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Abstract

Accumulation of reactive oxygen and chlorine species (RO/CS) is generally regarded to be a toxic and highly
undesirable event, which serves as contributing factor in aging and many age-related diseases. However, it is
also put to excellent use during host defense, when high levels of RO/CS are produced to kill invading
microorganisms and regulate bacterial colonization. Biochemical and cell biological studies of how bacteria and
other microorganisms deal with RO/CS have now provided important new insights into the physiological
consequences of oxidative stress, themajor targets that need protection, and the cellular strategies employed by
organisms to mitigate the damage. This review examines the redox-regulated mechanisms by which cells
maintain a functional proteome during oxidative stress. We will discuss the well-characterized redox-regulated
chaperoneHsp33, andwewill review recent discoveries demonstrating that oxidative stress-specific activation of
chaperone function is a muchmore widespread phenomenon than previously anticipated. Newmembers of this
group include the cytosolic ATPase Get3 in yeast, the Escherichia coli protein RidA, and the mammalian protein
α2-macroglobulin. We will conclude our review with recent evidence showing that inorganic polyphosphate
(polyP), whose accumulation significantly increases bacterial oxidative stress resistance, works by a protein-like
chaperone mechanism. Understanding the relationship between oxidative and proteotoxic stresses will improve
our understanding of both host–microbe interactions and how mammalian cells combat the damaging side
effects of uncontrolled RO/CS production, a hallmark of inflammation.

© 2015 Elsevier Ltd. All rights reserved.
The Origin of Oxidative Stress

Reactive oxygen species (ROS) such as superox-
ide (O2

·−), hydrogen peroxide (H2O2), and hydroxyl
radicals (·OH) are metabolic by-products, which
occur naturally in all organisms that live an aerobic
lifestyle. They are constantly producedduring electron
transfer in the respiratory chain [1], by enzymes such
as NADPH oxidases [2,3], and in organelles such as
the peroxisomes [4]. Non-physiologically low levels of
ROS negatively affect cell growth, development, and
differentiation [5–7], illustrating the importance ofROS
as second messengers that control metabolic pro-
cesses and signaling pathways (Fig. 1) [8]. Non-
physiologically high levels of ROS, on the other hand,
can cause irreversible oxidative modifications of
virtually all cellular macromolecules, including lipids,
DNA, and proteins (Fig. 1) [9]. Maintaining redox
homeostasis requires a concerted cellular effort,
er Ltd. All rights reserved.
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involving expression of a variety of different ROS-
detoxifying enzymes (e.g., superoxide dismutase,
peroxiredoxin, and catalase), oxidoreductases of the
thioredoxin (Trx) and glutaredoxin (Grx) systems,
NADPH-regenerating systems such as the nicotin-
amide nucleotide transhydrogenase, and the produc-
tion of the small redox-buffering tripeptide glutathione
(GSH) [10]. Together, these systems keep cytosolic
protein thiols reduced and protect cells against the
accumulation of toxic oxidants (Fig. 1) [5,11].
However, even the best systems sometimes fail.

When they do, such as during aging, age-related
neurodegenerative diseases (e.g., Parkinson's dis-
ease), or metabolic diseases (e.g., diabetes) [12],
ROS begin to accumulate in the cell, causing cells to
experience a stress condition commonly known as
oxidative stress. Oxidative stress can be caused by
a variety of different mechanisms, including defects
in specific antioxidant or redox-maintaining systems,
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2 Protein Quality Control under Oxidative Stress
ROS production during host defense, UV light,
gamma and X-rays, pollutants and smoke, or due
to metal-catalyzed Fenton reactions [13]. All of these
processes produce free radicals, capable of oxidiz-
ing cellular structures [14–16]. Apart from lipid
peroxidation and DNA damage, ROS are especially
known for their high reactivity toward sulfur-contain-
ing amino acids and metal-containing cofactor sites
in proteins, causing reversible and irreversible
inactivation of many different proteins and represent-
ing a major threat toward the cellular proteome [17].
It is thought that oxidative damage to a cell's
proteome contributes to the etiology of a variety of
different human protein-folding diseases, including
Alzheimer's, Parkinson's, and prion disease [18].
The Benefit of Oxidative Stress—ROS
and RCS as Physiological Antimicrobials

Oxidative stress is not always a bad thing; in fact,
production of high levels of ROS and the related
reactive chlorine species (RCS) [17] plays an
important physiological role in the innate immune
response, where it provides a powerful strategy for
killing invading pathogens [19]. When bacteria are
taken up by neutrophils, NADPH oxidases localized
in the phagosomal membrane catalyze the reduction
of molecular oxygen to superoxide (O2

·−). After being
rapidly dismuted to H2O2 by superoxide dismutases,
myeloperoxidases convert H2O2 and chloride ions
into the RCS hypochlorous acid (HOCl). HOCl is
extremely reactive and bactericidal even at low
RO/CS causes widespread oxidative damage and is thought
diminished levels of RO/CS affect growth, development, and d
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micromolar concentrations [20], making it one of
the most powerful physiological oxidants known (for
a comprehensive overview, see Refs. [17] and [19]).
Not surprisingly, HOCl is the active ingredient of
household bleach and is one of the most commonly
used disinfectants in medical, industrial, and domes-
tic settings [21]. Once released into the phagosome,
HOCl evokes a very rapid toxic effect on bacteria,
contributing to the effective neutrophil-mediated
killing of invading microbes [22–24].
In addition to the role of HOCl production in the

antimicrobial action of neutrophils, HOCl might also
be involved in controlling bacterial colonization of
mucosal barrier epithelia, such as the airways and
the intestine [25,26]. Epithelial cells express the
enzyme dual oxidase (DUOX), a member of the
nicotinamide adenine dinucleotide phosphate oxi-
dase family. DUOX, like myeloperoxidase, has been
suggested to convert peroxide into HOCl [27]. It is
also possible, however, that the antimicrobial func-
tion of DUOX is primarily due to the production of
H2O2, which is rapidly converted to the highly
bactericidal hypothiocyanite by lactoperoxidases
[154]. In either case, knockdown of the duox gene
in the fly gut leads to increased bacterial colonization
and a significantly increased rate of death caused by
infections [27,28]. Duox−/− mice show a significant
decrease of neutrophil invasion during the develop-
ment of allergic asthma in a murine model and
increased levels of pathogens that colonize the
intestinal epithelial cells [29]. These results empha-
size the physiological importance of oxidative stress
in general and HOCl production, in particular, in
Fig. 1. Redox homeostasis—A
balance between oxidants and
antioxidants. ROS and RCS are
constantly produced as by-products
of cellular processes. They are
involved as second messenger in
signaling pathways, influencing a
variety of different cellular process
es. Antioxidant systems [including
ROS-detoxifying enzymes, such as
superoxide dismutase (SOD), per-
oxiredoxin (Prx), and catalase (Kat)
oxidoreductases including the thior-
edoxin (Trx) and glutaredoxin (Grx)
system; and the non-protein thio
glutathione (GSH)] work together to
maintain a reducing environmen
and prevent accumulation of oxi
dants beyond physiological levels
However, defects in antioxidan
systems or exposure to increased
concentrations of RO/CS can shif
this ratio. While accumulation o

