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It has been more than a century since the first evidence linking the process of
amyloid formation to the pathogenesis of Alzheimer's disease. During the
last three decades in particular, increasing evidence from various sources
(pathology, genetics, cell culture studies, biochemistry, and biophysics)
continues to point to a central role for the pathogenesis of several incurable
neurodegenerative and systemic diseases. This is in part driven by our
improved understanding of the molecular mechanisms of protein misfold-
ing and aggregation and the structural properties of the different aggregates
in the amyloid pathway and the emergence of new tools and experimental
approaches that permit better characterization of amyloid formation in vivo.
Despite these advances, detailed mechanistic understanding of protein
aggregation and amyloid formation in vitro and in vivo presents several
challenges that remain to be addressed and several fundamental questions
about the molecular and structural determinants of amyloid formation and
toxicity and the mechanisms of amyloid-induced toxicity remain unan-
swered. To address this knowledge gap and technical challenges, there is a
critical need for developing novel tools and experimental approaches that
will not only permit the detection and monitoring of molecular events that
underlie this process but also allow for the manipulation of these events in a
spatial and temporal fashion both in and out of the cell. This review is
primarily dedicated in highlighting recent results that illustrate how
advances in chemistry and chemical biology have been and can be used
to address some of the questions and technical challenges mentioned above.
We believe that combining recent advances in the development of new
fluorescent probes, imaging tools that enabled the visualization and
tracking of molecular events with advances in organic synthesis, and

*Corresponding author. E-mail address: hilal.lashuel@epfl.ch.

+ M.H. and B.F. contributed equally to this work.

Abbreviations used: Ap, amyloid-p; IAPP, islet amyloid polypeptide; ThT, thioflavin T; TFA, trifluoroacetic acid; TEM,
transmission electron microscopy; DMDA, N,N-dimethylethylenediamine; PEG, polyethylene glycol; CNB, a-carboxyl-2-
nitrobenzyl; LMW, low molecular weight; AD, Alzheimer's disease; PICUP, photoinduced protein cross-linking of
unmodified proteins; tfmd, trifluoromethyldiazirine; SPPS, solid-phase peptide synthesis; PTM, posttranslational
modification; LB, Lewy body; NCL, native chemical ligation; EPL, expressed protein ligation; TEV, tobacco etch virus; a-
syn, a-synuclein; PD, Parkinson's disease; GPI, glycosylphosphatidylinositol; DOPC, dioleoyl-sn-glycero-3-
phosphocholine; SUV, small unilamellar vesicle; CPP, cell-penetrating peptide.

0022-2836/$ - see front matter © 2012 Elsevier Ltd. All rights reserved.


mailto:hilal.lashuel@epfl.ch
http://dx.doi.org/10.1016/j.jmb.2012.01.051

Review: Amyloid Protein Folding and Molecular Mechanisms

205

novel approaches for protein synthesis and engineering provide unique
opportunities to gain a molecular-level understanding of the process of
amyloid formation. We hope that this review will stimulate further research
in this area and catalyze increased collaboration at the interface of chemistry
and biology to decipher the mechanisms and roles of protein folding,
misfolding, and aggregation in health and disease.

© 2012 Elsevier Ltd. All rights reserved.

Introduction

Protein misfolding and aggregation (more specif-
ically, amyloid formation) play central roles in the
pathogenesis of several incurable systemic and
neurodegenerative diseases that affect the aging
population today. These diseases include neurode-
generative disorders such as Alzheimer's disease
(AD), Parkinson's disease (PD), Prion diseases, and
Huntington's disease, as well as systemic diseases
such as type 2 diabetes, systemic amyloidosis, and
light-chain amyloidosis. The amino acid sequence
and the molecular and cellular determinants that
govern protein misfolding, oligomerization, and
fibrillogenesis in vivo remain poorly understood.
Furthermore, the mechanisms by which these
processes contribute to neurodegeneration and cell
death, as well as the identity of the pathogenic
species, have not been determined. Therefore, a
detailed understanding of the molecular mecha-
nisms underlying these processes inside and outside
the cell is of critical importance for elucidating the
fundamental rules that govern protein misfolding
and aggregation and for the development of effective
therapeutic strategies for the treatment and/or
prevention of these devastating diseases.

To understand the molecular basis of any biolog-
ical process, including amyloid formation and
toxicity, it is critical to be able not only to visualize
and monitor molecular events that underlie this
process but also to possess the tools to manipulate
these events in a spatial and temporal fashion both
in and out of the cell. Today, a detailed mechanistic
understanding of protein aggregation and amyloid
formation in wvitro and in vivo presents several
challenges that remain to be addressed: (1) the
difficulty associated with the expression or chemical
synthesis of many amyloid-forming peptides and
proteins, for example, amyloid-p (Ap), islet amyloid
polypeptide (IAPP), and polyglutamine peptides
and proteins; (2) the lack of molecular tools to
control the initiation or reversal of protein misfolding
and aggregation; (3) the complexity and variability of
the misfolding and aggregation reactions; (4) the
difficulties associated with structural characteriza-
tion of the aggregates along the amyloid pathway
due to their reduced solubility, instability, and
heterogeneity; (5) the lack of molecular probes that
enable the detection and quantification of different

intermediates on the amyloid pathway; and (6) the
difficulties associated with real-time monitoring of
posttranslational modifications (PTMs), protein
folding, and early oligomerization events in living
cell. Therefore, new tools and improved experimen-
tal approaches that enable the characterization,
monitoring, and manipulation of protein folding
and self-assembly are required to address these
challenges and to gain a molecular-level under-
standing of these processes and their impact on
health and disease.

The past decade has witnessed great advances in
the development of new fluorescent probes, imaging
tools that enabled the visualization and tracking of
molecular events, and biological processes in living
systems. Combining these advances with the ability
to incorporate unnatural amino acids and to
introduce new chemistry into proteins through
chemical and semisynthetic strategies presents
unique opportunities for specific and selective
modifications of protein sequence, structure, and
function. In some cases, this allows one to obtain
remote control over cellular processes and machin-
ery with spatiotemporal resolution.

This review is primarily dedicated in highlighting
recent results that illustrate how advances in
chemistry and chemical biology have been and can
be used to address some of the technical challenges
discussed above. Although the majority of the
studies reviewed here have focused on strategies
to facilitate the synthesis of difficult sequences,
improve peptide solubility, and control or inhibit
the aggregation of amyloid peptides (A, IAPP, and
short amyloidogenic sequences), we also present
recent results from our group and others that
illustrate how several of the chemical tools that
have been developed for these purposes can be used
to provide novel mechanistic insight into the
molecular mechanisms of amyloid formation, toxic-
ity, and clearance. Furthermore, we include exam-
ples that demonstrate how the existing technologies
for the chemical synthesis and semisynthesis of
proteins are providing unique opportunities for
extending the application of novel chemical tools
and approaches to elucidate the sequence and
molecular determinants of protein folding and
aggregation and for understanding how naturally
occurring and disease-associated modifications in-
fluence these processes. It is our hope that this
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review will stimulate further research in this area
and catalyze increased collaboration at the interface
of chemistry and biology to decipher the mecha-
nisms and roles of protein folding, misfolding, and
aggregation in health and disease.

Chemical Tools to Facilitate the
Synthesis and Purification of
Amyloid-Forming Proteins

Uncovering the mechanisms underlying the
pathological role of amyloid-forming proteins
and peptides in neurodegenerative diseases relies
on their preparation or isolation in a pure and defined
aggregation state. However, the preparation of
amyloid-forming proteins by chemical means repre-
sents a significant challenge due to the tendency of
these hydrophobic proteins to aggregate during
synthesis and purification. The formation of second-
ary structures, in particular, R-sheet aggregates, is
paralleled by a significant decrease in the coupling
efficiencies and water solubility of peptide chains,
rendermg amyloid-forming proteins “difficult se-
quences” to access by chemical synthesis.' ™ Further-
more, aggregation-prone peptides and proteins, such
as AP42, exhibit broad elution profiles during
reversed-phase HPLC purifications, which further
hinders their isolation in sufficient yields. Nonethe-
less, several synthetic strategies have been developed
to inhibit aggregation and enhance the water
solubility of difficult sequences to markedly improve
yields, water solubility, and handling. In the follow-
ing section, we will give an overview of backbone
and side-chain modifications that have been applied
to either permanently or reversibly inhibit backbone
hydrogen bonding, aggregation, and secondary-
structure formation for the preparation and charac-
terization of amyloid-forming proteins.

Backbone N-Methylation, Esterification,
and Olefination

Backbone N-methylation

Backbone N-methylation has been shown to
enhance the water solubility of synthetic amyloid-
forming proteins and peptides. Replacing the
backbone amide protons with methyl groups
effectively inhibits the formation of intermolecular
hydrogen bonds required for peptide oligomeriza-
tion into R-sheet aggregates (Fig. 1). Furthermore,
the association of B-strands in an oligomerizing
p-sheet may be further blocked due to steric
hindrance imposed by the methyl substituents
(Fig. 1). N-Methyl amino acids are commercially
available building blocks that can be introduced

into peptides using standard solid-phase synthesis
protocols. However, they often require stronger
coupling agents such as HATU and TBTU for their
introduction into polypeptldes The resulting
water-soluble and monomeric versions of the
sequence will certainly aid in purification and
handling. However, the disaggregating influence
of N-methylated residues on coupling efficiencies
may be counterbalanced by the more difficult
coupling to hindered secondary amines. In addition,
while backbone N-methylation minimally perturbs
peptide structure, it is an irreversible modification
that eliminates the possibility of recovering the
native form following synthesis and purification to
investigate the structure and biological activity of
amyloid-forming proteins. Instead, N-methylated
derivatives of amyloid-forming proteins are often
employed to disassemble aggregates and fibrils of
their corresponding native sequences and thus have
been proposed as potential therapeutic agents

The incorporation of N-methylated amino acids
has been shown to substantially enhance the water
solubility and prevent the aggregation of both AR
and IAPP. By introducing N-methylated amino
acids at alternate residues of the fibril-forming
fragment ARi¢22, Gordon et al. demonstrated a
20-fold enhancement in water solubility Compared
with the nonmethylated version of the sequence.”
The methylated fragment of ARie2 exhibited a
monomeric B-sheet conformation and acted as an
inhibitor of AB40 fibrillogenesis.” The same group
later showed that full-length Ap40 methylated at
positions 17, 19, 37, and 39 was highly water soluble
and remained monomeric indefinitely, even at
concentrations greater than 1 mM.'3 This treatment
was proposed to block B-sheet propagation at both
N- and C-terminal strands of the p-hairpin-like
structure of ApP. Similarly, the introduction of a
single N-methylated residue at various positions in
the fibril-forming fragment AR (25-35) generated
soluble and nontoxic versions of the peptide, which
were also able to inhibit the aggregation and toxicity
of the wild-type fragment.!® More recently, hexa-
peptides derived from Ap C-terminal residues 32-37
methylated at multiple positions were soluble and
nontoxic and were shown to inhibit the aggregation
and toxicity of full-length AB40 and Ap42.°

N-Methylation of at least two residues of the
minimum-length fibril-forming sequence of IAPP,
IAPP (22-27), was sufficient to block p-structure,
fibril formation, and peptlde toxicity, as demon-
strated by Kapurniotu et al® The N-methylated
amino acids were incorporated in an i, i+2 arrange-
ment such that lateral R-sheet extension via hydro-
gen bonding was blocked on one face of the peptide.
The same group later used this approach to generate
a non-amyloidogenic derivative of full-length IAPP
doubly N-methylated at residues G-24 and I-26 with
a 100-fold increase in water solubility compared
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with the wild-type protein.'! Although doubly N-
methylated IAPP did adopt a 3-sheet structure as a
result of backbone constraints introduced by the N-
methyl substituents, it did not aggregate into fibrillar
structures.

