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Because the space of folded protein structures is highly degenerate, with
recurring secondary and tertiary motifs, methods for representing protein
structure in terms of collective physically relevant coordinates are of great
interest. By collapsing structural diversity to a handful of parameters, such
methods can be used to delineate the space of designable structures (i.e.,
conformations that can be stabilized with a large number of sequences)—a
crucial task for de novo protein design. We first demonstrate this on natural
a-helical coiled coils using the Crick parameterization. We show that over
95% of known coiled-coil structures are within 1-A C, root mean square
deviation of a Crick-ideal backbone. Derived parameters show that natural
geometric space of coiled coils is highly restricted and can be represented by
“allowed” conformations amidst a potential continuum of conformers.
Allowed structures have (1) restricted axial offsets between helices, which
differ starkly between parallel and anti-parallel structures; (2) preferred
superhelical radii, which depend linearly on the oligomerization state; (3)
pronounced radius-dependent a- and d-position amino acid propensities;
and (4) discrete angles of rotation of helices about their axes, which are
surprisingly independent of oligomerization state or orientation. In all, we
estimate the space of designable coiled-coil structures to be reduced at least
160-fold relative to the space of geometrically feasible structures. To extend
the benefits of structural parameterization to other systems, we developed a
general mathematical framework for parameterizing arbitrary helical
structures, which reduces to the Crick parameterization as a special case.
The method is successfully validated on a set of non-coiled-coil helical
bundles, frequent in channels and transporter proteins, which show
significant helix bending but not supercoiling. Programs for coiled-coil
parameter fitting and structure generation are provided via a web interface
at http://www.gevorggrigoryan.com/cccp/, and code for generalized
helical parameterization is available upon request.

© 2010 Elsevier Ltd. All rights reserved.

Introduction

The number of conformational states accessible to
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even small proteins is astronomically large. Never-
theless, the space of natively folded protein struc-
tures is rather limited in comparison, with highly
recurring secondary and tertiary motifs. Clearly,
simple physical principles, such as volume exclusion
or electrostatic repulsion, preclude many structures.
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However, beyond this simple filter, natively folded
structures are much more restricted due to other
requirements imposed by biology, including robust-
ness of the fold in sequence space.'” In the context of
folding and inverse folding problems, structure
robustness in sequence space has been referred to
as designability.””> Natural abundance of structures
and their designability are related. Structural motifs
that recur frequently in nature must be able to
accommodate a reasonably wide ensemble of
sequences and are thus designable. Koehl and Levitt
have shown that the designability of a protein
structure, measured as the number of sequences
compatible with its backbone in an atomistic-level in
silico protein design experiment, correlates well with
its evolutionary designability, as assessed with
sequence bioinformatic tools. Kuhlman and Baker
demonstrated that the evolutionary sequence profile
of the SH3 domain can be recapitulated from a small
collection of SH3-domain backbones via computa-
tional protein design.”

Finding the relationship between structure and
designability is a fundamental problem in protein
design, as one would like to a priori limit oneself to
engineering only reasonably designable structures.
However, such a relationship is difficult to synthe-
size because of the very large number of parameters
required to exactly define the geometry of a protein.
Thus, approaches for representing folded structures
via a reduced set of effective parameters can greatly
facilitate this process. One class of such methods,
which we will refer to as ideal backbone parame-
terization, are particularly well suited for this task.
These approaches model the overall shape into
which secondary-structure elements fold with a
few parameters, and can often capture the majority
of observed structural variability, producing devia-
tions between ideal and real structures within 1 A.
Examples of this include the Crick parameterization
of coiled coils,®’ mathematical description of {3-
barrel structures,'”!" statistical parameterization of
the structure of Collagen,12 and parameterization of
di-iron helical bundles'” and of transmembrane helix
interaction geometry.'*'> Such methods have been
quite useful in de novo protein design,'®' modeling
of thermodynamic consequence of mutations,?!
protein—protein interaction prediction,”*** structure
prediction and modeling,'*'*?**° and X-ray
crystallography.*

Recent studies of designability, using lattice
models and native protein structures, suggest that
more designable folds are those that have more
contacts per residue (contact density),"**** and
that more designable structures also tend to be more
thermodynamically stable."* These important find-
ings further our understanding of designability of
different folds and choice of fold by evolution. Such
studies can be thought of as an instance of structural
parameterization with the goal of relating it to

designability. Contact density and on-lattice models
provide a coarse view that is appropriate for
differentiating folds from one another in the global
structure space. Here, we are concerned with a more
fine-grained description of variability within a given
fold, and thus a higher-resolution, but nevertheless,
low-parameter description of designability is
sought. For de novo protein design, such a detailed
description of designability is often needed, as this
information is critical for the choice of target
template coordinates.

Here, we aim to quantify the constraint of
designability on the space of natural helical bundles,
starting with the coiled coil. Others have shown that
the Crick parameterization can closely fit natural
coiled-coil backbones.”'%?>2%%0 Iny fact, we demon-
strate that it can reproduce to within 1- A C, root
mean square deviation (RMSD) over 95% of all
available coiled;coil structures, with a median
RMSD of 0.44 A. Further, sharp distributions of
Crick parameters indicate significant biases in the
space of naturally designable structures. For exam-
ple, axial offsets between helices are restricted to a
small range relative to the space of geometrically
possible offsets, and these allowed regions differ
strongly between parallel and anti-parallel helix
pairs. Overall, we estimate that the space of
designable structures is at least 160-fold smaller in
relation to the space of geometrically reasonable
structures, illustrating the importance of consider-
ing designability a priori in protein engineering
applications.

The Crick parameterization has been difficult to
extend to helical bundles in general due to their less
regular structure, in which each chain is not
necessarily identical and the implied symmetry is
difficult to observe. While a trained eye may be able
to discover residual symmetry underlying consid-
erable complexity,'””" it has been difficult to do this
in an objective and automated manner. Moreover,
there is a continuum of helical bundles, ranging
from the very regular coiled coils to ones that defy
simple canonical categorization. On the other hand,
helical bundles do form with relatively well-defined
and recurring helix-crossing angles that reflect the
restraints associated with achieving good side-chain
packing at the local level®*>° (see Fig. 1). Early work
by Murzin and Finkelstein showed that helices in
globular helical proteins tend to lie approximately
along the ribs of certain close-to-spherical
polyhedra.>* Due to the nonintegral nature of the
a-helix, good packing generally does not occur
when helices are packed with their axes precisely
parallel or anti-parallel with one another. Instead,
side-chain packing tends to be optimized when the
helical axes are at an angle to one another, resulting
in the divergence of straight helices. Supercoiling, as
observed in coiled coils, reflects the resolution of the
frustration between optimizing interactions locally
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Fig. 1. Common types of helical
bundles. Generally, helical bundles
form via relatively well-defined
and recurring motifs. The classical
diverging straight-helix bundle
shown in (a) is from the structure
Escherichia coli PhoQ sensor domain
(PDB code 3BQ8). The bundle
shown in (b) (from bacteriophyto-
chrome chromophore binding do-
main, PDB code 209C) also
diverges, but the individual helices
are bent into circular arcs and do
not wrap around each other like in
coiled coils. This motif can be
thought of as a first-order general-
ization of the straight-helix diverg-
ing bundle. Shown in (c) is the left-
handed coiled-coil domain from the
yeast transcription factor GCN4
(PDB code 2ZTA). The helical
wheel diagram on the left illustrates
the seven-residue heptad repeat
commonly characteristic of left-
handed coiled coils. Positions a
and d are in the core and often
occupied with hydrophobic amino
acids; e and g are along the inter-
face, often forming salt bridges and
polar interactions; and b, ¢, and f
adjust to the environment. Al-
though significantly less common,
right-handed coiled coils also occur,
such as the example shown in (d)
from the human VASP tetrameriza-
tion domain (PDB code 1USE).
Boxed insets represent an alterna-
tive view of each bundle.
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versus globally over the entire structure. Shorter
helical bundles, however, do not necessarily form
coiled coils. Indeed, natural divergence of straight
helices can form important functional pockets, or
the helices can bend or kink in more complex
manners. These articulation points can serve as
hinges for functional mot1ons involved in signaling,
gating, and ion conduction.””

As a second goal of this work, we develop a
general ideal backbone parameterization approach
for arbitrary helical structures. This mathematical
framework describes a-helices forming any super-
structure defined via a three-dimensional parametric
curve, and reduces to the Crick parameterization in the
special case when the parametric curve is itself a helix.

The generalized framework provides significant
simplification of structural representation while still
capturing natural structural variability. We illustrate
this using a helical bundle motif common in
membrane channels and signaling proteins. This
motif consists of helices that curve into nearly perfect
circular arcs to form a bundle but do not wrap around
each other like coiled coils. Such structures appear as
inner and outer bundles lining channel pores (in fact,
they are present in virtually all channel families, as
defined by the OPM database™) and oligomerization
interfaces of bacterial signaling proteins. Our parame-
terization is able to fit such native bundles with C,
RMSD of better than 1.0 A in 52 of the 55
representative examples analyzed. These findings
are particularly significant in light of the functionally
important regions of structure these bundles are
found in, introducing the potential that functionally
relevant structural changes may be modeled and
understood in terms of simple geometric parameters.

