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Protein folding is considered here by studying the dynamics of the folding
of the triple p-strand WW domain from the Formin-binding protein 28.
Starting from the unfolded state and ending either in the native or
nonnative conformational states, trajectories are generated with the coarse-
grained united residue (UNRES) force field. The effectiveness of principal
components analysis (PCA), an already established mathematical technique
for finding global, correlated motions in atomic simulations of proteins, is
evaluated here for coarse-grained trajectories. The problems related to PCA
and their solutions are discussed. The folding and nonfolding of proteins
are examined with free-energy landscapes. Detailed analyses of many
folding and nonfolding trajectories at different temperatures show that PCA
is very efficient for characterizing the general folding and nonfolding
features of proteins. It is shown that the first principal component captures
and describes in detail the dynamics of a system. Anomalous diffusion in
the folding/nonfolding dynamics is examined by the mean-square dis-
placement (MSD) and the fractional diffusion and fractional kinetic
equations. The collisionless (or ballistic) behavior of a polypeptide under-
going Brownian motion along the first few principal components is
accounted for.
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Introduction

The dynamics of protein folding can be discussed
in terms of the diffusive properties of the polypep-
tide chain. Principal component analysis (PCA), a
covariance-matrix-based mathematical technique, is
a procedure to reduce a multidimensional complex
set of variables to a lower dimension along which
the diffusive properties at all stages of protein
folding can be identified. Folding does not refer to
a progressive pathway of unique single conforma-
tions, but rather to interconversions among ensem-
bles of conformations in a back-and-forth
progression from the unfolded to the folded state.
In this article, we treat the protein-folding problem
by presenting information about the folding and
nonfolding events of a small 37-residue protein, the
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Abbreviations used: PCA, principal components
analysis; FBP28, Formin-binding protein 28; MD,
molecular dynamics; UNRES, united residue; PC,
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triple p-strand WW domain from the Formin-
binding protein 28 (FBP28) (1EOL in Protein Data
Bank notation').

The formation of intermolecular P-sheets is
thought to be a crucial event in the initiation and
propagatlon of amyloid diseases such as Alzheimer’s
disease” and spongiform encephalopathy” and to be
1nvolved in a number of dlsease pathologies,* traf-
ficking,” and cellular 51gnahng Yet, the dynamics
of formation of R-sheets is still not fully understood.
Consequently, much experimental” and theore-
tical®1 research is being carried out with the
WW domain families of proteins, the smallest natu-
ral B-sheet structures, to gain insight into the dyna-
mics of formation of p-sheets.

Folding of proteins involves motion in a large
range of length and time scales. Thus far, there are
no experimental techniques to describe protein
dynamics, in which fluctuations range from bond-
distance variations of tenths of angstroms on the
femtosecond time scale to folding of the whole pro-
tein on a time scale of seconds. All-atom molecular
dynamics (MD) simulation is the only computa-
tional method with which to study these motions.
However, there are two major obstacles limiting its
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usefulness: (i) the shortness of the achievable
simulation times and (ii) the multidimensionality
of the system (>10* degrees of freedom with explicit
solvent).

(i) In all-atom MD simulations, the time scales of
current computers (hundreds of nanoseconds) are at
least one order of magnitude smaller than the folding
time of proteins."" During the past decades, many
approximate methods have been developed to attack
the folding problem. These approaches are either
physics- or knowledge-based methods.'** One of
them makes use of a physics-based united-residue
(UNRES) force field developed in our group over the
past several years.'”'” Each amino acid residue is
represented by only two interaction sites, which
makes the model simple enough with which to carry
out large-scale simulations. In formulating UNRES,
averages are evaluated over the fast degrees of free-
dom, facilitating its application to MD simulations.
The advantage of UNRES compared to other meso-
scopic protein force fields is that it has been derived
carefully as a potential of mean force of polypeptide
chains!” and ultimately parameterized!'®1° based on
the concept of a hierarchical protein-energy land-
scape.?02! Together with the efficient conformational
space annealing method®” of global optimization
and, more recently, with MD simulations,?>?*
UNRES is able to predict the structures of real-size
proteins without ancillary information from struc-
tural databases.'”* Therefore, UNRES appears to be
a good mesoscopic force field for studying the folding
pathways of proteins in real time.

(ii) Out of thousands of modes in proteins, only a
few modes contain more than half of the total fluc-
tuations of the system; therefore, a strategy is needed
to identify the most important (slow) modes. For this
purpose, principal component anagsis (PCA),26-34
also called quasi-harmonic analysis,” molecule opti-
mal dynamic coordinates,>*%” and essential dynamics
method,>® is one of the most efficient methods.

Although PCA can separate the modes of motion
based on amplitude, one should be careful in inter-
preting the results of this analysis. First, the set of
modes capturing the major fluctuations of a system
depend on the width of the sampling window. In
other words, with increasing width of the sampling
window, more and more slower modes can acquire
larger amplitudes and appear as the dominant
mode.”® Second, random (normal) diffusion can
produce cosine-shaped principal components
(PCs),”® which can mistakenly be interpreted as a
transition of the system from one state to another.
This problem exists in only short MD trajectories™
and should not be confused with PCs of long tra-
jectories, which also may have the shape of a cosine-
like function identifying the real transition. Third, it
is important to eliminate overall rotation for large-
amplitude motion, on which the PCA results ulti-
mately depend, especially for peptides and small
proteins. This problem has been solved recently by
introducing a novel PCA based on the replacement
of Cartesian coordinates in PCA by internal coordi-
nates (dihedral angles), called dihedral PCA.*»

The cause of the first two problems in PCA is the
insufficiency of the simulation time for sampling.
Thus, determination of a minimum MD simulation
length, which is required for the convergence of
sampling, is still an actively studied topic. Thus far,
there is no unique solution of this problem. The
length of a minimum MD simulation can change
from system to system and depends on the size of
the system. For small peptides, 1-ns simulation is
enough time to achieve convergence of sampling;*’
proteins require much longer simulation times, but
how much longer is still not clear. Several years ago,
Hess introduced the cosine content of PCs,*! which
is a good indicator of bad sampling; however,
accurate study of the convergence behavior in pro-
teins is impossible because current computers are
not fast enough to probe all available conforma-
tions.”’ One example is the recent unsuccessful
attempt to solve the convergence problem, in which
the authors performed 26 independent 100-ns MD
simulations for the membrane protein rhodopsin.**
The results showed that the sampling was not fully
converged even for individual loops.>* Thus, be-
cause all-atom MD simulations that must achieve
convergence are insufficiently long when treating
large proteins, it is not easy to satisfy the basic
motivation for using PCA in the analysis of all-atom
MD trajectories, which is the identification of slow
modes and their use for prediction of long-time
dynamics.

