical activity. In contrast, mutation of residues
critical to the CIC transport mechanism disrupted H*-
coupled CI™ transport, thus altering the transport
stoichiometry. Interestingly, variations of transport
stoichiometry and substrate specificity are observed
among different members of the CIC family. As
discussed above, only 2CI/H* CIC exchangers
possess an intracellular glutamate gate, which is
replaced by a valine residue in CI~ channels, such
as human CIC-1 (Supplementary Fig. 4).%° Interest-
ingly, the 2CI7/H* exchanger, Cyanidioschyzon
merolae CIC (cmCIC), has a threonine at the position
corresponding to the intracellular glutamate gate
(Supplementary Fig. 4),2” possibly suggesting that
some ion exchangers (such as AE1 and cmCIC)
either dispense with this gate or (as suggested®’)
have a gate located elsewhere. In addition, some
plant CIC proteins function as NO3/H* exchangers,
which possess a proline residue at the position of the
serine residue involved in ClI~ coordination.*®

The AE1 homology model allowed us to identify
several residues important in AE1 transport mech-
anism. Consistent with a role in transport mecha-
nism, these residues (human AE1 S465, E508, and
Y878) were conserved among human, mouse, and
chicken AE1, as well as the two other human
electroneutral CI"/HCO3; exchangers, AE2 and
AE3 (Supplementary Fig. 4). Ideally, these residues
could be rationalized to provide a transport mecha-
nism for AE1. Unfortunately, the AE1 homology
model provides insufficient information on the
orientation of amino acid side chains. The role of
the key residues identified here will be clarified upon
determination of high-resolution structures of AE1 in
multiple conformations.

AE1 functional studies in the context of the
homology model

AE1 cysteine-scanning mutagenesis studies have
been valuable in identifying AE1 pore-lining
residues.*'>" AE1 E681 was proposed to be located
in a transmembrane helix near the intracellular side
of the lipid bilayer. Residues on the same helical face
as E681 were reactive to sulfhydryl reagents, which
altered transport activity.*’ The AE1 homology
model proposes that E681 forms an intracellular
glutamate gate; thus, residues surrounding E681 are
pore lining. Closer to the C-terminus, AE1 F806-
C885 contained several pore-lining residues.®’
Interestingly, F878C-AE1 had a low transport activity
compared to WT-AE1 activity of flanking mutants, >’
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which is consistent with our analysis of AE1 F878
and the surrounding region. Other residues that
affect transport activity b¥ mutagenesis or reaction
with sulfhydryl reagents®' are located in regions of
the AE1 homology model that are extracellular to
F878 and line the pore.

Modification of human AE1 H834 (or murine H852)
with diethylpyrocarbonate or mutagenesis caused a
change in anion transport activity.>%% Interestingly,
the effects of murine H852Q-AE1 on transport
activity were reversed upon mutation of K558N,
which corresponds to human AE1 K539.%% In the
AE1 homology model, H834 is located close to the
central Cl~ binding site, and K539 is located opposite
to this histidine residue in the pore, which is
consistent with the observed functional data in
human and murine AE1.

Mutations in AE1 can induce a cation leak.>*>’
L687P-AE1, which has a cation leak,® localizes to
the intracellular end of extended helix J and faces
into the pore (Fig. 3). Alterations at the nearby
intracellular gate, E681, could explain the induced
cation leak. D705Y-AE1 also has an associated
cation leak®® and is located in the plane of the lipid
bilayer, but is not a pore-forming residue in the AE1
homology model. Cation-leak-inducing S731P,
R730C, and H734R-AE1°°°® are located in the
flexible region at the extracellular end of transmem-
brane helix L (Fig. 3). Similarly, R760Q-AE1 (Band 3
Prague I1)>* is in the extracellular loop before helix M
(Fig. 3). Interestingly, cation-leak-inducing R589H,
G609R, S613F, and G701D°’ are at the intracellular
ends of transmembrane regions H, |, and K (Fig. 3).
Location of cation-leak-forming residues, in extra-
cellular loops and at helix ends, suggests a possible
role of these regions in charge selection of
substrates.