Backbone esterification and olefination

Replacement of the peptide backbone amide by
an ester group at selected residues of amyloid-
forming proteins has also been used to disrupt
hydrogen bonding and formation of [-sheet
aggregates (Fig. 1). Ester bonds lack the amide
proton hydrogen bond donor involved in p-sheet
oligomerization. Backbone esterification may have
some advantages over backbone N-methylation.
The ester bond shares structural similarities with
amide bonds, such as bond lengths and angles,
and may be a more conservative modification,
whereas N—methylahon often restricts peptides into
p-structures.”'* However, esterified peptides suffer
from backbone hydrolysis, even at neutral pH.'
Esterified peptides can be generated by solid-phase
peptide synthesis (SPPS) using a-hydroxy acid
building blocks. As with N-methylation, backbone
esterification is irreversible, which preclude the study
of the biological activity of the unmodified protein.

Gordon et al. introduced ester bonds in AR (16-20)
in an 7, i+2 arrangement such that one face of the
peptide had normal hydrogen bonding capacity and
one face lacked amide protons for hydrogen
bonding.'* In contrast to the fibril-forming wild-type
fragment, analytical ultracentrifugation measure-
ments showed that the esterified Ap (16-20) remained
predominantly monomeric. In another study, several
derivatives of Ap40 esterified at a single 051t10r1
aggregated faster than the wild-type protein.'> All of
the esterified peptides in this study exhibited B-sheet
structure and eventually formed mature fibrils. Only
esterification at F19 within the hydrophobic region of
the protein was sufficient to slow aggreSgatlon kinetics
and exhibited an extended lag phase."

Bieschke et al. and Fu et al. incorporated an E-olefin
substitution at the F19-F20 amide bond in the hydro-
phobic core of AR to block both the hydrogen-
bond-donating and the hydrogen-bond- acceptm%
capabilities of the peptide bond (Fig. 1).'
Backbone olefination of the single peptide bond was
sufficient to preclude fibril nucleation and growth in
the modified peptide, but self-assembly into thio-
flavin T (ThT)-binding spherical aggregates was still
observed.

Pseudoproline dipeptides

The introduction of Ser, Thr, or Cys residues
temporarily protected as proline-like cyclic oxazoli-
dine or thiazolidine structures offers a means of
mimicking the denaturing influence of Pro residues

on secondary structures (Fig. 1)."” These amino acid
derivatives are termed pseudoprolines (Pro) and
induce a conformational “kink” in the peptide
backbone due to a cis amide bond, which prevents
peptide aggregation and B-structure formation, thus
considerably improving the solvation and coupling
efficiencies of difficult sequences. Pseudoprolines are
typically introduced into a peptide chain as commer-
cially available Fmoc-protected dipeptides to optimize
incorporation. They are compatible with standard
Fmoc/tBu protection and are cleavable within minutes
with 90% trifluoroacetic acid (TFA)."” The cleavage of
the desired peptide from an acid-labile resin is then
achieved by treatment with TFA, generating a
deprotected peptide with Ser, Thr, or Cys reverting
to their native forms. The incorporation of two
pseudoproline dipeptides has been applied, for
example, to achieve synthetic access to human IAPP
in high yields, an otherwise intractable protein. '

Orthogonal side-chain protecting groups, such as
Allyl and Alloc, which can be cleaved without
interfering with Pro modifications, are required to
preserve the disaggregating and solublhzmg effect
of pseudoprolines during purification.'® Further-
more, resins that can be cleaved by treatment with
weak acid such as 1% TFA or acetic acid are required
to prevent cleavage of the Pro modification.
Following purification, the native structure of the
peptide can then be induced by cleavage of {Pro
with TFA, followed by pH adjustment to permit
protein folding.

The reversible nature of pseudoproline modifica-
tions of peptides and proteins (Fig. 1) has been
exploited as conformational “switch” elements to
facilitate synthesis, handling, and purification in the
protected state and to allow the induction of native
peptide foldin ing and misfolding upon controlled
deprotection.'® As the most relevant example,
Tuchscherer et al. incorporated as 51 le pseudopro-
line dipeptide, Fmoc-Leu-Ser(**™*Pro)-OH, into
an otherwise 1naccess1ble fibril- formmg model dec-
apeptide (Ser-Leu)s.'® The peptide was cleaved from
the resin with weak acid, generating an unstructured
and highly water soluble peptide with an intact
structure-disrupting Pro side-chain modification.
The yPro was cleaved by strong acid treatment, and
B-sheet structure and fibrillogenesis were induced
by adjusting the solution pH to 7. Although switch
elements derived from {Pro building blocks are
valuable tools to control the initiation of protein
misfolding for mechanistic in vitro investigations, the
approach is not compatible with in vivo studies due
to the requirement for TFA or other harshly acidic
conditions for protecting group removal.

O-Acyl and S-acyl isopeptides

A novel chemical approach that has been applied
to achieve synthetic access to amyloid-forming
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peptides relies on the temporary introduction of
backbone modified O-acyl or S-acyl isopeptides, in
which peptide elongation is continued by an ester
linkage on the side chains of Ser or Thr, or by a
thioester linkage on the side chain of Cys (Fig. 1). The
introduction of O-acyl or S-acyl isopeptide units within
a growing peptide chain conformationally decouples
the peptide fragments, promoting structure disruption
and suppressing self-assembly and thus enhancing
coupling yields (Fig. 1).”'**' Peptides incorporating
O-acyl or S-acyl linkages are termed “switch
peptides”'®** or “click peptides”*** due to their
reversible nature that allows the controlled induction
of O—N or S— N acyl migration to restore the native
peptide backbone, as well as protein folding, aggrega-
tion, and biological activity (Fig. 1). More specifically,
an orthogonal N(Y) protecting group is installed on the
backbone amine of the O-acyl or S-acylisopeptide unit,
allowing the controlled triggering of N-deprotection
and O—N or S—N acyl migration (Fig. 1). A key
advantage of O-acyl or S-acyl isopeptide units over
pseudoproline building blocks is that they are stable
following standard peptide cleavage methods with
TFA and can thus further facilitate purification and
handling beyond the synthesis stage. Furthermore,
many N(Y) protecting groups have been explored,
and a variety of triggering systems such as QH,ZZ_%
enzymes,” reducing agents,” and light*** have
been developed for restoring the native peptide
backbone, some of which are even compatible with
in vivo studies (vide infra).

The classic N(Y) protecting group is a proton (H™)
conveniently introduced during peptide cleavage

(a)

o

with TFA. The resulting ammonium ion not only
enhances aqueous solubility but also diminishes
nucleophilicity and amide bond formation. Subse-
quent adjustment to physiological pH increases the
concentration of deprotonated amine and induces
O— N acyl migration within seconds to minutes.**’

The introduction of a pH-switchable O-acyl iso-
peptide unit (Y=HT) at Ser26 of Ap42 generated a
variant of Ap42 with a 100-fold increase in water
solubility compared with the native sequence
(Fig. 2).>** This modification also led to a sharp
peak in the HPLC trace of the acyl isopeptide,
compared with the broad elution pattern observed
with native AB42, suggesting strong suppression of
secondary structure and aggregation. Facile conver-
sion to native AR42 was achieved in approximately
10 s after adjustment to pH 7.4 with phosphate-
buffered saline. Structural studies demonstrated a
persistent monomeric, random-coil conformation in
the acyl isopeptide of Ap42 under acidic conditions
and a shift to a -sheet structure and development of
ThT-active ag%regates within hours following pH
neutralization.”> Similarly, Ap42 (E22A), an AR
variant common in Japanese pedigrees with Alz-
heimer's dementia, was synthesized as a pH-
switchable peptide with an O-acyl isopeptide unit
at Ser26 and exhibited high water solubility
facilitating its purification and handling. Further-
more, circular dichroism revealed that the peptide
exhibited a random-coil conformation in 0.1% TFA
aqueous solution and shifted to a B-sheet confor-
mation within 6 h upon dilution in pH 7.4
buffer.”

—_
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Fig. 2. Illustration of the switch concept as a mean of controlling the misfolding and aggregation of amyloid-forming
polypeptides. (a) A switch element, S, disrupts normal backbone hydrogen bonding and conformationally decouples the
peptide chain, promoting a monomeric and unstructured S state. A chemical or physical stimulus deactivates the switch
element, allowing normal protein folding (Son) and aggregation into fibrillar structures. (b) Introduction of the O-acyl
isopeptide as a means to improve the synthesis of AB42 and control its aggregation. Chemical structure of the Ser26 O-acyl
AR42 isopeptide. Ser26 O-acyl isopeptide of AR42 with pH-triggered O— N acyl migration to restore native Ap.>*
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O-Acyl Isopeptide Molecular Switches
as Tools to Control Amyloid Protein
Folding, Self-Assembly, and Disassembly

The uncontrolled polymerization of B-sheet struc-
tures of amyloid-forming peptides is one of the
main obstacles in elucidating their toxic and
pathologic mechanisms in vitro and in vivo. Revers-
ible manipulation of the peptide backbone with a
molecular switch element, S, may be employed to
retain the amyloid-forming peptide in a soluble,
typically monomeric state (Fig. 1). Controlled
release of the switch element with a known
chemical or physical stimulus restores the native
peptide structure and triggers protein misfolding,
self-assembly, and amyloid fibril formation (Fig. 1).
The underlying mechanisms involved in amyloid
protein toxicity may then be probed at the onset of
misfolding and aggregation with structural 1r1vest1—
gations and biological activity experiments.” In-
vestigations using this approach have already
contributed valuable 1ns1ght into the initial kinetics
of amyloid formation® and allowed the identifica-
tion of specific aggregahon “hot spots”?” and anti-
amyloid agents.”” Remarkably, switch peptides
have also been adapted to control the reverse
process of amyloid formation, namely, the conver-
sion of developed fibrillar aggregates into mono-
meric units.”* Here, we review recent results using
switch peptides to control and understand the
mechanisms of amyloid fibril formation, disassem-
bly, and inhibition. We also highlight the advan-
tages of light-activated switchable groups and the

potential to introduce switchable elements into
full-length amyloid-forming proteins for mechanistic
investigations.