Besides the development of new theoretical ap-
proaches, in recent years many experiments have
been carried out to study protein folding. The
energy landscape language has emerged for experi-
mentalists and theorists to describe how proteins
fold and function.*'~* The picture of the free-energy
landscape of proteins has benefited from a variety of
experimental studies***° of fast-folding events and
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Fig. 1. Experimental NMR structure' of the triple p-
strand WW domain from FBP28 (1EOL).
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computational studies* ™ of small fast-folding pro-

teins and peptides. The difficulties in computing the
free-energy landscapes for medium- and large-size
proteins are related, again, to the time limitations in
all-atom MD simulations. In order to study larger
proteins and overcome the problems mentioned
above, coarse-grained MD trajectories are required.

A theoretical investigation of the folding dyna-
mics of B-sheet motifs is always challenging and not
always achievable at the atomic level of simulation
because of the longer folding time compared to that
of the a-helix. This challenge makes it more interes-
ting to study this basic structural motif of proteins
because UNRES easily simulates the folding dyna-
mics of a protein such as 1EOL. Many MD simula-
tions, starting from the extended state and ending
either in the native or nonnative conformational
states, are carried out here at different temperatures
with the coarse-grained UNRES force field, and then
analyzed by PCA. By analysis of full folding/non-
folding trajectories, we show that PCA is a very
powerful technique to extract reliable information
about the dominant behavior over the folding land-
scape. We demonstrate the evolution of the lowest-
indexed PC from the randomly diffusive regime to
the unfolded state and then to the native state. The
free-energy landscapes in the space of the two lar-
gest principal components for 1EQL illustrate mainly
a three-state folding pathway, although for some
trajectories at higher temperature, we observe
extremely fast direct folding with the disappearance
of an intermediate basin (two-state folding).

We also study the diffusive behavior along the
low-indexed PCs for both a full trajectory starting
from the unfolded state and ending either in the
native or nonnative conformational states, and in
unfolded, folded, and transition states separately by
using the mean-square displacement (MSD) and the
fractional diffusion and fractional kinetic equa-
tions.””" We show that the diffusive behavior of
the system analyzed by MSD depends strongly on
the length of the MD simulation. Slow diffusion
(subdiffusion) is revealed for the native state, the first
half of the unfolded state, and the full trajectory;
however, we observed an enhanced diffusion (super-
diffusion) in the transition state and in the second
half of the unfolded state. Moreover, we show that
the behavior of a system along cosine-shaped PCs
cannot be normal diffusive and confirmed the
correctness of an earlier finding of collisionless (or
ballistic) behavior of a polypeptide undergoing
Brownian motion.

Results and Discussion

Principal components

Since coarse-grained models enable us to carry out
MD simulations starting from the unfolded state
and ending in the native state and consume a fairly
short CPU time, we have employed the UNRES
force field to generate many trajectories at different

temperatures for 1EOL' (Fig. 1). In this work, we
present the results of fast-, slow-, and nonfolding
trajectories at different temperatures analyzed by
PCA. All trajectories start with the same initial
(extended) structure but with different velocities.
The terms fast- and slow-folding are arbitrary. The
total time of all MD simulations is the same,
~600 ns. If the protein folds before 300 ns (half of
the entire simulation time), then the trajectory is
called fast-folding. If the protein spends half (or
more) of the entire trajectory time to fold, then the
trajectory is called slow-folding. If the system never
folds during the entire 600-ns MD simulation, then
the trajectory is called nonfolding.

Figure 2 illustrates the first three PCs and the root-
mean-square deviation (rmsd) from the native
structure of fast- (panel a), slow- (panel b), and non-
folding (panel c¢) MD trajectories for 1EOL at 330 K.
These three trajectories are representative of many
MD trajectories that we have obtained at 330 K. The
calculated and experimental” folding temperatures
of 1EOL are 339 and 337 K, respectively. Since the
time scale of the dynamics with the coarse-grained
UNRES model does not correspond to that of the all-
atom dynamics because of averaging over the secon-
dary degrees of freedom in UNRES, the time given in
the Figures and in the text below is regarded as an
UNRES time. There is a clear correlation between
PC1 and the rmsd for the fast- and slow-folding MD
trajectories. The PC1 in these trajectories not only
nicely captures the motion of the protein during the
entire trajectory, but also contains the large part,
56.4% and 48.1%, of the overall fluctuations for the
fast- and slow-folding MD trajectories, respectively.
Although some correlation between PC2 and higher-
indexed PCs and rmsd is noticeable in some parts of
the trajectory, these PCs mainly identify the transi-
tion from the unfolded state to the native state. Such
a behavior and the relatively small contributions to
the total fluctuations (e.g., in the fast-folding tra-
jectory, the contributions of PC2 and PC3 to the
total fluctuation are 7 and 11 times less, respec-
tively, than the contribution of PC1) make the
higher-indexed PCs less important. Thus, the main
features of the energy landscape of the system for
fast- and slow-folding trajectories can be repre-
sented by the first PC.

In contrast to the fast- and slow-folding trajec-
tories, in which the first PC captures most of the
behavior of the rmsd, the correlation between PCs
and rmsd is observed in the first three PCs in the
nonfolding MD trajectory (panel c); also, the ampli-
tudes of fluctuation along PC1 and PC2 (in panel c)
are relatively similar to each other. Hence, the dis-
tribution of the captured parts of the overall
fluctuations by the first few PCs is different for the
nonfolding MD trajectory: PC1 ~18.4%, PC2
~12.9%, PC3 ~10.2%. Thus, for the nonfolding tra-
jectory, the first PC is not enough to depict the main
features of the energy landscape.