Results

Coiled-coil structures from the CC+ database®
longer than 11 residues (see Materials and Methods
for details) were analyzed using our automated
program CCCP (coiled-coil Crick parameterization)
for fitting coiled-coil backbones. The modified Crick
equations used in CCCP allow for anti-parallel and
mixed orientations and for helical sliding with
respect to the interfacial axis (see Materials and
Methods for details and Fig. 2 for explanation of
Crick parameters). For 95.7% of the analyzed
structures, C, RMSD between ideal and native
structures was below 1.0 A, and the performance
did not significantly depend on the orientation or
oligomerization state (see Fig. 2 for error distribu-
tions). The error did, however, depend on structure
size, increasing roughly linearly with the total
number of residues fit up to ~0.9 A. This is not
surprising because small local deviations from
ideality can lead to large deviations over long
distances.

The set of coiled coils with known structure
contains a significant amount of redundancy,
whereby some sequence families (or, in some
cases, many mutants of the same sequence) are
significantly overrepresented. To ensure that our
analysis was devoid of such biases, we filtered the
data set down to less than 50% sequence redundan-
cy, resulting in 868 structures (see Materials and
Methods). All further analysis was performed on
this data set. The analysis of error distribution was
repeated for this subset and resulted in virtually
identical trends (see Supplementary Fig. S2).

Superhelical radius

The distribution of superhelical radii is shown
in Fig. 3. Several subpopulations are apparent and
these correspond to different oligomerization

Fig. 2. Visual representation of parameters used in
coiled-coil fitting. Geometrical meanings of the superhe-
lical radius (Ryp), the helical radius (R;), the superhelical
frequency (wg), the helical frequency (w;), chain axial
offset (AZ,), chain superhelical phase offset (Ady), and
starting helical phase (A¢;) are shown. The green tube
represents the interfacial axis. Orange curves depict local
helical axes, which in a coiled coil form a superhelix. The
gray tube represents the helical curve, which passes
through C, atoms. Orange balls show the inward-facing
points on the helical curves (not necessarily corresponding
to locations of atoms) defined as points with helical phase
of m. The distance along the interfacial axis between an
inward-facing point on one helix and its closest counter-
part on the opposite helix is defined as AZ ., with sign
indicating the order of the two points, relative to N—C of
the first helix. The depicted case is an anti-parallel coiled
coil with a positive AZg of 2.4 A.
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Fig. 3. Distribution of fitting error (C, RMSD between a natural structure and its Crick parameterized version). (a)
Error distribution for the entire dataset. Four structures were fit with RMSD above 2.0 A, but in 95.7% of cases RMSD was
below 1.0 A. (b) Error distribution for structures with helices of opposing orientation (i.e. anti-parallel dimer and mixed-
orientation higher-order oligomers). The performance on these structures is not significantly different from the overall
performance. (c) Distribution of fitting error for trimers, tetramers, and pentamers. (d) Fitting error as a function of the
total number of residues fit. The Y-axis shows the median C, RMSD over cases where the total number of residues fit was

above the corresponding value on the X-axis.

states (see Fig. 2b-d). The medians of the
subpopulations (4.85, 6.36, 7.30, and 859 A for
dimers, trimers, tetramers, and pentamers, respec-
tively) correlate nearly perfectly with oligomeri-
zation state with the best fit line Rp=1.24-n+2.4
(RMSD 0.1 A; see Supplementary Fig. S3), where
n is the oligomerization state. This indicates that
the interhelical distance, which can be expressed

s (1.24-n +24),/2-2cos(3) (limiting value of
1 24 2.m~7.8 A),decreases with increasing olig-
omerization state above the dimer.

One of the restrictions of the Crick parameteriza-
tion is that the superhelical radius (Ro) is assumed to
be constant throughout the structure. We wondered
to what degree R, actually changes in natural
structures. To that end, for dimers longer than
three heptads, we compared the value of Ry
obtained by fitting the entire structure to values
obtained by fitting individual two-heptad windows
scanned across the structure (see Supplementary
Fig. 54). In most cases, local and global Ry coincide
closely (median deviation is 0.1 A); however,
exceptions to this do exist, especially for long
structures (Supplementary Figs. S4 and S5). The
highest observed rates of superhelical radius change
are around 0.14 A per residue. The median
autocorrelation length of Ry is seven residues

(defined in Materials and Methods), indicating that
the structure has some memory of the superhelical
radius for about a heptad.

Even though variations of R, within an oligo-
merization state are small, we wondered whether
these correlate with amino acid composition of
core a and d positions. To test this, we considered
two simple models for the dependence of R, on
the core composition. In the first, superhelical
radius depends linearly on the composition of a
and d positions, and in the second, amino acids
with the largest radius preferences determine the
value of R; (see Materials and Methods for
details). Fitting local Ry values to either model
leads to a weak agreement such that roughly 20%
of the observed superhelical radius variability can
be attributed to either of these simple expressions
(see Supplementary Fig. S6). Sequence context
likely plays a significant role in determining
which aspects of the local coiled-coil geometry
are perturbed upon changes in the identity of core
amino acids (e.g., axial sliding of chains, changes
in side-chain rotameric states, or adjustments in
helical and superhelical phases).

On the other hand, amino acids at a and d may
still have pronounced radius preferences, even
though a/d composition alone may not amount to
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a quantitatively predictor of local R, variation. To
measure these preferences, we considered a subset
of the dimeric two-heptad segments described
above, in which either position a or position d
was in the center and which had parallel
orientation. The superhelical radii of these seg-
ments were then studied in relation to the amino
acids occupying the central a or d position. All
segments were binned by value of R,. Next, for
each amino acid occurring at either the central a
or d positions, the frequency of its occurrence in
each bin was calculated and normalized by the
overall frequency of the amino acid in the coiled-
coil database, to arrive at amino acid specific
propensities for different radii. To minimize noise
from statistics of small numbers, for a given
amino acid aa;, bins with very few occurrences of
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Fig. 4. Distribution of superhelical radius. Stacked bar
plots show the overall distribution of R, (total histogram)
as well as contributions to it from structures of parallel
orientation (dark gray bars) and anti-parallel or mixed
orientation (light gray bars). (a) The distribution of R, is
multi-modal with peaks corresponding to different oligo-
merization states. (b) and (c) show the distributions of R,
for dimers and trimers, respectively, and (d) combines
tetrameric and pentameric cases (of the four pentameric
structures, all are of parallel orientation). The median
values of the distributions are 4.85 A for dimers, 6.36 A for
trimers, 7.30 A for tetramers, and 8.59 A for pentamers.

aa; were grouped with neighboring bins and the
average number of counts was assigned to each
bin of the group when computing propensities for
aq;. Figure 4 shows the resulting propensities for
the top 10 most frequent amino acids at either the
a or d position. In these plots, amino acids are
ordered, left to right and top to bottom, in the order
of decreasing frequency of occurrence at the respec-
tive position (e.g., the first four most frequent at a are
Leu, Ile, Val, and Asn, in that order).

At the a position, Leu appears to be the most
malleable amino acid as it is widely accommo-
dating of a large range of radii. Leu is also the
most common amino acid at this position, which,
in part, helps explain why the precise local
deviation of the superhelical radius from its
characteristic value cannot be easily predicted
purely from the composition of core amino
acids. Val, Asn, and Ile, by contrast, appear
much more specialized for particular radius
ranges, especially pronounced in the case of Asn
and likely due to its strong preference to pair with
another Asn at a’. Ala, not surprisingly, shows an
extremely strong preference for small radii, and so
do Lys and Arg, though with a considerably
lower magnitude of the preference. As the
number of observations of a particular amino
acid decreases, statistical error grows, but the
preference of Tyr and Met for larger radii is
consistent with their sterics.

Like at the a position, at d Leu occurs in a wide
range of radii and Ala shows strong preference for
small radii (see Fig. 4b). The amino acid alphabet is
much more restricted at d, compared to a, with Leu
and Ala amounting to 60% of all cases (whereas it
takes the top four amino acids at a to get to 60%),
and thus statistics fall off rapidly after Ala, as
indicated by larger error bars in Fig. 4b.

Superhelical frequency and pitch angle

Superhelical frequency (w) determines the degree
of twist of the superhelix. That is, for every residue,
the angle by which the superhelix turns around the
coiled-coil axis is wy. Values around —3.6 °/res are
considered canonical (the negative sign indicates
a left-handed superhelix) such that the super-
helix completes a full turn in 100 residues. This
parameter is tied to the superhelical radius via the
relationship:

Ro - @y = dsin(a) (1)

where o is in radians, « is the pitch angle, and d is
the rise per residue. The latter is the arc length along
the superhelical curve from one residue to the next.
In a straight helix that is aligned along the Z-axis, d
is just the displacement in the Z direction from one
residue to the next. This is roughly 1.51 A for an
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N(aa;,b
Niot fo; fur,”
where N (aa;, bj) is the number of occurrences of aa; in bin b, Ny is the total number of data points, f, is the frequency of aa; in ' the
entire data set, and f;, is the fraction of structures with a superhehcal radius within bin b;. To correct for low counts, bins with the
number of counts of a particular amino acid below 3 were grouped with neighboring bins until the total number of counts
became above 3, and the average number of counts over the group was assigned to each bin within the group. Error bars
designate the error of determination of each propensity and were computed by considering all possible binomial distributions
that could have given rise to the observed number of successes k=N (aa;, b)) out of the number of trials N=Niq fb and by

were divided into 10 equally spaced bins. For every amino acid a;, values plotted as a function of superhelical bin b; are

calculating the error expectation as \/ fo p-p) Y Py(k,N ,p)dp, where p is the probability of success of the considered binomial
distribution, P, (k, N, p) is the binomial probability den51ty of k successes from N trials and a success probability of p, andp is the

expectation of p given k successes and N trials, or fo p-Py(k,N,p)dp =

ideal a-helix. Superhelical parameters that result in d
significantly different from its ideal value corre-
spond to cases where the a-helix is locally strained
(e.g., stretched or compressed). This places restraints
on the product Ry, such that for any given radius,
the absolute value of wy can vary between 0
(correspondmg to straight aligned helices) and
roughly 1.51 Ry (in radians per residue).