Switch peptides based on XN acyl migration
to control conformational transitions in
amyloid-forming proteins

Peptides with reversible O-acyl or S-acyl isopep-
tide modifications (Fig. 1) have also been applied
beyond the synthesis and purification stage as
switch elements to achieve control over protein
structure and self-assembly for structural and
mechanistic studies of amyloid-forming proteins in
vitro. Switch peptides based on O—N or S—N acyl
migrations are perhaps the best-studied systems for
controlling the onset of misfolding and fibril
formation in peptldes and proteins involved in
neurodegeneration.'®***"?* Many switch peptides
based on X— N acyl migrations (X=0 or S) use the
isopeptide switch element S to conformationally
decouple a structural nucleatlon unit (o) from the
target peptide (P) (Fig. 3).'®* Triggering of X—N
acyl migration via selective Y protecting group
cleavage establishes the regular peptide bond
between the o unit and P, causing the structure to
shift from one state (So¢) to another defined state
(Son) dictated by the conformational preference of o
(Fig. 3). One advantageous feature of switch
peptides based on X—N acyl migration is their
rapid response: Y protecting group removal rapidly
establishes the native peptide bond and the desired
conformational transition within seconds to
minutes.”>*?° Another distinct advantage of these

Trigger
5 Yj
Hll;;/o Y trigger
h
" 9y i = o (o)
X
= Arg-Pro enzyme (DPPIV)
random coil x50 Soff )
/ Arg enzyme (trypsin)
l D-Xaa enzyme (Dap)
> PyGlu enzyme (pGap)
-heli T )
el '); S iy — JOL N, reducing agent (TCEP)
on B-sheet Mot o} N
Meomz voc hv (355nm)
S on 26-BCMACMoc hv (355nm)
o
(e e}

(HOOCH,C),N

Fig. 3. Switch peptides as folding precursors and means to study controlled conformational transitions. Triggering of
X— N acyl migrations via Y protecting group cleavage leads to a regular peptide bond between the structural induction
unit (o) and the peptide of interest (P) converting the peptide from the S, state to the S,,, conformation dictated by o. A
table listing current triggering methodologies developed for Y protecting group removal is also shown.
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systems is the diverse choice of triggering method-
ologies that have been developed for inducing Y
protecting group cleavage and conformational
switching, including pH,**** enzymatic cleavage,”
reducing agents,”® and light***° (Fig. 3). Given the
inability to control and selectively regulate physio-
logical pH, redox potential, and enzymatic cleavage,
photocleavage methods offer the most potential for
spatiotemporal control over amyloidogenic protein
and peptide conformations for in vivo mechanistic
investigations (vide infra). In the following sections,
we will highlight several applications of switch
peptides based on X—N acyl migrations to manip-
ulate the structure and aggregation of amyloid-
forming proteins to probe key mechanistic questions
of protein misfolding and aggregation related to
neurodegenerative diseases. Namely, we will dem-
onstrate the use of switch peptides to identify
aggregation “hot spots”, develop high-throughput
screening assays to identify anti-amyloid agents, and
study the reversibility of fibril formation.

Switch peptides to reveal aggregation “hot spots”
in amyloid-forming proteins

The installation of multiple consecutive switch
elements with orthogonal protecting N(Y) protecting
groups has provided a method to identify aggrega-
tion “hot spots” within the sequences of amyloid-
forming proteins and peptides.”” A classic example is
the introduction of two S elements in Ap42 with a
pH-cleavable S; element at Ser26 and an enzyme-
cleavable S, element at Ser37 (Fig. 4a).”” The pH-
induced acyl migration at S; occurred within
minutes. However, the conformational transition to
a P-sheet and fibril formation was only observed
upon subsequent enzyme-induced acyl migration by
treatment with dipeptidyl peptidase IV at switch
element S,, supporting the impact of the hydropho-
bic C-terminus on AP42 misfolding and aggregation
(Fig. 4a).

Controlling the initiation of amyloid protein
misfolding and self-assembly

The insertion of an O-acyl isopeptide switch
element S at Ser26 of Ap42 and certain disease-
associated derivatives has been employed not
only to enhance solubility and prevent aggregation
for synthetic purposes>” but also to control the
onset of Ap misfolding, oligomerization, and fibril
formation.”* Given the strong fibril-forming pro-
pensity of full-length Ap42, the attachment of
nonnative fibril-inducing o elements is not neces-
sary to direct fibril formation in this sequence.
Wang ef al. demonstrated a conformational shift
from a persistent random coil (Seg) to R-sheet in
disease-associated AP (E22D) within 6 h following
pH-induced O—N acyl migration (Sop).>> Similar

results were also obtained with the wild-type
sequence following photo-triggered O—N acyl
migration with a corresponding development of
ThT-binding protein aggregates.”>* The develop-
ment of R-sheet aggregates of Ap42 following pH-
triggered O—N acyl migration at Ser26 was also
observed by dynamic light scattering and atomic
force microscopy in a separate study.’” The main
advantage of these systems is that they permit the
evaluation and characterization of the early stages
and kinetics of misfolding, aggregation, and fibril
formation.

Fibril formation in shorter fragments of amyloid-
forming proteins has been investigated using fibril-
forming o units.”> The insertion of an O-acyl
isopeptide switch element S between the fibril-
forming (Ser-Leu),-Ap(14-20) induction unit (o) and
the peptide sequence ApP(21-24)-Ser-Leu-Gly (P)
generated a persistent monomeric random-coil
derivative (So¢ state). Triggering of O—N acyl
migration by raising the solution pH from 4.4 to 7
led to a concomitant shift to B-sheet structure within
minutes and the development of fibrils within
2 days as ima§ed by transmission electron micros-
copy (TEM).* Similarly, a fibril-forming Leu-Ser-
Leu induction unit (o) was separated from the IAPP
fragment NFGAIL by a pH-switchable O-acyl
isopeptide switch element to control the transition
from a random-coil S,¢ state to a B-sheet structure
(Son), which was paralleled by fibril formation in the
sequence.

Identification of anti-amyloid agents with switch
peptides as model systems

The inability to control spontaneous aggregation
and fibril formation in amyloid-forming sequences
has hindered the application of high-throughput
screening assays to identify anti-amyloid agents that
act at specific stages of aggregation. In particular, the
development of chemical tools that control amyloid
protein aggregation to allow the selection of in-
hibitors that block the initial stages of aggregation
could have advantageous applications in medicine.
Switch peptides, which typically exhibit enhanced
synthetic accessibility and solubility compared with
their native parent peptides, have been adapted as
model systems for the identification of viable
aggregation inhibitors of AP target sequences.3!
Mutter and co-workers introduced two switch
elements at Ser residues flanking peptide AR (14—
24), a known fibril-forming AP fragment (Fig. 4b).
The sequence design also contained two flanking o
elements to promote fibril formation in the AP
fragment following O—N acyl migration (Fig. 4b).
In the absence of inhibitor, the model peptide
converted into P-sheet fibrillar structures within
4.5 h following pH-induced O— N acyl migration.
Aggregation into fibril structures was slowed in the
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presence of known polyphenolic inhibitors of native
Ap such as tannic acid, myricetin, and dopamine
(Fig. 4b), indicating that switch peptides offer
relevant model systems for the screening of in-
hibitors of amyloid fibril formation.

To what extent is amyloid formation reversible:
An application of the switch concept

Most efforts aimed at treating neurodegenerative
diseases focus on the prevention of protein mis-
folding and aggregation, which is based on the
assumption that developed amyloid fibrils occupy
the global free-energy minimum relative to the native
state of amyloid-forming proteins.’**® Amyloid-
related diseases could also be treated by promoting
dissociation and clearance of already developed
amyloid fibrils. However, relatively little is known
concerning the ability to induce the reverse process
of fibril formation and to what extent fibrillar
structures can be dissociated. Remarkably, an
application of the switch concept has been employed
by Mimna et al. to control the conformational
conversion from developed insoluble fibrils with
p-sheet structure into soluble «-helical structures
(Fig. 5).** A switch peptide was designed with an a-
helix-nucleating N-cap Ac(cyclo-1-5)-KARAD con-
taining an i, i+4 lactam bridge between Lysl and
Asp5 (o) separated from the fibril-forming Ap
fragment Ap (14-25) by a pH-cleavable Ser-derived
switch element S (Fig. 5). At pH 4.5 in 25%
trifluoroethanol, the peptide adopted a p-sheet
structure due to conformational decoupling between
AR (14-25) and the helix-nucleating sequence in the
Sofs state. Neutralization of the solution pH induced
O— N acyl migration and an unprecedented conver-
sion of AR from a predominantly 3-sheet structure to
an a-helix (Son) within minutes, as demonstrated by
circular dichroism.** Remarkably, dissociation of
fibrils in the switch peptide was observed by TEM
within 12 h following the induction of O— N acyl
migration in the sequence (Fig. 5). These results not
only further emphasize the ability of well-designed
switch peptides to control conformational transitions
in proteins but also highlight the potential of
enhancing fibril dissociation and clearance as an
additional therapeutic strategy.

Photocontrol of Peptide Aggregation
and Potential for In Vivo Applications

The use of light to control peptide conformation
and aggregation is an appealing approach due to the
highly selective nature of photocleavage methods,
which typically do not disturb other aspects of the
experimental system.’” In particular, for in vivo
investigations, cellular components usually do not
react with light, provided that the wavelengths used

for photo-release are not too short.* This is in clear
contrast to other methods used to shift peptide
conformational transitions, such as pH or redox
potential, which can severely modify other compo-
nents of a cellular system. Furthermore, advances in
technology have enabled selected regions of a
cellular sample to be irradiated with specific
wavelengths, thus offering the potential for both
spatial and temporal control over peptide confor-
mational transitions and aggregation onset to
determine the resulting effects on a biological
system. Systems designed with photocleavable
groups that block p-sheet structure and aggregation
could thus provide valuable insights into the
mechanisms underlying the cellular toxicity of
amyloid-forming proteins at the onset of misfolding
and aggregation. However, applications of photo-
cleavable protecting groups to control the structure
and assembly of amyloidogenic proteins have not
yet been reported beyond the level of in wvitro
studies.

Taniguchi et al. introduced an O-acyl isopeptide
unit at Ser26 of AR42 with a photocleavable N(Y)
protecting group (Y=Nvoc) (Fig. 3).*” Conversion
from a persistent monomeric state to an oligomeric
state following light-induced Nvoc protecting group
cleavage was observed by size-exclusion chroma-
tography. The same group later reported several
other similar systems with synthetic coumarin-
derived photocleavable N(Y) protecting groups
appended with water-solubilizing substituents to
further enhance A solubility.?” In particular, the Y
protecting group 26-BCMACMoc (Fig. 3) enhanced
the solubility of the switch peptide 100-fold over the
native sequence; the switch peptide did not self-
assemble until light-induced cleavage.’® Systems
such as these could have valuable applications for
the identification of the toxic function of AR at the
onset of misfolding and aggregation in vivo follow-
ing light-induced O— N acyl transfer.