to be involved in aging and many age-related diseases
ifferentiation.
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3Protein Quality Control under Oxidative Stress
combating microbial pathogens and controlling the
bacterial population in the host [25,27,30]. On the
downside, however, uncontrolled production of
HOCl by neutrophils can cause a variety of diseases
and is thought to be involved in the tissue damage at
sites of chronic inflammation and in arteriosclerosis
[31].
Proteins—The Primary In Vivo Targets
of Oxidative Damage

Almost 70% of all oxidized molecules in oxidatively
stressed cells are of proteinaceous nature [32],
indicating that proteins are the most prominent in
vivo targets of oxidants. Reactive oxygen and
chlorine species (RO/CS) cause numerous post-
translational protein modifications, including oxida-
tion of sulfur-containing side chains, chlorination
of side-chain amines, oxidation of histidines and
tryptophans, dityrosine formation, and others (Fig. 2)
[17,33]. These oxidative side-chain modifications
can lead to oligomerization, fragmentation, destabi-
lization, aggregation, and/or enhanced degradation
of proteins [34–37]. While some RO/CS-mediated
posttranslational modifications are intentional, re-
versible, and part of redox-regulated processes
(see below), irreversible protein modifications are
typically destabilizing and capable of a triggering a
major secondary stress on the proteostasis network
of the cell (Fig. 2).
The most vulnerable (i.e., reactive) targets in

proteins are the sulfur-containing side chains of
methionine and cysteine residues (Fig. 2) [17,38].
With reaction rates in the 106–107 M−1 s−1 range,
HOCl rapidly chlorinates cysteine thiols (R-SH)
forming R-SCl [39]. Chlorinated thiols either directly
attack other thiols or amines, or exchange with H2O
to form sulfenic acid (R-SOH). The reaction of
peroxide with cysteines, which also yields sulfenic
acid intermediates, is up to 6 orders of magnitude
slower except for proteins such as peroxiredoxin that
contain unusually peroxide-reactive cysteines in
their active site [40,41]. Due to its highly unstable
nature, any sulfenic acid intermediate typically
reacts very quickly with other protein thiols to form
either intramolecular or intermolecular disulfide
bonds (R1-S-S-R2) (Fig. 2). Reactions with non-pro-
tein thiol antioxidants, such as GSH or free
cysteines, result in the formation of mixed disulfides
known as S-glutathionylation (R-S-S-GSH) and
S-cysteinylation (R-S-S-RCys), respectively. Sulfenic
acids can also react with vicinal primary or second-
ary amino groups, thereby forming reversible sulfe-
namides or, upon further oxidation, irreversible
sulfinamides or sulfonamides [17]. Alternatively,
sulfenic acids can be further oxidized by RO/CS to
sulfinic (R-SO2H) or sulfonic (R-SO3H) acid (Fig. 2):
two typically irreversible thiol modifications that often
Please cite this article as: Dahl Jan-Ulrik, et al, Protein Quality Con
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lead to increased rates of protein degradation. The
only known example of reversible sulfinic acid
formation was found in select eukaryotic peroxir-
edoxins, which are reduced by the ATP-dependent
sulfinic acid reductase sulfiredoxin [42,43].
Disulfide bonds, whether intramolecular, intermo-

lecular, or mixed, are fully reversible thiol modifica-
tions, which can be reduced by members of the
thioredoxin or glutaredoxin family (Fig. 2) [44]. Both
types of oxidoreductases reduce oxidized protein
thiols via direct thiol/disulfide exchange [45]. However,
whereas Trx reduces predominantly disulfide bonds
and sulfenic acid intermediates, Grx preferentially
reduces S-glutathionylated proteins [46]. Both proteins
enter the reaction in their reduced form and leave the
reaction in their oxidized form. Trx is subsequently
reduced by thioredoxin reductase, whereas reduction
of oxidized Grx is achieved by GSH. Its oxidation
product GSSG is subsequently reduced by glutathione
oxidoreductase (Gor) [46,47]. Each of these reduc-
tases receives their reducing equivalents fromNADPH,
closely tying cellular redox homeostasis to the levels of
NADPH [46,48].
Methionine residuesarealso veryoxidationsensitive.

Methionine can be oxidized by RO/CS to methionine
sulfoxide at rates of up to 3.4 × 107 M−1 s−1 (for
HOCl) [49,50]. Since the role of methionine oxidation
and the methionine sulfoxide reductase (MSR) en-
zymes involved in repairing oxidized methionines in
protein structure, function, and resistance to oxidative
damage has been recently reviewed [51–53], we will
touch only briefly on this topic here. It has become
clear, however, that the repair of oxidized methionine
is intimately connected to chaperone function and
maintenance of proteostasis under redox stress
conditions in many types of cells. In yeast, for
example, MSR enzymes preferentially reduce oxi-
dized methionines in unfolded protein substrates [54].
In humans, MSR-catalyzed methionine sulfoxide
reduction restores chaperone function to oxidatively
inactivated α-crystallin [55]. In the bacterial pathogen
Helicobacter pylori, resistance to oxidative stress
depends on MSR not only for repairing oxidized
methionines in the ROS-degrading enzymes catalase
and alkyl hydroperoxide reductase but also for
restoring activity to oxidatively inactivated GroEL
chaperones [56–58]. Like cysteine, under severe
oxidizing conditions, methionine can also be further
oxidized to methionine sulfone or methionine sulfox-
imine. These are irreversible and toxic end products,
which likely lead to protein degradation [59].
Apart from sulfur-containing residues, HOCl and