Figure 5a shows the distribution of w, observed in
the structural data set. The range of absolute values

k+l
+2°

is between 0 and 8.7 °/res and the median of the
distribution is —3.5 °/res, meaning that the most
tightly wound coiled coil has a perlod of about 41
residues (since the period is 27wg * residues) and the
average coiled coil completes its period in roughly
102 residues. As expected, the overwhelming
majority of annotated coiled coils are left-handed
(negative mp). In fact, only seven unique structures
in the CC+ database showed a significant overall
right-handed character, among which are RH4 and
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RH4B—coiled coils designed to be right-
handed.'®*° Tt was formally possible that the
number of right-handed structures in CC+ was
unfairly reduced due to a possible bias in the
program SOCKET*' for recognizing the type of
knobs-into-holes packing more characteristic of
canonical left-handed structures. We therefore per-
formed C,, distance matrix-based structural similar-
ity searches of the entire Protein Data Bank (PDB)
(see Materials and Methods for details) as well as
keyword-based searches of the PDB and the
literature to look for additional right-handed
coiled-coil structures. In so doing, we uncovered
five more clear examples of right-handed bundles
with supercoiling and included these in all of our
analyses. Although none of the above methods
likely recover all available examples of right-handed
coiled coils, the significantly lower rate of discover-
ing right-handed versus left-handed coiled coils in
the structural database argues that right-handed
coiled coils are significantly less common and likely
less designable. Within the structures annotated in
CC+, there are examples of local right-handed
character in coiled-coil packing (such as in a
fragment of the Staphylothermus marinus surface
layer protein tetrabrachion*?), whereas Fig. 5a
shows values of wy optimal for entire coiled-coil
regions. In a separate set of fits, performed to study
the local variation of parameters, we considered
two-heptad windows that were scanned along all
dimeric coiled coils. This resulted in over 3000
separate two-heptad fragments, out of which 4.8%
best fit with a positive value of .

Figure 5b shows the observed distribution of pitch
angle o, which is the angle between a tangent to the
superhelical curve and the coiled-coil axis. Once
again, this is not a completely free parameter and is
related to Ry and g via Eq. 1. The peak of the
distribution is at around 12 °. For both pitch angle
and superhelical frequency, the peak values are very
close to the values that best fit the coiled-coil region
of the yeast transcription factor GCN4*—the first
high-resolution structure of a parallel dimeric coiled
coil as well as one that has long served as the
prototypical coiled-coil example. It is interesting that
in Crick parametric terms, this structure is indeed
prototypical.

Helical axial shift

As outlined in Materials and Methods, we mod-
ified the classic Crick parameterization to allow for a
helical sliding along the interfacial axis. Thus, in a
given structure, each helix after the first one is
assigned a value of AZ relative to the first helix.
AZ ¢ between two helices is defined as the distance
along the interfacial axis between the most inward-
facing points on the helical curves of the two helices
(not necessarily representing C, atoms; see Fig. 6 and

Materials and Methods). This definition makes AZ ¢
independent of helical phase, rendering it a conve-
nient parameter for sampling and fitting. Interest-
ingly, the distribution of AZ strongly depends on
whether the helix pairing in question is parallel or
anti-parallel (see Supplementary Fig. S7). Whereas
for parallel alignments AZ tends to cluster tightly
around 0, corresponding to helices with turns Z-
aligned at the interface, for anti-parallel alignments,
the distribution is much more broad and has two
maxima at around +2.0 to 2.5 A, corresponding to
helices with interdigitated turns (the sign of AZ
indicates direction of the axial shift, with the positive
sign corresponding to the direction shown in Fig. 6).

To allow for an easier interpretation of axial offset
in terms of coiled-coil geometry, CCCP additionally
calculates the parameter AZ,, (not used in the
fitting), defined as the axial offset between an a
position on one helix and the closest a’ position on
the interacting helix. Sign of AZ,, indicates whether
the closest a’ is downstream (e.g., in the N—C
direction of the first chain, corresponding to a
positive sign) or upstream (e.g., opposite to N—C
direction of the first chain, corresponding to a
negative sign). Given its definition, AZ,, can vary

) 180
160+
140+
120+

(a

« (degrees)

Fig. 6. (a and b) Distributions of superhelical frequency
(wp) and pitch angle (), respectively. The median and
mean values for o, are —3.5°/res and —3.6°/res, respec-
tively, corresponding to a superhelical repeat of about 100
residues or pitch of approximately 150 A. The median and
mean values for a are —11.9° and —12.0°, respectively.
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between plus and minus half a helical pitch, roughly
—2x zf)—l’f} (where o; and d are the helical frequency
and rise pér residue, respectively) or [- 5.3,5.3]A fora
typical coiled coil. Figure 7 shows that the distribu-
tion of AZ, strongly depends on the mutual
orientation of the pair of helices. Parallel coiled-coil
helix pairs prefer to line up opposing a positions with
a roughly zero axial offset, whereas anti-parallel
pairs prefer to interdigitate. Parameter AZ,, further
tells us that anti-parallel coiled coils interdigitate in
an asymmetric manner with respect to the heptad,
such that a given a position is usually closer to the a’
residue downstream of it rather than the upstream a’
residue. In fact, a very large range of AZ,, values,
roughly from -5 to 1 A is unpopulated, narrowing
the designable space of anti-parallel coiled-coil
backbones. It is common to think of anti-parallel
coiled coils as roughly aligning a positions of one
chain with d’ positions of the opposing chain. The
distribution of the axial offset between a and the
closest d’ is shown in Supplementary Fig. S8. It is
clear that in anti-parallel pairs, a and the opposing d’
positions are rarely exactly aligned, and the closest d’
tends to be upstream of a, with only a minority of
structures displaying the opposite alignment.

Minor helical phase ¢, and frequency w-

Helical frequency ®; characterizes the angular
rotation of the a-helix around its local axis with each
residue. For an ideal straight helix, this value is
100 °/res, such that a full turn of the «-helix is
completed in 3.6 residues. In a canonical coiled coil,
o, is around 102.8°/res ; thus, a complete turn is
made in 3.5 residues and two turns in 7 residues. This
gives rise to the well-known heptad repeat, com-
monly denoted with positions a through d (see Fig.
1c). In agreement with this, the distribution of o,
within the coiled-coil structures analyzed amounts
to a normal distribution with a mean of 102.8 °/res
and an SD of only 1.1 ° (data not shown). Variations
in parameter © to a significant extent reflect changes
in oy (i.e., changes in the reference frame defining a
complete helical turn), as opposed to reflecting
changes in a-helical geometry (w; and ®y anti-
correlate with a correlation coefficient of R=-0.7).

Parameter ¢, in Crick equations (see Materials and
Methods) measures the starting angular register, or
helical phase, of the a-helix, and the helical phase of
the i-th residue is given by ¢ +(i—1) ©;. Phase values
of 0 and m mean that the C, atom of the residue points
directed away from or towards the interfacial axis,
respectively. Phase can be used to determine the
heptad position assignment of each residue and
CCCP does so automatically. Figure 8 shows the
distribution of helical phases for residues in all
dimeric coiled coils considered in this study. Empty
and filled circles show residue phases as the angular
coordinate in the polar-coordinate plot, with each

Anti-parallel orientation

= e
AZ between a and closest a’ (A

Parallel orientation

(b) 100~

80

60

Counts
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%S4 3210123 435

AZ between a and closest a’ (A)

Fig. 7. Distribution of AZ,,. Helix pairs from com-
plexes of all oligomerization states and orientations were
considered. The distribution of AZ,, is shown for (a) anti-
parallel pairs and (b) parallel pairs.

point corresponding to a single residue within a single
structure. Empty circles represent anti-parallel struc-
tures, while filled circles represent parallel structures.

The continuous line in Fig. 8 shows the histogram
of helical phase distribution. The seven clearly
visible peaks are centered around 41°, 95°, 146°,
197°, 249°, 300°, and 351°, corresponding to heptad
positions ¢, g, d, a, e, b, and f, respectively (the helix
in the figure is shown in the C—N projection).
Although actual phase values can vary around these
numbers, the peaks of the distribution are fairly
narrow with SDs around 8 °, indicating that heptad
positions correspond to well-pronounced minima in
the coiled-coil energy landscape.

