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Abstract 

Understanding the genetic basis of complex diseases is challenging. Prior work shows that 

disease-related proteins do not typically function in isolation. Rather, they often interact with 

each other to form a network module that underlies dysfunctional mechanistic pathways. 

Identifying such disease modules will provide insights into a systems-level understanding of 

molecular mechanisms of diseases. Owing to the incompleteness of our knowledge of disease 

proteins and limited information on the biological mediators of pathobiological processes, the 

key proteins (seed proteins) for many diseases appear scattered over the human protein-protein 

interactome and form a few small branches, rather than coherent network modules. In this paper, 

we develop a network-based algorithm, called Seed Connector algorithm (SCA), to pinpoint 

disease modules by adding as few additional linking proteins (seed connectors) to the seed 

protein pool as possible. Such seed connectors are hidden disease module elements that are 

critical for interpreting the functional context of disease proteins. The SCA aims to connect seed 

disease proteins so that disease mechanisms and pathways can be decoded based on predicted 

coherent network modules. We validate the algorithm using a large corpus of 70 complex 

diseases and binding targets of over 200 drugs, and demonstrate the biological relevance of the 

seed connectors. Lastly, as a specific proof-of-concept, we apply SCA to a set of seed proteins 

for coronary artery disease (CAD) derived from a meta-analysis of large-scale genome-wide 

association studies (GWAS) and obtain a CAD module enriched with important disease-related 

signaling pathways and drug targets not previously recognized.   

 

Introduction 
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After decades of research, many susceptibility alleles and genes associated with complex 

diseases have been identified by genome-wide association studies (GWAS) and other ‘omic’ or 

bioinformatic approaches [1]. Nevertheless, our knowledge of the mechanisms underlying these 

associations that are responsible for the diseases remains largely undefined. There is increasing 

evidence that a set of proteins associated with a given disease do not function in an isolated way. 

Rather, these causal proteins interact with each other to form a distinct network module within 

the universe of (physical) protein-protein interactions (the human protein-protein interactome) 

representing perturbed, dysfunctional pathways [2-4]. For this reason, traditional single protein 

or single pathway-based approaches for studying complex diseases have limited utility. Network-

based approaches can aid in identifying such disease modules in the human interactome; provide 

insights into systems-level understanding of disease mechanisms and pathophenotypes; and 

guide the search for therapeutic targets. 

Many heuristic methods have been proposed to integrate protein interaction networks with 

different types of omics data to prioritize or predict disease-associated genes [5-7]. These 

prioritization methods, however, generally do not yield a coherent connected module in the 

human interactome nor offer insights into causal mechanisms. Most of the existing algorithms 

for identifying disease modules aim to expand the set of seed proteins (nodes in the interactome 

network) by adding many predicted associated proteins (linked nodes) in the interactome while 

ignoring the small branches of loosely connected seed proteins, leading many proteins associated 

with diseases to be ‘orphaned’ from the disease module in the network and to be of unclear 

mechanistic significance [8-10]. In fact, these isolated seed proteins are often more reliable than 

the predicted associated disease proteins as they have documented evidence of association with 
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the disease. Their isolation in the network may simply be a consequence of the incompleteness of 

the pool of seed proteins or the scarcity of information on biological mediators linked thereto.  

Three examples of existing algorithms serve to illustrate these shortcomings. DIAMOnD, a 

disease module detection algorithm based on connectivity patterns of disease proteins [8], it 

ranks candidate proteins according to their numbers of connections to seed proteins. While it can 

identify a connected disease module, the coverage of seed proteins in the module may be very 

low, with many isolated seed proteins unexplored. Importantly, these isolated proteins may be 

only one or two links away from other seed proteins.  The prize-collecting Steiner tree (PCST) 

algorithm searches for a subtree minimizing the sum of the total ‘cost’ of all edges in the subtree 

plus the total ‘profit’ of all nodes, and has been used to identify optimal subnetworks for a given 

set of seed genes or proteins [11-14]. This algorithm requires additional weights for nodes 

(denoted as profits) and edges (denoted as costs), which are usually not available for disease 

proteins. Moreover, PCST gives a tree-like or forest-like network without cycles, not a 

subnetwork with general topological modular structure. The recently developed method, 

GLADIATOR, ascertains disease modules based on disease-disease phenotype similarity, which 

indicates that it requires knowledge of multiple linked diseases and, therefore, cannot predict 

disease modules individually [9].  