A novel system reported by Bosques and Imperiali
introduced a photocleavable solubilizing cationic
polymer based on N,N-dimethylethylenediamine
(DMDA) on an N-terminal Asn residue linked to
the fibril-forming human prion protein (PrP) frag-
ment 174-195 (Fig. 6a).”” A photocleavable linker
derived from 2-nitrophenyl propionic acid was
introduced to separate the prion fragment from the
solubilizing polymer. The DMDA polymer, or fibril-
inhibitory unit, blocked fibril formation in the native
sequence for 24 h (Fig. 6a). Photocleavage by
irradiation at 365 nm for 15 min released the native
peptide, yielding fibrils within 6 h (Fig. 6a).* The
commercial availability of the photolabile linker
3-amino-3-(2-nitrophenyl)-propionic acid, the ease
of its incorporation into peptides by SPPS, and the
plethora of other potential solubilizing units such
as polyethylene glycol (PEG) or sugars indicate
that these strategies could be widely adapted in



a
( ) Pro-Arg. Q (b)
LN B e G ° J\@
v AB(27-36 O :
/5 B(27-36) s, o’ \)\ FrITET) e G
9) random coil WO’; o

S Sofr
1 H s
pH7 o 1 random coil

Pro- Arg\ pH 7

NH

e 8
AB(27-36) o~ O—N acyl migration

_)J\ Sz acyl migration + Tannic acid

random coil

¢DPPIV
HO
oHO )o]\
AB(27-36 (38
e R L
° B-sheet

Fig. 4. Use of multiple switch elements to identify highly aggregation domains in Ap and to screen for aggregation inhibitors. (a) Multiple switch elements with
orthogonal triggers to identify C- termmal Ap (37-42) as an aggregation “hot spot”;*” (b) inhibition of fibril formation by tannic acid following pH-induced acyl
migration in a model switch peptide.*’ TEM images reproduced from Camus et al.*" with permission.

swisiuBYo8y\ JB[NI8Joy pue Buipjo4 UIsjoid PIojAWY Mairey

€le


image of Fig. 4

a-helix

i H g N
o :
- LS
NH H/G ‘Switch’

o)\l"“ pH 7

O=N acyl
Soft migration

on

Fig. 5. Applying the switch concept to study the reversibility of amyloid fibril formation by AR (14-25).** The activation of the helix-nucleating o element Ac(cyclo-1-
5)-KARAD was used to disrupt and disassociate preformed fibrils of Ap (14-25) into soluble a-helices following pH-induced O — N acyl migration. Reproduced from
Ref. 24.

14%4

swisiuByo8y\ JBINI8JoY pue BuIipjo4 UIBloid PIoJAWY :MeIrey



Review: Amyloid Protein Folding and Molecular Mechanisms

215

(a)

\ ® Photolinker

$
" 0
o O,N
SN
PrP(174-175)
/ Os HN
Fibril-inhibtory unit /go ©
ihv
o]
HoN
PrP(174-175)
HN

lSelf-assembly

(b)

VKVKVKVKV-PPP-TKVKXKVKV

random coil X =
E\N %
hv l H lo)

B-hairpin
i Self-assembly

hydrogel

Fig. 6. Photocontrol of peptide aggregation. (a) Photolytic control of fibril formation by the human prion protein
fragment PrP(174-195).*> A DMDA cationic polymer (fibril-inhibitory unit and solubilizing domain) was attached to the
side chain on an N-terminal Asn residue of the prion fragment by a photocleavable linker derived from 2-nitrophenyl
propionic acid. Light irradiation was used to induce cleavage of the solubilizing polymer, release of the native sequence,
and subsequent fibrillization of PrP(174-195). TEM image reproduced from Ref. 40; bar size=200 nm. (b) Light-induced
cleavage of a photocaged Cys residue allowed p-hairpin formation and self-assembly into hydrogel structures in a

designed peptide.”’

controlling fibril formation in other amyloid-form-
ing sequences.

Other systems have been designed using light to
control the self-assembly of non-amyloid-forming
designed Peptides into p-sheet aggregates,
hydrogels,* and even fibrillar structures.** The
following relevant and well-designed systems could
also be applied toward achieving spatiotemporal
control over amyloid fibril formation using light and
possibly to unravel their toxic mechanisms in vivo.
Haines et al. employed a photocleavable a-carboxyl-
2-nitrobenzyl (CNB) protection on a Cys residue to
block p-hairpin formation and self-assembly in a
Val-Lys-based designed p-hairpin peptide with a
PPro-Pro turn nucleator (Fig. 6b).*' The charged
CNB protecting group blocked intramolecular hy-
drophobic association of the Val-rich face of the
hairpin, maintaining the peptide in a random-coil
conformation and blocking intermolecular facial
self-assembly into polymeric B-sheet networks.™
UV irradiation of the peptide for 30 min released the
caged Cys side chain, resulting in a PB-sheet
signature in the circular dichroism spectrum and
rigid hydrogel formation in the sequence (Fig. 6b).
Recently, a photocleavable 2-nitrobenzyl group was

introduced on the backbone of a bioactive peptide
amphiphile containing the sequence Arg-Gly-Ala-
Ser.*> Photocleavage shifted the structure from
spherical aggregates into fiber-like structures, as
imaged by TEM.*?

Photoinduced Cross-Linking as a Tool
to Study Amyloid Oligomer and Fibril
Assembly

Despite mounting evidence suggesting that low-
molecular-weight (LMW) oligomeric species (e.g.,
dimers, trimers, and nmers) are the primary toxic
forms of Ap in AD, a detailed characterization of
the chemical and structural properties of many of
these oligomers is lacking, mainly due to their
instability and rapid conversion into higher-order
aggregates and amyloid fibrils. While many of the
tools described above provide excellent means for
controlling the initiation of folding and assembly,
there is still a need for novel tools and approaches
that enable detection of early oligomerization
events and the characterization of putative toxic
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oligomers. In this section, we will review the use of
specific chemical cross-linking strategies to trap,
detect, and characterize LMW oligomers in the
amyloid pathway.

Chemical cross-linking of proteins and protein
complexes using bifunctional reactive probes often
suffers from low yields of covalently captured com-
plexes and re%uires long reaction times (30 min to
several hours).™ Moreover, moderately reactive agents
(often amine directed, in N-hydroxysuccinimide-
activated carboxylic acids) require the use of large
excesses, resulting in widespread modification of
lysine residues on protein surfaces and thus poten-
tially creating artifacts by perturbing the complexes
under study. Rapid reaction times and high yields are
required to capture transient, metastable oligomeric
species, such as early assembly states on the pathway
to amyloid formation. These characteristics are
achieved by inert photo-activated precursors, the
photolysis of which rapidly generates highly reactive
groups in situ (either radicals, ** carbenes, or nitrenes),
which quickly react with neighboring residues in an
intramolecular or intermolecular fashion. Two broad
strategies for the use of such photoinduced cross-
linkers are discussed below: (i) the introduction of
photoactivatable groups as unnatural amino acids in
peptides and proteins and (ii) photoinduced protein
cross-linking of unmodified proteins (PICUP), which
uses a free, soluble probe. In the context of amyloid
research, both of these approaches have been used to
study protein—protein interactions between amyloids
and other cellular proteins and to map interchain
interactions during oligomer assembly.

Photoreactive unnatural amino acids

Amino acid derivatives bearing light-inducible
cross-linking probes can be inserted in peptide or
protein sequences by chemical or genetic methods. ***
The most widely used chemical modifications
include benzophenones, aryl azides (as phenylala-
nine and tyrosine analogues), and diazirines (which
can be incorporated in amino acids to mimic
methionine, leucine, isoleucine, or phenylalanine).
Recently, a novel probe containing the trifluoro-
methyldiazirine (tfmd) moiety was developed by
Smith et al. to study the packing of p-strands in Ap
fibrils. ** The photo-inducible group, which generates
a very reactive carbene upon irradiation at ~350 nm
(Fig. 7a), was placed on a phenylalanine side
chain (tfmd-Phe) within the model peptide ARi6.22
(sequence: N“-acetyl-KLVFFAE-amide), which cor-
respond to the central hydrophobic fragment of Ap
and that had been shown to form amyloid fibrils.”
Negative-staining TEM showed that replacing Phe4
by tfmd-Phe did not alter the fibrillization of the
tfmd-containing peptide (AR*16.2) compared to the
unmodified peptide (APig22) (Fig. 7b). Fibrils of
AP*i600 were irradiated for 1 h to induce cross-

linking and were subsequently fully dissociated in
hexafluoroisopropanol, thus disrupting any non-
covalent interactions but leaving cross-linked species
intact. The peptides were then analyzed by electro-
spray ionization-ion mobility spectrometry—tandem
mass spectrometry to map inter- and intra-monomer
cross-links. The use of ion mobility spectrometry
permitted the separation of cross-linked species
from monomeric ones (containing either intramolec-
ular cross-link in which the reactive carbene had
been quenched). Interestingly, only dimeric species
were observed when inter-peptide cross-links were
detected. These results are consistent with a model
in which tfmd-Phe residues are arranged in an offset
stacked fashion (stabilized by w—m interactions)
within antiparallel B-sheets, at sites where no
hydrogen bonds are directly flanking the paired
residues (Fig. 7c, top), rather than with the other
possible organization of tfmd-Phe (face-to-edge
panel; Fig. 7c, bottom). In the latter model, one of
the tfmd groups is directed toward peptides located
in the plane “above”, and cross-linking would be
expected to generate higher-order species (timers,
tetramers, and ongoing). The observation of dimers
only essentially rules out that model.

The method developed by Smith et al. enables the
stabilization of transient oligomers and the charac-
terization of the arrangement of specific residues
within different oligomeric intermediates on the
pathway to amyloid fibrils. More detailed informa-
tion on the placement of other residues can be
obtained in a similar way by taking advantage of the
diazirine-containing probes developed by Suchanek
et al.,> which can mimic leucine, isoleucine, and
methionine residues. Such studies could also be
extended to the more relevant full-length Ap and
amyloidogenic peptide using microwave-assisted
SPPS, which was recently shown to enable the
chemical synthesis of ARy in high yields (78%).%*
The incorporation of multiple photo-inducible cross-
linkers within amyloid peptides and proteins could
also be used to stabilize entire transient assemblies
for detailed mechanistic studies. Photocross-linking
residues have also been introduced in proteins by
the nonsense suppression method developed by
Wang and Schultz. 53 However, this method has not
yet been applied to amyloidogenic proteins.

Photoinduced cross-linking of
unmodified proteins

The incorporation of photoreactive probes with-
in peptides and proteins is not always possible
(e.g., because of the synthetic challenges associat-
ed with preparing amyloid proteins and because
many of the unnatural amino acids either are not
commercially available or are prohibitively expen-
sive). Such modifications may also be undesirable
when it is suspected that they could interfere with
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National Academy of Sciences, USA]. (e) SDS-PAGE analysis of cross-linked and purified Ap.4 oligomers. Lane 1: Crude
APRq.4 preparation directly after PICUP. Lane 2: Mix of pooled excised bands after alkaline extraction. Lanes 3-6: Purity
analysis of isolated cross-linked species. Lane 7: Negative control (empty gel piece subjected to the extraction protocol). (f)
Quantification of lactate dehydrogenase released from differentiated PC12 cells treated with various APj.4 species
(25 uM). (e and f) Adapted from Ono et al.** [Copyright (2009), National Academy of Sciences, USA].

the formation and/or stability of the protein com-  their extreme reactivity, protein—protein cross-linking
plexes to be characterized. In such cases, photoin-  is then controlled by the diffusion of these species.
duced protein cross-linking can be performed when  The original approach, termed PICUP, was devel-
the proteins are in solutions containing soluble  oped by Fancy and Kodadek. * Tts principle is
molecules that rapidly generate radicals. Because of ~ described in Fig. 7d.
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The PICUP approach is well suited for studying
the transient, dynamic equilibrium between small
AP oligomers due to the rapidity of the photochem-
ical transformation (much smaller than the expected
lifetime of the small AR oligomers of interest), the
high reactivity, and the small size of the active cross-
linking species. The first PICUP studies performed
by Bitan et al. on freshly isolated LMW Apq.4
preparations obtained by gel-filtration chromatog-
raphy identified a distribution of species ranging
from monomer to pentamer, with the occasional
detection of hexamers and heptamers. The authors
also used the PICUP approach to demonstrate that
these Apq_40 oligomers are in rapid equilibrium with
monomers/dimers.”* The differences in oligomeric
states between AP peptides of different lengths,
from APig9 to APjas, were also studied using
PICUP by Bitan et al.*® LMW preparations of both
AP0 and APj.4p, purified by size-exclusion chro-
matography, were cross-linked and analyzed by gel
electrophoresis. While Apq.39 and APq.49 are very
similar, the presence of Leu41 shifts the oligomeric
state preference of the peptide toward pentamers/
hexamers, while the 42nd residue is required for the
formation of heptamers and larger species.

