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It has been observed that the evolutionary distances of interacting proteins
often display a higher level of similarity than those of noninteracting
proteins. This finding indicates that interacting proteins are subject to
common evolutionary constraints and constitutes the basis of a method to
predict protein interactions known as mirrortree. It has been difficult,
however, to identify the direct cause of the observed similarities between
evolutionary trees. One possible explanation is the existence of compensa-
tory mutations between partners' binding sites to maintain proper binding.
This explanation, though, has been recently challenged, and it has been
suggested that the signal of correlated evolution uncovered by themirrortree
method is unrelated to any correlated evolution between binding sites. We
examine the contribution of binding sites to the correlation between
evolutionary trees of interacting domains. We show that binding neighbor-
hoods of interacting proteins have, on average, higher coevolutionary signal
comparedwith the regions outside binding sites; however,when the binding
neighborhood is removed, the remaining domain sequence still contains
some coevolutionary signal. In conclusion, the correlation between evolu-
tionary trees of interacting domains cannot exclusively be attributed to the
correlated evolution of the binding sites or to common evolutionary pressure
exerted on the whole protein domain sequence, each of which contributes to
the signal measured by the mirrortree approach.
© 2008 Elsevier Ltd. All rights reserved.
Keywords: domain–domain interactions; protein coevolution; protein–
protein interactions; phylogenetic tree; mirrortree
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Introduction

It has been proposed that interacting proteins
should coevolve to maintain their interactions.1–3

This idea provides the main motivation for the
method to predict protein interactions known as
mirrortree.1,3–13 The mirrortree method predicts
protein–protein interactions by assessing the extent
of agreement between evolutionary distances that
could be attributed to correlated evolution. For this
purpose, distance matrices are constructed from
alignments of orthologous sequences taken from a
common set of species. The degree of correlated
evolution between families of orthologs is assessed by
resses:
lm.nih.gov.
le sequence
characteristic; CBM,

lsevier Ltd. All rights reserve
computing the correlation coefficient between the
corresponding distance matrices. The mirrortree
method measures the correlation between evolution-
ary distances and thus, indirectly, the correlation
between evolutionary rates along individual branches
of evolutionary trees from two families. While
correlation between the evolutionary trees of inter-
acting proteins has been well documented,1,2,4,7,10,14

the principal cause of such correlated changes
remains unclear.15 In particular, it has been proposed
that higher correlation values between evolutionary
trees of interacting proteins (with respect to noninter-
acting ones) can be caused by compensatory muta-
tions, in which mutations in one binding partner are
being compensated by complementary mutations
in another partner to maintain amino acid inter-
actions important for protein function, stability, and
foldability.1,2,4,16–19
Correlation between evolutionary distances of

interacting proteins may also have other sources.
For example, Fraser et al.20 used codon adaptation
d.
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index analysis to infer that the levels of expression of
interacting partners are also subject to correlated
evolution and that such coexpression could be
required for maintaining proper stoichiometry
among interacting components. It has been observed
that expression levels are correlatedwith evolutionary
rates,16,21,22 whichmight contribute to the coevolution
signal measured by the mirrortree method. Indeed,
Hakes et al.23 demonstrated that mRNA abundance
is a good protein interaction predictor. Another
important argument against using compensatory
mutations to explain the entire coevolutionary signal
detected by the mirrortree is that this approach could
also identify as interacting the noninteracting pro-
teins within the same protein complex or biological
pathway. Indeed, an extension of the mirrortree
recently introduced by Juan et al. detects proteins
within the same metabolic pathways despite the fact
that they are not necessarily related by physical
interactions.24

Challenging previous assumptions about the
strong contribution of coevolution of binding inter-
faces to the correlation signal between evolutionary
distances measured by the mirrortree method,
Hakes et al.23 suggested that such correlation does
not mostly originate from compensating mutations
in the interface. In their work, Hakes et al.23 showed
that selecting only the surface residues or the inter-
face residues as input for the mirrortree approach
yields similar results as using the whole protein
sequence. Based on their analysis, they concluded
that “correlated sequence evolution ismost probably
due to interacting proteins being constrained in
similar ways and having similar rates of evolution
across their entire sequences.”
Accounting for the abovementioned considera-

