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Consider the second order nonlinear neutral differential equation with delays:
Ž . 2 2� Ž . Ž .� Ž . Ž Ž .. � .E d �dt y t � py t � � � q t f y t � � � 0, for t � 0, � , where
Ž . Ž . Ž . Ž .q t , f x are continuous functions, q t 	 0, yf y � 0 if y � 0, and 0 � p � 1,

Ž .� � 0, � � 0. When f y satisfies either the superlinear or sublinear conditions
Ž . � ���1which include the special case f y � y y of � � 1 and 0 � � � 1, respec-

tively, we give necessary and sufficient conditions for the oscillation of all continu-
Ž . Ž .able solutions of E . When p � � � � � 0 in E , these results reduce to the well

Ž .known theorems of Atkinson and Belohorec in the special case when f y �
� ���1y y , � � 1. � 2000 Academic Press

Key Words: neutral differential equations; second order; nonlinear; oscillation;
delays.

1. We are here concerned with the second order neutral differential
equation with constant delays

d 2

y t � py t � � � q t f y t � � � 0, 1Ž . Ž . Ž . Ž . Ž .Ž . Ž .2dt

� . Ž . � . Ž . 1Ž . Ž . Ž .on 0, � , where q t � C 0, � , f y � C ��, � , q t 	 0, yf y � 0
whenever y � 0, 0 � p � 1, � � 0, � � 0. For any continuous function
Ž . � � Ž . Ž . Ž .� t defined on ��, 0 , � � max � , � , Eq. 1 has a solution y t

� . Ž . Ž .extendable on 0, � satisfying the initial condition y t � � t for t �
� � � � Ž . Ž .��, 0 ; see, e.g., Hale 11 . A solution y t of 1 is oscillatory if it has

� .arbitrarily large zeros; i.e., for any t � 0, � there exists t 	 t such that0 1 0
Ž . Ž .y t � 0. Equation 1 is said to be oscillatory if all continuable solutions1

are oscillatory.
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Ž . Ž .We shall consider a class of nonlinear functions f y satisfying f � y 	 0
and certain nonlinear conditions typified by the Emden�Fowler equation

� ���1y	 t � q t y y � 0, 2Ž . Ž . Ž .

Ž .where � � 0. We say that f y satisfied the superlinear condition if

� �
dy dy
0 � , � �, for all 
 � 0; 3Ž .H Hf y f yŽ . Ž .
 ��

Ž .and f y satisfies the sublinear condition if


 dy dy0
0 � , � �, for all 
 � 0. 4Ž .H Hf y f yŽ . Ž .0 �


Ž . Ž . Ž .Conditions 3 and 4 correspond to � � 1 and 0 � � � 1 in Eq. 2 ,
respectively.

Ž .For Eq. 2 , there are necessary and sufficient conditions for the
oscillation of all its solutions due to Atkinson and Belohorec, respectively:

Ž � �. Ž . � . Ž .THEOREM A Atkinson 1 . Let q t � C 0, � and q t 	 0. Then, if
Ž .� � 1, Eq. 2 is oscillatory if and only if

�

tq t dt � �. 5Ž . Ž .H

Ž � �. Ž . � . Ž .THEOREM B Belohorec 2 . Let q t � 0, � and q t 	 0. Then, if
Ž .0 � � � 1, Eq. 2 is oscillatory if and only if

�
�t q t dt � �. 6Ž . Ž .H

The purpose of this paper is to prove analogous results of Theorems A
and B for the neutral differential equation with delays in the form of

Ž .Eq. 1 .
As a general reference on oscillatory theory for neutral differential

� �equations, we refer to Gyori and Ladas 10 . Oscillation theorems for´
� �second order neutral equations were discussed by Ladas et al. 14, 15 and

� � Ž .Graef et al. 8, 9 . In the delay differential case, i.e., Eq. 1 when p � 0,
� �reference should also be made to Ladde et al. 16 . Extensions of Atkinson

and Belohorec oscillation theorems to more general nonlinear differential
� �equations were given in earlier papers by this author 18, 19 and Coffman

� � � �and Wong 5 . They were also extended to include delay equations in 20
� �and to forced equations in 21 . These results were further extended by
� � � �more recent papers of Nasr 17 and Das and Misra 7 .
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Ž .2. In this section, we shall prove that condition 5 is necessary and
Ž . Ž .sufficient for the oscillation of 1 if the nonlinear function f y satisfies

Ž .the superlinear condition 3 .