Recently, Ono et al. characterized ARji49 using
PICUP by purifying the covalently cross-linked
oligomeric species.”” “Crude” (freshly dissolved,
without chromatographic purification) Apq4o prep-
arations were incubated with Ru(Il)bpy3/S,03”
and irradiated for 1 s before the separation of the
oligomers by SDS-PAGE (Fig. 7e). Purification of
defined oligomers, up to the tetramer, was achieved
by excision of the gel and removal of the Coomassie
dye and SDS, followed by dialysis. Pentamers and
higher-order species were not purified due to their
low abundance. The authors then characterized the
secondary structure of the purified oligomers by
circular dichroism spectroscopy and observed a high
correlation between the oligomer order and an
increase in P-sheet content, consistent with these
oligomers being on the pathway to amyloid forma-
tion. Moreover, each of the purified oligomeric
species could seed the fibrillization of an uncross-
linked crude ApPq49 4]greparaﬁon, as determined by
ThT binding assays,” because co-incubation of the
purified oligomers with crude peptide solution
(containing mostly monomeric Apq4o) eliminated
the characteristic lag time of amyloid fibril growth
that is the hallmark of nucleation-dependent
polymerization.55_57 Thus, APpi49 dimers, trimers,
and tetramers can nucleate the fibrillization of the
peptide. As a negative control, purified cross-linked
monomer was used; no seeding effect was observed,
consistent with the need for monomers to nucleate
before fibril elongation occurs. Because oligomeric
AR species have been postulated numerous times to
be the main toxic species in the pathogenesis of
AD%3 (however, in these cases, “oligomers” were

not well defined due to the inability to isolate and
characterize these metastable units®!), Ono et al.
examined the toxicity of their purified oligomers
toward differentiated PC12 cells using lactate dehy-
drogenase release assays and 3-[4,5-dimethylthiazol-
2-yl]-2,5-diphenyltetrazolium bromide-based viabili-
ty assays. Interestingly, a striking correlation was
observed between increasing oligomer order and
increasing toxicity (Fig. 7f), with trimers and
tetramers as the most toxic species, while the dimer
displayed an intermediate effect that was similar in
magnitude to those of ApPjyo fibrils. The study
performed by Ono et al. shows a very elegant
structure—function relationship between low-order
APRq.40 oligomers. Increased oligomerization was
associated with increased B-sheet proportion, fibril
nucleation capacity, and cytotoxicity. Higher-order
oligomers could not be studied, however, due to the
exponential decrease in the abundance of species
larger than tetramers following PICUP.

As shown by the experiments with Ap, PICUP
permits the study of rapidly exchanging oligomers
due to the fast kinetics of the photolysis process
and the reactivity of the generated cross-linking
elements. However, the interactions identified
depend mostly on the reaction between aromatic
residues and the radicals generated by the irradiation
of Ru(Il)bpy3 in the presence of persulfate; peptide
backbones also react but much less than aromatic
side chains due to the lack of stabilization of the
protein radical by resonance.>* This is exemplified by
TTR in which such residues are present in “intra-
dimer” interfaces but not at dimer—dimer interfaces, ®®
thus explaining the quasi-absence of tetrameric
species detected by SDS-PAGE following PICUP.>*
Furthermore, artifactual oligomers are often observed
using PICUP, through diffusion-controlled cross-
linking of noninteracting molecules. Such artifacts
must be carefully identified, for example, using the
appropriate mathematical models, to distinguish
between them and the actual oligomers that existed
prior to cross-linking. ™

The PICUP approach has also been applied for
the stabilization and characterization of dynamic
oligomers of other amyloidogenic proteins.®® In
particular, Piening et al. showed that scrapie prion
proteins could be intramolecularly cross-linked,
even from crude brain extracts, without losing
their ability to induce misfolding and aggregation
of PrP¢, thus suggesting that carefully optimized
photocross-linking does not significantly perturb
the structure of PrP*° aggregates.”” Early a-synuclein
(a-syn) oligomers could also be stabilized by PICUP,
suggesting an equilibrium between monomers, di-
mers, and trimers, although higher-order species
could not be ruled out.®® The authors furthermore
suggested that a-syn dimers and trimers could act
as seeds in the nucleation-dependent fibrillization
of the protein.
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From short peptides to full-length
amyloid-forming proteins?

With the exception of AR and IAPP that are
relatively short proteins, applications of switch
elements and unnatural amino acids to gain
control over the conformation and assembly of
amyloid-forming proteins have focused on short
fibril-forming model fragments of the amyloido-
genic protein of interest. However, full-length
sequences of amyloid-forming proteins with
switchable groups are far more relevant model
systems to elucidate the assembly and toxic
mechanisms of these proteins in vivo. The intro-
duction of switch elements into full-length proteins
is largely hindered by the general synthetic
intractability of aggregation-prone amyloid-form-
ing proteins, which can sometimes be hundreds of
residues in length. Unnatural amino acids, such as
switch elements, can be introduced at any desired
region of the protein by employing total chemical
synthesis methods, which enable proteins on the
order of ~150 residues to be built by connecting
fragments by a series of native chemical ligation
(NCL) reactions®® (discussed below). Alterna-
tively, protein semisynthetic approaches in which
a synthetic fragment is connected to a recombi-
nantly expressed protein fragment through a NCL
reaction may be employed”"”?7° (discussed
below). Recent results have shown that the
amyloidogenic proteins A’ the prion protein”®
and the microtuble associated protein tauf can be
prepared by semisynthetic strategies, underscoring
the potential for the introduction of switch
elements into full-length amyloid-forming proteins.
Moreover, Vila-Perello et al. recently incorporated
a single photocleavable O-acyl switch element with
an Nvoc protecting group at Ser35 of the full-
length split DnaE intein to gain control over
protein trans-splicing activity.”” This is the first
example of the application of O—N acyl migra-
tion to control the activity of a full-length protein.

Given that the technology exists to introduce
unnatural amino acids and switch elements into
full-length proteins, the application of these
approaches to amyloid-forming proteins appears
to be highly feasible. Light-activated switch
elements are particularly desirable in this respect
because they offer spatiotemporal control over
protein structure and are compatible with in vivo
studies. The application of the chemical tools
outlined in this review to full-length proteins may
lead to substantial advancements in unraveling
the toxic structures and mechanisms of these
elusive proteins.

T http:/ /onlinelibrary.wiley.com/doi/10.1002 /chem.
201103032 /abstract

The Role of PTMs in Regulating Protein
Aggregation and Amyloid Formation

Several amyloid-forming proteins are subject to a
wide range of PTMs, including phosphorylation,
ubiquitination, truncation, acetylation, and nitration.
Certain posttranslationally modified forms of these
proteins are enriched in pathological inclusions and
correlate well with the pathology and disease
progression in humans or animal models of the
disease. For instance, hyperphosphorylation of
Tau® is widely recognized as the primary trigger
for Tau aggregation and neurofibrillary tangle
formation in AD. Moreover, the majority of a-syn
within Lewy bodies (LBs) is phosphorylated at
Ser129.%" Although the majority of PTMs of amy-
loid-forming proteins were identified within the
inclusions associated with their respective diseases,
it remains unclear whether all disease-associated
PTMs promote or inhibit protein aggregation and
neurotoxicity in vivo. Multiple and/or different
PTMs can occur in vivo on the same protein, and in
many cases, these modifications tend to cluster
within specific domains, suggesting that they may
regulate each other. Therefore, elucidating the
molecular mechanisms underlying PTMs and the
consequences of such modifications on the biochem-
ical, structural, aggregation, and toxic properties of
these proteins is essential for unraveling the molec-
ular basis of the function(s) of these proteins in health
and disease. Ultimately, this goal can only be
achieved under conditions that allow the site-specific
introduction of single or multiple PTMs in the
protein of interest and the preparation of these
proteins in sufficient amounts to allow for detailed
biochemical and biophysical studies. Unfortunately,
the enzymes such as kinases, E3 ligase, and proteases
that are involved in regulating the PTMs that occur
in amyloid-forming proteins remain unknown.
Furthermore, many of the enzymes that have been
identified lack specificity or have low efficiency, thus
precluding the preparation of homogeneously mod-
ified forms of amyloid-forming proteins.

Chemical synthesis

The site-specific introduction of unnatural or
modified amino acids into peptides and proteins
can be achieved using different chemical ap-
proaches, including SPPS, NCL, or expressed protein
ligation (EPL). In SPPS, polypeptides are assembled
stepwise from the C-terminus to the N-terminus on a
solid support. Although SPPS provides great flexi-
bility for the site-specific introduction of one or more
unnatural amino acids, its use remains limited to the
synthesis of peptides of 50-80 residues in length,
depending on the sequence. Several amyloidogenic
peptides of various lengths have been routinely
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prepared using SPPS.>8283 However, the synthesis,
purification, and handling of many of these amyloid-
forming peptides (e.g., Ap and IAPP) are often
plagued by protein aggregation and still present
many challenges. The polyQ stretch of the Hunting-
tin protein is especially difficult to synthesize and
purify. Recently, microwave-assisted SPPS allowed
the synthesis of exon 1 of the Huntingtin protein.®*

To overcome the size limitation of SPPS, Kent et al.
developed and pioneered approaches for construct-
ing large proteins based on the chemoselective
condensation of two or multiple unprotected pep-
tides in aqueous bulffers at physiological pH values.
The reaction is called NCL and involves the
condensation of an N-terminal peptide bearing a
C-terminal thioester and a C-terminal peptide contain-
ing an N-terminal Cys to form an amide bond with a
Cys at the ligation site (Fig. 8a). Figure 8a shows the
chemoselective transesterification reaction that forms
a native peptide bond at the ligation site. Until
recently, one major drawback of the total chemical
synthesis of proteins has been the introduction of Cys
mutations at single or multiple sites to facilitate NCL;
many proteins do not have Cys at the desired ligation
site(s). The necessity of having a Cys at the ligation
site can be circumvented by choosing ligation sites at
native alanine residues within the protein because
alanine residues are much more common in proteins
than cysteines. In this case, Ala at the ligation site is
mutated to Cys to allow for NCL and then converted
back into Ala by desulfurization (Fig. 8b).*** In
addition, several p-thiol-containing amino acid ana-
logues have been synthesized and used to allow NCL
and synthesis of proteins followed by desulfurization
to generate native phenylalanine, leucine, and Thr,
among others, thus eliminating the need to introduce
Cys residues (Fig. 8b)." ! In more than 900 reports,
NCL has been widely applied in chemoselective
ligation methods to introduce unnatural amino acids
in peptides and protein.”>” In particularly, NCL has
allowed the synthesis of a wide range of proteins of
increasing size, up to 304 amino acids (the tetra-
ubiquitin protein).”> Complex proteins have also been
generated using NCL. The most prominent examples
include the synthesis of catalytically active enzymes
such as human immunodeficiency virus-1 protease, ”*
human group I secretory phospholipase A2,”> and
human lysozyme.”® Transmembrane proteins, such
as the M2 protein from influenza A virus that acts as a
proton channel, have also been generated by NCL."”