Overall restriction of designability

The requirements for achieving physically
allowed coiled-coil backbone geometries are a
reasonable superhelical radius and superhelical
phase offsets, such that main-chain clashes do not
occur, and the validity of Eq. (1) with a near-native
rise per residue. The distributions of native Crick
parameters are clearly significantly restricted
beyond this filter, and we argue that this remaining
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restriction reflects varying designabilities of different
structures. To capture this restriction quantitatively,
we compared the observed distributions of Crick
parameters with uniform random distributions over
the same ranges and derived the effective reduction
in the number of states in these distributions (see
Materials and Methods for the procedure). Consi-
dering parameters R, o, ¢q, and AZ¢ in dimers, we
found that the number of states in the corresponding
distributions was restricted by factors of 3.8, 4.7, 2.3,
and 4.4, respectively. Differences in state-space
reduction between parallel and anti-parallel dimers
were small, except for AZ.g, where the reduction
factor was 4.7 for parallel dimers and 4.1 for anti-
parallel dimers. Therefore, we estimate that the
overall reduction of naturally designable space of
dimeric coiled coils, relative to physically reasonable
geometry space, is at least 160- to 200-fold. This is
likely an underestimation of the true restriction
because (1) we are ignoring the existing correlations
between the analyzed parameters in the space of
designable structures; (2) the true range of physically

o Parallel
Anti-parallel

60

270

Fig. 8. Distribution of minor-helical phase ¢; in polar
coordinates for dimers. Open and filled circles represent
parallel and anti-parallel structures, respectively, with
each point corresponding to a single residue within a
single structure (to avoid redundancy, only the first seven
residues in each chain of each structure were considered).
The helical phase is denoted by the angular coordinate
and the radial coordinate is proportional to the superhe-
lical radius Ry (normalized for ease of viewing). No
detectable correlation between R, and phase exists. The
continuous line is a histogram of ¢, distribution (for
parallel and anti-parallel orientations combined) con-
structed with bins of width 3.6° . In this case, the radial
coordinate represents frequency of each bin. Filled squares
denote the means of the seven peaks of the distribution,
and the corresponding heptad positions are indicated in
bold letters.

feasible structures extends beyond the limits of
naturally observed spread of parameter values; and
(3) we disregarded the superhelical phase offset
parameter, while it is nearly constant for dimers and
extremely restricted for higher-order oligomers.

Other parametric structures

The Crick parameterization describes an ideal
helical backbone wrapping into a superhelix. How-
ever, mathematically, any superstructure is possible.
In Materials and Methods, we detail a mathematical
framework that describes a helix wrapping around an
arbitrary parametric curve. This framework can be
thought of as a generalization of the Crick parame-
terization and it reduces to the latter in the case when
the parametric curve is itself a helix. The Crick
parameterization is useful because many helices in
natural structures do curve into superhelices. How-
ever, there are other ways in which helices bend in
structures, and whenever one observes a common
mode, either within a family of structures or more
generally, a parameterization can be quite helpful in
modeling of natural proteins, design of novel
structures, and understanding structural aspects of
function.

There are many helical bundles in transmembrane
(TM) and near-TM regions of membrane proteins,
yet not many of them form coiled coils. We found
another common mode of helical bundle formation
here, wherein helices that are bent into essentially
perfect circular arcs form bundles but do not wrap
around each other (see Fig. 1b). We used our
generalized parameterization approach to derive
a mathematical formulation for such bundles (see
Materials and Methods). The parameters of the
formulation and their geometric meaning are
shown in Fig. 9.

This motif is particularly common in TM and near-
TM regions of channel proteins and bacterial
signaling proteins. We manually inspected all
representative structures of channel proteins in the
OPM database™ and found one or several such
arched bundles in all channel superfamilies and in
virtually all families (see Table 1 for a list of
representative structures). As with the Crick param-
eterization, arched bundles can be fit with their ideal
counterparts rather well, in most instances produc-
ing C, RMSD of less than 1 A (see Table 1).

Some general trends are already apparent from
the limited data on arched-bundle preferred para-
meters. The degree of helix bending in these bundles
can bq rather severe, with radii of curvature as low
as 23 A and an average helix diverging by ~23° from
its initial direction over 20 residues, the length of a
typical TM segment. Such range of bending is
similar to what has been observed in water-soluble
proteins.***> At the same time, it has been argued
from physical considerations that, in general,
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membrane-inserted helices should be more regular
than their soluble counterparts, and NMR-based
mapping of torsion angles of the influenza A M2
proton channel has been used to provide experi-
mental evidence for this.*® The instances of signif-
icant bending we observe in arched bundles may
thus be unusual, and this may be of significance in
light of the functionally important regions these
bundles are found in.

Although we observe a large range of bundle radii in
arched bundles, even within a single oligomerization
state (average SD within an oligomerization state
~5.3 A), mean radius, like with coiled coils, follows a
roughly linear relationship with the number of chains
(see Supplementary Fig. S9). Arc turn angle, which
characterizes the rotation of the plane of the arcrelative
to the bundle axis, is distributed around 90° (see
Supplementary Fig. S10), indicating that, most often,
the helices bend in a direction roughly tangential to the
channel pore. The sign of the pitch angle parameter
(see Fig. 9) indicates whether the helix crossing is left-
handed or right-handed, corresponding to negative
and positive pitch angles, respectively. Based on this,
18 of the analyzed bundles are left-handed and 37
right-handed (see Table 1), an interesting contrast with
the coiled coil.

(a)

Discussion

Effective low-dimensionality descriptions of pro-
tein structure are very desirable as they simplify
the task of establishing relationships between
structure and function or other properties. For
example, understanding biological signaling as it
relates to changes in structural states of proteins
has been effective in terms of gross structural
rearrangements.”’ *° In structure prediction and
design, low-complexity representations of structure
limit the space of potential templates and can help
elucidate sequence-based preferences for various
structural environments.”””" Simple classification
schemes such as hydrophobicity scales or a-helix/
B-sheet propensities represent examples of this,
and so do more complex approaches such as
identification of sequence motifs encoding specific
geometries of secondary-structure packing.3251

Another task simplified by the use of reduced
structural representations is that of relating struc-
ture to designability—the size of sequence space
compatible with a given structure. This is a task of
great significance in protein design and particularly
de novo design, where backbone templates cannot be
borrowed from existing structures and one must

Fig. 9. Parameterization of arched bundles. The geometric meaning of the parameters involved in the arched bundle
parameterization can be best understood by considering the transformations necessary to build such a bundle. (a) The
tube shown in gray is the initial bent helical curve with a radius of curvature of R, around which an a-helix is to wind. The
Z-axis is the principal bundle axis, and the first chain is taken to lie in the XZ plane. a,, the arc turn angle, is the angle by
which the helix arc planes of individual monomers are turned with respect to the primary axis in the eventual bundle.
Thus, to dial in this parameter, the initial curve is rotated around the Z-axis by a,, resulting in the orange curve. Bundle
pitch is established by rotating the new helical curve around the Y-axis by the pitch angle o, resulting in the curve shown
as a green tube. (b) Bundle tilt is created by rotating the helical curve around the X-axis by the tilt angle a, resulting in the
helical curve show as a blue tube. The helical curve is translated along the X-axis by an amount equal to the bundle radius
Ry, and a helix is wound around the resulting curve given a particular helix starting phase ¢, (orange tube and gray helix).

n

Other members of the bundle are either generated using ideal phase offsets of

, where 1 is the number of chains or,

alternatively, phase offsets are assigned individually for each chain after the first one.
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Table 1. List of representative structure with arched bundles

PDB ID and Region® NP Ra, A (8°) Ry, Ad a,°° ap,"f a8 Dot Err, Al Annotation

1NKZ, outer bundle 9 93.9 (14.7) 30.6 -8 13 -115 84 0.34 light-harvesting complex LH2

INKZ, inner bundle 9 93.8 (11.1) 16.9 -1 4 -150 -106 0.29 light-harvesting complex LH2

1JD, outer bundle 9 83.4 (15.5) 30.7 -8 13 -116 -176 0.36 light-harvesting complex LH3

1IJD, inner bundle 9 94.5 (10.1) 17.4 -1 5 -136 -13 0.28 light-harvesting complex LH3

3BEH, inner bundle 4 87.5 (11.9) 11.3 29 22 53 60 0.37 bacterial cyclic nucleotide-regulated channel MlotiK1
1R3], inner bundle 4 2349 (4.9) 10.2 27 23 -85 74 0.36 potassium channel KesA

1R3J, outer bundle 4 51.3 (20.1) 17.0 -14 15 118 -24 0.24 potassium channel KcsA

1S5H, outer bundle 4 50.4 (20.3) 16.9 -14 16 118 -26 0.23 potassium channel KesA

1S5H, inner bundle 4 240.7 (4.8) 10.1 27 23 —-88 74 0.36 potassium channel KcsA

1S5H, selectivity filter bundle 4 53.5 (10.4) 13.4 47 -8 -95 145 0.18 potassium channel KcsA

3EFF, outer bundle 4 96.6 (10.5) 19.1 -5 19 88 -83 1.26 potassium channel KesA, full-length, closed state
3EFF, inner bundle 4 374.1 (2.7) 12.0 27 22 -13 74 0.56 potassium channel KcsA, full-length, closed state
2A79, inner bundle 4 42.5 (18.2) 13.2 26 26 70 -179 0.38 potassium channel Kv1.2

2A79, outer bundle 4 64.2 (10.6) 18.4 -11 38 -164 73 0.29 potassium channel Kv1.2

2A79, selectivity filter bundle 4 41.7 (13.7) 13.8 49 -8 -57 150 0.32 potassium channel Kv1.2