Ž . � . Ž . Ž . 1Ž .THEOREM 1. Let q t � C 0, � , q t 	 0 and f y � C ��, � , satis-
Ž . Ž . Ž .fying yf y � 0 whene�er y � 0, f � y 	 0 for all y and also condition 3 .

Ž . Ž .Then Eq. 1 is oscillatory if and only if 5 holds.

Ž . Ž .Proof. To prove sufficiency, let y t be a nonoscillatory solution of 1 .
Ž .Since yf y � 0 whenever y � 0, we may without loss of generality assume

Ž . Ž .that y t � 0 for all t 	 t 	 0, where t depends on the solution y t .0 0
Ž . Ž . Ž . Ž . Ž . Ž .Denote z t � y t � py t � � . Since q t 	 0, Eq. 1 implies z	 t 
 0

Ž . Ž .and z� t is nonincreasing. Hence lim z� t � l. Suppose that l � 0;t ��

Ž . Ž .then lim z t � ��. We claim that z t cannot be eventually negativet ��

� . Ž .on t , � . Suppose it is the case consider two mutually exclusive cases: i0
� 4 Ž . Ž .there exists a sequence t , t � � as k � � and y t � sup y t ork k k t 
 tk

Ž . � 4 Ž . Ž .otherwise ii there exists a sequence � , � � � and y � � inf y t .k k k t 
� k
Ž .In the first case i , we find

z t � y t � py t � c 	 y t 1 � p � 0,Ž . Ž . Ž . Ž . Ž .k k k k

Ž .which shows that z t cannot be eventually negative. In the second case
Ž . Ž . Ž . Ž . Ž .Ž .ii , we have z � � � � y � � � � py � 	 y � 1 � p � 0, whichk k k k

Ž .again shows that z t cannot be eventually negative. In particular, this
Ž .rules out l � 0. Thus we must have l 	 0, which implies that z t must be

Ž .eventually positive; i.e., there exists t� 	 t 	 0 such that z t � 0 for all0
Ž . Ž .t 	 t�. Otherwise, since lim z� t � l 	 0 and z� t is nonincreasing,t ��

Ž . Ž .we must have z� t � 0 for all sufficiently large t. As z t cannot be
Ž . Ž . Ž .eventually negative, there exists t 	 t� such that z t � 0, so z t 	 z t

� 0.
Ž . Ž . Ž .We therefore have z t � 0, z� t � 0 and z	 t 
 0 on an open inter-

� . Ž . Ž Žval t�, � for some t� sufficiently large. Since f � y 	 0, we have f y t �
.. Ž Ž .. Ž .� 	 f z t � � for all t 	 t� � � and we find Eq. 1 implies the

Ž .second order differential inequality for z t ,

0 � z	 t � q t f y t � � 	 z	 t � q t f z t � � 7Ž . Ž . Ž . Ž . Ž . Ž . Ž .Ž . Ž .
� . Ž . Ž . Ž Ž ..on t � t�, � . Define w t � tz� t �f z t � � which satisfies, on ac-
Ž .count of 7 , the Riccati differential inequality:

z� t tf � z t � � z� tŽ . Ž . Ž .Ž .
w� t � tq t 
 � z� t � � . 8Ž . Ž . Ž . Ž .2f z t � �Ž .Ž . f z t � �Ž .Ž .