Another naturally occurring AE1 mutant, Band 3
HT (P868L), is remarkable for its increased AE1
transport activity.>® In the AE1 homology model, this
residue is located near the flexible region prior to
transport mechanism residue F878, where muta-
tions could change the structure of the central CI™
binding site. Consistent with this possibility, we
found that mutation of E508 in the central CI™
binding site increases the transport activity of AE1.

AE1 homology model in relation to other
SLC4 proteins

Analysis of other SLC4 proteins is relevant to the
AE1 homology model. The AE1 transport mecha-
nism residues, whose mutations affected transport
activity, are conserved across human AE1, AE2, and
AE3, suggesting a common transport mechanism
across the SLC4 anion exchangers. Several histi-
dine residues in AE2 are critical to maintain transport
activity and pH sensitivity.®® H1060A-AE2 de-
creases transport activity, but H1060E-AE2 has a

WT level of function.®® The homologous residue,
AE1 H734, is located in the extracellular flexible
region at the N-terminal end of transmembrane helix
L in the AE1 homology model (Figs. 3 and 4). Close
inspection of the homology model places this site at
the mouth of the ion translocation pore where steric
or charge effects could influence transport. Mutation
of AE2 H1144 and H1145, homologous to AE1 Y818
and H819, changed extracellular pH sensitivity.%°
Interestingly, AE2 H1145 mutation also had an
increased inhibition by acidic intracellular pH.®° In
the AE1 homology model, these residues are
located in the extracellular loop between transmem-
brane helices N and O, which is consistent with
extracellular pH sensing, but inconsistent with AE2
H1145 intracellular pH sensing. Murine AE2 resi-
dues involved in intracellular pH activation (R921
and R1107) and residues involved in extracellular
pH activation (E888, K889, E981, K982, and
D1075)¢" correspond to sites in intracellular and
extracellular loops of the AE1 homology model,
respectively.

NBCe1 (SLC4A4), a sodium-coupled bicarbonate
transporter, and AE1 share 50% sequence similarity
in their membrane domains. Cysteine-scanning
mutagenesis of NBCel Q424-G448 suggested
that this region forms part of the transmembrane
ion conduction pore,®? but the corresponding region
of the AE1 homology model (Q404-G428) is not
pore lining. Consistent with the AE1 homology model
(F423-G428), NBCe1 F443-G448 was predicted to
form an extracellular loop.®? Interestingly, the region
surrounding NBCe1 D764, corresponding to AE1
E681, is pore lining,®® which is consistent with AE1
biochemical data and the AE1 homology model.
Biochemical data from cysteine-scanning mutagen-
esis of NBCe1 A800-K967°" have several differ-
ences from the corresponding study of AE1 T727-
A891,° suggesting that NBCe1 has a C-terminal fold
different from that of AE1.

Conclusion

Mutagenic analysis of AE1 presented here sup-
ports the AE1 homology model created, using E. coli
CIC as a structural template. With the exception of
the intracellular glutamate gate, transport mecha-
nism residues predicted by the homology model
were conserved. Mutation of these residues resulted
in drastic changes of the AE1 transport activity. In
addition, the AE1 homology model satisfies the
majority of the existing biochemical constraints for
the AE1 topology. The role of functionally important
residues identified here will be clarified by future
high-resolution AE1 structures. Until a high-resolu-
tion structure of AE1 is available, the homology
model of AE1 developed here will serve as a guide
for future functional and structural studies.
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Materials and Methods