2R9R, outer bundle 4 66.1 (13.6) 17.9 -9 34 -150 -25 0.23 K+ channel Kv1.2, membrane-like environment
2R9R, inner bundle 4 53.6 (15.3) 13.4 25 25 64 73 0.31 K+ channel Kv1.2, membrane-like environment
2RIR, selectivity filter bundle 4 23.9 (24.8) 14.1 51 -9 -38 136 0.52 K+ channel Kv1.2, membrane-like environment
10RQ, inner bundle 4 41.7 (35.0) 8.0 -5 52 99 20 0.81 K+ channel KvAP

2A0L, outer bundle 4 70.2 (14.8) 19.5 -2 35 -78 -89 0.43 K+ channel KvAP

2A0L, inner bundle 4 36.4 (34.0) 9.1 9 47 105 36 0.65 K+ channel KvAP

3E86, outer bundle 4 138.7 (5.9) 19.5 -1 21 -118 133 0.21 K+ channel, open state

3E86, inner bundle 4 23.3 (40.1) 12.2 17 36 96 164 0.54 K+ channel, open state

3E86, selectivity filter bundle 4 189.1 (2.9) 12.9 45 -1 -118 161 0.17 K+ channel, open state

2AHY, outer bundle 4 149.6 (5.3) 19.0 -5 13 107 123 0.24 K+ channel, closed state

2AHY, inner bundle 4 99.6 (9.1) 12.7 21 16 94 173 0.28 K+ channel, closed state

2AHY, selectivity filter bundle 4 104.0 (5.3) 12.9 44 -17 -84 166 0.19 K+ channel, closed state

2QKS, outer bundle 4 169.7 (6.1) 17.7 -6 40 -131 86 0.24 Kir3.1-prokaryotic Kir channel chimera
2QKS, inner bundle 4 95.4 (13.4) 10.0 17 28 77 61 0.26 Kir3.1-prokaryotic Kir channel chimer
1P7B, outer bundle 4 396.8 (2.4) 17.9 -4 41 -177 -10 0.33 K+ channel Kirbacl.1

1P7B, inner bundle 4 1154 (9.2) 114 25 22 68 71 0.45 K+ channel Kirbacl.1

1XL6, outer bundle 4 237.2 (4.2) 18.4 -5 40 —48 91 0.28 potassium channel Kirbac3.1

1XL6, inner bundle 4 96.0 (13.2) 10.5 18 28 40 59 0.38 potassium channel Kirbac3.1

0601
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20AU, TM3 bundle 7 73.7 (15.5) 25.8 -26 25 136 -108 1.92 mechanosensitive channel MscS, expanded state
20AU, TM2 bundle 7 131.3 (7.7) 24.5 32 19 64 158 2.01 mechanosensitive channel MscS, expanded state
20AU, TM1 bundle 7 116.7 (5.9) 10.6 1 26 76 72 0.82 mechanosensitive channel MscS, expanded state
2VV5, TM3 bundle 7 91.0 (12.8) 27.7 -11 49 149 -125 0.34 mechanosensitive channel MscS, open state
2VV5, TM2 bundle 7 122.8 (8.4) 23.3 18 32 61 175 0.37 mechanosensitive channel MscS, open state
2VV5, TM1 bundle 7 58.3 (11.6) 13.4 -8 6 109 87 0.24 mechanosensitive channel MscS, open state
3EAM, inner bundle 5 194.2 (5.1) 9.6 -6 -1 43 -139 0.39 ligand-gated ion channel, open conformation
2RLF, TM bundle 4 109.6 (7.9) 7.6 -4 -16 32 -162 0.35 M2 channel TM domain, closed state
3C9J, TM bundle 4 662.0 (1.3) 8.5 -20 -31 91 179 0.47 M2 channel TM domain, open state, complex with amantadine
3H9V, inner bundle 3 42.8 (27.0) 9.7 -33 -42 -20 -107 0.61 ATP-gated P2X4 ion channel, the closed
209B, GAF domain helices a8 2 121.7 (8.3) 6.3 7 -1 -61 -170 0.90 bacteriophytochrome chromophore binding domain
209C, GAF domain helices a8 2 113.4 (8.9) 6.3 7 -10 -65 -170 0.90 bacteriophytochrome chromophore binding domain
209C, GAF domain helices a4 2 38.9 (16.8) 8.0 -23 3 158 26 0.51 bacteriophytochrome chromophore binding domain
3E98, dimer interface helices 2 37.1(22.1) 10.0 6 -6 —-40 -155 0.66 GAF domain of unknown function
3E98, dimer interface helices 2 121.2 (6.0) 6.6 -3 -3 78 -34 0.30 GAF domain of unknown function
2HGYV, dimer interface helices 2 131.6 (5.8) 7.0 3 4 -3 =77 0.24 GAF domain of transcriptional repressor CodY
2HGV, dimer interface helices 2 58.9 (11.7) 8.6 -9 -2 -112 -30 0.30 GAF domain of transcriptional repressor CodY
1IXM, dimer interface helices 2 77.2 (13.5) 59 -3 7 -88 -8 0.36 B. subtilis Spo0B phosphotransferase
1LIH, dimer interface helices 2 63.3 (17.8) 3.9 -1 -9 154 155 0.28 Bacterial aspartate receptor ligand-binding domain
2LIG, dimer interface helices, Asp- 2 64.4 (17.6) 4.0 -1 -8 157 150 0.29 Bacterial aspartate receptor ligand-binding domain
bound form
1LIH, dimer interface outer helices 2 170.0 (5.8) 10.9 4 -11 -172 49 0.19 Bacterial aspartate receptor ligand-binding domain
2LIG, dimer interface outer 2 171.9 (5.7) 11.1 4 -9 180 49 0.32 Bacterial aspartate receptor ligand-binding domain

helices, Asp-bound form

* Supplementary Table S3 lists the regions fit within each OPM entry.
Number of chains.

¢ Arc radius with arc incident angle given in parentheses.

4 Bundle radius.

¢ Tilt angle.

f Pitch angle.

& Arc turn angle.

f‘ Effective helix phase (¢; + o).

! Fitting C, RMSD (A).

uonezusjeweied [Binjonis eia Aljqeubiseg buiqoid

160}



1092

Probing Designability via Structural Parameterization

limit oneself to targeting only templates of reason-
able designability. Here, we demonstrate the use of
structural parameterization for describing designa-
bility, starting with the Crick parameterization of
the a-helical coiled coil. We show that for over 95%
of annotated coiled-coil structures, an ideal param-
eterized backbone can be found within 1. 0-A C,
RMSD of the native structure. In fact, we find that
instead of the very large space of possible parameter
value combinations, natural structures populate
only very restricted areas in parameter space. For
example, characteristic values of the superhelical
radius grow linearly with the number of chains, and
the amount of variation within each oligomerization
state is around +1 A (an SD of ~0.5 A; see
Supplementary Fig. S3). This means that given the
desired oligomerization state to be targeted in
design, reasonably designable templates have su-
perhelical radii in a narrow range. Further, within
this range, certain amino acids, when occurring at
core a and d positions, have well-defined prefer-
ences for certain radius values, whereas others are
fairly forgiving (see Fig. 4). In the latter category is
Leu at the a position, the most common residue in
this position of coiled coils. This makes Leu a very
important amino acid for the designability of coiled
coils, without which the space of designable
structures would be much more restricted. Super-
helical radius can also change significantly within a
single coiled coil (see Supplementary Figs. S5 and
54). In fact, the radius can vary by as much as 0.14 A
per residue, amounting to a contraction or expan-
sion of 0.7 A over a single heptad. The ability of
coiled coils to adopt different local parameters can
be a useful feature in design.

It is well known that amino acid preferences at a
and d are different,”* and we have now also shown
that the ability of amino acids to accommodate
different-sized supercoils also differs at these two
positions (compare Fig. 4a and b). Indeed, a and d
are also nonsymmetric in the sense of helical phase,
which is apparent from Fig. 8. On average, the C,
atom of an a position is closer to the interhelical axis
than that of a d position, with the vectors connecting
these atoms to the helical center offset by 17° relative
to the interhelical vector (see Fig. 8). The distribution
of helical phases shows seven clear peaks,
corresponding to the heptad repeat. Notably, these
peaks are rather narrow with SDs ~8°. Interestingly,
we found no correlation between the locations of
these peaks and orientation, oligomerization state,
or axial offset. Alber and co-workers have studied
the packing differences of a and d residues in
different oligomerization states by comparing core
structures of dimeric, trimeric, and tetrameric
variants of the GCN4 coiled coil.”® The authors
point out that the angle between the C,—C, vector of
the a/d residue, defining the “knob,” and the
opposing C,—C, vector, defining the “hole” into

which the knob packs, change in going from dimer
to trimer to tetramer. These findings are entirely
consistent with our observation of helical phase
invariance with respect to oligomerization state. As
helices move around the superhelical circle to make
room for more monomers, the o-helical phase of
each monomer (defined with respect to the interfa-
cial axis) stays roughly unchanged, whereas the
orientation of the C,-C, vector defining the “hole”
changes with respect to partnering helices, giving
precisely the trend observed by Alber and co-
workers (see Supplementary Fig. S11).

We found that the axial alignment at the helix-helix
interface is very restricted in natural backbones, but
in different ways for parallel and anti-parallel helix
pairs. As can be seen from the distribution of
parameter AZ,, in Fig. 7, parallel coiled-coil pairings
tend to align helical turns of adjacent helices at the
same level along the interface axis, corresponding to
AZ,, of zero, whereas in anti-parallel orientations,
helical turns tend to interdigitate at the interface.
Further, anti-parallel coiled coils interdigitate with
considerable asymmetry, with a positions preferring
to pack between the upstream d’ (e.g., in the C—N
direction of the first helix) and the downstream a’
(N—C direction of the first helix; see Figs. 7 and 10
and Supplementary Fig. S8).