Ž .Now integrate 8 from t� to t to obtain

� �dy dyt
w t � sq s ds 
 w t � � , 9Ž . Ž . Ž . Ž .H H H2 f y f yŽ . Ž .Ž . Ž .t� z t��� z t��
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Ž .where we had dropped the last integral in 8 which is non-negative. Now,
Ž . Ž . Ž .the last term in 9 above is positive by 3 whilst the first term w t is also
Ž .positive since z� t � 0. Hence,

� dyt
sq s ds 
 w t � � M , 10Ž . Ž . Ž .H H2 0f yŽ .Ž .t z t ��2 2

Ž . Ž .where M depends only on the solution y t . Letting t � � in 10 , one0
Ž .easily sees that it is incompatible with 5 . This proves the sufficiency part

of Theorem 1.
Ž . Ž .To prove the necessity of condition 5 for the oscillation of Eq. 1 , we

shall apply the contraction mapping principle. Consider the Banach space
2� . � � � Ž . � Ž . 2� .C t , � with the supnorm, y � sup y t for y t � C t , � , where0 t 	 t 00

Ž . Ž .t � 0 is to be chosen later. Assume that condition 5 fails, i.e., tq t �0
1� . Ž .L t , � ; then there is a nonoscillatory solution y t . In fact, we shall show0

1Ž . Ž . Ž .the existence of a solution y t of 1 such that lim y t � .t �� 1 � p
2� . Ž .Let Y be a subset of C t , � consisting of functions y t satisfying the0

estimate

1 1
� �
 y t 
 for t 	 t . 11Ž . Ž .02 1 � p

Define an operator T : Y � Y by

�

Ty t � 1 � py t � � � s � t q s f y s � � ds. 12Ž . Ž . Ž . Ž . Ž . Ž .Ž .H
t

Ž . 1Ž .Since f y � C ��, � , f is Lipshitzian with Lipshitzian constant L �
Ž .sup f y ; i.e.,1�2 
 y 
1�Ž1�p.

� � � �f y � f y 
 L y � y , y , y � �. 13Ž . Ž . Ž .1 2 1 2 1 2

1 � p� Ž .Choose t sufficiently large so that L H tq t 
 . Let y � Y; then0 t0 2

p L p 1 1�Ž . Ž . Ž .from 11 , we have Ty t 	 1 � � H sq s ds � 1 � � 	 andt2 1 � p 2 2 2

p 1Ž . Ž . Ž .Ty t 
 1 � � , so T Y � Y. On the other hand, using 13 in
1 � p 1 � p

Ž .12 we find

� � � �Ty t � Ty t 
 p y t � � � y t � �Ž . Ž . Ž . Ž .1 2 1 2

�
� �� L sq s ds y � yŽ .H 1 2½ 5

t

1 � p 1 � p
� � � � � �
 p y � y � y � y � y � y .1 2 1 2 1 22 2
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Hence T is a contraction since 0 � p � 1, so T has a fixed point in Y. For
1Ž . Ž . Ž . Ž .Ty � y in 12 , y t is a solution of 1 , and that lim y t � . Thist �� 1 � p

completes the proof of Theorem 1.
3. In this section, we shall prove an analogous result for the oscillation

Ž .of Eq. 1 in the sublinear case.

Ž . � . Ž . Ž . 1Ž .THEOREM 2. Let q t � C 0, � , q t 	 0 and f y � C ��, � , satis-
Ž . Ž .fying yf y � 0 whene�er y � 0, f � y 	 0 for all y, the sublinear condition

Ž .3 , and also

� �f u� 	 f u f � if u� 	 0 and � 	 M , 14Ž . Ž . Ž . Ž .
Ž .for some large M � 0. Then Eq. 1 is oscillatory if and only if

�

f t q t dt � �. 15Ž . Ž . Ž .H

Ž . Ž .Proof. Let y t be a nonoscillatory solution of 1 , which can be
� .assumed to be positive on t , � for some t 	 0, and proceed as in the0 0

Ž . Ž . Ž . Ž . Ž .proof of Theorem 1. Denote z t � y t � py t � � . Then z t � y t ,
Ž . Ž . Ž . Ž .and z	 t 
 0, z� t � 0, z t � 0 for t 	 t as before. Returning to 1 ,0

Ž .we obtain the second order differential inequality 7 ; namely,

z	 t � q t f z t � � 
 0, t 	 t � � . 16Ž . Ž . Ž . Ž .Ž . 0

Ž . Ž . t Ž . Ž .Ž . Ž Ž ..Observe that z t � z t � H z� s ds 	 z� t t � t so f z t � � 	0 t 00
Ž Ž .Ž ..f z� t � � t � � � t . For any �, 0 � � � 1, if t is sufficiently large,0 0

Ž .then t � � � t 	 �t, for t 	 t � t . Thus by 14 , we have0 1 0

f z� t � � t � � � t 	 f � z� t � � f t , t 	 tŽ . Ž . Ž . Ž .Ž .Ž .0 1

Ž .from which 16 can be rewritten as follows:

z	 tŽ .
� q t f t 
 0, t 	 t . 17Ž . Ž . Ž .1f � z� t � �Ž .Ž .