tions, in this work, correlated evolution refers to
correlated changes in evolutionary rates imposed on
a pair of interacting proteins to preserve their inter-
action properties. As such, this definition of corre-
lated evolution also includes correlated changes to
preserve physical binding properties, coexpression,
foldability, and all other constraints that are im-
posed on a pair of interacting proteins to preserve
functional properties of interaction. It is important to
keep in mind that since the mirrortree technique is
based on correlated changes in distances between
sequences of interacting proteins rather than on a
direct measurement of any of the abovementioned
factors, it cannot assess which one of them is a
dominating contributor to the signal.
In this work, we analyzed the contribution of

the binding sites to the coevolutionary signal of
domain–domain interactions measured by the mir-
ror-tree method. For this purpose, we used binding
sites together with their spatially surrounding
residues, which we refer to as binding neighborhoods.
We selected a set of protein domains with repre-
sentatives in one common set of species, thereby
avoiding problems related to comparing correlations
computed based on different sets of species. Further-
more, to limit the impact of the coevolutionary signal
due to common speciation divergence, we applied
the speciation subtraction methods of Pazos et al.14

and Sato et al.11 With these controls in place, we
developed several tests to compare the relative
strength of the coevolutionary signal from binding
and nonbinding parts of proteins. In particular, we
tested how the coevolutionary signal computed
from the binding neighborhood compares with
that computed from an equivalent number of non-
binding positions.
In agreement with previous work indicating that

coevolutionary signal is not restricted to the binding
interface, we found that when the binding neighbor-
hoods are completely removed, the remaining
sequences of interacting domains still contain a
significant coevolutionary signal. However, we also
found that the signal is not distributed uniformly
across the sequence. In particular, removing the
binding neighborhood significantly reduced the
performance of the method. In addition, we found
that the binding neighborhood alone provides a
stronger coevolutionary signal than the same
number of randomly selected residues outside the
binding neighborhood. Thus, the correlation bet-
ween evolutionary distances of interacting protein
domains can only be partially explained by the
common evolutionary pressure exerted along the
whole sequence of interacting protein domains. In
particular, our results indicate that the binding
neighborhood has a significantly higher contribu-
tion to this signal than the rest of the protein domain
sequence.
Results and Discussion

To compare the contribution of correlated evolu-
tion measured by mirrortree based on binding sites
with that of the whole protein domain sequence, we
considered a set of columns from the multiple
sequence alignment (MSA) corresponding to bind-
ing sites and their close neighborhood (binding
neighborhood). The rationale for considering this
binding neighborhood rather than binding sites
alone is as follows: The mirrortree method measures
the correlation between evolutionary changes, but
the binding sites alone are often (sometimes nearly
perfectly) conserved and might not display enough
variation to provide detectable coevolutionary
signal. Furthermore, it has been found previously
that the majority of the coevolving positions are not
in direct contact but usually physically close
(≤10 Å).25

First, we compared the performance of the
mirrortree method using MSA columns from the
binding neighborhood alone with the performance
of the same method when equal numbers of
randomly selected nonneighborhood MSA columns
were used (Fig. 1). We considered binding neighbor-
hoods at increasing thresholds: 6 Å, 8 Å, 10 Å, and
12 Å (see Materials and Methods). We corrected for
the speciation divergence using two methods that
we refer to in this article as the “nonorthogonal” and
“orthogonal” methods, which were proposed by



Fig. 1. Comparison of signals from the binding neighborhood with those from randomly selected MSA columns. (1)
The binding neighborhoods are extracted from crystal structures of interacting domains and projected onto the MSA of
orthologous sequences. (2) The distance matrices are constructed using the MSA columns corresponding to the binding
neighborhoods and, separately, for the sequences constructed by randomly selecting the same number of nonbinding
MSA columns. The upper triangle of the distance matrix is represented as a vector. (3) Subsequently, each vector is
corrected by subtracting the speciation vector ( s→, depicted in gray). (4) The correlation coefficient between the resulting
vectors is computed (dashed and dotted vectors for randomly selected columns and binding neighborhood, respectively).
(5) Finally, it is tested whether the correlation between vectors computed using the binding neighborhood leads to better
retrieval results than that between vectors computed using randomly selected MSA columns.
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Fig. 2. Comparison of the correlation coefficients
for each domain–domain interacting pair using the
binding neighborhood (black) and an equivalent number
of randomly selected columns (red). The values in the x-
axis, labeled 1–26, represent each of the domain–domain
interacting pairs sorted in descending order by the cor-
responding correlation coefficient when using the binding
neighborhood. Results in panels (a) and (b) were obtained
using the orthogonal and nonorthogonal speciation cor-
rections, respectively. For randomized experiments, we
plotted the mean value; standard deviations are repre-
sented based on 100 trials as the error bar.