The origin of this difference can be rationalized
by considering the chirality of the C, atom and the
fact that in an a-helix, the C,—Cg vector has a
positive component in the C—N direction. Adja-
cent a and d positions of a coiled coil are on
opposite sides of the interface, separated along the
interfacial axis by ~4.5 A from a to the next d and
by ~6.0 A from d to the next a. In a parallel
alignment, where the C,—C,, vectors of both chains
point in the same direction along the helix, this
makes it possible for the a and d positions of
opposite chains to situate across from one another,
forming a-a’ and d-d’ interactions (see Fig. 10a).
In an anti-parallel alignment, however, because
C,—C,, vectors of opposite chains point in opposite
directions, potential steric interactions arise be-
tween core residues of opposite chains located on
the same side of the interface (i.e., a—a’ and d-d’),
as shown Fig. 10b. Indeed, it is easy to see that
unless core residues are small, an on-level align-
ment (e.g., AZyx=0) will not be preferred, but
rather, an a residue of one chain will pack between
adjacent d’ and a’ residues of the other chain and
vice versa. The detailed alignment, of course,
depends on the exact sequence, but the overall
trends of AZ.y are consistent with these simple
geometric considerations. These findings are also
consistent with the description of the anti-parallel
Alacoil by Richardsons and co-workers.”* By
analyzing seven unrelated proteins, the authors
identified an anti-parallel dimeric coiled-coil motif,
the Alacoil, in which small residues at a and d
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Fig. 10. Structural reasoning be-
hind different AZ.; preferences
between parallel and anti-parallel
alignments. (a) and (b) illustrate
parallel and anti-parallel dimeric
coiled coils, respectively (images
generated with coiled coils taken

| from PDB entries 2ZTA and 2NOV,
respectively). Cylinders represent
local orientation of helices, black
spheres show C, atoms, and gray

spheres depict C;, atoms. Only a and d positions are shown. Given the direction of C,—C vectors on opposite chains, in
anti-parallel alignments, a potential steric repulsion between a and a’ residues in adjacent layers (depicted with a dotted

line) pushes the preference of AZ ¢ away from zero.

positions allow for a very close approach of
helices. In addition to the on-level helical align-
ment akin to the one seen in parallel coiled coils,
the authors observed another type of axial offset,
corresponding precisely to the interdigitated align-
ment described above. In the case of Alacoil,
geometric preferences can be understood in terms
of the close helical packing and small residues at a
and d.”* However, we observed the median
superhelical radius for anti-parallel dimers to be
only marginally smaller than that for parallel
dimers (4.82 "and 4.92 A, respectively), with
corresponding distributions overlapping very sig-
nificantly (see Fig. 3b). On the other hand, the
difference between distributions of helical offsets
for parallel and anti-parallel alignments is striking,
indicating that closer helical approach alone
cannot account for this effect. The difference
between axial alignment of parallel and anti-
parallel coiled coils is also in agreement with the
recent results reported by Gellman and co-workers,
which demonstrate significant thermodynamic
coupling between residues at the a position of
one chain and the a’ position of the opp051te chain
in anti-parallel dimeric coiled coils.”

All of the analyzed coiled-coil parameters are
strongly restricted, reflecting a well-defined and
narrow space of designable structures. In fact, based
on analyzing the degree of restriction in parameters
Ro, o, AZ,,, and ¢y, we estimate that the space of
designable structures is at least 160- to 200-fold
reduced relative to the space of physically reason-
able backbones. In the context of de novo design, this
means that a template selected purely on the basis of
geometric feasibility is very unlikely to have
significant designability. This is likely to be the
case for protein structures in general, illustrating the
need for effective low-dimensionality parameteriza-
tion schemes in other systems.

To begin addressing this need, we developed a
general method for parameterizing arbitrary heli-
cal structures. Further, we used it to characterize
an a-helical motif we found to be common in inner
linings of channel and transporter proteins, the

surrounding secondary bundles, as well as in
dimerization interfaces of bacterial signaling pro-
teins. These bundles consist of helices that are bent
into nearly perfectly circular arcs. Using our
generalized method, we describe these structures
parametrically with a handful of simple geometric
variables (see Fig. 9 and Table 1). We find that the
degree of helix curvature in these bundles can be
rather significant, with radii of curvature as low as
23 A (for comparison, a typical coiled coil has a
radius of curvature of ~100 A). In their classical
work on the geometry of helices in proteins,
Barlow and Thornton found 31m11ar1y curved
helices in water-soluble proteins.** In fact, among
all helices characterized as curved in their work,
the lowest and the median radii of curvature were
29 and 62 A, respectively, whereas for our set of
bundles these are 23 and 64 A, respectively (for the
latter, we defined as curved helices with a radius
of curvature below 100 A). Barlow and Thornton
showed that the center of helix curvature of
regularly curved (amphipathic) o-helices tended
to lie on the hydrophobic side of the helix due to
backbone hydrogen bonds being on average
shorter in hydrophobic environments and longer
in a solvent-exposed environments. Is this also the
reason for the curvature we observe in arched
bundles? In some instances, this is clearly the case,
as there are crystallographically resolved water
molecules that form hydrogen bonds with the
backbone amide hydrogen and carbonyl oxygen
atoms, allowing one side of the helix to stretch out
and create a bend. For example, this can be seen in
the 1.5-A resolutlon structure of an NaK channel
from Bacillus cereus™® (PDB code 3E86; see Supple-
mentary Fig. S12A). However, in other cases, such
water molecules are not explicitly seen, and a
single structural reason for the presence of the
bend is difficult to identify (e.g., in the structure of
the voltage-dependent potassium channel KvAP,”
PDB code 10RQ; see Supplementary Fig. S12B).
One might expect that helices in channel-forming
bundles may curve radially from the channel
central axis, as the extent of solvent exposure
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may be quite different for the pore-facing side of
the helix and the membrane/protein-facing side.
However, the distribution of arc turn angles from
our parameterization (see Fig. 9) demonstrates
that, most often, bending occurs in the plane
approximately tangential to the channel pore (see
Supplementary Fig. S510). Likely, membrane helical
curvature arises as a consequence of a combination
of effects, reconciling different extents of solvent
exposure (with potentially specific water molecules
present in the membrane), amino acid bilayer
solvation preferences, and the energetic preference
for a particular crossing angle imposed by the full
protein structure.

Conclusions

Backbone-parameterized models of protein struc-
ture provide a powerful means of describing the
diversity within a structural family and relating it to
designability. We have used this principle to
demonstrate that the space of naturally designable
coiled coils is restricted at least 160- to 200-fold
relative to the space of geometrically reasonable
structures. We have also provided a general
framework for parameterization of arbitrary helical
structures and have used it to parametrically
describe pore-forming bundles of TM channel
proteins and subunit interfacial bundles of bacterial
signaling proteins.

Rearrangements along coordinates of a well-
chosen parameterization may also be functionally
relevant. Structurally well-populated modes of
helix-helix interaction occur in specific discrete
crossing geometries,” such that tilting and pitching
of helices with respect to each other in a complex
bundle would appear to be a convenient way of
establishing a discrete set of local minima. Arching
of helices also appears to be well suited for
establishing alternate states and transferring infor-
mation. Because arching corresponds to low-fre-
quency bending modes of the a-helix, differently
bent conformations would be expected to intercon-
vert at a low frequency in the background, while the
presence of various conditions, such as signaling
ligands, could stabilize some conformations relative
to others.

Materials and Methods

Database

Coiled-coil structures were obtained from the CC+
database® as of August 20, 2009. This database was
generated by Woolfson and colleagues using the struc-
ture-based coiled-coil recognition program SOCKET*'

applied exhaustively to the entire PDB. Our initial set of
3902 structures was obtained by searching CC+ for all
entries longer than 11 amino acids using the web-based
dynamic search interface. For later analysis, a sequence
redundancy filter of 50% was added in the CC+ search
interface, which resulted in 868 structures returned by CC+.
Sequence redundancy between two coiled coils in CC+ is
considered only for structures of identical topology (e.g., the
same orientation and oligomerization state). It is calculated
as the average percent identity between matching chains of
the two complexes, where each chain in one complex is
matched up against its closest sequence counterpart in the
other complex (see Ref. 39 for details). Additionally, five
structures of right-handed coiled coils were manually
added to the database as a result of distance map-based
searches of the PDB for such topologies (see next section for
a description of the search method). The resulting database
contained structures ranging from 12 to 148 residues per
chain (or 24 to 393 residues per structure), although shorter
structures were more common (see Supplementary Fig. S1).
Supplementary Table S2 summarizes the distribution of
structures among different topologies within the final data
set.