The principal components can be classified into
three categories: multiply-hierarchical, singly-hier-
archical, and harmonic.?’
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Fig. 2. The first three principal components and rmsd from the native structure of fast- (a), slow- (b), and nonfolding

(c) MD trajectories at 330 K for 1EOL.
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Fig. 2 (legend on

The free-energy profile, j1(g;)=—kgT In P(g;), along
multiply-hierarchical PC(g;)s, where Pi(g;), T, and kg
are the probability density function (pdf), the
absolute temperature, and the Boltzmann constant,
respectively, is highly rugged, i.e., anharmonic, and
many local minima appear in a multiple number of
coarse-grained minima. The multiply-hierarchical
PCs are a main contributor to the total fluctuations
and are associated with global collective mo-
tions.””*” The collective motion in a protein is any
motion that 1nvolves anumber of atoms movingina
concerted fashion.”” The protein moving along a
multiply-hierarchical PC significantly changes its
intramolecular packing topology.>? The probability
distribution along a second category of PC, viz.,
singly-hierarchical, is Gaussian-like with a single
peak, and the free-energy profile along a singly-
hierarchical PC is characterized by a number of local
minima arranged within a single coarse-grained
minimum.” The last category of PC, viz., harmonic,
does not contribute significantly to the total fluctua-
tion, since it involves low- amphtude local minima
and corresponds to local motions.”” Such local
motions have largely been averaged out in formulat-
ing UNRES.

Figure 3 illustrates the free-energy profiles of the
first three PCs of all three MD trajectories (in panels
a, b, and c) described in Fig. 2. In order to avoid
overlapping, the free-energy profiles in Fig. 3 are

200 300 500
Time (ns)

previous page)

shifted by 4x(i—1) units (i is the index of the PC)
along the ordinate axis. Unlike all-atom MD trajec-
tories, in which the free-energy profiles of the first
few tens of PCs usually exhibit a multiply-hierarchi-
cal shape,” in the UNRES trajectories, the free-ener-
gy profiles along only PC1 for the fast- and slow-
folding trajectories and the free-energy profiles
along the first two PCs for the nonfolding trajectory
can be characterized as multiply-hierarchical (i.e.,
they contain more than one major basin of minima).
This feature of the coarse-grained UNRES model, in
which fast motions are averaged out, is advanta-
geous and important for the reason discussed below.

The point is that the subspace spanned by the
multiply hierarchical PCs, which corresponds to the
largest fluctuations, contains the most important
molecular conformations. However, the identifica-
tion of all conformational states is difficult if the
subspace is formed by more than two PCs, thereby
requiring a high-dimensional energy landscape. This
is mainly because the principal components of the
same category are not independent of each other,”
and the visualization of conformational states in
these higher dimensions is unfeasible. The free-
energy profiles illustrated in Fig. 3, in which a mul-
tiply hierarchical shape is revealed mainly along the
first PC (or the first two PCs for the nonfolding
trajectory), show that the problem related to the
visualization of states in the subspaces does not exist
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Fig. 3. Free-energy profiles of the first three principal
components (g;) for fast- (a), slow- (b), and nonfolding (c)
MD trajectories at 330 K for 1EQL. The numbers 1, 2, 3
within each panel refer to PC1, PC2, and PC3.

for UNRES trajectories. Based on the fact that the
subspace formed by multiply-hierarchical PCs con-
tains the most important molecular conformations,
Hegger et al. defined the dimension of the free-
energy landscape by the number of multiply-
hierarchical PCs.53 Based on this definition, the
dimension of the free-energy landscape for
UNRES folding and nonfolding trajectories
decreases to one and two, respectively. One of the
proofs of the Hegger et al.>3 definition is the
correlation between PC1 and rmsd in Fig. 2. It is
an important feature of the UNRES model, since the
dimension of the free-energy landscape of the much

smaller system, the alanine peptide (Alal0), con-
structed from all-atom MD trajectories, is 8 and the
dimension increases with the size of the system.”

Convergence of sampling

One of the main problems pointed out by many
authors,**?'?33*%0 which appears when trajectories
are analyzed by PCA, is the convergence of sam-
pling. As mentioned in the Introduction, for short
MD simulations insufficient for convergence of sam-
pling, the first several PCs can have the shape of a
cosine function caused by random motion of the
polypeptide chain without potential barriers, as
characteristic of Brownian motion.’*?! Therefore,
the cosine content (defined in the Methods section)
was introduced® as a measure of the closeness of
the PC to a cosine shape, which appeared to be a
good indicator for predicting whether a trajectory
has sampled a free-energy landscape sulfficiently for
convergence.”*** The value of the cosine content
varies between 0 (no cosine shape) and 1 (perfect
cosine shape). When the cosine content of the first
few PCs is close to 1 (an indication of bad sampling),
the largest-scale motions in the protein dynamics
cannot be distinguished from that for particles (i.e.,
polypeptide chains) executing random diffusion,
and so cannot be interpreted in terms of specific
features of the energy landscape.’*?!=%4°

It should be noted that there is no conventional
threshold separating the times of insufficient and
sufficient sampling as determined by the value of
the cosine content; however, our previous studies
show that such a crossover might lie somewhere
around a cosine content of 0.2 for small peptides
and increases up to 0.5 for proteins.”**’" Coarse-
grained MD simulations allow us to obtain the
projections of the entire MD trajectories from the
unfolded state to the native state. Therefore, we can
illustrate the evolution (change) of the PCs with
MD simulation time, starting from cosine-shaped
projections for the unfolded state, emerging from
simple Brownian motion® encountered in short-
time simulations, proceeding to projections ob-
tained from trajectories that are long enough to
overcome random diffusion, in which the results
depend only on sampling because of lack of poten-
tial barriers, and reach potential barriers on the
free-energy landscape, in which the values of the
cosine content lie below a threshold value and the
free-energy landscape is independent of the starting
structure on any segment of a folding trajectory.

To show such a time-evolution of a PC, we divi-
ded one of the folding trajectories into segments of
increasing length and carried out a PCA for each
segment. The results are shown in Fig. 4a. In order to
avoid overlapping and to plot several projections at
different time scales (differing by a few orders of
magnitude), we first shifted the projections along
the ordinate axis and then used a logarithmic scale
for the abscissa. Since the logarithmic scale distorts
the cosine-shaped projection, additionally we plot-
ted the cosine contents of these projections in Fig. 4b
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Fig. 4. The first principal component (a) and the cosine
contents of PC1 (b) of a fast-folding trajectory for 1EOL at
330 K for different time scales, starting from random
diffusion (lines 1 and 2) and ending with a full trajectory
(ninth line).

to show the closeness of the shapes of the projections
to the cosine function.