Expressed protein ligation

The reduced solubility and folding capacity of
many amyloid-forming peptide fragments, as well as
the difficulties associated with carrying out multiple
ligation reactions, have presented some challenges
that limit the utility of NCL for preparing large
proteins, particularly those containing multiple

folded domains. To overcome these limitations,
two independent groups have developed an alter-
native strategy that combines the advantage of
recombinant DNA technology and SPPS to prepare
large proteins that are not accessible by chemical
synthesis and NCL alone.”*”® This approach is
termed EPL. EPL involves an NCL reaction between
a longer sequence produced in E. coli and a second
fragment containing the modified amino acid(s)
produced by SPPS (Fig. 8a, ¢ and d). The EPL
approach also requires a fragment possessing a C-
term thioester and a fragment possessing an N-term
Cys residue. Depending on the position of the
modification, proteins can be expressed either in
bacteria as a thioester or with an N-terminal Cys (Fig.
8c and d). Classic methods to generate recombinant
proteins in E. coli rely on endogenous methionine
aminopeptidases that cleave the first methionine or
on proteases that cleave a specific sequence such as a
tobacco etch virus (TEV) or factor Xa protease
recognition sequence just upstream of a Cys residue
to generate a protein with an N-terminal Cys residue
(Fig. 8d).””"'! Recombinant protein thioesters can be
obtained by using engineered proteins called inteins.
Inteins are self-processing domains that mediate
naturally occurring protein splicing. In this process,
an internal polypeptide—the intein—is self-excised
from a precursor protein and in the process lifates
the flanking exteins (N- and C-exteins). ' For
the production of protein thioesters, the intein is
genetically engineered to undergo cleavage at only
the N-term extremity (Fig. 8c).'®'% In addition,
several chemical methods for generating 7];;eg)tide
thioesters using SPPS have been described.”>""”

Advances in EPL methodologies have facilitated
the synthesis and characterization of large proteins
and have enabled the introduction and characteri-
zation of a large set of site-specific PTMs. However,
the introduction of site-specific modifications by the
EPL method is restricted to residues located 50-70
amino acids from the N-terminus or the C-terminus
of the protein (i.e., the fragments that can be
prepared by SPPS). Moreover, the target protein
and the intein must also be correctly folded after
expression in E. coli in order for the intein-mediated
splicing to occur.'*®

Nonsense suppression methodology

An alternative approach for the site-specific
incorporation of modified amino acids was pio-
neered by Schultz et al. and is based on the
generation of suppressor tRNA/tRNA synthetase
pairs that have been evolved to allow the site-specific
incorporation of unnatural amino acids. More than
50 unnatural amino acids have been successfully
incorporated in prokaryotes and eukaryotes using
this approach. %9110 This methodology has been
applied for the incorporation of photoactivatable
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Fig. 8. Principles of NCL and EPL. (a) NCL: The first step in NCL, after the activation of peptide 1's thioester to aryl
form, is the reversible thiol-thioester exchange between the electrophilic thioester carbonyl center of peptide 1 and the
nucleophilic thiol of the N-terminal Cys of peptide 2. This transthioesterification reaction is then leading to a spontaneous,
chemoselective S-N acyl migration via a five-membered transition state to form a native peptide bond with a Cys residue,
the ligation site. The presence of additional Cys residues in one or both fragments does not affect the regioselectivity of the
ligation because the irreversible intramolecular S-N shift can only occur at the N-terminal Cys residue. Either fragment
(peptide 1 or peptide 2) can be a protein produced by recombinant techniques [described in (c) and (d)] for protein
semisynthesis by EPL. (b) Strategies to allow NCL in cysteine-lacking proteins. In most cases, NCL can be performed at an
alanine residue: alanine is temporarily replaced by cysteine, and a final desulfurlzatlon step using Raney-nickel-based or
metal-free-based methods restores the alanine residue at the ligation site.®>®® Unnatural ammo acids contammg ap-ory-
mercapto group are also shown; they allow NCL at phenylalanine,®” Vahne 855 threonine,” and leucine.”" (c) Generation
of recombinant protein thioesters for use in EPL. The desired recombinant protein thioester can be prepared using the
intein strategy. The first step in the splicing process involves an N-S acyl shift that brings the protein fragment of interest
to the thiol group of the first residue of the intein. A thioester bond will be formed between the protein of interest and the
intein, which is susceptible to cleavage by exogenous thiols such as DTT or sodium 2-mercaptoethanesulfonate. A
purification tag (chitin binding domain) at the C-terminus of the mutated intein allows for a quick recovery of the purified
protein thioester. (d) Recombinant production of proteins containing an N-terminal cysteine. This can be achieved either
using a protease cleavage site (such as the TEV protease target sequence) that may be preceded by a purification tag or by
taking advantage of E. coli's methionine aminopeptidase that will cleave the first methionine residue of the protein of
interest, leaving it with an N-terminal cysteine.
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folding, aggregation, and biochemical properties of
three different amyloid-forming proteins: a-syn, the
prion protein, and the Ap peptide.

a-Synuclein

a-Syn is a 140-amino-acid unfolded protein and is
the ]:g)rimary constituent of the fibrillar inclusions,
LBs,”>!'"” that are found in the brains of PD patients
and patients suffering from other neurodegenera-
tive diseases such as multiple system atrophy and
dementia with LBs, hereinafter collectively referred
to as “synucleinopathies”.!"® Increased expression
of a-syn (gene duplication or triplication) or the a-
syn mutations A30P, E46K, and A53T enhance its
fibrillization rate leading to early-onset forms of
PD."""'** The identification of several PTMs in a-
syn within LBs suggested that these modifications
actively participate in promoting a-syn aggregation
and LB formation.'?> However, a detailed under-
standing of the role of each PTM in a-syn
aggregation and toxicity remains elusive because
the natural enzymes involved in regulating these
PTMs remain unknown. Understanding the role of
specific PTMs in a-syn aggregation and toxicity is
essential for elucidating the molecular basis of
neurodegeneration and the pathogenesis of PD
and other synucleinopathies. Moreover, such an
understanding may facilitate the identification of
novel therapeutic targets and strategies for PD and
related disorders.'**

Although several enzymes have been shown to
mediate a-syn phosphorylation, ubiquitination, and
truncation in vitro, many of these enzymes are either
nonspecific or inefficient; the natural enzymes
involved in the phosphorylation of a-syn at S87,
5129, and Y125 are unknown, but several in vitro
and in vivo experiments have identified that several
candidate kinases (CKI and CKII) and G-protein-
coupled receptor kinases phosphorylate a-syn at
S129 and S87'*'** and that Polo-like kinases
phosphorylate at $129.'*'?® Fyn, Lyn, and c-Frg
phosphorylate at Y125,'*'* and Syk phosphory-
late all three C-terminal tyrosines.'30-132 With
respect to the ubiquitination of a-syn that occurs
in LBs at K12, K21, and K23, several E3 ligases have
been proposed to monoubiquitinate and polyubi-
quitinate a-syn in vitro and in vivo: SIAH,133134
CHIP, > RAF6,'** E6AP,"” and Nedd4.'*® Details
concerning previous reports about those PTMs have
been reviewed elsewhere.'** Other approaches
based on the use of mimicking mutations (e.g.,
phosphomimics) have yielded controversial results,
in part, because these mimics do not reproduce all
aspects of these modifications.'*" Moreover, it is
important to stress that there are no natural amino
acids that can mimic phosphotyrosine. In addition,
the introduction of mimicking mutations is irrevers-
ible and does not allow the investigation of PTMs

under physiological conditions at which these
modifications are reversible (e.g., phosphorylation).

Strategies for the study of PTMs at the
N-terminus of a-syn

To study N-terminal PTMs, including N-terminal
acetylation and monoubiquitination, we developed
an EPL strategy (Fig. 9a and b).'* Specifically, an
N-terminal peptide fragment of a-syn containing
N-acetylated methionine or the unnatural amino acid
8-mercaptolysine'*’ at the desired residue was
synthesized. The use of 6-mercaptolysine developed
by Kumar et al. enabled us for the first time the facile
site-specific conjugation of ubiquitin into the desired
lysine residues of a-syn and other proteins.”'*!
N-terminal ubiquitinated a-syn was prepared by the
ligation of two fragments under NCL conditions: a
recombinantly expressed a-syn fragment comprising
residues 19-140 and bearing an N-terminal Cys
a-syn(19-140) and a synthetic peptide thioester
comprising the N-terminal residues 1-18 and bearing
a protected 6-mercaptolysine (Fig. 9b, bottom panel)
at the desired lysine residue, a-syn(1-18)-SR.
Ubiquitination was then achieved by addition of
the T7-Ub-SR to the full-length a-syn(1-140) pre-
senting the free 6-mercaptolysine to generate the
first monoubiquitinated a-syn variant at K6, with a
native isopeptide bond.'*” Biophysical studies of
T7-Ubi-a-syn(K6) demonstrated that the conjugation
of one ubiquitin moiety at K6 stabilized the
monomeric a-syn and prevented its fibrillization in
vitro (Fig. 9d). Moreover, no significant accumulation
of oligomers or higher-molecular-weight aggregates
was observed upon incubation of T7-Ubi-a-syn(K6)
for 10 days. These studies provided strong evidence
that ubiquitination inhibits a-syn aggregation. Fur-
thermore, these studies suggest that ubiquitination
of a-syn within LBs may occur after fibrillization and
may be an active cellular response aimed at clearing
a-syn aggregates. Current efforts in our laboratories
are focused on determining the effects of ubiquitina-
tion at other lysine residues and exploring potential
cross-talk between ubiquitination and other PTMs in
a-syn. Using a similar strategy, we were recently
able to study the effects of N-terminal acetylation of
a-syn, which had remained unexplored prior to our
investigation despite the fact that most of native a-
syn is N-terminally acetylated.'” These studies
would not have been possible without semisynthetic
a-syn. This approach could also be extended to
study the effect of phosphorylation, ubiquitination,
or sumoylation on exon 1 of the Huntingtin protein
or cross-talk between these modifications, all of
which occur within the first 16 N-terminal residues
of exon 1.'*7'** Furthermore, recent advances by
Kumar et al., Kumar et al., and Bavikar et al., using
NCL, provided access to oligo-ubiquitin chains of
different lengths and different inter-ubiquitin
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linkages.”>'*"'*> Through protein semisynthesis,
segmental isotopic labeling of one monomer in
K48- and K33-linked di-ubiquitin chains was demon-
strated, allowing the study of monomer-specific
structural and conformational features by nuclear
magnetic resonance (NMR).'* Extending these ad-
vances to amyloid proteins will permit the investiga-
tion of the effect of the ubiquitin chain length and
types of interchain linkages on the function, aggre-
gation, and clearance of these proteins.