Crick parameterization equations

The basic Crick equations describing Cartesian coordi-
nates of a backbone atom type in the a-helix of a coiled coil
are as follows (assuming the interfacial axis is aligned with
the Z-axis)®:

X = Rocos(wot + ¢p) + Ry cos(wot + dy) cos(mit + &y)
— Ry cos(a) sin(wof + ¢y) sin(wit + ;)

y = Rosin(wot + ¢g) + Ry sin(wof + dy) cos(ot + ¢y)
+ Ry cos(a) cos(wpt + ¢yg) sin(oit + ;)

_ @R . .
= tan(a)t Ry sin(a) sin(t + &)

where Ry, ®o, and ¢y are the superhelical radius,
frequency, and phase, respectively; Ri, w1, and ¢; are
the helical radius, frequency, and phase, respectively; « is
the pitch angle; and f is residue index. In order to
accommodate the ability of helices to shift with respect to
one another along the Z-axis, these equations were
modified to include an additional degree of freedom Az.
Thus, the equations used in this study were:

x = Rg cos(wot + ¢(3) + Ry cos (oot + cb(')) cos(mit + dy)
— Ry cos(a) sin(mot + dy) sin(wnf + ;) (2)

y = Rosin(wot + dy) + Ry sin(wof + dg) cos(ent + b;)

+ Ry cos() cos (ot + dy) sin(wit + dy) (3)
z= @oRo t — Rysin(a)sin(oit + &;) + Az (4)
" tan(a) 1S ! !
Az tan(o

where ¢ is ¢+~ ). This last adjustment was made to
decouple axial shift from superhelical phase. Thus, Az is the
helical Z-shift produced by sliding a chain along the
superhelical curve. During the fitting procedure, each chain,
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except the first one, was assigned its own values of djand Az,
relative to the first chain, and each chain had its own .

An issue with Az is that it describes the axial offset
between chain ends rather than the axial alignment of the
interface. To address this, we created two additional
derived parameter, AZ.¢ and AZ,,. To define AZ.,
inward-facing points on each helix are identified (see Fig.
6), which are the points along the parametric helical curve
that have a phase of 7 (i.e., they point directly into the
interface). The smallest Z-offset between these points on
the two chains considered is defined as AZ ¢ between the
two chains, with sign being positive if the second chain is
shifted in the N—C direction of the first one, and negative
for the opposite shift direction. The sign is meaningful for
anti-parallel helix pairings or for parallel, heterodimeric
pairings. Given this definition, the value of AZ.,s can
range between plus and minus a quarter of a helical pitch,

ori ‘[’U’f ,i’uﬂs where ®; and 4 are the helical frequency and
rise per residue, respectively. For a typical helix, this
corresponds to the range of [-2.6,2.6 Al

AZ,, is defined in a similar manner, except instead of
points with a helical phase of 7, C, atoms of a positions on
either chain are used as reference points (heptad assign-
ment is made upon the completion of the fitting
procedure, based on best-fit helical phases, using the
canonical values shown in Fig. 8). Thus, AZ,, can vary
between plus and minus half a helical pitch, roughly
[—Zd—‘” 2”’—'”] , or [-5.3,5.3]A for a typical coiled coil.

7
Fitting procedure

The program to fit Crick parameters given a structure,
called coiled-coil Crick parameterization (CCCP), was
written in Matlabj}, using basic functionality and some
functions from the Optimization Toolbox. The code is
compatible with GNU Octave§™ with no significant
difference in performance, and the web-based version of
CCCP uses Octave.

The entire fitting procedure can be broken down into
several steps. First, given the input structure file, the
number of chains is determined and C, coordinates are
extracted. For each chain (except the first one), its
orientation with respect to the first chain is determined by
testing the sign of the dot product between vectors
connecting the first and last atoms of the two chains.
Next, the order of chains, in a clockwise direction when
looking down the positive Z direction, is determined. This
is important for oligomeric states above the dimer so that
chains of the generated ideal structures are superimposed
on their corresponding chains in the native structure. To do
this, the C, center of mass of each chain is identified (e.g.,
points ] through ¢y for n chains) and the center of the
bundle is taken to be the average of these points (e. g point
¢0). Chain order is then determined by measuring the
angles [c7, ¢, ] for each k between 1 and n. Angles are
defined in a clockwise direction, with respect to the positive
Z direction and mapped onto the range between 0 and 27
{clockwise versus counterclockwise is determined ed by testing
whether the cross product between vectors ¢ — ¢; and

I http:/ /www.mathworks.com/
§http:/ /www.octave.org/

T — C is ahgned with the positive Z direction, i.e.,
whether [(c; - ci)x(cc — c0]-[0; 0; 1] is positive or
negative]. Thus, sorting the angles in ascending order
produces the order of chains in the clockwise direction.

Next, parameter optimization begins. The objective
function to minimize is the RMSD between atoms of the
parameterized structure and the input structure (optimal
superposmon was implemented via the SVD method by
Kabsch et al.®® as described by Coutsias et al. €0y, Basic
parameters Ry, Ry, @y, 01, o, and &; are always varied in
optimization, and CCCP has a variety of options to limit
additional variables. For example, one may wish to
assume rotational symmetry about the supercoil ax1s
and set individual chain superhelix phase offsets to 2% - i,
for chain 7 of an n-mer; alternatively, this parameter may
be individually variable for each chain. Similarly, one may
wish to force all chains to have the same starting phase ¢
or have this parameter float between different chains. In
all of the fits performed here, no assumptions of symmetry
were made. Thus, in addition to the six basic parameters,
each chain was also assigned its own value of ¢4, and all
chains after the first one were assigned values for ¢, and
Az relative to the first chain. The optimization proceeded
in a loop until convergence (i.e., RMSD change per
iteration was less than 10e-5 A). In each iteration of the
loop, first, each parameter (except R; and ;) was
optimized individually using the BFGS quasi-Newton
method with a cubic line search procedure, implemented
in function fminunc of Matlab. The order in which
individual parameters are optimized was found to be
important for optimal convergence, and the order used
was Az for each chain, ¢q for each chain, ¢, for each chain,
Ro, ®p, and o. This was followed by multivariable
optimization of all parameters at once (including R; and
o) first with nonlinear least-squares (function Isgnonlin in
Matlab) and then with BFGS quasi-Newton method with a
cubic line search procedure (fminunc in Matlab).

In cases of short dimeric coiled coils with minimal
superhelical curvature, multiple combinations of super-
helical radius and superhelical phase offset values can be
equally fitting in terms of RMSD (for a visual example, see
Supplementary Fig. S13). To avoid this problem of
underdeterminedness, ¢, was constrained to be around
w for dimers. During optimization (and not for the
purpose of reporting the final RMSD), the objective
function value for dimers was incremented by 0.02
loo —ml L L A, where L was chain length. That is, the score
was penahzed by 0.02 A for a deviation of % from the
optimal value of w for every three heptads. ¢o was not
simply fixed at @ because, in some instances, the most
appropriate value of phase offset may truly be different
from w (e.g., when the dimer looks more like two chains of
a tetramer, as shown in Supplementary Fig. S13) and ¢,
should be allowed to adjust for that, provided enough
improvement in RMSD results. This small penalty
resulted in the overwhelming majority of dimers having
a ¢ of nearly .

Once an optimal C,, trace is obtained, the final step is to
build the remaining backbone atoms. These were built
using a table of internal coordinates (dihedral angles,
angles, and distances) of N and C backbone atoms with
respect to known C, atoms. These internal coordinates and
their average values, extracted from the structure of GCN4
(PDB code 2ZTA), are shown in Supplementary Table S1.
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Backbone oxygen and hydrogen atoms were then placed
using standard bond length, angle, and dihedral angle
values from CHARMM.®' This fast and simple approach
proved robust, and backbones thus produced were
generally not found to be in need of further adjustment.
However, CCCP (including the web-based version) can
optionally subject the produced backbone to short molec-
ular mechanics minimization.

Local R, as a function of core composition

For all dimers longer than three heptads, local values of
Ry were calculated by CCCP fitting of two-heptad
segments scanned across each structure. Superhelical
radius autocorrelation length was defined as the lag, in
terms of the number of residues, at which the autocorre-
lation function crossed zero. Two simple models for the
dependence of Ry on the a- and d-position amino acid
composition were considered. The relationship may be
linear, whereby each residue contributes a certain fixed
context-independent component, whether negative or
positive, to the final Ry, relative to some average reference
value. Or it may be that each residue has its own radius
preference, and the residues with the largest preference
dictate the eventual local R,. To simplify interpretation
and to limit the number of parameters, we focused on
parallel dimers. In both cases, there are 40 parameters (for
20 naturally occurring amino acids at either the a or d
position), and the two models can be written as:

Ro =

|31 (ot + (o)

.
lea

> (wa(aal) + w, (W?))} ()

Ilic

N[ —

1
+

=l

al

Ry = max {ma} [wa (aa?') + w, (aal)]
=a

max|wy (aal) + wy (aaB)]} (6)

167
where @’and @ are the indices of a and d posmons in the
considered window, respectively; aa and aa? are the i-th
amino acids in either of the two chains of the dimer; and
w, and wy are amino acid-dependent weights at a and d
positions, respectively. In both models, wj(aa;) corre-
sponds to the context-independent contribution of amino
acid ag; at heptad position 1 (either a or d) to the final
radius. Thus, the contribution of an a-a’ layer (prime
designates the opposite chain) is the sum of contributions
of the two amino acids forming the layer or wg(aal )+
w,(aa?), and the contribution of a d-d’ layer is wa(aal) +
wy (aa;’). What differentiates the models is that in the first
one, the final radius preference is dictated by the average
of the layer preferences, whereas in the second one, the
layer with the largest radius preference dominates. These
models were fit to local Ry data described above, with the
results shown in Supplementary Fig. S6.