H2O2, to a lesser extent, also react with histidine,
tryptophan, lysine, tyrosine, and arginine side
chains, as well as with the amino-terminus of
proteins (Fig. 2) [60]. While the reaction rates are
significantly lower than with cysteines [39], many of
the reaction products are irreversible (Fig. 2), in-
creasing the tendency of proteins to aggregate or to
trol under Oxidative Stress Conditions, J Mol Biol (2015), http://
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Fig. 2. Reversible and irrevers-
ible protein modifications by RO/CS.
RO/CS cause oxidative modification
of a number of different residues in
proteins. Oxidation of histidines and
tryptophans and the formation of
dityrosines, sulfinic/sulfonic acids,
and methionine sulfone/sulfoximine
intermediates are irreversible modifi-
cations and lead to protein unfolding,
aggregation, and degradation. Disul-
fide bond formation, methionine sulf-
oxide formation, and N-chlorination
are reversible protein modifications
and often used to regulate protein
function in response to oxidative
stress. The systems responsible for
reducing oxidative protein modifica-
tions in vivo are listed in brackets:
Grx, glutaredoxin; Trx, thioredoxin;
GSH, glutathione; MSR, methionine
sulfoxide reductase;Gor, glutathione
oxidoreductase.

4 Protein Quality Control under Oxidative Stress
be degraded. In addition, HOCl reacts with a
protein's primary and secondary amines, resulting
in chloramine formation. Chloramines themselves
are effective oxidants, able to directly chlorinate, and
oxidize other biomolecules. However, in comparison
to HOCl, chloramines are 4 to 5 orders of magnitude
less reactive but are more selective towards thiol
groups [19,60].
The Danger of Oxidative Stress: Protein
Unfolding and Aggregation

As outlined above, oxidative stress-derived protein
modifications can lead to the loss of a protein's
secondary or tertiary structure, which in turn impacts
its activity, stability, and solubility. Moreover, the
integrity of the cellular proteome is also highly
dependent on regulated posttranslational protein
modifications, such as phosphorylation, acetylation,
ubiquitination, or methylation. These processes are
catalyzed by enzymes, which can also fall victim to
oxidative modifications [61,62]. In vivo studies
agreed with this notion and revealed extensive
oxidative protein aggregation in HOCl-treated bac-
teria [63]. This result was independently confirmed
by the fact that HOCl treatment of bacteria triggers
the heat shock response, a highly conserved
transcriptional response that is known to be induced
by the accumulation of protein-folding intermediates
[64,65]. While H2O2 treatment in Escherichia coli
yields in little to no protein aggregation and no
significant heat shock response, exposure to disul-
fide stress (caused by either diamide or genetic
depletion of the Trx/GSH systems) revealed a
considerable overlap between heat shock and
Please cite this article as: Dahl Jan-Ulrik, et al, Protein Quality Con
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oxidative stress response pathways in both Gram-
positive and Gram-negative bacteria [66–68].
Eukaryotes appear to experience oxidative protein
unfolding during peroxide treatment [69]. The reason
for this discrepancy is unclear. One possibility is
increased production of highly reactive hydroxyl
radicals in eukaryotes, which could be fostered by
the presence of a more significant pool of Fenton
metals. Since hydroxyl radicals are extremely
reactive and known to cause protein unfolding and
aggregation, increased production of hydroxyl radi-
cals would certainly lead to a massive stress on the
proteome [70].
The Challenge of Oxidative Stress:
Maintaining Proteostasis

Cells employ a large proteostasis network to
maintain proteome stability and functionality during
non-stress and stress conditions. This network
consists of numerous different chaperones, folding
catalysts, and proteolytic components [37,71]. Under
stress conditions, the most important task is to
sequester unfolding proteins, reducing the amount of
aggregation-sensitive folding intermediates and pre-
venting the accumulation of protein aggregates. This
is the job of molecular chaperones, which harbor
binding sites for unfolding proteins and prevent
aggregate formation. Several different families of
chaperones, including members of the HtpG (Hsp90),
GroEL (Hsp60), DnaK (Hsp70), DnaJ (Hsp40), and
IbpA/B (sHsps) family, contribute to maintaining
proteostasis during stress conditions [72–74]. The
majority of these proteins are under heat shock control
and are among the first responders when
trol under Oxidative Stress Conditions, J Mol Biol (2015), http://
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5Protein Quality Control under Oxidative Stress
protein-unfolding intermediates accumulate. The
Hsp90, Hsp70, and Hsp60 chaperones are “foldases”:
typically energy-dependent proteins that use ATP
binding and hydrolysis to support refolding of damaged
proteins once stress conditions subside [75]. The
sHsp “holdases” are energy-independent chaperones
that prevent aggregation without supporting refolding
[76,77]. The second arm of the proteostasis network
during stress consists of ATP-dependent proteases,
which degrade proteins that are irreversibly damaged
and/or unable to refold. The mechanisms by which
proteins are triaged between these two fates are still
subject of very active investigations [78,79].
Transcriptional and translational processes take

time, involve numerous oxidation-sensitive proteins,
and require ATP. However, sudden exposure to highly
proteotoxic oxidants such as HOCl or hydroxyl radicals
requires an immediate response, transiently inactivates
transcription and translation processes, and substan-
tially reduces cellular ATP levels [80,81]. That oxidative
stress reduces cellular ATP levels has been observed
in every organism studied. This phenomenon was
originally thought to be due to the oxidative inactivation
of glyceraldehyde dehydrogenase (GAPDH), a central
enzymeof glycolysis.GAPDHhas longbeen known for
its exquisite sensitivity to RO/CS, which cause rapid
modification of its active site cysteine (reviewed in Ref.
[82]). This block in glycolysis together with the oxidative
modification of other ATP-generating systems was
thought to cause the very rapid decline in ATP levels
[83,84]. While this might still be the case in eukaryotic
cells, recent studies in E. coli revealed that the
observed ATP decline in HOCl-stressed bacteria is
due to the active re-routing of ATP into long chains of
inorganic polyphosphates (see below) [85].
There is little doubt that decreasing cellular ATP