Strategies for the study of PTMs at the
C-terminus of a-syn

The majority of the disease-associated PTMs
(truncation, phosphorylation, and nitration) occur
within the C-terminal region comprising residues
120-136."** To probe the role of C-terminal PTMs in
a-syn, we developed and optimized a general and
efficient semisynthetic strategy that enables the site-
specific introduction of single or multiple PTMs in
a-syn to generate milligram quantities of homoge-
neously C-terminal modified forms of a-syn. Our
goal was achieved using an EPL strategy involving
an NCL reaction between a synthetic peptide
corresponding to a-syn(A107C-140) and the recom-
binant a-syn fragment o-syn(1-106) thioester (Fig.
9a).'*” We exploited the approach for the generation
of pure phosphorylated a-syn at Y125 and were able
for the first time to investigate the role of selective
phosphorylation of Y125 in the structure, fibrilliza-
tion propensity (Fig. 9c), membrane binding, and
subcellular localization of semisynthetic pY125 a-
syn. We reported that phosphorylation at Y125 did
not have a major impact on the structure of a-syn
and its fibrillization propensity, in contrast to
phosphorylation at 5129 that resulted in a broader
conformation and inhibited the aggregation of the
protein (Fig. 9c). Most importantly, the use of
semisynthetic pY125 a-syn enabled us to better
design and interpret experiments performed in
mammalian cells and provided a rationale for why
this modification is not prominently detected in vivo.
We observed that pY125 undergoes rapid dephos-
phorylation upon addition to cell lysates or micro-
injection into neurons. Dephosphorylation of pY125
was blocked by the addition of phosphatase in-

hibitors. These results confirmed previous data
suggesting that phosphorylation at Y125 is very
tightly regulated so that the levels of pY125 are
maintained at very low levels but increases signif-
icantly in cell culture, primary neurons, and brain
tissues, upon treatment with the phosphatase
inhibitor pervanadate.'**"* Our studies demon-
strate the value of homogeneously modified forms
of a-syn and stress the importance of considering
the stability and dynamics of modified variants of a-
syn in future studies aimed at evaluating and
correlating specific PTMs with disease progression.
The protocols used for the analysis and preparations
of samples must be modified accordingly.

The clustering of PTMs, which play critical roles in
modulating its subcellular localization, membrane
binding, and interaction with other proteins, in the
N- and C-terminal regions of a-syn, suggests that
these modifications may be involved in the regula-
tion of a-syn function in health and disease. This
hypothesis is further supported by the fact that the
majority of these PTM sites are highly conserved
across different species. In addition, the close
proximity of these different modifications suggests
that they may act in concert, and cross-talk between
different PTMs may constitute an additional molec-
ular switch for regulating the dynamics of a-syn
function and aggregation. The approaches pre-
sented above have allowed the preparation of all
disease-associated o-syn PTMs and will provide
unique opportunities to study these processes,
facilitate the development of novel assays for target
identification, and explore if any of these PTMs
correlate with disease progression and severity.

Prion Proteins

Prions are ~230-residue cell-surface glycoproteins '
produced by the Prnp gene that acts as infectious
agents involved in the pathogenesis of transmissible
encephalopathies. Like other amyloidogenic pro-
teins, misfolding toward a toxigenic P-sheet-rich
conformation and subsequent aggregation are the
first steps toward pathogenesis. Native prion protein
displays mainly an «-helical structure,'”” with a
disulfide bond between helices 2 and 3.'>® However,

Fig. 9. Semisynthetic strategies for the introduction of modifications at the N-terminus and the C-terminus of a-syn.
(a) Semisynthetic strategies for the introduction of modifications at the C-terminus: phosphorylated Ser, phosphorylated
tyrosine, and nitrated tyrosine have been introduced in the C-terminus of a-syn using semisynthesis. (b) Semisynthetic
strategies for the introduction of modifications at the N-terminus: ubiquitin and N*-acetylated methionine have been
introduced in the N-terminal part of a-syn. (c) Left: Phosphomimic S129E variant does not display the same
conformation as phosphorylated a-syn at S129. The structures displayed were derived from NMR data published by our
group.®" Right: Phosphorylation at Tyr125 does not significantly affect the fibrillization of a-syn as seen by ThT
fluorescence. (d) Monoubiquitination of a-syn at K6 completely prevented its fibrillization as shown by the ThT
fluorescence binding assay. The schematic structure of monoubiquitinated o-syn has been done with PyMOL, based on
Protein Data Bank structures 1XQ8 and 1UBQ.
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pathogenic prion conformations have the distinct
ability to catalyze the conversion of the physio-
logical form (“cellular”, PrP°) to the misfolded form
(“scrapie”, PrP*?), which can be explained by a
“templating” behavior.'**'*® In this regard, prions
also serve as models for the study of other neurode-
generative disorders caused by amyloidogenic pro-
teins, such as AD.

Prions usually exist as unmodified, monoglycosy-
lated, and diglycosylated forms and membrane-
associated forms through the addition of a C-terminal
glycosylphosphatidylinositol (GPI) anchor. Several
studies have suggested that the conversion of PrP
to PrP*¢ occurs at the plasma membrane, '*® to which
PrP is attached via a GPI anchor.'”’ Membrane
attachment of PrP has been shown to play a key role
in the cytotoxicity of PrP*° because mice expressing
only a PrP protein lacking its GPI anchor (and thus
secreted as a soluble protein) do not develop
spongiform encephalopathy upon prion inoculation,
yet their brain tissues show evidence of amyloid
deposits.'”” Because several PTMs can exist on the
same prion molecule, and not all PrP molecules
are membrane bound, it is important to study
membrane-bound PrP in isolation. However, tradi-
tional methods are not efficient for the expression
and purification of posttranslationally modified PrP
forms, thus limiting in vitro studies to either PrP
modified with simple GPI mimics, such as disulfide-
linked phospholipids,"*® sulfolipids,'* and thioether-
linked myristoyl groups.'® Native GPI anchors, in
contrast, consist of a core pseudopentasaccharide
glycan (shared among mammalian GPIs) linked to
target proteins at the C-terminus via a phosphoetha-
nolamine linker. The core glycan can be further
modified with a branched saccharide (up to three
units) or phosphoethanolamine groups. The struc-
ture and compositions of mammalian GPI anchors
have been reviewed elsewhere.'®" For prion pro-
teins, six different glycan compositions were identi-

fied, but they were not fully chemically defined. For
example, the lipid composition is unknown.'*®

Semisynthesis of palmitoylated murine PrP

Protein semisynthesis is well suited for the study
of protein interactions with biological membranes, as
it allows the introduction of lipophilic groups in a site-
specific manner'**'** with the possibility to introduce
labels, cleavable groups such as fluorophores,” or
temporary solubilizing groups to improve the
handling of hydrophobic segments."*>'** Moreover,
the approach allows the use of synthetic fragments
that can mimic natural membrane anchors as
closely as desired.'® This strategy was chosen by
Olschewski et al., who designed an EPL strategy for
the semisynthesis of C-terminally di-palmitoylated
murine PrP(90-232) (referred to as PrP™™ by the
authors) to study the role of GPI-mediated mem-
brane association in cellular uptake and PrP°-to-
PrP*¢ conversion.'”” To eliminate the need to isolate
a recombinant PrP(90-232) thioester, Olschewski
et al. employed a strategy based on protein trans-
splicing (described in Fig. 10a; see also Giriat and
Muir'®). Following trans-splicing, PrP™™ was
purified and folded in the presence of dioleoyl-sn-
glycero-3-phosphocholine (DOPC) liposomes, which
produced the a-helix-rich cellular form.

The semisynthetic PrP"™™ bound tightly to DOPC
vesicles.'” Treatment of the PrP**™-bound vesicles
with TEV protease, which cleaved the protein from
its lipid anchor, resulted in complete dissociation of
PrP(90-232) from the small unilamellar vesicles
(SUVs), thereby ruling out nonspecific hydrophobic
interactions. Moreover, PrPP¥™ was shown to form
proteinase-K-resistant aggregates that resemble
those formed by PrP*‘. Cellular internalization
assays then showed that, while up to ~50% of
PrP™®™ could be recovered in a detergent-soluble
conformation, cells treated with recombinant PrP

Fig. 10. Semisynthesis of murine prion protein. (a) Semisynthesis of lipidated murine PrP(90-232) using the split
intein concept. The recombinant PrP (rPrP) was produced as a fusion protein with the N-terminal domain of the DnaE
intein (DnaEY). The synthetic C-terminal fragment containing the membrane anchors was produced in two steps.
First, the C-terminal domain of the DnaE intein (DnaES; ~40 residues) was produced with a C-terminal thioester by
Boc-based SPPS. Then, a peptidic membrane anchor was synthesized (16-17 amino acids; bearing two palmitoyl groups
on Lys residues and a PEG-based solubilizing group at the C-terminus). TEV protease cleavage sites were included to
allow the removal of the solubilizing groups, the membrane anchor, or both. A first NCL was applied to obtain the
various DnaES membrane anchor Igolypep’cides. The final ligation to obtain PrP™™ was carried after folding of the
recombinant fragment (rPrP-DnaE"™) and addition of DnaE~ membrane anchors. Adapted from Olschewski et al.'’*
(b) The extent of aggregation by recombinant (unmodified) PrP in the absence (black lines) and in the presence (red
lines) of DOPC SUVs as assessed by ThT binding. (c) The same experiment as in (b) was carried out using
semisynthetic PrP*™, (d) Immunocytochemical staining analysis of N2a cells transfected with PrP°. (e) Same analysis
as in (d), but performed on PrPP™ treated N2a cells. (b—e) Reproduced from Olschewski et al.,**% with permission.
(f) Schematic depiction of the PrP-GPI semisynthetic strategy involving a recombinant PrP(90-232) thioester produced
by intein thiolysis (top) and a synthetic GPI anchor with a Cys residue having its amino group free. (g) Chemical
structure of the semisynthetic protein with a focus on the synthetic GPI anchor module. The Cys handle for NCL is
labeled in green; the oligosaccharide, in blue; and the lipid moiety, in purple. (f and g) Adapted from Becker et al.”®
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(rPrP) only presented a detergent-insoluble form,
thus suggesting that membrane association helps
maintain PrP in its cellular conformation, consistent
with the reduced aggregation propensity of PrP’a™
(Fig. 10b and C|)>' Furthermore, immunocytochemistry
of fixed PrP"*™-treated N2a cells showed an
exclusively membranous localization, similar to
that of recombinantly expressed rPrP (PrP€; Fig.
10d and e). However, PrP™™ was not found to
associate with detergent-insoluble membrane do-
mains, contrary to what is observed in the case of
rPrP."® This suggests that the chemical nature of the
membrane anchor plays an important role in
determining the precise localization of membrane-
bound PrP¢ and highlights the importance of using
semisynthetic proteins as close to the native form as
possible.