In this work, we develop a novel network-based Seed Connector Algorithm (SCA) to discover 

disease modules in the human interactome by adding as few extra hidden nodes as possible in 

order to link seed disease proteins. This method facilitates decoding of disease mechanisms and 

pathways based on predicted coherent network modules. These seed connectors, serving as 

bridges of different network branches induced by seed proteins, are otherwise hidden 

components (i.e., not previously recognized by genetic linkage or reductionist studies that define 
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the seed gene/protein pool) that are critical for interpreting the functional context of disease 

proteins and for understanding the dysfunctional pathways of diseases. We validate our 

algorithm using a list of 70 complex diseases and a large corpus of binding targets of over 200 

drugs, and demonstrate the biological relevance of these seed connectors. Lastly, we apply this 

algorithm to a set of seed genes for coronary artery disease (CAD) derived from a meta-analysis 

of large-scale genome-wide association studies (GWAS) and obtain a CAD module enriched 

with important disease-related signaling pathways and drug targets not previously recognized.    

Materials and Methods  

Sources of the Human Interactome 

The molecular mechanisms underlying disease modules involve multiple types of molecular 

interactions. We used a consolidated human protein-protein interactome, which combines 

physical macromolecular interactions including protein-protein interactions, protein complexes, 

protein-DNA interactions, kinase-substrate interactions, metabolic interactions, and signaling 

pathways from different sources, to ascertain disease modules. Protein-protein interactions are 

derived from several high-throughput yeast two-hybrid studies [15-18] and also include binary 

interactions from IntAct and MINT databases [19, 20], as well as literature-curated interactions 

obtained from low-throughput experiments reported in the IntAct, MINT, HPRD, and BioGRID 

databases [21, 22]. The manually curated dataset of mammalian protein complexes (CORUM) 

and experimentally determined human protein complexes are also incorporated in the 

comprehensive set of protein-protein interactions [23, 24]  Protein-DNA regulatory interactions 

are taken from the TRANSFAC database [25], and kinase-substrate interactions are obtained 

from the PhosphositePlus database [26]. Metabolic enzyme-coupled interactions are derived 
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from the KEGG and BiGG databases [27]. In addition, protein interactions from 3D structural 

prediction and signaling interactions are also included in the construction of the interactome [28, 

29] . This consolidated human interactome, after removing duplicate interactions and self-loops, 

has 14,174 proteins with 170,303 interactions.  

Collecting Disease Proteins 

As described in [8], a list of 70 diseases and their associated proteins (seed proteins) were 

compiled from the Online Mendelian Inheritance in Man (OMIM) [30], UniProtKB/SwissProt 

[31], and GWAS data from the Phenotype-Genotype Integrator database (PheGenI) [32]. The list 

was manually chosen according to unique (i.e., non-redundant) nosology, omitting those 

phenotypes that reflect symptoms or common disease mechanisms (i.e., endopathophenotypes 

such as fibrosis or inflammation). The diseases chosen also had to have at least 20 associated 

proteins to be mapped to the human interactome. The genome-wide significance cutoff we used 

is P <5.0E-8. The Medical Subject Headings ontology (MeSH) was used to combine the different 

disease nomenclatures from the two sources into a single standard vocabulary. 

Compiling Drug Targets 

The draft set of drug-target pairs were collected from DrugBank [33], TTD (Therapeutic Target 

Database) [34], and PharmGKB [35]. We then used the bioactivity data of drugs to filter out 

some drug targets. The bioactivity data were collected from three commonly used databases: 

ChEMBL [36], BindingDB [37], and IUPHAR/BPS Guide to PHARMACOLOGY (GtoPdb) 

[38]. Only those drug targets meeting the following three criteria were retained: (1) binding 

affinities, including Ki, Kd, IC50, or EC50, each ≤ 10 µM; (2) the target protein can be represented 
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by a unique UniProt accession number and also marked as 'reviewed' in the UniProt database 

[39]; and (3) the target protein is a human protein. The draft set of drug targets was refined with 

the bioactivity data and then mapped to their Entrez ID from the NCBI database [40], as well as 

their official gene symbols based on GeneCards [41]. We mapped the drug targets to the human 

interactome and only considered those drugs that have at least 10 targets in the interactome, with 

220 drugs included for further analysis. 