Fig. 3. Comparison of the performance of themirrortree
method on the binding neighborhood with that on the
randomly selectedMSAcolumn set of the same size. The red
lines correspond to the performance using the binding
neighborhood with corrections from the orthogonal specia-
tion subtraction (circles) and nonorthogonal speciation
subtraction (squares). The corresponding graphs for ran-
domly selected residues are shown in black. Insert shows
ROC curves for up to a 20% false-positive rate.
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Pazos et al.14 and Sato et al.,11 respectively (see
Materials and Methods). We refer to our previous
study6 for details about the methodological differ-
ences between these methods and for an explanation
for this naming convention. We should note that the
gold standard used for benchmarking was designed
based on a set of domain–domain interactions
verified with crystallographic data from Shoemaker
et al.26 This data set, with additional constraints (see
Materials and Methods), might be biased toward
domain pairs that form more stable complexes
rather than transient interactions due to the limited
sample size. Figure 2 depicts the comparison, for all
interacting domain pairs, of the correlation coeffi-
cients obtained using the binding neighborhood
alone with those obtained using an equal number of
randomly selected nonneighborhood MSA columns
(see Materials and Methods). Results using the
orthogonal and nonorthogonal speciation correc-
tions are depicted in Fig. 2a and b, respectively. For
both speciation corrections, the coevolutionary
signal strength, represented by the correlation
coefficients, derived from the binding neighborhood
is predominately higher.
In addition, the accuracy of the different methods

was measured using receiver operating character-
istic (ROC) curves.27 We used complete ROC and
ROCn curves (plots truncated after the first n false
results28,29) that were normalized such that the area
under the ROC curve for an ideal retrieval method
(one that returns all the true results first) was equal
to 1.0. The corresponding ROC curves, for the
binding neighborhood of 10 Å, are shown in Fig. 3.
Independent of the speciation subtraction method
used, exclusive use of the binding neighborhood
drastically improves the performance in predicting
domain interactions over the set of randomly
selected MSA columns outside the binding neigh-
borhood. Figure 4 shows values for ROC50 and
ROCtotal for all these experiments, together with the
corresponding values from additional experiments
discussed below. The values of ROC are given in
Table 1. For the experiment using randomly selected
columns, we computed the standard deviation
based on 100 trials. Note that the results for
randomly selected columns and those for the
binding neighborhood differ by several standard
deviations. We confirmed that the results presented
in this article are robust with respect to the definition
of binding neighborhood.



Fig. 4. Dependence of ROC results on the columns used in the alignment and on the speciation correction used in the
analysis. Results for ROCtotal and ROC50 show the following trends: Regardless of the region of the sequence used, the
performance of the method with the correction for speciation (darker colors) is better than that of the original mirrortree
method without the correction (lighter colors). In particular, using the full-length sequence with speciation correction
yields, for ROC50, the best results (gray); subtracting a set of randomly selected nonbinding columns (brown) represents
only a slight decrease in performance, while subtracting the binding neighborhood (cyan) to the full sequence represents a
significant decrease in the overall performance of the method. Finally, performance using the binding neighborhood alone
(green) is significantly better than using a randomly selected set of columns of the same size but not belonging to the
binding neighborhood (yellow).
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Next, we analyzed the effect of removing the
binding neighborhood on the performance of the
mirrortree method and compared it with the effect of
removing randomly chosen columns outside
the binding neighborhood. The number of re-
moved random columns was equal to the number
of columns in the binding neighborhood, thereby
accounting for any effect that the number of columns
might have on the method. We applied both ortho-
gonal and nonorthogonal speciation subtraction
methods; results are depicted in Fig. 5a and b,
respectively. Independent of the applied speciation
Table 1. Summary of ROC50 and ROCtotal values for all expe

Experiment Speciation co

Randomly selected columns None
Binding neighborhood None
Full without randomly selected residues None
Full without binding neighborhood None
Full sequence None
Randomly selected columns Nonorthog
Binding neighborhood Nonorthog
Full without randomly selected residues Nonorthog
Full without binding neighborhood Nonorthog
Full sequence Nonorthog
Randomly selected columns Orthogo
Binding neighborhood Orthogo
Full without randomly selected residues Orthogo
Full without binding neighborhood Orthogo
Full sequence Orthogo

For randomized experiments, we report the mean value; standard de
subtraction,we observed that removal of the binding
neighborhood leads to a significant decrease in the
performance of the mirrortree method. Yet, our
results show that the sequence without the binding
neighborhood still provides significant coevolution-
ary signal. Furthermore, for randomly selected
residues, the discriminating power measured by
the ROC value increasedwith the number of selected
columns.
One can argue that since Hakes et al.23 found no

difference in the discriminating power between the
surface region and the whole sequence, the better
riments

rrection ROC50 (std) ROCtotal (std)