Semisynthesis of GPl-anchored PrP

The strategy described above provides a valuable
tool for dissecting the consequences of PrP mem-
brane association in a reversible manner because of
the presence of a cleavable group upstream of the
lipidated sequence but does not take into account
the specific properties of a natural GPI anchor.
Therefore, Becker et al. used a chemical approach to
prepare semisynthetic PrP modified with a synthetic
C-terminal GPI anchor (Fig. 10f). The GPI anchor
consists of a Cys residue (for use in NCL) attached to
a pseudopentasaccharide through a native ethanol-
amine phosphate linker observed in natural GPI
anchors. ' The lipid chain (an octadecyl group) was
attached via a phosphodiester bond to the 1-position
of the distal inositol residue (see Fig. 10g). This more
physiologically relevant GPI mimic was ligated via
NCL to the C-terminus of a recombinantly
expressed PrP thioester (using the intein thiolysis
method described in Fig. 8c).

Folding of the resulting PrP-GPI was achieved by
rapid dilution into a non-chaotropic buffered solu-
tion, which was confirmed by circular dichroism.
Unlike the previous strategy reported by the same
group,'” no lipid vesicles were necessary to obtain
the native a-helix-rich structure. PrP-GPI, but not
non-lipidated recombinant rPrP, bound quantita-
tively to DOPC SUVs, as shown by vesicle pull-
down assays.”®

The synthetic GPI anchor developed by Becker
et al. has the advantage of being able to induce
efficient PrP membrane association, while maintain-
ing good solubility in aqueous buffer devoid of lipid
vesicles or detergents.”® In contrast, this is peptide-
based GPI mimics, which require two aliphatic chains
to obtain the same effect, unless an artificial
solubilizing group (such as PEG) is present.'"?
However, the preparation of the synthetic GPI is
much more challenging, requiring many more steps
than the peptide-based GPI mimic. The same research

group recently published a method for isolating a
natural GPI anchor module consisting of a GPI-
attached peptide bearing an N-terminal Cys."”’ This
can be employed to modify any protein of interest
with a GPI anchor but does not yield a homogenous
preparation because it is derived from the recombi-
nant expression of a fusion protein in yeast cells.

It should be noted that studies on the membrane
association of semisynthetic PrP thus far have been
carried out using artificial liposomes, which do not
reflect the physiological lipid composition of neuro-
nal membranes. The synthetic and semisynthetic
strategies for preparing modified forms of PrP
provide unique opportunities to elucidate the effect
of different PTMs on amyloid formation in PrP and
should provide important insight into the role of
membranes in prion replication and toxicity.

Semisynthesis of B-amyloid peptides

Extracellular deposits of fibrillar Ap peptides,
mainly the 40- and 42-residue-long forms, are
hallmarks of AD progression.'”! Understanding
the roles of the various self-associated forms of Ap
(i.e., soluble oligomers and fibrils) in the pathogen-
esis of AD and the molecular mechanisms control-
ling the assembly states of Ap are prerequisites for
identifying efficient therapeutic strategies to target
the real causes of the disorder. In particular,
obtaining structures of aggregated AR species,
such as soluble oligomers, with atomic-level detail
is of great interest for this purpose. Solution- and
solid-state NMR are invaluable tools to achieve this,
but these require the use of isotopically labeled
peptides.'” While total chemical synthesis of
natural (unlabeled) AR peptides is very common
(although plagued by low yields due to synthetic
difficulties in part associated with on-resin
aggregation”), high costs of isotopically labeled
amino acid building blocks for SPPS prevent the
use of this method to prepare AR peptides in
sufficient quantities for NMR-based structural char-
acterization. The classical method for producing
isotopically labeled recombinant proteins, which
uses cultures of appropriately transformed bacterial
cells in labeled minimal media (i.e., containing [1°N]
ammonium chloride as the only nitrogen source
and/or ["’Clglucose as the only usable carbon
source), is not applicable for AB peptides because
bacterial expression results in the localization of AR
to insoluble inclusion bodies in which the Met35
residue has a high propensity to oxidize.'”*'”*
Moreover, recombinant AP peptides are toxic to
bacterial cells, thus further limiting production
yields.98 To overcome this limitation, some groups
have investigated the expression of the Ap peptide
or its fragments as fusion proteins for NMR
studies.'”>"”” While the yields increased dramati-
cally, these strategies require the placement of
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protease cleavage sites between the AR domain and
the fusion partner, which leaves additional residues
after its removal, thus introducing potential artifacts
in the structure and aggregation properties of those
peptides.

To overcome these limitations, Bockhorn et al.
applied a semisynthetic strategy’” (similar in design
to the one described above for a-syn) in which the
1-29 fragment of AR was recombinantly expressed
as an intein—chitin binding domain fusion protein,
which remained fully soluble but retained the
initiating methionine residue and was thus referred
to as Met-APj.09. Expression was efficient in both
normal and minimal media, ensuring the applica-
bility of this method for preparing isotopically
labeled Ap. The fusion protein was then subjected
to thiolysis with sodium 2-mercaptoethanesulfonate
to produce the Met-Ap1.29-SR thioester. The semi-
synthetic strategy had been designed to omit Met35
in the recombinant fragment, not only to avoid
oxidative modifications but also primarily because
following thiolysis of the fusion protein, the
N-terminal methionine, which is not in the native
AR sequence, could be selectively removed by
CNBr-mediated cleavage. The resulting AP;.,9-SR
was then ligated with synthetic A30C-APR3p.40
(prepared by Fmoc-SPPS). Following Raney-nickel-
based desulfurization the native, full-length Apq.40
was obtained with yields up to 8.5 mg per liter of
expression medium. The mutant D23N, which is
associated with familial forms of AD,'”® was also
produced successfully with this method.

The approach developed by Bockhorn et al. offers
the obvious advantages of higher yields and, in
particular, provides access to labeled peptides at a
far lower cost than that required for a fully synthetic
Ap peptide.”” Tt also offers the possibility of
preparing AR peptides with PTMs in the C-terminal
domain. For example, while oxidation of Met35 to
sulfoxide, which decreases AP toxicity and self-
assembly, has been well investigated,'” the rarely
studied sulfone form was recently found to have
profoundly opposite effects.'® The preparation of
Met(O,)-Ap relied on Fmoc-based total synthesis,
and its yield could be improved yields by a
semisynthetic approach.

The most obvious drawback of this semisynthetic
approach is that only the N-terminal recombinant
fragment APRjo9 can be labeled, thus restricting
NMR signals to these residues (this can, however, be
an advantage by simplifying the NMR spectra, as
noted by the authors). Another limitation inherent to
this semisynthetic strategy is that it prevents access
to site-specific PTMs of Ap, such as isoaspartyl
residues (at positions 1 and 7'%"'%%) and pyrogluta-
myl formation (at position 3'%).

Semisynthesis and total synthetic approaches
represent the ideal strategies for the site-specific
introduction of PTMs in amyloid proteins and hence

allow unambiguous biochemical and structural
studies of the modified variants. For the investiga-
tion of these modifications in cells and in vivo, we are
still limited by the amount of proteins that can be
delivered to cells either by microinjection, micro-
electroporation, or through the use of delivery
reagents. While the first two techniques may be
used to study subcellular localization, cell-penetrat-
ing peptides (CPPs; see Ref. 184 for a review) offer
an alternative that addresses the low number of
transduced cells and cytotoxicity associated with
microinjection and electroporation.'®> These usually
short sequences mediate the internalization of the
attached cargo via several possible mechanisms, the
most prevalent of which being endocytosis.'®
Intracellular delivery of a-syn has already been
achieved using fusion protein constructs based on
the human immunodeficiency virus-derived TAT
sequence'¥'® and suggested that low amounts of
internalized TAT-a-syn could protect against certain
forms of oxidative stress and serum deprivation
througgh an increase in the HSP70 chaperone protein
level. "™ CPPs were also applied to internalize the
17-residue N-terminal fragment of Huntingtin into
SH-SY5Y cells.'® This peptide had been shown in
vitro to compete for oligomerization with longer,
polyQ-containing N-terminal fragments of Hunting-
tin and, as a result, inhibit their amyloid formation
propensity; however, the effects in cells have not yet
been studied.'® One must bear in mind that
covalent addition of even short sequences may
perturb the function of the proteins of interest,
especially due to the strongly cationic nature of
many CPPs. This is the case with a-syn, where
polyarginines (which are part of some CPPs) were
shown to accelerate oligomerization and fibrilliza-
tion of o¢—syn.187 To address this limitation, we note
that covalent linkage of a cargo to a CPP may be
designed to be reversible, for example, by a disulfide
bond, which will be cleaved in the reducing
environment of the cytosol (leaving, however, a
free cysteine in the cargo, which may have been
introduced artificially for that purpose), or if the
CPP is attached by a photolabile linker (through
protein semisynthesis), in which case regeneration
of the cargo's native sequence is possible. However,
these approaches have not yet been applied to study
amyloidogenic proteins. In all cases, appropriate
experimental design is crucial to ensure that the
released CPPs do not alter the behavior of the
proteins of interest once within the cell.
Protein—protein interactions can be studied in the
presence of cell lysate in the case where the
semisynthetic or total synthetic protein has been
modified to allow for a handle. Other studies in vivo
would still require the over-expression of the
enzyme that is responsible for the PTMs or the use
of phosphomimics. The comparison of the phos-
phomimics and the semisynthetic or total synthetic
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phosphorylated protein, particularly with respect to
aggregation propensity, would further confirm
whether their use could be of significant relevance
in vivo.

The different strategies outlined above (total
chemical synthesis and EPL) represent powerful
methodologies that allow the introduction of site-
specific chemical modifications and/or PTMs
including glycosylation,”*'***! lipidation,”®"'%>'*>
ubiquitination, 139193 D-amino acids, ' and
phosphorylation”*'”> among many others. These
approaches have been widely used to site-specif-
ically introduce fluorescent probes, fluorescence
resonance energy transfer pairs, or affinity handles
to allow for selective labeling at specific residues
using small probes or the covalent immobilization
or cross-linking of proteins using the handles (for
review, see Ref. 99). Nonhydrolyzable phospho-
nate amino acids have been synthesized and
incorporated into proteins to prevent rapid de-
phosphorylation at Ser or Tyr.1%

Conclusion

The various examples presented in this article
illustrate the power and potential of applying recent
advances in synthetic organic chemistry, protein
synthesis, and chemical biology to provide impor-
tant insight into the molecular determinants and
mechanisms that govern amyloid formation and
toxicity. Furthermore, the mechanistic insight gained
through the use of these tools has not only helped in
explaining biological findings but also contributed
significantly to the design of biological experiments
and guiding future efforts to model these processes
in vivo.124131132 More novel chemical tools and
approaches are needed. However, more proactive
engagement between scientists from the different
disciplines is necessary for these tools to realize their
full potential and to drive the generation new
biology-driven tools to address many of the current
challenges facing the field today. We hope that this
review will help promoting more interactions and
collaborations on amyloid research at the interfaces
of chemistry, biology, biochemistry, and biophysics.
We believe that such collaborations will lead to
exciting discoveries and usher a new era in chemical
biology of amyloid research and neurodegeneration.
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