levels is a clever strategy to protect the most
oxidation-sensitive targets, such as newly synthesized
proteins [75], against oxidative damage.However, loss
of ATP equivalents also constitutes a major problem,
particularly for maintaining proteostasis, since most
chaperones and proteases rely on ATP for their
function. Cells appear to deal with this dilemma by
employing stress-specific, ATP-independent holdase
chaperones. These chaperones, which are mostly
inactive under non-stress conditions, are able to
directly sense protein-unfolding oxidants and rapidly
respond with an increase in their chaperone function.
In this review, we will focus exclusively on the

chaperone arm of the proteostasis network, since
regulation of the proteasomal system and its role
during oxidative stress has been expertly reviewed
in the very recent past [78,79,86]. We will discuss
several groups of redox-regulated chaperones—
first, the prototypical prokaryotic 33-kDa heat shock
protein (Hsp33), then a number of multifunctional
cellular components that gain chaperone activity
under oxidative stress conditions: (i) the eukaryotic
ATPase Get3/TRC40, (ii) the bacterial enamine/
Please cite this article as: Dahl Jan-Ulrik, et al, Protein Quality Con
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imine deaminase RidA, (iii) the mammalian protein
α2-macroglobulin, and (iv) the prebiotic inorganic
polymer polyphosphate (polyP). Whereas both
Hsp33 and Get3 sense oxidants via highly sensitive
cysteine residues whose oxidation status directly
affects their ability to interact with unfolded client
proteins, RidA and α2-macroglobulin appear to be
activated by non-cysteine side-chain modifications.
We will conclude with polyP, whose production
seems to be largely responsible for the drop in
cellular ATP levels upon HOCl stress and that acts
similar to a holdase chaperone in bacteria, prevent-
ing protein aggregation.
Hsp33—The Inaugural Member of the
Redox-Regulated Chaperone Family

Hsp33 (gene name hslO) was first identified in 1993,
when Fred Blattner revisited the σ32-controlled heat
shock response in E. coli [87]. Transcriptional analy-
ses confirmed that Hsp33 is expressed under non-
stress conditions but that its expression is dramatically
increased when bacteria experience stress conditions
that induce protein-unfolding conditions [87,88]. What
made the protein sequence of Hsp33 unique among
known heat shock proteins at that time was the
presence of four absolutely conserved cysteine
residues, located in the C-terminus of the protein.
These four cysteine residueswere suggestive ofmetal
binding and instigated our investigations into the
function of this highly conserved protein [89].
Extensive studies over the past 16 years revealed

that Hsp33 indeed uses these four cysteines as
high-affinity zinc ligands. However, instead of serving
a purely structural role, we found that the four
cysteines function as posttranslational redox switch,
effectively translating changes in ROS levels into
structural and functional changes in Hsp33. While
inactive as chaperone when reduced and zinc
coordinated, Hsp33 converts into a highly effective
chaperone holdase when disulfide bonded and zinc
free [63,75]. Activators of Hsp33's chaperone function
are RCS (e.g., HOCl) [63] or combinations of peroxide
stress and unfolding conditions, induced by either
elevated temperatures [89–91] or as recently noted by
bile salts [92]. Bacteria might encounter any of one of
these stress conditions during the innate immune
response (see earlier sections), on their way through
the gastrointestinal tract [92], or during inflammation
and fever episodes [93]. All of these conditions cause
oxidative protein unfolding and lead to the aggregation
of many essential proteins in the absence of Hsp33 in
vivo [63,92,94]. Not surprisingly, bacteria lacking
Hsp33 are significantly more sensitive toward these
stress conditions [92,94]. Since Hsp33 is highly
conserved among prokaryotes and unicellular para-
sites such as Leishmania but absent from higher
eukaryotes, it is a potentially promising drug target to
trol under Oxidative Stress Conditions, J Mol Biol (2015), http://
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6 Protein Quality Control under Oxidative Stress
diminish the virulence of pathogenic bacteria such as
E. coli or Vibrio cholerae. However, virulence studies
have yet to be conducted to test this idea.

The activation and inactivation mechanism
of Hsp33

Probably one of the most intriguing questions
regarding Hsp33 concerned its mechanism of
activation: how can a protein be activated under
protein-unfolding conditions, which are detrimental for
a host of different proteins, including several chaper-
ones [63,75]? To our surprise, we found that, upon
exposure to oxidative protein-unfolding conditions,
Hsp33 also oxidatively unfolds. However, instead of
losing activity and aggregating, Hsp33 uses these
massive structural rearrangements to specifically
activate its chaperone function [63,89,92]. This was a
truly unexpected discovery, which immediately raised
the next question as to how this would work from a
mechanistic point of view. Reduced, chaperone-inac-
tive Hsp33 consists of a compactly folded N-terminal
domain, a highly flexible ~40-aa-long linker region,
and a C-terminal redox-sensing domain, containing
the Cys232-X-Cys234-X27–32-Cys265-XX-Cys268 redox
switch motif [95]. The four highly conserved cysteines
coordinate one zinc ion with high affinity in a
tetrahedral arrangement [96]. The Zn2+ ion stabilizes
the cysteine thiols in their highly reactive thiolate anion
form [96–98], bringing the cysteines into close
proximity for disulfide bond formation to occur and
contributing significantly to the thermodynamic stabil-
ity of the zinc-binding domain. Once exposed to the
appropriate oxidative stress conditions, the four
cysteines engage in two disulfide bonds, zinc is
released, and the zinc-binding domain unfolds. What
is truly crucial for the activation of Hsp33, however, is
the unfolding of the central linker region [99], which
connects Hsp33's N-terminus with the C-terminal
redox switch domain. Not particularly conserved
but highly charged, this linker region is stably folded
under reducing, non-stress conditions yet rapidly
unfolds upon the formation of both disulfide bonds.
Destabilization of the linker region by site-specific
mutagenesis successfully uncouples linker unfolding
from disulfide bond formation and zinc release and
yields a constitutively active yet fully reduced and
zinc-coordinated Hsp33 [99]. These results provided
strong evidence that the redox switch domain serves
primarily as a rheostat, whose function is to control the
stability of the linker region via its own thiol/disulfide
status.
As previouslymentioned,Hsp33 is only activated by