0.000 (0.003) 0.391 (0.006)
0.016 0.526
0.189 (0.02) 0.75 (0.02)
0.090 0.667
0.249 0.793

onal 0.16 (0.03) 0.677 (0.05)
onal 0.309 0.88
onal 0.38 (0.02) 0.851 (0.02)
onal 0.282 0.792
onal 0.410 0.852
nal 0.14 (0.03) 0.645 (0.04)
nal 0.276 0.735
nal 0.31 (0.02) 0.85 (0.02)
nal 0.249 0.735
nal 0.348 0.838

viations (in parentheses) were computed based on 100 trials.



Table 2. Comparison of ROC50 and ROC100 values for
experiments using the full sequence, only the surface, and
only the binding neighborhood (radius 10 Å) using set_18

Experiment Speciation correction ROC50 ROC100

Full sequence None 0.196 0.256
Surface None 0.000 0.000
Binding neighborhood None 0.000 0.022
Full sequence Nonorthogonal 0.430 0.548
Surface Nonorthogonal 0.188 0.261
Binding neighborhood Nonorthogonal 0.287 0.386
Full sequence Orthogonal 0.337 0.444
Surface Orthogonal 0.162 0.211
Binding neighborhood Orthogonal 0.201 0.312
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performance of the binding neighborhood could be
due to surface residues that might be contained
within the binding neighborhood. To eliminate this
possibility, we compared the ROC values obtained
from the binding neighborhood with those com-
puted based on surface residues (of the same size as
the binding neighborhood and excluding residues
from the binding neighborhood). In addition, only
interacting pairs that contain sufficiently large
numbers of surface residues outside the binding
neighborhood were selected (see Materials and
Methods). The results for this analysis, depicted in
Table 2, show that the ROC values using surface
residues outside the binding neighborhood are
always smaller than those using the binding
neighborhood (independent of the speciation cor-
rection used).
Fig. 5. Comparison of the performance of the mirrortree
method using the full sequence (black), full sequence
without the binding neighborhood (red), and sequence
without the set of randomly selected columns of the same
number as the binding neighborhood (blue). Panel (a)
corresponds to the orthogonal speciation correction, and
panel (b) corresponds to the nonorthogonal speciation
correction. Inserts show ROC curves for up to a 20% false-
positive rate.
Finally, Fig. 4 provides a summary of the above-
discussed results without speciation subtraction
(faded colors) and with the nonorthogonal subtrac-
tion (bright colors); results for orthogonal subtrac-
tion (not shown) were almost identical. Clearly, the
binding neighborhood is a better discriminator of
interactions than a randomly selected set of columns
of the same size. The relative discriminative powers
of the whole sequence, the whole sequence without
binding neighborhood, and the binding neighbor-
hood differ in their ROC values, with the whole
sequence performing best on the more practical
ROC50. In addition to the abovementioned results,
our work shows that a larger number of MSA
columns provide a stronger signal (the number of
columns in the randomly selected set and those in
the binding neighborhood sets are smaller than the
number of columns in the full-length sequences).
Furthermore, from the summary in Fig. 4, one can
also appreciate the strongly increased power of the
mirrortree method when the correction for specia-
tion is applied.
Conclusions

We have shown that binding neighborhoods of
interacting proteins have, on average, higher coevo-
lutionary signal compared with those columns out-
side binding sites. We also found that the sequences
without the binding sites still contain some coevolu-
tionary signal; however, the signal coming from a
randomly selected set of columns is weaker than
that from the binding neighborhoods. Interestingly,
our results also show that the coevolutionary signal
of randomly selected MSA columns outside the
binding neighborhood increases with the number of
columns.
Thus, in agreement with Hakes et al. and others,

we found that the binding neighborhood alone
is not the only contributor to the coevolutionary
signal. Hakes et al. concluded that “correlated
sequence evolution is most probably due to inter-
acting proteins being constrained in similar ways
and, consequently, having similar rates of evolution
across their entire sequences.” Our additional
experiments however lead to the conclusion that
the signal is not uniform and instead is stronger in
the binding neighborhood.
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Our results indicate that the binding neighborhood
is subject to stronger correlated evolution than other
regions of the interacting protein domains. However,
since the mirrortree technique is based on common
variation of sequence distances between sequences of
interacting proteins rather than on a direct measure-
ment of any of the factors thatmight contribute to this
variation, the exact coevolutionary mechanism that
leads to the similarity of evolutionary trees of inter-
acting proteins is still not fully uncovered.
Materials and Methods