Ž . Ž .Integrating 17 and using the sublinear condition 4 , we find

dy dyt Ž . Ž .� z � t �� � z � t��1f s q s ds 
 � 
 K , 18Ž . Ž . Ž .H H H 0f y f yŽ . Ž .t 0 00

dy� z �Ž t �� .1 Ž . Ž .where K � H . Clearly 18 is incompatible with 15 . This0 0 f yŽ .
proves the sufficiency party of Theorem 2.

Ž .To prove that condition 15 is also necessary for the oscillation of Eq.
Ž . Ž .1 , we assume that condition 5 fails and proceed to establish the
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existence of a nonoscillatory solution. In this case, we choose t sufficiently0
large such that

� 1 � p
q t f t dt � � , 19Ž . Ž . Ž .H ž /4t0

� 4 � � �where 0 � � � 1. Let � � max � , � � 0 and I � t � �, t . Consider0 0 0
Ž �. Ž . Ž . pthe linear function � � C I defined by � s � � s � t � � for s � I .0 0 0

Ž . Ž . � Ž . Ž .Here � s 	 0, �� s � � for all s � I , � t � �� � 0, and � t � �0 0 0
Ž . Ž .� � � � � 	 0. For such a given initial function � t , the neutral differ-

Ž . Ž . Ž .ential equation 1 has a solution y t which we shall denote by y t for�

Ž . Ž . �short and y t � � t for all t � I . We shall prove that this solution is0
Ž . Ž . Ž .nonoscillatory. In fact, y� t � �� t � � and we shall show that y� t0 0

�	 for all t 	 t .02
Ž . Ž . Ž . Ž .Since y� t � �� t � � � 0 and y t � � t � �� � 0, observe that0 0 0 0

Ž . Ž . Ž Ž .. Ž Ž ..y	 t � 
 � q t � 
 f y t � 
 � 0 for 
 � 0 small. So f y t � 
0 0 0 0
Ž . Ž .� 0 implies y	 t � 
 
 0 and y� t is nonincreasing in the right neigh-0

borhood of t . Let � � t be the largest t to the right of t such that0 1 0 0
Ž . � Ž . 4m � y� � � inf y� t : t 
 t 
 � . We first claim that m � 0. Consider1 1 0 1 1

the definite integral

t ��0I � q s f y s � � dsŽ . Ž .Ž .H0
t�

t ��0� q s f � s � � � t � � ds. 20Ž . Ž . Ž .Ž .H 0
t0

Since s � � � t � � 	 0 for all s 	 t so I 	 0. Furthermore, since0 0 0
Ž . Ž Ž . Ž Ž .. Ž .f � y 	 0 for all y, we have f � s � � � t � � 
 f � s � t 
 f �s 
0 0
Ž . Ž . Ž .f s , so by 19 we can estimate 20 as follows:

� � 1 � pŽ .t ��0I 
 q s f � s � t ds 
 q s f s ds 
 . 21Ž . Ž . Ž . Ž . Ž .Ž .H H0 0 4t t0 0

Ž .Suppose that m 
 0; then there exists � , t 
 � � � , such that y� �1 0 0 0 1 0
Ž . Ž .� 0 and y� s � 0 if s � � . Integrating 1 from t to � , we find0 0 0

y� � � y� � � � � y� t � py� t � �Ž . Ž . Ž . Ž .0 0 0 0

�0
� q s f y s � � ds. 22Ž . Ž . Ž .Ž .H

t0
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Ž .We note from 22 that
�0