slow-acting oxidants, such as H2O2, when combined
under protein-unfolding conditions. This mechanism
seems to assure that Hsp33 is only activated when
proteins unfold under oxidative stress conditions.
Peroxide treatment alone is capable of oxidizing the
two distal cysteine residues (Cys232 and Cys234) in
Please cite this article as: Dahl Jan-Ulrik, et al, Protein Quality Con
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Hsp33, but not the two proximal cysteines (Cys265
and Cys268). This oxidation causes a loss in zinc
binding, which in turn destabilizes the linker region.
However, the destabilization is not sufficient to trigger
linker unfolding under otherwise non-stress condi-
tions [90,95]. Upon exposure to unfolding conditions,
such as elevated temperatures or bile salts, however,
the linker region unfolds, causing activation of
chaperone function. In addition, formation of the
second disulfide bond (Cys232–Cys234) is now
facilitated, which locks the linker region in the unfolded
state and maintains the chaperone activity of Hsp33
until reducing non-stress conditions are restored.
Fast-acting oxidants such as HOCl gain access to
all four cysteine residues and thus cause very rapid
oxidative unfolding and the activation of Hsp33's
chaperone function [63,92]. Subsequent dimerization
and potentially even higher oligomer formation of
oxidized Hsp33 monomers follows [91], potentially
increasing the client binding interface [99,100].
In reverse of the activation of Hsp33, which

requires both oxidizing and unfolding conditions,
Hsp33's inactivation requires both reducing and
refolding conditions [77]. Reducing conditions con-
vert oxidized Hsp33 dimers into reduced Hsp33
dimers, which remain bound to their client proteins.
This mechanism likely assures that Hsp33 does not
release its client proteins until ATP levels are
restored and fully functional ATP-dependent foldase
systems such as the DnaK/DnaJ/GrpE chaperone
system are available [77,100]. Once reducing and
non-stress conditions are restored, Hsp33 transfers
its client proteins to the DnaK/DnaJ/GrpE chaperone
system, which supports their refolding to the native
state. The precise mechanism of client release and
the role of the DnaK//DnaJ/GrpE chaperone system
during this release process still remain enigmatic.

Hsp33—A Conditionally Disordered Chaperone

Hsp33 undergoes substantial unfolding during its
activation process. This mechanism made Hsp33
the founding member of a new category of so-called
conditionally disordered chaperones [100–102].
Over the past few years, several other chaperones
joined this category, protecting organisms against
high heat (e.g., Hsp26) [103–105] or very low pH
(e.g., HdeA) [106–108]. What these proteins have in
common is that they are fully folded and chaperone
inactive under non-stress conditions. During expo-
sure to these rapidly proteotoxic stress conditions,
they adopt a partially disordered conformation,
which appears to be essential for their ability to
bind protein-folding intermediates and protect them
against aggregation [101] (Fig. 3). These results of
course raised the intriguing question as to the role
that the intrinsically disordered regions play in
chaperone function. It appears that the disordered
structure contributes to the increased plasticity of
trol under Oxidative Stress Conditions, J Mol Biol (2015), http://
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Fig. 3. Redox-mediated
activation of conditionally disor-
dered chaperones. RO/CS can
cause substantial structural
changes in proteins, leading to
protein unfolding and aggrega-
tion. Bacteria employ the stress-
specific molecular chaperone
Hsp33 to sequester unfolding
intermediates and prevent
accumulation of toxic protein ag-
gregates. Under non-stress con-
ditions, Hsp33 is well folded and
is chaperone inactive. Its four
conserved cysteine residues are
reduced and involved in high-
affinity binding of zinc. Upon
exposure to oxidative protein-
unfolding conditions, Hsp33 un-
dergoes oxidative disulfide bond
formation, zinc release, and mas-
sive structural rearrangements,
including significant protein

unfolding. In this partially intrinsically disordered conformation, Hsp33 is chaperone active and is able to interact with
partially unfolded protein intermediates. Upon return to non-stress conditions, the disulfide bonds are reduced and the
client proteins are transferred to the DnaK/DnaJ/GrpE system, which uses ATP to refold the client proteins. Hsp33 is
specific for prokaryotes and unicellular eukaryotes. Very recently, Get3 has been identified to serve as the likely functional
analogue of Hsp33 in yeast.
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client binding [100] and promotes promiscuity
[101,104,107]. Moreover, hydrogen–deuterium ex-
change studies combined with mass spectrometry
provided the first evidence that Hsp33's linker region
might be in fact directly involved in client–chaperone
interactions. The results of this study revealed that
Hsp33 linker region regains stability upon client
binding, suggesting that Hsp33 uses partially unfold-
ing client proteins as scaffold to refold its linker
region and thereby increase complex stability
[100,101] (Fig. 3). Future structural studies are
needed to uncover further details about the Hsp33–
client interactions and define the extent to which
intrinsic disorder is directly involved in the interaction
with client proteins.
Get3—A Redox-Regulated Dual-Function
Protein in Eukaryotes

Hsp33, while highly conserved in prokaryotes, is
absent from higher eukaryotes. This raised the
obvious question as to how eukaryotic cells defend
themselves against oxidative protein unfolding. One
group of proteins that might be involved in this
process are 2-Cys peroxiredoxins, which have been
shown to gain chaperone activity upon peroxide-
mediated overoxidation of their active site cysteine
(for a more detailed overview, see Refs. [109–111]).
However, recent studies suggest that overoxidation
Please cite this article as: Dahl Jan-Ulrik, et al, Protein Quality Con
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is not essential and that other triggers, including high
temperature and low pH [112,113], might activate the
chaperone function of peroxiredoxin as well. This
makes peroxiredoxin less of a specialized and more
of a general ATP-independent chaperone, which
protects cells against a variety of different stress
conditions, including oxidative stress. The other candi-
date, Get3, appears more Hsp33-like in its properties
as a redox-regulated chaperone and has been recently
shown to protect eukaryotic cells against oxidative
protein unfolding [114]. On the surface, Get3 and
Hsp33 have little in common. Reduced Hsp33 is a
monomeric, non-ATP binding protein, which coordi-
nates zinc using four highly conserved cysteines.
ReducedGet3 is a dimeric ATPase, involved in binding
and targeting tail-anchored proteins (TA) to the
endoplasmic reticulum membrane. It too binds zinc,
but zinc binding involves a Cys-XX-Cys pair from both
monomers, stabilizing the reduced Get3 dimer [114].
Upon closer inspection, however, the two proteins do
have some intriguing similarities; like Hsp33, the yeast
protein Get3 (i) contains a Cys-X-Cys- X40–