Based on the results shown on these panels, the
projections can be classified into three categories: (i)
projections of Brownian motion (lines 1 and 2),
showing high cosine content; (ii) projection identify-
ing the end of random diffusion and the beginning
of the region in the free-energy landscape where a
potential barrier is encountered (line 3), showing
lower cosine content; (iii) projections of trajectories
that have already overcome random diffusion and
have reached the region of the potential barriers
(lines 4-9). Because of the high value of the cosine
content (nonconverged trajectories) and the qualita-
tively different behavior of the first two shortest
projections (~1 and 2 ns), lines 1 and 2, they cannot
be considered as a reliable source for the free-energy
landscape over which the dynamics occurs. There-
fore, these projections belong to the first category
(Brownian motion). The cosine contents of the next
two shortest projections (third and fourth lines) are
below the threshold value (0.5); however, based on
the change in shape between lines 3 and 4, they can
be interpreted as follows. The third shortest projec-
tion (~3 ns), line 3, neither exhibits a half-cosine
shape nor mimics the projections of longer trajec-

tories, which indicates that 3 ns can be considered as
a transition time when the system stops behaving as
one with Brownian motion and reaches barriers on
the free-energy landscape. This projection belongs to
category (ii) (end of random diffusion). Based on the
behavior of the fourth shortest projection (~4 ns),
line 4, which exhibits the shapes of the longer-time
projections, we can conclude that the trajectory is
already past the region of random diffusion and is
caused by the potential barriers. This and all other
longer-time projections illustrated in Fig. 4a are
representatives of category (iii). In order to streng-
then our arguments about sufficient sampling, we
have analyzed ten 4-ns time-interval segments
obtained from the MD trajectory shown in Fig. 4a.
Eight of them illustrated qualitatively similar free-
energy profiles with two prominent minima, which
is consistent with the free-energy profile of the full
trajectory. Also, the high value of the cosine content
at the last point in Fig. 4b has nothing to do with
random diffusion but corresponds to the transition
of the system from one state to another, as shown in
PC1 of Fig. 2a.

Thus, based on the results illustrated in Fig. 4, we
can conclude that the threshold separating the times
of insufficient and sufficient sampling determined by
the value of the cosine content lies around 0.5, as was
obtained in our previous study.*’ Also, for 1EOL, the
4-ns MD simulation (line 4 of Fig. 4a) appears to be
enough time to achieve convergence of sampling.

Free-energy landscapes of folding/nonfolding
MD simulations

The folding kinetics of the FBP28 WW domain was
studied by different groups at different levels of
modeling.8-10 Using a sequence-dependent a-carbon
(C%)-based Go-like model, Karanicolas and Brooks
found that the FBP28 WW domain folds with bipha-
sic kinetics because the formation of loop 2 contacts
is independent of the folding of the remainder of the
protein.® Using a biased-sampling method with an
all-atom model and with implicit representation of
the solvent, the same authors revisited the FBP28
WW domain. After analyzing the free-energy land-
scapes from MD simulations, they concluded that
the FBP28 WW domain may adopt two slightly dif-
ferent forms of packing in its hydrophobic core.’
Recent studies by Mu and coworkers, using replica
exchange MD simulations in explicit water, showed
that the FBP28 WW domain adopts different hy-
drophobic packing forms due to the misfolding of
turn 2.'° Further discussion of a possible folding
mechanism of this domain is provided below.

To illustrate folding /unfolding events obtained by
the UNRES MD simulations for 1EOL, we con-
structed free-energy landscapes along the first two
PCs, n(g1,92)=—kgT In P(q1,q2). Figure 5 shows the
free-energy landscapes for the MD trajectories
discussed in Fig. 2 and for an extremely fast-folding
MD trajectory at 335 K. The first two panels (Fig. 5a
and b) correspond to the fast- and slow-folding
trajectories, respectively. Two global basins with
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local minima and the transition state can be
identified in both free-energy landscapes.

In panel (Fig. 5a), the A1, A2, and A3 minima with
representative structures belong to the unfolded
state, in which the system spends ~30% (Fig. 2a) of
the entire MD simulation time. The minima A4 and
A5, with representative structures and ~5% and
65% occupation times, correspond to the “collapse”
and native state, respectively. In particular, in the
unfolded state the system mainly jumps back and
forth between minima Al and A2 and between
minima A2 and A3; however, the final jump from
the unfolded state takes place from minimum A3.
The protein overcomes the barrier between the non-
native and native states by undergoing a collapse to
minimum A4 and then proceeding to the native
state (minimum AS5). The representative structures
in the local minima of the unfolded state do not
show any sign of formation of strands or loops;
however, at minimum A4, it can be seen that loop 2,
strand 3, and partially strand 2 are formed. Loop 1
and strand 1 are formed in the transition state.

The nonnative state of the free-energy landscape
in panel (Fig. 5b) can be characterized by five
distinct minima, B1-B5; however, Bl and B5 appear
as a subbasin in which the system stays at the
beginning and at the end of the nonnative state and
spends ~35% of the entire trajectory time there. As
in the fast-folding trajectory (panel a), the system
overcomes the barrier of the transition state between
the unfolded and native state (B7) through the
collapse (the shallow minimum B6). Unlike the fast-
folding trajectory, loop 1, strand 1, and partially
strand 2 are formed in the second local minimum
(B2) of the nonnative state. However, the system
starts to lose the B-sheet structure step by step from
minimum to minimum (B3-B5). At minimum B6, as
in the fast-folding trajectory, loop 2, strand 3, and
partially strand 2 are formed, and loop 1 and strand
1 are formed in the transition state.

Panel (Fig. 5¢) illustrates the free-energy landscape
of the nonfolding trajectory. It can be seen that the
system contains quite a large subbasin characterized
by the major, deep minimum C1 and shallow mini-
mum C4, in which the system remains for the longest
time period (~3/4 of the entire trajectory, Fig. 2c) with
periodic jumps to minima C2 and C3. By jumping
between these four minima, the protein tries to form
loops and strands, although none of them is com-
pletely formed. In this nonfolding trajectory, the
protein does not collapse, as occurred in previous
trajectories but, instead, the system jumps to mini-
mum C5, with quite a small rmsd (~3.8 A) (Fig. 2¢);
however, the structures found in minimum C5 are
misfolded, since strand 3 has lost part of the p-struc-
ture. The protein does not spend a long time in the
misfolded state (~2% of the entire trajectory time, Fig.