The Seed Connector Algorithm (SCA) 

Owing to the incompleteness of the set of disease seed proteins, these proteins may not be 

closely connected (immediately proximate) to each other to form a network module in the human 

interactome.  We, therefore, developed a network-based algorithm called the Seed Connector 

Algorithm (SCA) which aims to connect the disease seed proteins by introducing as few extra 

connector nodes as possible. This algorithm is sort of similar to a Steiner tree problem [42] 

which aims to create a tree of minimum weight that contains all of the given nodes (but may 

include additional nodes) on an undirected graph with non-negative edge weights; however, 

instead of a tree structure, the SCA can generate a subnetwork with a general topological 

modular structure. The principle underlying this algorithm is that seed proteins associated with 

the same disease should not be very far from each other and, thus, should link to each other 

through very short paths (e.g., not more than one intermediary node). SCA is an iterative 

algorithm as follows: 

I. Assume that the seed protein pool P={P1, P2, …, Ps} induces a subnetwork Gt. Calculate the 

size of the largest connected component (LCC) of the subnetwork Gt. 
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II. Consider all of the first-order interactors of the seed proteins as identified in the human 

interactome. Add each interactor temporarily to the seed protein pool one-by-one: Pt=P{PI}. 

Obtain the subnetwork induced by this temporary seed protein pool and determine the size of its 

LCC. 

III. Select those interactors that can increase the coverage of seed proteins in the LCC of the 

subnetwork maximally. If there are multiple candidates, select those whose neighbors contain the 

greatest number of seed proteins compared to its total number of neighbors and add it to the seed 

protein pool P.   

Steps I-III repeat until none of the first-order interactors, when added, increases the coverage of 

seed proteins in the LCC of the induced subnetwork Gt. The final subnetwork is the predicted 

coherent disease module, which is obtained by introducing as few additional nodes as possible. 

The disease module obtained by this algorithm has a very high ratio of seed proteins to connector 

proteins.  A preliminary version of the SCA has been used in constructing the placebome module 

in one of our previous studies [43].  As we realized that for some isolated seed proteins, there can 

be too many candidate connectors with equal roles. Therefore, in this current study, we add one 

more step to the algorithm, retaining only those candidates whose neighbors are enriched with 

the greatest number of seed proteins. This step ensures that a minimum number of seed 

connectors are added to network modules. 

Figure 1 gives an overview of SCA. First, the algorithm starts with known seed proteins and 

induces a loosely connected subnetwork consisting of only seed proteins. Next, one first-order 

interactor (in grey) of seed proteins that increases the size of LCC of the subnetwork maximally 

is selected as a seed connector.  More proteins (in grey) that maximally increase the size of LCC 
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of the subnetwork are selected sequentially as seed connectors until there is no additional first-

order interactor that can be selected as a seed connector. Note that after all the iterations are 

completed, there may still be isolated seed proteins not connected to the subnetwork. This 

observation likely means that these isolated proteins are, indeed, far from the disease module, 

and simply cannot be connected through short paths given our current (incomplete) knowledge 

of the human interactome (~25% of all likely interactions).  SCA was implemented by Python 

with the assistance of the NetworkX package. 

Statistical Analysis and Tools 

All network visualization was performed with the open source platform Cytoscape 3.30 [44].  

When we assessed the topological properties of a disease module or a drug target module, we 

created a random control for determining its statistical significance, i.e., we randomly selected a 

protein set of the same size from the human interactome and calculated the topological properties 

of the randomly defined modules. P values were obtained by fitting the histograms to normal 

distributions using the ‘normfit’ command in Matlab (Mathworks, Inc). P values (adjusted by the 

Benjamini-Hochberg procedure if applicable) less than 0.05 were considered significant. Gene 

Ontology (GO)-based functional similarity of pairs of proteins was quantified by GS2 (GO-based 

similarity of gene sets) developed in a previous study [45].  The daily snapshots of the GO tree 

and human gene annotations were downloaded from the GO web site 

(http://www.geneontology.org) 

Results 

Discovery of Disease Modules 

We first examined the performance of SCA using a corpus of 70 diseases.  Importantly, the full 

set (i.e., ground truth) of disease proteins is unknown, so we cannot evaluate the performance of 
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the algorithm in terms of sensitivity and specificity.  We first checked the coverage rate of seed 

proteins in the disease modules predicted by SCA and compared it with DIAMOnD [9]. Since 

DIAMOnD needs manual input (the number of candidate proteins) to stop the algorithm, we set 

this number equal to the number of seed connectors, with the result summarized in Table 1. 