Materials

Oligonucleotides were from Integrated DNA Technolo-
gies (Coralville, 1A). Pfx DNA polymerase, Dulbecco's
modified Eagle's medium (DMEM), fetal bovine serum, calf
serum, penicillin—streptomycin—glutamine, and BCECF-
AM were from Invitrogen (Carlsbad, CA). T4 DNA ligase,
Mung Bean nuclease, and restriction enzymes were from
New England Biolabs (Ipswich, MA). QuikChange Light-
ning Site-Directed Mutagenesis Kit was from Agilent
Technologies (Mississauga, ON, Canada). Glass cover-
slips were from Fisher Scientific (Ottawa, ON, Canada).
BCA protein assay kit, Sulfo-NHS-SS-Biotin, and immobi-
lized streptavidin resin were from Pierce (Rockford, IL).
Nigericin and poly-L-lysine were from Sigma-Aldrich
(Oakville, ON, Canada). Immobilon-P PVDF was from
Millipore (Billerica, MA). ECL chemiluminescent reagent
was from Perkin Elmer Life Sciences (Waltham, MA). Anti-
AE1 antibody, IVF12, was a gift from Dr. Mike Jennings
(University of Arkansas).®® Donkey anti-mouse IgG
conjugated to horseradish peroxidase was from GE
Healthcare Bio-Sciences (Piscataway, NJ). Mouse anti-
glyceraldehyde-3-phosphate dehydrogenase was from
Santa Cruz Biotechnology (Santa Cruz, CA). Complete
Mini-Protease Inhibitor Cocktail and collagenase A were
from Roche Applied Science (Indianapolis, IN). The
mMessage mMachine in vitro T7 RNA-polymerase kit
was from Ambion (Austin, TX). Hydrogen ionophore I-
cocktail A was from Fluka (Buchs, Switzerland).

Modeling

A sequence alignment of the human AE1 membrane
domain (amino acids 388-911) and E. coli CIC was
created using a published alignment,®® with minor adjust-
ments. This alignment was used to generate a homology
model of AE1, using the E. coli CIC structure®® (Protein
Data Bank ID: 10TS) as a template, with the program
Modeller v9.7.%¢ File containing coordinates of the AE1
model will be distributed upon request.

Molecular biology

pJRCY, which encodes WT-AE1 and vector (pRBG4),
were constructed previously.®%%” AE1 point mutants were
constructed using the Agilent QuikChange Lightning Kit,
primers corresponding to the mutation to be created
(Supplementary Table 3), and pJRC9 as the template
DNA.

pPBAE1-oocyte, which encodes WT-AE1 in an oocyte
expression vector, was constructed by digesting pDEJ4,%8
with Xhol, followed by treatment with Mung Bean nuclease
and Hindlll. This fragment was cloned into the oocyte
expression vector, PGEMHE,®® which was digested with
Smal and Hindlll, to create pPBAE1-oocyte. Oocyte
expression constructs encoding S465A, E508A, M586A,
D607A, 1791A, and F878A-AE1 were created using the
Agilent QuikChange Lightning Kit.

The oocyte expression construct for N-terminally hem-
agglutinin epitope (HA)-tagged glycophorin A, pPSMGPA1,

was created using the mammalian expression construct
pHJC2 and the pGEMHE expression vector. The pHJC2
construct was created using the human glycophorin A
cDNA as a PCR template, with a forward primer that
encodes an N-terminal HA tag and a 5" Hindlll restriction
site and a reverse primer that encodes a 3' Xhol site. The
resulting PCR product and the pcDNA3.1(-) vector were
digested and ligated to create pHJC2. pHJC2 was
digested with Hindlll, treated with Mung Bean nuclease,
further digested with Xbal, and then cloned into the Smal/
Xbal-cut oocyte expression vector pPGEMHE.

Cell culture and transfection

HEK293 cells were grown at 37 °C in an air:CO, (19:1)
environment in DMEM, supplemented with 5% (v/v) fetal
bovine serum, 5% (v/v) calf serum, and 1% (v/v) penicillin—
streptomycin—glutamine. cDNA encoding WT-AE1, AE1
point mutants, or vector (pRBG4) were transiently trans-
fected in HEK293 cells by the calcium phosphate
transfection method.”® All experiments were carried out
48 h post-transfection.

Expression in X. laevis oocytes

Plasmid cDNA was linearized using Nhel and tran-
scribed with mMessage mMachine in vitro T7 RNA
polymerase kit to produce capped RNA transcripts.
cRNA was purified and stored at —80 °C in diethylpyr-
ocarbonate-treated water.