50-Cys-X-X-Cys motif, (ii) protects unfolding proteins
against aggregation in vitrowhenpurifiedunder aerobic
conditions [115], (iii) shows oxidation sensitivity in vivo
[114,115], and most importantly (iv) leads to an
oxidative-stress-sensitive phenotype when deleted in
yeast [114]. Growth studies of a get3-deficient yeast
strain under various stress conditions identified two of
the four conserved cysteine residues (Cys285/Cys288)
trol under Oxidative Stress Conditions, J Mol Biol (2015), http://
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as essential for complementation of the growth defects
[116].
We therefore decided to investigate the potential

chaperone activity of Get3 in more detail. Indeed, we
found that, upon exposure to hydroxyl radicals,
whose in vitro production can be elicited via the
Fenton reaction using a combination of Cu2+ and
peroxide [114], Get3 forms two disulfide bonds and
releases Zn2+ [114]. These redox changes trigger
massive structural rearrangements, causing the
inactivation of Get3's ATPase activity and the
formation of tetrameric and higher oligomeric
species with high, ATP-independent chaperone
holdase activity [114]. These results are fully
consistent with previously reported co-localization
studies of Get3, which showed that Get3 associates
with both unfolding proteins and other chaperones
under ATP-depleted conditions in vivo [115]. Impor-
tantly, all of the conformational and functional
changes in Get3 are fully reversible, requiring both
reducing conditions and the presence of ATP [114].
What makes the Get3 case particularly fascinating is

the fact that Get3 has an apparent completely different
function in its reduced state. In fact, reduced Get3 was
originally identified as the central member of the GET
(guided entry of tail-anchored proteins) pathway. In this
role, Get3 shuttles tail-anchored proteins (TA) from the
ribosome to the endoplasmic reticulum membrane
using ATP binding and hydrolysis to modulate client
binding and release [117,118]. Site-directed mutagen-
esis studies revealed that the chaperone function of
oxidized Get3 is independent of, and potentially
mutually exclusive with, the membrane targeting
function of reduced Get3 [114]. Phenotypic studies
using a mutant Get3 variant, which was no longer
capable of sorting TA proteins but had wild-type-like
redox-regulated chaperone activity, revealed that the
chaperone function and not the sorting function of Get3
is responsible for the growth deficit that is observed in
get3-deficient cells during oxidative stress [114]. These
findings are consistent with previous reports about a
potential dual function in theGet3homologueTRC40 in
Caenorhabditis elegans. Deletion of TRC40 was found
to cause severe growth deficits and increased sensi-
tivity toward cisplatin [119], an anticancer drug thought
to cause oxidative stress in vivo [120]. Importantly,
complementation studies using either wild-type TRC40
or a mutant variant lacking two of the four cysteines
revealed that both proteins rescued the growth defect
of a TRC40 deletion strain. However, only wild-type
TRC40 was able to complement for the observed
cisplatin sensitivity. These results strongly suggest that
Get3's redox-regulated chaperone functions and plays
a crucial role in oxidative stress protection in higher
eukaryotes as well [119]. These are exciting findings
but many questions remain open: how does Get3
recognize its client proteins? What fates do client
proteins haveafter the stress conditions subside?What
is the role of the other GET pathway components and
Please cite this article as: Dahl Jan-Ulrik, et al, Protein Quality Con
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might they possibly be involved in client release,
refolding, and/or restoration of proteostasis after
oxidative stress? Time will tell how Get3 (TRC40)
balances its two important functions in the cell.
Chaperone Activation by
Non-Cysteine Oxidation

HOCl causes a number of other oxidative modifica-
tions in proteins, including N-chlorination, methionine
oxidation, and dityrosine formation (Fig. 2). These
mechanisms have now also been found to play a
regulatory role in the activation of chaperone proteins
during oxidative stress.

E. coli RidA—Activation by reversible
N-chlorination

N-Chlorination of proteins occurs during severe
HOCl stress. It most likely affects the ε-amino groups
of lysine residues, the guanidinium groups of argi-
nines, and the terminal amino groups of polypeptides.
Chloramine formation is known to have detrimental
effects on molecular level, including protein inactiva-
tion, unfolding, and aggregation. In addition, protein
fragmentation due to halogen transfer and cross-
linking events have been reported in response to
treatment with chloramines [35,121–123]. Intriguingly,
the E. coli protein RidA was recently identified to
specifically sense RCS via reversible N-chlorination,
using these modifications to turn into a chaperone-
active state [124].
RidA is member of the functionally diverse YjgF/

ER057c/DUK114 family of proteins, which is highly
conserved in all domains of life [124]. In Enterobacte-
riaceae, such as E. coli and Salmonella enterica, RidA
is an enamine/imine deaminase, which speeds up the
IlvA-catalyzed deamination of threonine into 2-keto-
butyrate [124,125]. Redox proteomic studies under
nitrosative stress revealed that the only cysteine
residue of RidA is oxidatively modified during
peroxynitrite treatment, resulting in the loss of the
stimulatory effect of RidA on the activity of IlvA [126].
Very surprisingly, however, in the presence of HOCl

or other RCS such as monochloramine, RidA not only
failed to stimulate but also in fact strongly inhibited the
activity of IlvA [124], indicating that peroxynitrite and
HOCl treatment cause a markedly different outcome
for RidA's activity. The results furthermore suggested
that HOCl-treated RidA might form a tight complex
with IlvA, thereby inhibiting its catalytic activity. This
led to the hypothesis that HOCl-treated RidA might
function as a protein-binding holdase chaperone. In
vitro aggregation studies using a variety of different
client proteins, including unfolded IlvA, agreed with
this conclusion and demonstrated that HOCl-treated
RidA but not untreated RidA prevents protein aggre-
gation under stress conditions [124]. Notably, RidA
trol under Oxidative Stress Conditions, J Mol Biol (2015), http://
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appeared to specifically sense RCS, since no other
tested oxidants, including peroxide or diamide, had
any effect on its chaperone function. Even more
astounding was the finding that HOCl treatment of the
cysteine-free RidA variant had precisely the same
chaperone-activating effect, excluding the possibility
that modification of RidA's sole cysteine is involved in
the activation process. Instead, HOCl-treated chaper-
one-active RidA trimers were found to associate into
higher oligomers with substantially decreased levels
of free amino groups and, based on mass spectrom-
etry analyses, up to seven different N-chlorination
sites [124]. These results led to the conclusion that
chlorination of several lysine and/or arginine residues
might contribute to the observed increase in hydro-
phobicity, a hallmark of binding sites in chaperones
[127]. Deletion of RidA increasedE. coli's sensitivity to
HOCl and caused the accumulation of aggregated
proteins, suggesting that RidA is a true member of the
proteostasis network during HOCl-mediated oxidative
stress. N-Chlorination of RidA is fully reversible, and
treatment with DTT, with ascorbic acid, or with the
physiological redox systems Trx or GSH abolished
RidA's chaperone activity in vitro. RidA's chaperone
function appears to be not specific for E. coli since
HOCl treatment of the Drosophila melanogaster
homologue DUK114 also activates the chaperone
function in vitro (albeit irreversibly) [124]. What
remains to be done is identify the residues whose
chlorination contributes to the chaperone function of
RidA, to determine the lifetimeof chloraminewithin the
reducing environment of the cytosol, and to define the
precise place that RidA holds in the cellular proteos-
tasis network.