2¢) and jumps back to minimum C4. After that, the
system jumps from minimum C4 to minimum C6, in
which it spends ~ 7% of the entire trajectory time (Fig.
2¢) and then jumps back to the subbasin. Thus, in this
case, the protein does not fold.

All the minima and the time (in percent) spent in
the minima can be identified on the first PC in Fig. 2.
It should be noted that the collapsing property of the
version of the UNRES force field®* used in the
present MD simulations is caused by a largely exag-
gerated SC-SC interaction component. (This unde-
sirable feature of the force field is now being
circumvented by imposing an increase of the radius
of gyration at temperatures larger than the folding-
transition temperature; A. Liwo, S. Otldziej, C.
Czaplewski, U. Koztowska and H. A. Scheraga, un-
published work.) However, the collapse is instanta-
neous and is then followed by folding to the native
state.

If the collapse can be considered as a state, then
most of the landscapes of the MD trajectories
studied here illustrate mainly a three-state folding
pathway, although for some trajectories at higher
temperature (335 K), illustrated in Fig. 5d, we
observed extremely fast direct folding without the
appearance of an intermediate (collapse) basin (two-
state folding). These findings are consistent with the
experimental results obtained by Nguyen et al.”

In particular, in an extremely fast folding trajec-
tory, the system spends a very short time in the
unfolded state (minimum D1) and jumps directly to
the native state (D2). After that, during the entire
trajectory, the protein jumps several times to the
nonnative state (minima D3, D4) but, as during the
first time, it returns every time to the native state
very quickly. Thus, we observe a few folding/
unfolding events in this trajectory. Unlike the trajec-
tories at 330 K, in this trajectory we do not see the
steps in which strands and loops are formed during
the first fold (D1-D2). However, when the system
makes short-time jumps from the native state to the
nonnative state (D2-D3, D2-D4), only strand 3 loses
part of the B-structure.

Although not shown here, the PC1-PC3 free-
energy landscapes are similar to the PC1-PC2 land-
scapes illustrated in Fig. 5.

Finally, we note that we have combined the above-
discussed fast-, slow-, and nonfolding MD trajec-
tories at 330 K, calculated the first few PCs, and
constructed the free-energy profiles and landscape
(not shown). The free-energy profiles and landscape
for the combined trajectory visually look like the
ones for the fast- and slow-folding trajectories
illustrated in Fig. 5a and b. In other words, two
global basins with local minima and the transition
state can be identified. This is not surprising, since
the whole trajectory consists of two folding trajec-

Fig. 5. Free-energy landscapes (in kilocalories per mole) for 1EOL with representative structures at the minima of fast-
(a), slow- (b), and nonfolding (c) MD trajectories at 330 K and an extremely fast-folding MD trajectory at 335 K (d). A1-A5,
B1-B7, C1-C6, D1-D4 are the minima on the free-energy landscapes. The structures are colored from blue to red from the

N- to the C-terminus.



322

PCA for Protein Folding Dynamics

tories and one nonfolding one. The folding pathway
in the combined trajectory contains the folding
pathways of all three trajectories and depends on
the order of the trajectories. In other words, the
folding pathway of the combined MD trajectory
repeats the folding pathways of all three trajectories
in the order in which they are placed.

Diffusion in folding dynamics

Diffusion-mediated searching for a specific target
is frequently used in biology, ranging from the
macroscopic prey—predator level in zoology to the
binding of ligands to macromolecules in living cells
and folding/unfolding in proteins. The searching of
events is governed mainly by normal diffusion
characteristic of Brownian motion or its qualita-
tively slower companion subdiffusion; however, it
has been shown that another type of diffusion,
called enhanced diffusion or superdiffusion, is a
very efficient way to search for targets and outper-
forms Brownian normal diffusion as a statistical
strategy for finding randomly located objects.”
Using the language of proteins, subdiffusion indi-
cates that a system is trapped in local minima in
conformational space, and superdiffusion emerges
when the system makes long jumps in conforma-
tional space.

The MSD, a measure of the overall motion present
in a protein, is found to be proportional to 2,
where the quantity Hp is the Holder exponent,
which, in the case of simple Brownian motion, has
the value 1/2 (normal diffusion). The values of Hp
>1/2 and <1/2 correspond to superdiffusion and
subdiffusion, respectlvely When Hp=1, super-
diffusive behavior is called collisionless (ballistic).>

Anomalous diffusion (i.e., sub- and superdiffu-
sion) controls the cooperative motion characterized
by the MD trajectories that, in turn, are projected
onto a set of collective variables defined by PCA.
However, it is not a trivial task to interpret the coo-
perativity exhibited along the low-indexed PCs.”"°
For example, MSD analysis showed that cosine-
shaped projections of a Brownian particle along the
first few PCs exhibit ballistic motlon Leven though
the whole system behaves diffusively.”’ For a protein
(OMPY), it has been shown that the MSD of the first
two PCs, the dynamics of which along these low-
indexed PCs resembles that for Brownian motion,
illustrates subdiffusive behavior on time scales
below 100 ps and ballistic behavior on longer time
scales.? This behavior was considered as an artifact
of a short simulation time because the PCA filters
ballistic motions out of a diffusive system.’*>® We
address this problem at the end of this section.

Using MSD analysis, we have scrutinized the
diffusive behavior along the low-indexed PCs for
several different UNRES MD trajectories of the FBP28
WW domain. We have selected the folding /nonfold-
ing trajectories below, very close to, and above the
folding temperature (T¢=337 K), respectively.

Since the global motions along PC1 contain a
major part of the total fluctuation in 1EOL, our inte-

rest was focused on the diffusive behavior of the
system along this PC. The MSDs along PC1 of the
different folding/nonfolding trajectories below the
folding temperature (namely, 320, 330, 335 K) show
that all trajectories are subdiffusive (Hp <1/2).
These findings are consistent with earlier results
obtained by Yang et al. from single-molecule exper1—
ments, which also showed subdiffusive behavior.””
However, in order to observe a conformational
transition, i.e., superdiffusive behavior, it is neces-
sary to carry out an MSD analysis of the PC of parts
of the fast-folding MD trajectory.