Among 70 diseases, the SCA is able to ascertain network modules for 67 diseases. Three 

diseases -- exophthalmos, glomerulonephritis, and Graves disease -- have too few seed proteins 

which are sufficiently remote from each other that first-order interactors are unable to link them.  

Of these 67 diseases, 45 disease modules constructed with the SCA have significantly higher 

coverage rates of seed proteins in the LCC than the disease modules predicted by DIAMOnD. 

For the remainder of the diseases, the modules generated by DIAMOnD were not significantly 

different in coverage of the seed proteins compared to the SCA; yet the total number of seed 

proteins covered by the LCC of these DIAMOnD-defined modules were much less than the seed 

protein coverage in disease modules defined by the SCA in all cases. 

Figure 2 provides an example showing the typical characteristics of a disease module 

constructed using the SCA and DIAMOnD. The SCA links the seed proteins together by 

introducing additional hidden components (biological intermediaries) such that meaningful 

signaling pathways relevant to diseases become explicit. Disease modules constructed by SCA 

usually cover the majority of disease seed proteins, with only a few proteins isolated from the 

disease modules. In contrast, DIAMOnD continually expands the LCC of the module, but fails to 

incorporate more seed proteins with iterative expansion for many of the disease modules.  

We next used publicly available gene function annotation data from Gene Ontology (GO) to 

validate the biological relevance of seed connectors and the functional rationale of the disease 

modules.  The hypothesis here is that seed connectors act as intermediaries of seed proteins and 
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should have functions similar to the seed proteins. We, therefore, examined the GO functional 

similarity between seed connectors and seed proteins. As a background control, we randomly 

selected the same number of proteins in the human interactome 1,000 times and calculated their 

GO functional similarity to seed proteins. The statistical significance of this analysis is shown in 

Figure 3A. Of 67 disease modules, the seed connectors of 65 disease modules are statistically 

significantly functionally similar to the seed proteins. This finding demonstrates the functional 

relevance of the seed connectors and the reliability of the constructed disease modules as 

representations of a functionally integrated pathobiology. We also used another background 

control to examine the significance of the functional similarity of seed connectors to seed 

proteins: the random proteins were selected from other first-order interactors of the seed proteins 

that were not seed connectors. This approach was used to determine whether seed connectors are 

functionally more similar to seed proteins than other first-order interactors. Even with this strict 

background control, the seed connectors of 60 out of 67 diseases are functionally more similar to 

seed proteins than other first-order interactors. The result, shown in Supplementary Figure 1, 

further substantiates the biological relevance of the seed connectors as functional intermediaries 

and their potential mechanistic role in disease pathogenesis.   

We also compared the seed connectors from the SCA and DIAMOnD proteins in terms of their 

functional similarity to seed proteins. As DIAMOnD proteins are candidate disease proteins in 

the neighborhood of seed proteins, their functional similarities to seed proteins are comparable as 

seed connectors (Figure 3B); however, seed connectors are somewhat more robust in this regard 

(Figure 3C): for 34 disease modules (51%), seed connectors identified by the SCA are more 

functionally similar to seed proteins than candidate disease proteins identified by DIAMOnD; for 

26 disease modules (39%), DIAMOnD candidate disease proteins are more functionally similar 
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to seed proteins than SCA seed connectors; and for 7  disease modules (10%), SCA seed 

connectors and DIAMOnD candidate disease proteins are equally functionally similar to disease 

modules. Note that owing to the lack of ground truth, functional similarity is simply an indirect 

way of comparing the two algorithms without statistical validation. 

Coherent Network Modules for Drug Targets 

The SCA does not only facilitate identification of disease modules, but can also be used to 

determine drug target modules. Identification of drug target modules is helpful for understanding 

the molecular mechanisms of action of drugs. Owing to the incompleteness of target information, 

some targets may not be connected to principal mechanistic pathways. We used a total of 220 

drugs with at least 10 targets in the human interactome in this analysis. Interestingly, of the 220 

drugs, the targets of over 200 drugs form a connected module with significantly more 

interactions and larger sized LCC compared to the same number of random proteins chosen from 

the human interactome (Supplementary Table 1 and Supplementary Table 2).  This 

observation can be interpreted to mean that the majority of drugs act on a local neighborhood of 

the human interactome. 