α2-Macroglobulin—Activation by methionine
oxidation/dityrosine formation

α2-Macroglobulin is a very abundant glycoprotein in
mammals, present within the highly oxidizing milieu of
the blood plasma and extracellular space. The
functions of α2-macroglobulin are quite diverse but it
is probably best known for its ability to trap and inhibit a
variety of different extracellular proteinases, irrespec-
tive of their mechanism or specificity [128]. In addition,
α2-macroglobulin interacts with a number of other
biomolecules, including different hormones and cyto-
kines. α2-Macroglobulin has also long been known for
its sensitivity toward HOCl [129]. Earlier studies
showed that HOCl treatment causes the homo-tetra-
meric protein to dissociate into stable dimers, which no
longer interact with proteinases but show increased
affinity for other binding partners, including the LDL
receptor protein LRP [130]. These results suggested
that HOCl-mediated dissociation into dimers is not
simply a random, non-specific inactivation process but
might be part of a regulatory mechanism. Indeed, very
recently, Wyatt et al. demonstrated that HOCl-treated
α2-macroglobulin dimers show substantially increased
Please cite this article as: Dahl Jan-Ulrik, et al, Protein Quality Con
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surface hydrophobicity and are highly active in
preventing the aggregation of a range of different
model clients in vitro [131]. More specifically, HOCl-
treated α2-macroglobulin was able to prevent the
HOCl-mediated aggregation of several disease-
associated proteins, including fibrinogen and LDL,
and showed increased activity toward preventing
Aβ1–42 fibril formation [131]. This interaction was
even more effective when Aβ1–42 was treated with
HOCl as well. Neurotoxicity assays suggested that
these interactions are indeed physiologically relevant;
compared to non-treated α2-macroglobulin, the re-
searchers found that the efficacy of HOCl-treated
α2-macroglobulin to protect neuroblastoma cells
against Aβ1–42 toxicity was significantly improved.
These results strongly suggest that α2-macroglobulin
switches into a physiologically relevant chaperone
upon exposure to HOCl stress.
The mechanisms by which α2-macroglobulin gets

activated as a chaperone remain unclear so far. Since it
is present in averyoxidizingenvironment, thecysteines
are constitutively oxidized. It has been shown that
HOCl-activated α2-macroglobulin undergoes methio-
nine oxidation, tryptophan oxidation, and dityrosine
formation [129,131]. However, which combination of
oxidation events is necessary or sufficient to activate
the chaperone function remains to be investigated. The
observed oxidative modifications are thought to be
irreversible [131]. However, more controlled in vitro
oxidation and careful analysis of the oxidation and
activity state of α2-macroglobulin in vivo might be
necessary to ultimately answer this question.
Polyphosphate: A Protein-Like Inorganic
Chaperone
Polyphosphates (polyP) are prebiotic polymers

[132]: highly conserved, universal, and structurally
extremely simple. They exist as long, typically
unbranched chains of phosphoanhydride-bond-linked
phosphates, which can reach lengths of up to 1000 Pi
units [133]. More than 20 years ago, the late Arthur
Kornberg et al. showed that polyP-deficient bacterial
cells suffer from a number of different phenotypes,
including increased sensitivity toward multiple
stressors such as heat shock, heavy metal exposure,
peroxide, and starvation [134]. The molecular reason
for this effect was unknown, but speculations
considered the fact that PolyP's energy status is
equivalent to ATP and thus might serve as a suitable
storage compound for phosphate and energy during
stress conditions [133]. Alternatively, it was proposed
that polyP might be involved in the regulation of the
σ38-dependent general stress response system of
E. coli [135,136], which controls the transcription of
various genes related to ROS resistance, including
katE (encoding catalase), sodC (encoding superoxide
dismutase), and the polyphosphate kinase (PPK)
trol under Oxidative Stress Conditions, J Mol Biol (2015), http://
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encoding gene ppk itself [137]. In addition to increased
sensitivity toward ROS, polyP-deficient prokaryotic
cells display also defects in biofilm formation, virulence,
and motility [133,138]. In higher eukaryotes, polyP
affects blood clotting and is involved in apoptosis,
mTORactivation, and neuronal signaling [139–141]. It
remained fascinating how a molecule that is so
structurally simple can be involved in all these
seemingly unrelated functions in diverse organisms.
Bacterial polyphosphate kinases (PPK) reversibly