X. laevis females were purchased from Xenopus
Express, Vernassal, France. Oocytes were surgically
removed under sterile conditions from anesthetized frogs
and singularized by collagenase treatment in Ca®*-free
oocyte Ringer's solution (82.5 mM NaCl, 2.5 mM KClI,
1 mM MgCl,, 1 mM NagHPO,, and 5 mM Hepes, pH 7.8)
at 28 °C for 1.5 h. Singularized oocytes were left to
recover for approximately 16 h in HCO3-free oocyte
Ringer's solution (Ca®*-free oocyte Ringer's solution,
containing 1 mM CaCl,, pH 7.8). Oocytes at stage V or
VI were selected and injected with 15 ng of AE1 (WT or
mutant) cRNA and 1.5 ng of glycophorin A cRNA, using
glass micropipettes and a microinjection device (Nanoliter
2000, World Precision Instruments, Berlin, Germany).
Non-injected native oocytes were used as a control.

Immunoblotting

Samples were prepared in 2x sample buffer [10% (v/v)
glycerol, 2% (w/v) SDS, 0.5% (w/v) bromophenol blue, 1%
(v/v) B-mercaptoethanol, and 75 mM Tris, pH 6.8], con-
taining Complete Mini Protease Inhibitor Cocktail. Prior to
electrophoresis, samples were incubated for 4.5 min at
65 °C and insoluble material was removed by centrifuga-
tion at 16,0009 for 10 min. Samples were resolved on
7.5% (w/v) SDS-PAGE gels”" and transferred to Immobi-
lon-P PVDF membranes at 400 mA for 1 h. Membranes
were subsequently blocked with TBS-TM (TBS-T [0.15 M
NaCl, 50 mM Tris, and 0.1% (v/v) Tween-20, pH 7.5],
containing 5% (w/v) skim milk powder) for 1 h at 20 °C.
After blocking, membranes were incubated for 16 h at4 °C
in TBS-TM, containing mouse anti-AE1 antibody (IVF12)
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and mouse anti-glyceraldehyde-3-phosphate dehydroge-
nase antibody at 1:3000 and 1:2000 dilutions, respectively.
Membranes were washed three times in TBS-T, incubated
with donkey anti-mouse IgG conjugated to horseradish
peroxidase at a 1:5000 dilution for 1 h at 20 °C, and
washed three times in TBS-T. Blots were imaged using
ECL chemiluminescent reagent and visualized using a
Kodak Image Station 440CF (Kodak, New York). Quanti-
tative densitometric analysis was performed, using the
Kodak Molecular Imaging Software v4.0.3 (Kodak).

CI"/HCO3 exchange assays in HEK293 cells

Anion-exchange activity of transfected HEK293 cells
was monitored, using a previously described assay.”?
Briefly, HEK293 cells were grown and transfected on poly-
L-lysine-treated 11 x 7.5 mm glass coverslips. Cells were
rinsed in serum-free DMEM and incubated in 2 ml of
serum-free DMEM, containing 2 yM BCECF-AM at 37 °C
for 15 min. Coverslips were mounted in a fluorescence
cuvette and perfused at 3.5 ml/min alternately with Ring-
er's buffer (5 mM glucose, 5 mM potassium gluconate,
1 mM calcium gluconate, 10 mM Hepes, 1 mM MgSQ,,
2.5 mM NaH,PO,, and 25 mM NaHCOg, pH 7.4), contain-
ing 140 mM NaCl (chloride-containing) or 140 mM sodium
gluconate (chloride-free). Both Ringer's buffers were
bubbled continuously with air, containing 5% CO..
Fluorescence was monitored using a Photon Technolo-
gies International RCR/Delta Scan spectrofluorimeter at
excitation wavelengths 440 nm and 502.5 nm and emis-
sion wavelength 528.7 nm. Fluorescence measurements
were converted to intracellular pH by the nigericin-high
potassium method”® with reference pH values approxi-
mately 6.5, 7.0, and 7.5. Anion-exchange activity was
calculated by linear regression of the initial change (30 s)
in intracellular pH upon switching from a chloride-contain-
ing to a chloride-free Ringer's buffer.