Some drug targets are loosely connected to and isolated from the main modules. We applied our 

SCA to the binding targets of all of the 220 drugs, and obtained larger drug target modules by 

adding connectors. Of 220 drugs, the SCA enables the expansion of the target modules of 199 

drugs.  Figure 4 provides an example of a drug target module identified by the SCA. Palbociclib  

(DB09073) is a drug used for the treatment of ER-positive and HER2-negative breast cancer and 

has 30 drug targets in the interactome that induce a subnetwork of 16 proteins (nodes) and 13 

interactions (edges) (Figure 4A). After expansion using the SCA, the target module of this drug 

contains 39 proteins and 50 interactions and covers all (known) targets (Figure 4B). The 
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functional context of the CDK pathway and the MAPK pathway is explicit in the expanded drug 

target module.  

To evaluate the biological relevance of the seed connectors for ascertaining drug target modules, 

we collected an expanded drug target set from Drugbank, including drug targets, drug carriers, 

drug transporters, and drug enzymes. We examined whether or not the seed connectors are 

significantly enriched with drug targets. We found that of 199 drugs whose target modules are 

expandable, the seed connectors for 74 drugs are significantly enriched with drug targets 

compared to random expectation, indicating the pharmaceutical relevance of the seed connectors. 

For example, the SCA added 8 extra intermediaries to the target set of palbociclib, 5 of which are 

known drug targets: MAP3K1, PTPN1, LIMK1, SNCA, and PRKAR2A (Figure 4B). MAP3K1 

is the target of DB06061 --- an MEK inhibitor that blocks signal transduction pathways 

implicated in cancer cell proliferation and survival. LIMK1 is a target of DB08912 (dabrafenib)--

- a reversible ATP-competitive kinase inhibitor and targets the MAPK pathway. PRKAR2A is 

the target of DB05798, an antisense oligonucleotide being investigated for treatment of many 

solid tumors. This target module is enriched with target proteins of drugs used for cancer 

treatment. 

Application to Coronary Artery Disease 

We finally applied the SCA to a set of seed proteins associated with coronary artery disease 

(CAD) derived from a large-scale meta-analysis of 48 genome-wide association studies 

assembling 60,801 cases and 123,504 controls [46]. This meta-analysis confirmed most of the 

known CAD-associated loci and also identified 10 new loci. The seed protein pool has 81 

proteins, 65 of which can be found in the human interactome. The subnetwork induced by the 

seed protein pool has 18 proteins and 15 interactions (Figure 5A).  Compared to a random 
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protein set of the same size, this subnetwork has significantly more interactions and larger sized 

LCC (P= 1.9E-06 and 4.0E-07, respectively) (Supplementary Figure 2), confirming that disease 

proteins tend to interact with each other and function together to form a network module 

representing dysfunctional pathways of diseases.  

After adding seed connectors as pathway mediators, the CAD network module has 88 proteins 

and 111 interactions, as shown in Figure 5B.   This module integrates the physiological 

pathways related to genetic loci associated with coronary artery disease, e.g.  LDL cholesterol 

and lipoproteins (SORT1, APOB, APOE, LDLR, PCSK9, LPA), triglyceride-rich lipoproteins 

(LPL, APOA1, APOC1), inflammation (IL6R, CXCL12), cellular proliferation and vascular 

remodeling (MIA3, COL4A1, COL4A2, REST, NOA1, SMAD3, SWAP70, BCAS3,FLT1, PDGFD) 

and vascular tone and nitric oxide signaling (GUCY1A3, NOS3, EDNRA) [47], providing an 

overall picture of pathobiological implications of these pathways. The Cardiovascular GO 

Annotation Initiative aims to manually annotate cardiovascular-associated genes or proteins by 

curating scientific literature and integrating results from high-quality high-throughput 

experiments [48]. So far over 4000 cardiovascular-associated genes have been prioritized as 

targets for annotation with GO terms. We assess whether the seed connectors are cardiovascular-

associated proteins by using this resource of manual GO annotation and found that of 28 seed 

connectors, 18 are cardiovascular-associated proteins. The enrichment is significant compared to 

a random protein set of the same size from the human interactome (P=2.86E-06, Figure 5C), 

confirming the likely functional role of the seed connectors. 