Data set

The set of interacting and noninteracting domains was
selected similar to the work of Kann et al.6 In particular, this
test set ensures that all orthologous families (interacting or
not) contain sequences from the same set of 70 species. Our
set of interacting domain families contains a total of 26
interacting pairs and 1291 noninteracting pairs. The inter-
acting domains have been selected rigorously based on the
Conserved Binding Mode (CBM) database of Shoemaker
et al.,26 which maps the protein domains from the
Conserved Domain Database30 onto a set of interacting
domains from the Protein Data Bank and verifies the
interactions via CBMs. The CBM analysis uses conserved
geometric interfaces to reduce the possibility of including
nonbiological interactions. All interacting domains in this
study were extracted from the CBM database. For cases in
which multiple CBMs are present for a single interacting
pair of domains, we randomly chose one CBM per pair. For
each domain pair extracted from the CBM database, an
expanded binding neighborhoodwas determined about the
binding interface. Any two residues a and b, from domains
A andB, respectively, are included if and only if the distance
between the closest atoms from a and b does not exceed a
given threshold. Threshold values of 6 , 8 , 10 , and 12Åwere
used. The results given in the main text are for 10 Å. In
addition, all pairs selected for this study must have
contained at least 20 residues satisfying this condition.
Solvent-accessible residues were determined from

DSSP31 calculations available for all structures†. The
solvent accessibility of residue “X” is defined as the ratio
of its solvent-accessible area in protein structure to that for
extended tripeptide Gly–X–Gly. An amino acid is con-
sidered as solvent accessible if this ratio is greater than
0.05. To account for the size effect, we chose the same
number of columns for both surface and binding
neighborhood regions. In addition, we selected only
those interacting pairs that contained sufficiently large
numbers of surface residues outside the binding neighbor-
hood and did not contain large disordered regions
(surface accessibility could not be calculated for disor-
dered regions). After applying all these restrictions, we
ended up with 18 interacting pairs (set_18).

Mirrortree method with speciation subtraction

For each domain pair reported in the interacting and
noninteracting sets, the correlation between the evolu-
tionary trees was measured by computing the correlation
coefficient of the corresponding vectors. The sets of
† ftp://ftp.cmbi.kun.nl/pub/molbio/data/dssp
residues and their corresponding MSA columns were
selected as follows: All the columns of the protein domain's
MSA were used for the “full sequence experiment.” For
each interacting domain, we randomly selected a set of
columns outside the binding neighborhood equal to the
number of sites in the binding neighborhood.Only binding
neighborhood columns or randomly selected columns
were used (or excluded) in the remaining experiments.
This selection procedure was repeated 100 times. The
correlation coefficient was adjusted using one of the two
speciation subtraction approaches cited, orthogonal sub-
traction and nonorthogonal subtraction, as proposed by
Sato et al11 and Pazos et al.,14 respectively. For two domains
A and B with n species in common in their MSA, let's
denoteAij as the distance between species i and j for protein
family A and Bij as that for protein family B.
To implement the speciation signal subtraction, we

further modified these distance vectors as follows: First,
the background speciation matrix was computed by
averaging the evolutionary distance matrices (F) of all
protein families (from interacting and noninteracting sets).
Thus, forN protein families, the distance between species i
and j in the background speciation vector is given by

si;j =

PN

k = 1
Fki;j

N

To reduce the impact of codivergence due to common
speciation history, the nonorthogonal speciation subtrac-
tion method14 computes modified distances Aij′ and Bij′ by
Aij′=Aij− sij and Bij′ =Bij− sij, respectively. When using the
orthogonal reference, corresponding distances are defined
by Aij′=Aij−Pij

A and Bij′=Aij−Pij
B, where Pij

F is the standard
representation of the projection of the distance vector for
protein family F=A or B into the speciation vector Ysij and
is given by

PF
i;j =

Pn�1

i = 1

Pn

j = i + 1
si;jFi;j

Pn�1

i = 1

Pn

j = i + 1
s2i;j

si;j

We point out that the implementation of orthogonal and
nonorthogonal subtraction methods is identical with that
reported in Ref. 6. Finally, given Aij′ and Bij′, the
correlation between evolutionary histories is estimated
by computing a standard Pearson's correlation coefficient
of the upper right triangle of the corresponding matrices.
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