Quantifying the degree of restriction of natural
coiled-coil space

For a given coiled-coil parameter x, for which we
observe values ranging from Xmin t0 Xmax in natural

coiled coils, we compare its observed distribution with
a uniform random distribution over the range Xy to
Xmax- 10 this end, we create a histogram of the
observed distribution by binning values into n bins
and calculate the entropy of this histogram as

S(x,n)==>"; 2 qlNI\n];s ln(NI\:;S), where N, is the total
number of data points and N; is the number of x values
within bin i. Next, we compose a uniform random

dlstrlbutlon of Nops values over n bins by apportioning
=| Y= | points into all bins and an additional point into

—( obs— | M2 | -11) bins. The entropy of this distribution

—yp.kx1 k+1) _(y — ).
thus becomes S(x,n) = —r- g In(F) -(n-71)

N In (ﬁ) The quantity AS=S,.¢(x, n)—S(x, ) is then
a measure of information content within the naturally
observed distribution of x. If we mterpret entropy in the
statistical mechanical sense, then ¢2° is the ratio between
the effective “number of states” in the uniform distri-
bution and the native distribution, thereby providing us
with a reasonable estimate of the degree of restriction of
the natural space.

Given a limited amount of data, the number of bins n
has an impact on the calculated information content. With
very few bins, the natural and uniform distributions
converge as everything eventually collapses to one bin.
The same happens when the number of bins is too large, as
eventually all bins, in both the natural and uniform
distributions, either have one observation or none. To find
a value of n that optimally captures the amount of
information present in the observed data set, we chose the
value that maximizes the quality AS.

Generalized parameterization

An o-helix is described by a simple parametric set of
equations for a left-handed screw:

X = Ry cos(wit + ;)
y= Rl Sil’l((t)lf + (1)1) (7)
z=d-t

where f is the parameter (residue index) and d is rise per
residue (discussed in Results). The Crick parameterization
describes what happens to this screw when it, in turn, is
twisted into a larger screw, the superhelix. To address a
general version of this problem, suppose that the a-helix is
bent into an arbitrary shape described by a generic
parametric set of equations:

Xo = fx(s)
Yo = fy(s)
2o = fz(s)

where subscript 0 designates coordinates of the super-
structure and s is the new superstructure parameter. For
convenience, let us consider the locations of C, atoms,
although identical reasoning can be applied for any
backbone atom type. In an ideal Z-aligned helix, the Z
coordinates of successive C, atoms change in increments
of d, such that a local coordinate frame can be defined for
the i-th C, atom with an origin [0, 0, z(t;)] and axes
pointing in the same direction as the laboratory frame in
which Eq. (7) is defined. Correspondingly, when the helix
winds around the parametric curve, these local origins
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will translate onto points on the new curved axis, each
corresponding to a particular parameter value s;. For every
residue in the final structure, the superstructure ought to
sweep out an arc length equal to d, to ensure that the helix
is locally neither stretched nor compressed. Thus, for
going from residue i to residue i+ 1, we must satisfy:

. /s‘+1¢ dfe\’ dfy) (%)2 s (8)

where s; and s;,, are the values of s corresponding to
residue i and i+1, respectively. For the case of a
superhelix (and thus fi(s)=Ro cos(mes+do), f,(s)=Ro
sin(wes+¢p), and fx(s)= RO‘”“ S), we get simply that

tan(a

R 2 R
d=(s; 11— s1)1/ (Rowo )’ ( °‘~"°>= Wl orthat s; 1 — s =

tan(a) sin(x)
d
7{1:&(0 >/ meaning that s values along the superhelix,

corresponding to C, atoms, occur at regular intervals.
This does not, however, need to be the case in general.
For more complicated shapes (e.g., a coiled coil of
changing radius), s values from one residue to the next
will change differently in different parts of the curve
(e.g., more slowly the larger the radius gets).

For many parametric shapes, the integral in Eq. (8) can
be analytically solved, in which case values of s; are easily
obtainable. However, even in cases where the integral
does not exist in closed form, simple numerical integration
methods can be applied to solve Eq. (8) efficiently. In the
latter case, values of s; are built up starting from the
known s;, which defines the starting position along the
parametric curve, each time obtaining the value of si.1
that validates Eq. (8), given the known s;. Finding all s;
values identifies the origins of local coordinate frames
associated with each residue in the final structure {e.g., [f;
(s fy(si); f(s)ll, and we must now define the axes.
Naturally, the local Z-axis is defined in the direction of the
gradient of the parametric curve at s;, providing a smooth
transition from a straight to a curved helix, whereas the X-
axis is defined in the direction opposite to the curvature
vector of the parametric curve at s;:

1= ?= [fxffffz]
Vor @) et
=7

e () 6]

leglxi)l

where primes designate derivatives with respect to s, and
8w 8y and g, are the components of the normalized
gradient vector ¢=[g.; g, g By analogy with the coiled
coil, this ensures that the X-axis points away from the
center of rotation of the local stretch of the parametric
curve. In the case of a superhelical parametric curve, this
definition recapitulates exactly that by Crick.®

Once the local coordinate frame associated with each
residue in the final structure is defined, and given the
original local coordinate frame for each residue in the
straight helix, two rotations and a translation are applied
to transform each residue from the straight helix into its
position within the curved helix. Therefore, the general-

ized helical parameterization framework takes on the
form of a numerical procedure, rather than a simple
formula, as with the coiled coil, since it is not guaranteed
that the integral in Eq. (8) is analytically solvable. If it is,
however, a formula can be derived as well, as all terms
within the above rotation and translation matrices become
analytical. Matlab (or Octave) code implementing the
generalized helix bending parameterization is available
upon request.

We applied this framework to generate a parameteriza-
tion of arched bundles. As shown in Fig. 9, individual
helices were modeled as being shaped into perfectly circular
arcs of radius R,. The superstructure parametric equations,
therefore, were fi(s)=R, cos(wes), f,(s)=0, and f.(s)=R, sin
(wps), with parameter s varying symmetrically around 0
(e.g., from some —sy to +sp). This corresponds to a circular
arc in the XZ plane, symmetrical about the X-axis (see Fig.
9a). Solving Eq. (8), we get s = Re ~20; thus, for simplicity, wg
was set to zg (note, this is an arbltrary choice) so that values
of s could be varied between —Tand + Tl in incre-
ments of 1 (L is the number of residues in the chain). The
normalized gradient of our superstructure curve is simply
g= R wo[ R, sin(wos); 0; Ry cos(wps)] = [—sin(wys); 0;
Cos(cuos)] (since ®¢ is positive here), and the normalized
curvature vector is ¢ = [~ cos(wps);0; — sin(myps)]. Thus,
the rotation and translation matrices for superimposing the
local coordinate frame in the ideal helix and the curved
superstructure are trivial to find, and the final equations for

a helix bent around a circular arc are:

x(t) = [Ri cos(ent + 421L> N Sf s {Ri (t ) %)}

d- (L -
_R. . S S
" cos{ 2R

y(f) = Rl Sil’l((,l)lf + d)l)

2(t) = [Ry cos(ent + dy) + Ry]- sin [Ri (t— L%)} ©)

where t varies from 0 to L—1 [the second term in x(f) simply
moves the ends of the arc so that they lie on the Z-axis, as
shown in Fig. 9a, gray curve].

Once the curved helix is generated, it is rotated about
the laboratory Z-axis by the arc turn angle «,, then the
laboratory Y-axis by the tilt angle o, and then the
laboratory X-axis by the pitch angle «, (see Fig. 9).
Finally, the helix is translated along the X-axis by the
bundle radius R;. In our arched-bundle parameterization,
we assumed that individual chains are spaced equally
around the bundle; thus, upon generating one helix, the
rest are generated with rotations about the Z-axis in
increments of 2, where n is the number of chains in the
bundle.

Table 1 reports parameter values that best fit to a set of
representative structures as well as the C, RMSD of the
fits. Note that for convenience of comparing parameters
between different structural states, instead of helical phase
(variable ¢; in Eq. (7)), Table 1 reports the effective phase
that takes into account the arc turn angle (i.e., the actual
value reported is dpegr=d1 + o). This allows the phase to be
reflective solely of the angular position of the first residue
in the chain with respect to the interfacial axis, allowing
for an independent interpretation of this parameter. Table
1 also reports an additional calculated parameter—the arc

n’
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incidence angle, which measures the angle between the
tangent to the arc at the initial point and the line
connecting arc ends. For a straight helix, this angle is
zero; for a semicircle, it is 90 °.

Distance map-based search for right-handed
coiled coils

To search for additional examples of right-handed
coiled coils in the PDB, we employed a distance map-
based search method. Full details of the method are to be
published elsewhere, but a short description is provided
here. A distance map is an n-by-n matrix of C,-to-C,
distances within a protein, where n is the number of
residues in the protein.> We first pre-computed such
distance maps for all proteins in the PDB, storing them in a
sparse format such that distances above 25 A were not
considered. Next, we used all of the right-handed coiled
coils found in the CC+ database as search queries. For each
query protein, a distance map corresponding to two
helices, two heptads each, was generated. These query
maps were then compared to the pre-computed distance
maps, looking for optimal agreement between the query
map and a sub-map of a potential matching protein, in the
least-squares sense. The search was performed taking into
account that the two helices will not be contiguous in
sequence within the matching structure, and thus a linker
of arbitrary length was allowed to locate between the two
helices of the query map.
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