0 � �y� � � � � � 1 � p � I � q s f y s � � ds. 23Ž . Ž . Ž . Ž . Ž .Ž .H0 0
t ��0

Ž . Ž .Since y� t 
 y� t � � for all t 
 t 
 � , we have0 0 0

s��

y s � � � y t � y� � d� 
 �� � � s � � � tŽ . Ž . Ž . Ž .H0 0
t0

� � � � � � � s � t 
 � � � � � �s.Ž . Ž . Ž .0

Ž .As 0 � � � 1, we can choose t sufficiently large so that � � � � � �s0
Ž Ž .. Ž . Ž .
 s if s 	 t . Thus, f y s � � 
 f s and the last integral in 230

satisfies

� � � 1 � pŽ .0
q s f y s � � ds 
 q s f s ds 
 . 24Ž . Ž . Ž . Ž . Ž .Ž .H H 4t �� t ��0 0

�Ž . Ž . Ž . Ž . Ž .Using 21 , 24 in 23 , we find 0 � �y� � � � � 1 � p � 0, which is0 2

impossible. Hence m � 0.1
Ž . Ž .Integrating 1 as in the case of 22 with � , replacing � , we find1 0

y� � 1 � p 	 y� � � py� � � �Ž . Ž . Ž . Ž .1 1 1

�1
� � 1 � p � I � q s f y s � � ds 25Ž . Ž . Ž . Ž .Ž .H0

t ��0

Ž . Ž . Ž .By 21 and 24 again, we obtain from 25 that

� �
y� � 1 � p 	 1 � p or y� � 	 . 26Ž . Ž . Ž . Ž . Ž .1 12 2

Recall that � is chosen to be the largest t to the right of t ; i.e.,1 0
Ž . � Ž . 4 Ž .y� � � inf y� t : t 
 t 
 � . If such � does not exist then y� t must1 0 1 1

�Ž . Ž . Žbe nondecreasing, and 26 shows that y� t 	 for all t 	 t where the02
Ž . Ž . .arguments in 25 and 26 with � substituted by t remain valid . Thus,1

the assertion is proved. So, we can assume that such � does exist.1
Next, we define t to be the largest t to the right of � so that1 1
Ž . � Ž . 4 Ž .y� t � sup y� t : t 
 t 
 t . If such t does not exist then y� t is1 0 1 1

�Ž . Ž .nondecreasing for t 	 � . Hence y� t 	 y� � 	 for all t 	 t . Again,1 1 02

the assertion in proved. In this manner, we can define inductively se-
� 4 � 4quences of � and t , k,� 1, 2, 


 so thatk k

m � y� � � inf y� t : t 
 t 
 � ,� 4Ž . Ž .k k 0 k

M � y� t � sup y� t : t 
 t 
 t .� 4Ž . Ž .k k 0 k
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�We first assume that m 	 and show that M 
 �. Once againk k2
Ž .integrate 1 from t to t to obtain0 k

M 1 � p 
 y� t � py� t � �Ž . Ž . Ž .k k k

tk� y� t � py� t � � � q s f y s � � dsŽ . Ž . Ž . Ž .Ž .H0 0
t0

tk� � 1 � p � I � q s f y s � � ds. 27Ž . Ž . Ž . Ž .Ž .H0
t ��0

� �Ž . � � Ž .Since m 	 so y� t 	 m 	 for all t � t � � , t . Recall y t �k k 0 k 02 2
Ž . Ž .� t � � p � 0. Hence the last integral in 27 is positive. This together0

with the fact that I 	 0 implies M 
 �.0 k
�Now we show by induction that if m 	 , hence M 
 �, then mk k k�12

� Ž . Ž .	 . Integrate 1 from t to � and find similar to 27 that0 k�12

m 1 � p � y� � 1 � p 	 y� � � py� � � �Ž . Ž . Ž . Ž . Ž .k�1 k�1 k�1 k�1

�k�1
� � 1 � p � I � q s f y s � � d� . 28Ž . Ž . Ž . Ž .Ž .H0

t ��0

Ž . � �Note that M 
 � implies y� t 
 � for t � t � � , � , so we have fork 0 k�1
t 	 �0

s
y s � � t � y� � d� 
 �� � � s � t 
 �s. 29Ž . Ž . Ž . Ž . Ž .H0 0

t0

Ž . Ž .Using 29 we can estimate the last integral in 28 as follows:

� � �k�1 k�1
q s f y s � � ds 
 �q s s � � ds 
 � q s s ds.Ž . Ž . Ž . Ž . Ž .Ž .H H H

t �� t �� t0 0 0

30Ž .