Intracellular pH and membrane current recordings in
X. laevis oocytes

Intracellular pH and membrane potential were mea-
sured, using double-barreled microelectrodes, which have
been described previously.”* Electrodes were calibrated
with bicarbonate-free oocyte Ringer's solution with a pH of
7.0 and 7.4. The recording arrangement was described
previously.”*”® Central and reference barrels of the
electrodes were connected with chloride-treated silver
wires to the head stages of an Axoclamp 2B amplifier
(Axon Instruments, USA). In the experimental chamber,
electrodes detected changes in pH faster in saline pH than
the fastest reaction expected to occur in the cytoplasm of
the oocyte. As described previously, optimal intracellular
oocyte pH measurements were detected when the
electrode was located near the intracellular surface of
the plasma membrane,”® which was achieved by carefully
rotating the oocyte with the impaled electrode. Experi-
ments were performed at 20 °C with oocytes voltage
clamped at —40 mV, using two-electrode voltage clamp as
described previously.”” Oocytes were successively per-
fused with bicarbonate-free oocyte Ringer's solution
(pH 7.4), high CI~ oocyte Ringer's solution (57.5 mM
NaCl, 2.5 mM KCI, 1 mM NaoHPO,4, 1 mM MgCl,, 1 mM

CaCl,, 5 mM Hepes, and 24 mM NaHCOg3, pH 7.4), low
CI™ oocyte Ringer's solution (57.5 mM sodium gluconate,
2.5 mM KCI, 1 mM NasHPQ,4, 1 mM MgCl,, 1 mM CaCl,,
5 mM Hepes, and 24 mM NaHCOg, pH 7.4), high CI~
oocyte Ringer's solution, and bicarbonate-free oocyte
Ringer's solution (pH 7.4). High and low CI~ oocyte
Ringer's solutions were bubbled continuously with 5%
C0O./95% 0O,. Changes in membrane potential were
monitored, during 20-mV voltage steps from —100 mV
to +20 mV in each solution, to obtain current/voltage
(V) curves.

Assays of cell surface processing

HEK293 cells were transiently transfected with cDNA
encoding WT-AE1, an AE1 point mutant, or vector alone,
as described above. Cells were rinsed with 4 °C phos-
phate-buffered saline, followed by 4 °C borate buffer
(154 mM NacCl, 7.2 mM KCI, 1.8 mM CaCl,, and 10 mM
boric acid, pH 9.0). Cells were then incubated at 4 °C for
30 min in borate buffer, containing 0.5 mg/ml Sulfo-NHS-
SS-Biotin. Cells were washed three times with quenching
buffer (192 mM glycine and 25 mM Tris, pH 8.3) and
solubilized for 20 min at 4 °C with 500 pl of IPB buffer (1%
NP40, 5 mM ethylenediaminetetraacetic acid, 0.15 M
NaCl, 0.5% deoxycholate, and 10 mM Tris, pH 7.4),
containing Complete Mini Protease Inhibitor Cocktail.
Cell lysates were centrifuged for 20 min at 16,000g and
the supernatant was collected. Half of each sample was
removed for later immunoblot analysis (total protein, T).
The remaining half of each sample was incubated with
immobilized streptavidin resin (100 pl of a 50% slurry in
phosphate-buffered saline) for 16 h at 4 °C with gentle
rotation. Samples were centrifuged for 2 min at 8000g and
the supernatant was collected (unbound protein, U). Equal
amounts of the T and U fractions were separated by SDS-
PAGE and analyzed by immunoblotting as described
above. Values obtained from densitometric analysis were
used to calculate the percentage of protein at the cell
surface with the formula (T - U)/T x 100%.

Statistical analysis

Analysis was performed using Prism software. Values
are represented as the mean =+ standard error. Groups
were compared with one-way ANOVA and paired f test
with p < 0.05 considered significant.
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