 In addition, of 28 seed connectors, 14 are drug targets from the expanded set of drug targets in 

Drugbank. This enrichment is significant compared to random expectation (P= 3.9E-06, Figure 

5D), demonstrating the likely biological relevance of the seed connectors. One seed connector 
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NRP1 (Neuropilin-1) is the target protein of pegaptanib (DB04895) -- an anti-angiogenic 

medicine for the treatment of neovascular age-related macular degeneration. NRP1 is a receptor 

regulating developmental and pathological angiogenesis and arteriogenesis, and mediating 

vascular permeability independently of vascular endothelial growth factor receptor-2 (VEGFR-2) 

activation [49]. In the CAD module, NRP1 connects REST, FLT1, and PDGFD (through PGF) 

which involve in cellular proliferation and vascular remodeling. MFGE8 contains genetic loci 

associated with CAD, but its physiology pathway is uncertain yet [47].  We predict that it also 

functions in cellular proliferation and vascular remodeling since it connects to REST and FLT1 

through NRP1.  

Conclusion and Discussion 

Identification of coherent disease modules -- a fundamental tenet of network medicine -- is 

important for deciphering the molecular mechanisms of diseases. Many algorithms have been 

developed to address this challenge. In this study, we provided an alternative method to ascertain 

disease modules in the neighborhood of the human interactome. Unlike many existing algorithms 

which ignore many loosely connected disease proteins, our algorithm, the Seed Connector 

Algorithm (SCA), aims to connect seed disease proteins maximally and efficiently by 

introducing as few extra intermediaries as possible. We demonstrate the biological relevance of 

the extra mediators (seed connectors) identified in terms of their functional similarity to seed 

proteins and their enrichment of drug targets. The seed connectors in disease modules provide 

the functional context of disease proteins and serve as guide for experimental validation of 

dysfunctional pathways. 
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This algorithm has a variety of applications, including construction of disease modules based on 

seed proteins; identification of drug target modules; and determination of network modules based 

on differentially expressed genes.  For example, RNA-Seq is now frequently used to obtain 

genome-wide gene expression data under different conditions. For some studies, only a few 

differential expressed genes are identified, and these are scattered over the human interactome. 

Our algorithm can help to obtain an overall picture as to how these differentially expressed genes 

(gene products) may localize or cluster at the network level.   

The human organism is an integrated network in which different layers of complex physiological 

systems interact to execute physiological functions [50, 51]. Prior work has shown that network 

topology determines physiological states and functions, which can affect human health and 

diseases [50].  In this construct, human diseases are closely related to perturbations in the 

physiological states of cells, tissues, and organ systems. Given a disease that involves specific 

tissues and organs, our algorithm could potentially be adapted to assist in identifying otherwise 

cryptic dynamical interactions among tissues and organ systems that are relevant to the disease 

phenotype by applying it to the global physiological network of the body. 

We note that network modules are always constructed based on our current knowledge of seed 

proteins. We would expect that network modules induced by seed proteins will topologically 

change if we remove a few seed proteins with weak evidence or add more seed proteins once 

experimental evidence is available. However, we must emphasize that the location and 

neighborhood of the network modules in the human interactome will not change very much, so 

long as seed proteins with strong evidence have been included in the module ascertainment 

process. 
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Tables 

Table 1. Coverage Rate of Seed Proteins in the LCC of the Disease Modules Constructed 

using the SCA and DIAMOnD. The P values were obtained by proportion test with module 

size as the sample size.  
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Disease # Seeds 

(LCC) 

LCC of the predicted 

module (seed 

proteins) 

Ratio of seed 

proteins in the LCC 

 