catalyze the generation of polyP directly from ATP,
whereas exopolyphosphatases (PPX) can degrade
polyP into Pi molecules (Fig. 4) [85]. Numerous
independent studies have reported that deletion of
the ppk gene in many species of bacteria leads to
increased sensitivity toward ROS [85,133,142,143],
and we very recently reviewed the mechanistic details
of several pathways by which polyP protects bacteria
from oxidative stress in a direct or in an indirect fashion
[144]. A role for polyP in protein homeostasis under
severe oxidative stress conditions, however, has only
very recently been deciphered [85]. Measurement of
ATP and polyP levels in E. coli cells lacking either PPK
or PPX in comparison to wild-type cells revealed that
50% of the cellular ATP is converted into long polyP
chains under severe HOCl stress (Fig. 4). Investigation
of ppk-deficient strains of E. coli and V. cholerae
revealed that the absence of polyP results in much
higher sensitivity toward HOCl, suggesting that polyP
has an important function in bacterial HOCl resistance
[85]. However, the question arose of how polyP
protects cells against HOCl. We found the answer in
proteins, preventing them from aggregation and keeping them s
are restored, polyP is reconverted to ATP and client proteins
support the refolding of these client proteins.
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our observation that ppk-deficient strains accumulate
large amounts of protein aggregates in vivo [85].
Consistently, the expression of heat shock response
genes was upregulated under HOCl stress in the
absence of polyP, indicating the need for molecular
chaperones to combat protein unfolding and suggest-
ing that polyP might work as a physiologically relevant
chaperone that can functionally replace proteinaceous
molecular chaperones when present in sufficient
amounts [85]. In vitro and in vivo studies revealed that
polyP prevents aggregation of a variety of denatured
client proteins in a manner dependent on the concen-
tration and polyP chain length and thus acts as a highly
effective chemical chaperone (Fig. 4). PolyP binds
unfolded proteins, prevents their aggregation, and
finally releases them to ATP-dependent foldase
chaperones such as the DnaK/DnaJ/GrpE system
once non-stress conditions are restored [85]. The
demand for polyP under severeHOCl stress is directly
regulated by the oxidant itself via transient oxidative
inactivation of PPX (Fig. 4) [85]. PolyP synthesis is an
elegant way for cells to prevent protein aggregation
during severe oxidative stress and an intriguing new
component of the proteostasis machinery for the
following reasons: polyP (i) does not require ATP for
its chaperone function, (ii) is impervious to oxidative
damage, (iii) works duringATPdepletion, (iv) does not
require time-consuming transcription/translation pro-
cesses, and (v) can be reconverted into ATP by PPK,
which can then be used by ATP-dependent foldases
to promote protein refolding. However, several open
questions remain, particularly concerning the exact
Fig. 4. Model of polyP's
chaperone function. Treatment o
bacteria with HOCl leads to the
conversion of cellular ATP into long
chains of polyphosphate (polyP
catalyzed by the conserved enzyme
polyphosphate kinase (PPK). PolyP
accumulation in the cell is a conse
quence of the reversible oxidative
inactivation of the polyP-degrading
enzyme polyP phosphatase (PPX)
which contains an oxidation-sensi-
tive cysteine in its polyP-binding
site. PolyP accumulation results in
a significant depletion of the cellular
ATP level, affecting most ATP
dependent cellular processes, in
cluding ATP-depending chaper-
ones, such as the DnaK/DnaJ
GrpE system. PolyP is able to
compensate for the lack of ATP
dependent chaperones by serving
as a scaffold that binds to unfolding

oluble and refolding competent. Once reducing conditions
are released. Reactivated ATP-dependent foldases then
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mechanism by which polyP binds unfolding client
proteins to prevent their aggregation. Since the chain
length of polyP molecules strongly influenced the
chaperone effect of polyP [85], it is likely that polyP
acts as a stabilizing scaffold. However, how polyP
distinguishes between native and unfolded proteins is
still not understood.
In addition to the newly discovered chaperone

function of polyP, it has been known for some time
that polyP plays a role in regulating proteolysis in
bacteria. PolyP retargets the Lon protease of E. coli
to degrade distinct substrate proteins, including
ribosomal proteins [145] and the antitoxin modules
of toxin–antitoxin systems [146]. This is thought to be
important for the survival of amino acid starvation
and accumulation of stress-tolerant persister cells,
respectively [147,148]. What remains unknown,
however, is how cells balance polyP's chaperone
activity with its role in protein degradation, particu-
larly under protein-damaging stress conditions. This
question is an interesting future direction for studies
of the role of polyP in proteostasis in bacteria.
Although polyP also exists in animals, where

it—among other functions—stimulates proliferation
[149], influences cytokinesis [150], and affects blood
coagulation by enhancing fibrin polymerization
[139,151], the gene encoding the polyP-generating
polyphosphate kinase has not yet been identified.
Identification of the polyP-generating enzymes will
help fill the gaps in our current understanding of
polyP's role in mammals. Given the fact that many
neurodegenerative diseases including Alzheimer's
diseases and Parkinson's disease have been
associated with oxidative stress and are caused by
the accumulation of protein aggregates, understand-
ing the synthesis and role of polyP in mammalian
cells might lead to improved therapeutic strategies
for a variety of diseases.
Summary and Outlook

Controlled production of RO/CS has been shown to
play an important role during the mammalian host
defense [26,27,152]. Uncontrolled accumulation of
RO/CS, on the other hand, has beenassociatedwith a
number of pathophysiological processes and dis-
eases [15,153]. One common effect that most RO/CS
exert on cells is their damage to the proteome. Over
the recent years, a number of protein and non-protein
chaperones have been identified, which are specifi-
cally activated during oxidative stress conditions to
reduce redox stress-induced protein aggregation.
Their stress-specific, posttranslational activation to-
gether with their ATP-independent chaperone func-
tion make them ideally suited to prevent protein
aggregation under stress conditions that are known
to deplete the energy status of the cell. The
chaperones differ primarily in their modes of activa-
Please cite this article as: Dahl Jan-Ulrik, et al, Protein Quality Con
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tion. Hsp33 in bacteria andGet3 in eukaryotes use the
oxidation status of some of their cysteine residues to
become activated. RidA/DUK114, in contrast, require
N-chlorination of their lysine and/or arginine residues
to turn into active chaperone-holdases, and α2-mac-
roglobulin, an extracellular chaperone, most likely
uses methionine oxidation as trigger for its functional
activation. Together with polyP, which is generated
from ATP and in part responsible for the ATP
depletion at least in bacteria, these chaperones are
capable of binding a variety of different unfolding client
proteins and prevent their irreversible aggregation.
Once non-stress conditions are restored, the chaper-
one-activatingmodifications are reduced bymembers
of the Trx/Grx/GSH systems. At the same time, polyP
is reconverted into ATP, which releases the client
proteins while fueling ATP-dependent chaperone
systems to promote their refolding [85]. Obtaining a
detailed view of the precise mechanisms of molecular
chaperones under oxidative stress conditions and the
processes they are affecting will shed light on our
understanding of how molecular chaperones and the
pathways they are affecting can be manipulated to
alter their oxidative stress resistance. This will help us
to design new specific drugs that target these players
and potentially attenuate the resistance of pathogenic
bacteria toward oxidative stress or help combat the
oxidative protein damage associated with human
diseases. It is also particularly intriguing that so many
of the cellular components with redox-activated
chaperone activity are multifunctional. It remains to
be seen, however, what the significance of this pattern
might be.
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