For this purpose, we have split the fast-folding
trajectory (Fig. 2a) into the unfolded region (from 0
to 186 ns), the transition region (from 187 to 210 ns),
and the native region (from 211 to 600 ns), and
carried out a PCA for each region. Figure 6 illus-
trates the MSD as a function of time for PC1 of these
regions.

The native region of the trajectory (red continuous
line in Fig. 6) exhibits very strong subdiffusive
behavior (Hp=0.07). This is not surprising because
the system spends the longest time in the native
state in this trajectory, i.e., it falls into, and is trapped
in, a deep well on the free-energy landscape (Figs. 3a
and 5a), which gives rise to subdiffusion.

Since it is of great interest to characterize the dif-
fusive behavior in the unfolded region of a trajectory,
we studied the first half (from 0 to 93 ns) and the
entire unfolded region (from 0 to 186 ns) in the MD
simulation. Both the first half of the unfolded region
(red dashed curve in Fig. 6) and the entire unfolded
region (blue continuous curve in Fig. 6) are less sub-
diffusive (Hp=0.25) than the native region (red con-
tinuous curve in Fig. 6) of the trajectory. The MSD of
the entire unfolded region (blue continuous line in
Fig. 6) in its first half repeats the behavior of half of
the unfolded state (red dashed line in Fig. 6). The
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Fig. 6. The mean-square displacement of PC1 for the
fast-folding MD trajectory for 1EOL at 330 K, i.e., below the
folding temperature. The black continuous line corre-
sponds to the full trajectory; the red continuous and
dashed lines correspond to the native and the first half of
the unfolded states, respectively; the blue continuous and
dashed lines correspond to the entire unfolded and
transition states, respectlvely, the black dashed and
dash—dot lines correspond to > and #', respectively.
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steeper slope at the end of the MSD curve of the
entire unfolded region of the trajectory, correspond-
ing to strong superdiffusive behavior (Hp=0.73), is
an indication of long jumps that the system makes to
proceed over the transition-state barrier to the native
state.

Most of the MSD curve of the transition region
of the trajectory (blue dashed line in Fig. 6)
illustrates superdiffusive behavior (Hp=0.56), as
expected.

Although we observed superdiffusion in the un-
folded and in the transition state, the full trajectory
does not exhibit superdiffusive behavior for the
following reasons. The MSD analysis depends on
the time interval over which the system travels.
Since the protein spends ~65% of the total MD
simulation time in the native state with strong
subdiffusive behavior, for the trajectory considered,
it is normal that superdiffusion of the MSD of the
full trajectory is not observed. The above findings
for the trajectory below the folding temperature, in
general, coincide with the results obtained by
Matsunaga et al.*

Another interesting finding in the work of
Matsunaga et al. is that the system exhibits super-
diffusive behavior for the trajectories above the
folding temperature.”® Depending on the tempera-
ture (below or above the folding temperature), the
behavior of UNRES MD trajectories is noticeably
different. The folding trajectories for 1EOL at 320
and 330 K exhibit quite a stable native state and,
once the system folds, it remains in the native state
until the end of the simulation (Fig. 2a and b). At
335 K, the native state is still stable, although we
observe a few folding/unfolding events (Fig. 7a; the
free-energy landscape of this trajectory was illu-
strated in Fig. 5d). At 350 K, we still observe
folding/unfolding events; however, the unfolded
state is more stable than the native state (Fig. 7b),
and no folding is observed in trajectories at 360 K
(Fig. 7c). All these trajectories are representative of
many MD trajectories that we have obtained at 335,
350, and 360 K. Similar behavior of the system was
observed by the authors of the work reported in
Ref. 56 (Y. Matsunaga and T. Komatsuzaki, personal
communication). Because the folding time de-
creases as T approaches the folding temperature
from below, superdiffusion can be observed in a full
trajectory even below the folding temperature. A
good illustration of this behavior is shown in Fig. 8,
in which we plotted the MSD along PC1 for the
very fast-folding trajectory for 1EOL at 335 K, which
folds a few times during the entire trajectory (the
rmsd as a function of time for this trajectory is
illustrated in Fig. 7a). The red dashed line corre-
sponds to the MSD of the system in the time
interval of first folding (~27.5 ns, Fig. 7a), whereas
the red continuous line exhibits diffusive behavior
of the system during the entire trajectory with few
folding /unfolding events. The results reveal differ-
ent diffusive behavior: for the trajectory up to first
folding, we observe superdiffusive behavior (red
dashed curve in Fig. 8), and for the entire trajectory

12 4
10
< 81
[a]
2
x 6
44
24
T T T T T T T
0 100 200 300 400 500 600
(b) Time (ns)
12 4
10 4
< &
o
w
=
T g
4 4
2 4

T T T T
0 100 200 300 400 500 600

Time (ns)

T T T
100 200 300 400 500 600

o 4

Time (ns)

Fig. 7. The rmsd as a function of time for MD
trajectories for 1EOL at 335 K (a), at 350 K (b), and at
360 K (c).

the behavior is subdiffusive (red continuous curve
in Fig. 8). Thus, superdiffusion can be observed for
a folding trajectory even at T<Ty, but again, the
type of diffusion depends very much on the
duration of the trajectory. Superdiffusion can easily
be observed at T>T; (Fig. 7b and c) because at these
temperatures the native state is not as stable as it is
at T<Ty, and, hence, it is not difficult to find folding
events at short time intervals due to the large
fluctuations at these temperatures.