SCA DIAMOnD SCA DIAMOnD P 

Adrenal gland diseases 18 (7) 23 (16) 15 (8) 69.6% 53.3% 0.24 

Alzheimer disease 29 (7) 40 (28) 21 (9) 70% 42.3% 0.012 

Amino acid metabolism, inborn 

errors of 

52 (16) 58 (48) 17 (16) 82.3% 94.1% 0.44 

Amyotrophic lateral sclerosis 21 (2) 31 (20) 16 (5) 64.5% 31.2% 0.008 

Anemia, aplastic 21 (9) 24 (21) 12 (9) 87.5% 75.0%  0.27 

Anemia, hemolytic 29 (7) 35 (27) 15 (7) 77.1% 46.7% 0.0075 

Aneurysm 15 (4) 23 (15) 17 (9) 65.2% 52.9% 0.40 

Arrhythmias cardiac 30 (6) 43 (29) 28 (15) 67.4% 53.6% 0.188 

Arterial occlusive diseases 44 (4) 61 (40) 25 (5) 65.6% 20.0% < 0.0001 

Arteriosclerosis 38 (4) 54 (34) 24 (5) 63.0% 20.8% < 0.0001 

Arthritis, rheumatoid 42 (9) 57 (39) 38 (17) 68.4% 48.6% 0.028 

Asthma 37 (7) 55 (35) 27 (7) 63.6% 25.9% < 0.0001 

Basal ganglia diseases 45 (9) 62 (41) 37 (16) 66.1% 43.2% 0.0085 

Behçet syndrome 12 (3) 17 (10) 10 (3) 58.8% 30.0% 0.078 

Bile duct diseases 31 (3) 46 (28) 25 (7) 60.9% 28.0% 0.001 

Blood coagulation disorders 40 (28) 43 (40) 31 (28) 93.0% 90.3% 0.65 

Blood platelet disorders 26 (7) 32 (26) 13 (7) 81.3% 53.5% 0.019 

Breast neoplasms 40 (19) 43 (34) 28 (19) 79.1% 67.9% 0.21 

Carbohydrate metabolism, 

inborn errors of 

77 (11) 95 (69) 26 (14) 72.6% 53.8% 0.005 

Carcinoma, renal cell 18 (3) 28 (17) 13 (3) 60.7% 23.1% 0.004 

Cardiomyopathies 49 (27) 63 (48） 48 (33) 76.2% 68.8% 0.35 

Cardiomyopathy, hypertrophic 22 (6) 26 (20) 21 (15) 76.9% 71.4% 0.65 

Celiac disease 36 (3) 56 (34) 34 (12) 60.7% 35.3% 0.006 

Cerebellar ataxia 30 (2) 42 (27) 18 (4) 64.3% 22.2% < 0.0001 

Cerebrovascular disorders 47 (7) 70 (45) 29 (4) 64.3% 13.8% < 0.0001 

Charcot Marie Tooth disease 24 (5) 36 (24) 17 (7) 66.7% 41.2% 0.031 

Colitis, ulcerative 56 (4) 82 (53) 39 (11) 64.6% 28.2% < 0.0001 

Colorectal neoplasms 42 (18) 57 (42) 36 (21) 73.7% 58.3% 0.084 

Coronary artery disease 31 (2) 46 (28) 22 (5) 60.9% 22.7% 0.0001 

Crohn disease 72 (10) 99 (66) 58 (25) 66.7% 43.1% 0.0006 

Death, sudden 19 (1) 31 (17) 20 (3) 54.8% 15.0% 0.0008 

Diabetes mellitus, type 2 73 (12) 98 (65) 53 (20) 66.3% 37.7% < 0.0001 

Dwarfism 20 (4) 30 (17) 20 (5) 56.7% 25.0% 0.009 

Esophageal diseases 24 (3) 39 (24) 22 (7) 61.5% 31.8% 0.009 

Exophthalmos 13 (2) N/A N/A N/A N/A N/A 

Glomerulonephritis 18 (3) N/A N/A N/A N/A N/A 

Gout 13 (1) 15 (8) 9 (2) 53.3% 22.2% 0.045 

Graves disease 13 (2) N/A N/A N/A N/A N/A 

Head and neck neoplasms 35 (4) 51 (35) 26 (10) 68.6% 38.5% 0.0024 

Hypothalamic diseases 23 (2) 31 (20) 15 (7) 64.5% 46.7% 0.14 

Leukemia B-cell 16(2) 22(14) 14(6) 63.6% 42.9% 0.16 

Leukemia, myeloid 43 (17) 54 (41) 38 (25) 75.9% 65.8% 0.24 
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Lipid metabolism disorders 50 (14) 61 (47) 32 (14) 77.1% 43.8% 0.0001 