�Ž . Ž . Ž . Ž .Thus by 21 , 30 , and 19 , we conclude from 28 that m 	 .k�1 2
� 4 � 4Finally, we note that regardless whether the sequence � , hence t ,k k

�Ž . Ž .becomes finite one always obtains y� t 	 for t 	 t , so y t is nonoscil-02
Ž .latory. Indeed, lim y t � � and the proof of Theorem 2 is complete.t ��
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4. In this final section, we close with some remarks concerning the
results proved in the previous sections and pose some open problems for
further research.

Ž .a The proofs for Theorems 1 and 2 used explicitly the assumption
that p, � , and � are positive constants. It is easy to check that these
proofs remain valid if any or all of p, � , and � become zero. Thus,
Theorems 1 and 2 are true extensions of Alkinson and Belohorec theo-

Ž .rems for the Emden�Fower differential equation 2 .
Ž . Ž .b It should be noted that neither the superlinear condition 3 nor

Ž .the sublinear condition 4 was required in the necessity part of the proofs
Ž .for Theorems 1 and 2. Moreover, the superhomogeneous condition 14

was also not used in the necessity part for the sublinear Theorem 2.
Ž . Ž . Ž .c In Theorem 2 of the sublinear equation, conditions 14 and 15

� � � �were first introduced by Wong 18, 22 and Coles 6 . The proofs of
sufficiency parts of these theorems were based upon improved versions of
original proofs by Atkinson and Belohorec as given in our earlier paper on

� �second order delay differential equations 20 .
Ž . Ž . Ž .d Condition 5 for the superlinear equation 2 in case � � 1 and

Ž . Ž .condition 15 for the sublinear equation 2 with 0 � � � 1 are known to
Ž . Ž .be sufficient for oscillation of 2 without the assumption that q t 	 0;

� � � �see Kiguradze 13 and Belohorec 3 . Their results were further extended
Ž . Ž . Ž . � �to the more general function f y satisfying 3 and 4 by Kamenev 12 . It

will be of great interest to know whether the same results remain valid for
Ž .the neutral differential equation 1 , even in the Eurden�Fowler case; i.e.,

Ž . � ���1f y � y y , � � 1.
Ž . Ž .e A neutral equation with variable coefficient, i.e., Eq. 1 when p

Ž .is replaced by a continuous function p t , is of great interest in applica-
� �tions; see Gyori and Ladas 10 . Our proofs are valid in most parts when¨

Ž .lim p t � p , 0 � p � 1, but weaker assumptions such ast �� 0 0
Ž .lim sup p t � 1 will be a significant improvement upon results givent ��

here.
Ž .f For our proofs to work it is important that 0 
 p � 1, � 	 0, and

Ž .� 	 0. If any one of p, � , � is negative, then neutral equation 1 is of
mixed type. It would be of considerable interest to develop oscillation
results for these equations. For some partial results in this direction, we

� �refer to Grammatikopoulos et al. 4, 9 .
Ž . Ž .g Finally, it is easy to give examples of nonlinear functions f y

Ž . � ���1other than f y � y y , � � 0, which satisfy the superlinear or the
Ž . Ž .sublinear conditions 3 and 4 . To exhibit an example in the sublinear

Ž . Ž .case 4 subject also to the supermultiplicative condition 14 , we consider
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y'Ž . Ž . Ž . Ž .an odd function f y � , y � 0 with f y � �f �y . Clearly f y
1 � y

Ž .satisfies 4 . For u, � � 0, observe

' ' 'u� u �
f u� � 	 � f u f � ,Ž . Ž . Ž .

1 � u� 1 � u 1 � �Ž . Ž .

Ž . Ž .so f y satisfies 14 and Theorem 2 is applicable.
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