In order to strengthen these arguments about the
observed superdiffusion, we have extended our
studies of anomalous diffusion by analyzing the
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Fig. 8. The mean-square displacement of PC1 of the
very fast-folding MD trajectory for 1EOL at 335 K. The red
dashed line illustrates the MSD of PC1 calculated for the
time interval of first folding (~27.5 ns in Fig. 7a); the red
continuous line is the MSD of PC1 for the full trajectory
(Fi% 7a); the black dashed and dash—dot lines correspond
to t”° and t', respectively.

shapes of the pdf for unfolded, native, and transition
states and the full trajectory. For this analysis, we
selected the same fast-folding trajectory illustrated
in Fig. 6. The fractional diffusion and fractional
kinetic equations are useful approaches for the
description of anomalous types of relaxation and
diffusion processes.”’®”" Particularly, the fractional
diffusion equation is considered as an especially
suitable tool for the description of subdiffusive
processes (0<Hp<1/2), whereas the diffusion pro-
cesses in the domain of subballistic superdiffusion
(1/2<Hp<1) can be described by a fractional kinetic
equation.”” Based on an interpretation in terms of
these fractional equations [see Egs. (8a) and (8b) in
Methods], the computed single-cusp shape (red
dashed and continuous lines) of the probability dis-
tribution function of the native state and the full
trajectory, respectively, illustrated in Fig. 9a, corre-
sponds to subdiffusive behavior [0<a<1 in Eq.
(8a)]; the multiple-hump shape (blue dashed and
continuous lines in Fig. 9a) corresponds to the tran-
sition and unfolded state, respectively, and indicate
the presence of superdiffusion in these states
[0<a<1 in Eq. (8b)]. Moreover, according to the
fractional kinetic equation,” when more pronounced
multiple humps appear in the pdf, stronger super-
diffusion is indicated. Although the end of the
unfolded state exhibits much stronger superdiffusion
(Hp=0.73) than the transition state (Hp=0.56), the
latter (blue dashed line in Fig. 9a) illustrates more
pronounced multiple humps than the unfolded state
(blue continuous line in Fig. 9a). The reason that the
second hump in the unfolded state is less pro-
nounced is the following: ~82% of the MSD curve
for the transition state showed superdiffusive
behavior, whereas superdiffusion was exhibited
only in the last quarter of the unfolded state. In
order to illustrate the shapes of the pdf of the tran-

sition, unfolded, and native states and the full
trajectory clearly in one figure, we made the heights
of the plots of Fig. 9a arbitrary because they have
very different time scales.

Finally, in order to explain why Brownian motion
along cosine-shaped PCs shows ballistic behavior,
we employed a recently derived® pdf of a cosine
function,

1-%

where g corresponds to a PC, A is an amplitude of
the cosine function, and g <A. It is clear that P(g)
differs from the Gaussian function, which is cha-
racteristic of Brownian motion, and has the shape
illustrated in Fig. 9b. The same shape for the pdf
was observed for the ballistically dominated regime
by Sokolov et al.,”® studying the ballistic nature of
the Richardson dispersion,®® which pertains to a
mean-square relative separation between two

@)

2.5

2.04

/
5 1.5 :l
]
= ‘} \ i
! oo
1.0 I ! it
! ! I
‘ ] "
IR
05 \
\
YF I e S o gt A -
- - - - .
-6 -4 2 0 2 4 [
(b) PC1 (A)
10
B -
6 r
5
[=%
4
24
o] T T T T T
0.0 0.2 0.4 06 08 10

q

Fig. 9. (a) The probability distribution function of PC1,
computed from the fast-folding MD trajectory at 330 K
(Fig. 2a). The red continuous and dashed lines correspond
to the pdf of the full trajectory and the native state,
respectively; the blue continuous and dashed lines
correspond to the pdf of the unfolded and transition
state, respectively. (b) The pdf as a function of the dimen-
sionless q (with A=1) of the analytical cosine function of
Brownian motion.
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particles, 1n1t1a11y to each other, that evolves in time
according to t°.

Conclusions

We have examined the dynamics of the folding
of the triple P-strand WW domain from the
FBP28, using PCA to analyze the MD trajectories
generated with the coarse-grained UNRES force
field. Since the UNRES model easily simulates the
folding dynamics of small- and medium-size
proteins, we have analyzed many fast-, slow-,
and nonfolding MD trajectories at different tem-
peratures. Detailed analyses of these trajectories
showed that PCA, an already proven mathema-
tical technique for studying MD trajectories of
protein fluctuations, is a very efficient method for
characterizing the general folding and nonfolding
features of proteins. In addition, because UNRES
trajectories can encompass longer time scales than
all-atom trajectories, the coarse-grained MD tra-
jectories enabled us to illustrate the solutions of
well-known problems related to PCA, e.g., the
evolution from Brownian motion to motion in the
unfolded state and then in the native state, which
was very difficult and sometimes impossible to
describe in all-atom MD simulations. Trajectories
that lead to folded structures, and those that do
not, were analyzed by constructing free-energy
landscapes along the first two PCs. Our findings
are in agreement with results obtained in earlier
theoretical® and experimental” studies. We have
shown that in the coarse-grained trajectories
examined, the first PC (sometimes the first two
PCs) may contain the largest part of the total
fluctuations of the system, and the dimensions of
the free-energy landscape can be reduced to one
or two.

Anomalous diffusion in folding dynamics has
been studied with the MSD. Superdiffusion was
observed along the first PC in the unfolded and
transition states at T=330 K. Also, superdiffusive
behavior was revealed in a very fast-folding tra-
jectory below the folding temperature of 335 K,
which implies that the protein is capable of folding.
The validity of these findings has been checked by a
fractional kinetic equation. Moreover, by analyzing
the pdf of the cosine function, we explained why
Brownian motion along cosine-shaped PCs cannot
be normal diffusive but is ballistic, in confirmation
of the correctness of earlier findings.™

Methods

UNRES model and simulation details

The UNRES model of polypeptide chains'*'® is
illustrated in Fig. 10. A polypeptide chain is represented
as a sequence of C* atoms linked by virtual C*...C* bonds
with united peptide groups halfway between the neigh-
boring C*s and united side chains, whose sizes depend

Fig. 10. The UNRES model of polypeptide chains. The
interaction sites are red side-chain centroids of different
sizes (SC) and the peptide-bond centers (p) are indicated
by green circles, whereas the C* atoms (small empty
circles) are introduced only to assist in defining the
geometry. The virtual C*-C® bonds have a fixed length of
3.8 A, corresponding to a trans peptide group; the virtual-
bond (0) and virtual-dihedral (y) angles are variable. Each
side chain is attached to the corresponding C* with a fixed
“bond length,” bsc;, variable “bond angle,” a;, formed by
SC; and the bisector of the angle defined by C;, Cf, and
Ci1, and with a variable “dihedral angle,” ;, of counter-
clockwise rotation about the C%, C7, C;7; frame.