Liver cirrhosis_ 24 (3) 33 (20) 15 (3) 60.6% 20.0% 0.0004 

Liver cirrhosis, biliary 23 (3) 33 (20) 15 (3) 60.6% 20.0% 0.0005 

Lung diseases, obstructive 40 (7) 61 (38) 30 (7) 62.3% 23.3% < 0.0001 

Lupus erythematosus 74 (8) 99 (68) 52 (22) 68.7% 42.3% 0.0001 

Lymphoma 24 (2) 35 (23) 15 (3) 65.7% 20.0% 0.0001 

Lysosomal storage diseases 45 (24) 58 (44) 33 (24) 75.9% 72.7% 0.69 

Macular degeneration 44 (8) 69 (40) 39 (10) 58.0% 25.6% 0.0001 

Metabolic syndrome  14 (3) 18 (11) 10 (3) 61.1% 30.0% 0.046 

Motor neuron disease 31 (2) 44 (29) 30 (15) 65.9% 50.0% 0.12 

Multiple sclerosis 68(21) 94 (65) 57 (29) 69.1% 50.9% 0.0099 

Muscular dystrophies 36 (17) 42 (33) 32 (23) 78.6% 71.9% 0.46 

Mycobacterium infections 22 (6) 30 (22) 14 (6) 73.3% 42.9% 0.018 

Myeloproliferative disorders 19 (6) 29 (19) 17 (7) 65.5% 41.2% 0.066 

Nutritional and metabolic 

diseases 

598 

(327) 

721 

(597) 

482 (358) 82.8% 74.3% 0.0001 

Peroxisomal disorders 20 (19) 21 (20) 20 (19) 95.2% 95.0% 0.98 

Psoriasis 53 (10) 72 (49) 37 (15) 68.1% 40.5% 0.0007 

Purine-pyrimidine metabolism, 

inborn errors of 

16 (2) 20 (11) 15 (6) 55.0% 40.0% 0.29 

Renal tubular transport, inborn 

errors of 

34 (3) 44 (29) 24 (10) 65.9% 41.7% 0.017 

Sarcoma 25 (7) 32 (24) 21 (13) 75% 61.9% 0.26 

Spastic paraplegia, hereditary 20 (2) 27 (16) 14 (3) 59.3% 21.4% 0.0026 

Spinocerebellar ataxias 28 (2) 38 (25) 16 (4) 65.8% 25.0% 0.0002 

Spinocerebellar degeneration 30 (2) 41 (27) 25 (11) 65.9% 44.0% 0.04 

Spondyloarthropathies 17 (4) 24 (14) 13 (4) 58.3% 30.8% 0.044 

Tauopathies 35 (10) 49 (34) 26 (14) 69.4% 53.8% 0.11 

Uveal diseases 16 (4) 22 (13) 13 (4) 59.1% 30.8% 0.047 

Varicose veins 20 (1) 26 (15) 15 (4) 57.7% 26.7% 0.014 

Vasculitis 14 (3) 21 (12) 12 (3) 57.1% 25.0% 0.029 
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Figure Legends 

Figure 1. Illustration of the SCA. In Iteration 0, the algorithm starts with seed proteins and 

induces a subnetwork that consists of only seed proteins. In Iteration 1, a protein (in grey) that 

maximally increases the size of LCC of the subnetwork is selected as a seed connector.  In 

iterations 2-4, more proteins (in grey) that maximally increase the size of LCC of the subnetwork 

are selected as seed connectors.  In iteration 5, 4 proteins are selected as seed connectors 

simultaneously as this is the only way to connect the remaining seed proteins to the LCC of the 

subnetwork.   

Figure 2.  The disease modules for cerebrovascular disorders constructed using the Seed 

Connector algorithm (A) and DIAMOnD (B).  The blue nodes are disease seed proteins and 

the gray nodes are the seed connectors (A) or DIAMOnD proteins (B). 

Figure 3. Functional similarity of seed connectors to seed proteins. (A) The significance of 

the functional similarity of seed connectors to seed proteins. (B) Functional similarity of seed 

connectors and DIAMOnD proteins to seed proteins. (C) Percentage of disease modules where 

predicted candidate disease proteins are functionally similar to seed proteins. 

Figure 4. Drug target modules of DB09073 (palbociclib). (A). The target module of 

palbociclib induced by seed targets. (B) The target module of palbociclib identified by the SCA. 

Figure 5.  The CAD disease module discovered by the Seed Connector algorithm based on 

the seed proteins derived from a large-scale meta-analysis of GWAS. (A). The network 

module induced by the seed proteins. (B). The network module constructed using the Seed 

Connector algorithm. (C). The seed connectors are significantly enriched with cardiovascular-

associated proteins. (D). The seed connectors are significantly enriched with drug targets.  
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Research highlights 

 Identifying disease modules help to understand the molecular mechanisms of diseases 

 We develop a network-based seed connector algorithm to pinpoint disease modules  

 Seed connectors are critical for explaining the functional context of disease genes 

 We validate the algorithm using 70 diseases and the binding targets of 220 drugs 

 A coronary artery disease module is derived based on genetic loci from GWAS data 

ACCEPTED MANUSCRIPT