on the nature of the amino acid residues, attached to the
respective C%s by virtual C®.. SC bonds. The effective
energy is expressed by Eq. (1),%

U=wsc ) Uscsc +wscp Zﬁe, Uscp, + wppfz( )
X icj1 Upp, + wtorfz( ) > Uror (V) + Weoraf3(T)
X 3 Urord (Vis Yi 1) + Wb »_; Up (0 ) + wrot > Urot

(OLSC, ) ﬁsc ) ) + Whond 2 Ubond (4 Z wc’:rr
Xfm corr + Wss Z USS Z (1)

with®°

In(e+e1)
ln{exp [(T—TO) mil} + exp {— (Tln) mil} }
2)

where the successive terms represent side chain-side
chain, side chain—peptide, peptide—peptide, torsional,
double-torsional, bond-angle bending, side-chain local
(dependent on the angles « and P of Fig. 10) distortion of
virtual bonds, multibody (correlation) interactions, and
formation of disulfide bridges, respectively. The w’s are the
relative weights of each term. The correlation terms arise
from a cumulant expansion®®* of the restricted free-
energy function of the simplified chain obtained from the

fu(T) = ; To =300K
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all-atom energy surface by integrating out the secondary
degrees of freedom. The temperature-dependent factors
defined by Eq. (2) and introduced in our recent work®
reflect the fact that the UNRES effective energy is an
approximate cumulant expansion of the restricted free
energy. The virtual-bond vectors are the variables used in

The version of the UNRES force field implemented in
this work was parameterized® using 1EOL and the
engrailed homeodomain (1IENH) as the training proteins
to reproduce the experimental temperature-dependent
folding free energy of these two proteins.”® The folding-
transition temperature [calculated in Ref. 54 from the
results of multiplexed replica-exchange MD (MREMD)**%°
simulations with 64 trajectories run at temperatures
ranging from T=250 to 480 K and processing the results
of the simulations with the weighted histogram analysis
method ;WHAM)(’(’] was 339 K (compared to the expe-
rimental” value of 337 K). The theory and procedure for
running mesoscopic MD with UNRES is described in our
earlier work.?>?* Here, we carried out canonical MD runs?*
with the Berendsen thermostat at T=330, 335, and 340 K,
i.e., around the folding-transition temperature. The time
step in MD simulations was 6t=0.1 mtu (1 mtu=48.9 fs is
the “natural” time unit of MD*) and the coupling para-
meter of the Berendsen thermostat was 7=1 mtu.

Principal component analysis

The PCA method is based on the covariance matrix with
elements C;; for coordinates i and j

Cyj=((xi — (1)) (x; — (x7))) ®)

where xi,... , x3y are the mass-weighted Cartesian
coordinates of an N-particle system and () is the
average over all instantaneous structures sampled
during the simulations. The symmetric 3N x 3N matrix
C can be diagonalized with an orthonormal transforma-
tion matrix R:

RTCR = diag(/1, /2, ... Jan), (4)

where Ny>N\,>~>N\3y are the eigenvalues, and R7T is the
transpose of R. The columns of R are the eigenvectors, or
the principal modes; the trajectory can be projected onto
the eigenvectors to give the principal components g(t),
i=1,..,3N:

q=RT(x(t) - (x)) ()

The eigenvalue \jis the mean-square fluctuation in the
direction of the principal mode. The first few PCs typically
describe collective, global motions of the system, with the
first PC containing the largest mean-square fluctuation.

Since we study the coarse-grained MD trajectories, in
PCA we replaced the Cartesian coordinates by UNRES
backbone coordinates (6;,y;),

Xi= COS(Oi), Xiy1= sin(@,-),

(6)

Xj =cos|(y; ; Xj+1=sin i

where i=1, ..., Nand j=1, ..., N—1, are the numbers of 6
and vy angles, respectively. As shown by Mu et al.* and
Altis et al.,*” such a transformation from the space of
backbone angles to a linear metric coordinate space allows
us to avoid potential problems due to the periodicity of the
angles.

The cosine content for principal component i is defined

30,31,33,40
as” "

3 (o) ([ 20

where T is the length of the simulation, and the number of
periods of the cosine function is equal to half of the
principal component index.”’

Fractional diffusion and fractional kinetic
equations

The fractional diffusion and fractional kinetic equations,
which are very useful for describing sub- and super-
diffusive processes, respectively, have the following
forms®051

OP(x,t) 1_q 07

ot =Ky ODt @P(){:7 t), O<ax<l (8a)
&2P(x, 1) L
T =K2_a ODt @P(X, t), O<a<l (8b)

where P(x,t) is the pdf of being at a certain position x at time
t, Ky and K, _ , are diffusion constants, and oD}~* and (D¢
are the Reimann-Liouville operators defined through the
following relations:3%5!

1 0 [f P(x,t)
1—a _ . / L,
oD, 7%P(x,t) = ') 6t/0 dt - t/)l_c" (9a)
o 6 —Q
th = & ()Dt (9b)
1 t P(x,t)
D;“P(x,t) = dt - 9¢
PP = T /0 S

The MSD, (x*(t)), associated with Eqgs. (8a) and (8b), has
the following forms:**°!

2K,

() = mfa (10a)
(20 = 5 (10b)

where I' is the gamma function. The MSD associated with
the fractional kinetic equation shows ballistic and Brow-
nian motion when a—0 and a—1, respectively. The
solutions for the propagators of Egs. (8a) and (8b) in
computable form are obtained by the series:*""

R (-1)" @ \"
P(x,t) = \/W;Z:O (1 —an+1]/2) (m) (112)
B 1 = =
P(x,t) = \/WZ:O (1 —(2—a)[n+1]/2)

(11b)

22 n/2
X Kz,atZ’“

The P(x,t) in Eq. (11a) shows a cusp shape, which
corresponds to subdiffusion; however, when a—1, the
pdf has a Gaussian shape (normal diffusion). The P(x,t) in
Eq. (11b) exhibits the shapes of multiple humps, which
corresponds to superdiffusion, but for a—1, it shows a
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Gaussian shape. The larger that 2—a becomes, the more
pronounced and sharper are the humps.”
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