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Let E be a real g-uniformly smooth Banach space which is also uniformly
convex (for example, L, or [, spaces, 1 < p < ) and K a nonempty closed convex
subset of E. Let T: K — K be a strictly pseudocontractive mapping in the sense of
F. E. Browder and W. V. Petryshyn (1967, J. Math. Anal. Appl. 20, 197-228). 1t is
proved that (I — T) is demiclosed at zero. If F(T) = {x € K : Tx = x} # J, weak
and strong convergence of the Mann and Ishikawa iteration methods to a fixed
point of T is proved. = © 2001 Academic Press
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1. INTRODUCTION

Let E be an arbitrary real Banach space and let J, (¢ > 1) denote the
generalized duality mapping from E into 25" given by

J(x) = {fe E*:(x, £ = IxI? and I £1l = 11},

where E* denotes the dual space of E and ( -, - ) denotes the generalized
duality pairing. In particular, J, is called the normalized duality mapping
and it is usuallzy denoted by J. It is well known (see, for example, [11]) that
Jq(x) = [[x||?”“J(x) if x # 0, and that if E* is strictly convex then J, is
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single-valued. In the sequel we shall denote the single-valued generalized
duality mapping by j,.

A mapping 7 with domain D(T) and range R(T) in E is called strictly
pseudocontractive in the terminology of Browder and Petryshyn [1] if for all
x,y € D(T) there exist A > 0 and j(x — y) € J(x — y) such that

(Tx = Ty, j(x —y))y < llx = ylIP = Mlx —y = (Tx = T)I>. (1)

Without loss of generality we may assume A € (0,1). If I denotes the
identity operator, then (1) can be written in the form

(1= T)x = (1= TYy,j(x =) = Al(I = T)x = (1= T)yl% (2)
In Hilbert spaces, (1) (and hence (2)) is equivalent to the inequality
ITx — Tyll* < llx —ylI> + klI(I = T)x — (I = T)yll*, k= (1 - 1) <1.

T is said to be demiclosed at a point p if whenever {x,} is a sequence in

D(T) such that {x,} converges weakly to x € D(T) and {Tx,} converges

strongly to p, then Tx = p. Furthermore, T is said to be demicompact if

whenever {x,} is a bounded sequence in D(T) such that {x, — Tx,k}

converges strongly, then {x,} has a subsequence which converges strongly.
In [1] Browder and Petryshyn proved the following:

THEOREM BP. Let H be a real Hilbert space and K a nonempty closed
convex and bounded subset of H. Let T: K — K be a strictly pseudocontrac-
tive map. Then for any fixed y € (1 — k, 1), the sequence {x,},_, generated
from an arbitrary x, € K by

Xyo1 = y%, + (L= )Tx, = [y[+ (1 = y)T]"(x)), n=1

converges weakly to a fixed point of T. If additionally T is demicompact, then
{x,} converges strongly to a fixed point of 7.

In [9] Rhoades also proved the following convergence theorem using the
Mann iteration method [5]:

THEOREM R. Let H be a real Hilbert space and K a nonempty compact
convex subset of H. Let T: K — K be a strictly pseudocontractive map and let
{a,} be a real sequence satisfying the conditions: (i) ay =1, (i) 0 < a, < 1,
n>1, (i) 2,_, a, =%, and (iv) lim,_,a, = a <1 —k. Then the se-

quence of the Mann iteration method generated from an arbitrary x, € K by
Xpi1= (1 —a)x, + o,TIx,, n>0

converges strongly to a fixed point of T.
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Let E be a g-uniformly smooth Banach space which is also uniformly
convex, K a nonempty closed convex (not necessarily bounded) subset of
E,and T: K — K a strictly pseudocontractive map.

It is our purpose in this paper to first prove that (I — T) is demiclosed
at zero. If F(T) = {x € K :Tx = x} # J, we then prove weak and strong
convergence theorems for the iterative approximation of fixed points of T
using the Mann and Ishikawa iteration methods. Theorems BP and R will
be special cases of our theorem. Our class of Banach spaces includes the
Lp,1, spaces and the Sobolev spaces WE1<p<oo.

2. PRELIMINARIES

From (2) we have
lx =yl = Mx —y = (Tx = Ty)l = AlTx — Tyl — Allx = yll,
so that

(I1+2)

ITx — Tyl < Lllx — yll, Vx,y € K where L = X

Since [|x — y|l = Allx —y — (Tx — Ty)|l, we have
(x=Tc— (y = T),j,(x —y))
=llx =yl (x = Tx = (y = Ty), j(x = y))
> Mx =yl ?llx = Tx = (y — T)II?
M x = Tx — (y — D). 3)

v

v

Let E be a real Banach space. The modulus of smoothness of E is the
function

pe: [0,20) = [0,)
defined by

1
%w)=w45wx+w+wrwm—1mﬂslwwsf}

E is uniformly smooth if and only if lim__, ,( pz(7)/7) = 0.

Let g > 1. E is said to be g-uniformly smooth (or to have a modulus of
smoothness of power type g > 1) if there exists a constant ¢ > 0 such that
pe(7) < cr?. Hilbert spaces, L, (or /,) spaces, 1 < p < <, and the Sobolev
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spaces, W2, 1 < p < =, are g-uniformly smooth. Hilbert spaces are 2-uni-
formly smooth while

p — uniformly smoothif 1 <p <2

_
L, (orty) or W is 2 — uniformly smooth if p > 2.

THEOREM HKX [11, p. 1130]. Let g > 1 and let E be a real Banach
space. Then the following are equivalent:

(1) E is g-uniformly smooth.
(2)  There exists a constant c, > 0 such that for all x,y € E

lx +ylI” < lxll? + g<y, j,(x)> + ¢, llyll?. (4)
(3) There exists a constant d ; Such that for all x,y € E, and t € [0,1]
(1 = )x +oyll” = (1 = )llxll? +2llyll? — 0, (£)d, llx = yll,  (5)
where w,(t) = t1(1 — 1) + (1 — )7,

Furthermore, it is proved in [12, Remark 5, p. 208] that if E is
g-uniformly smooth (g > 1), then for all x, y € E there exists a constant
L, > 0 such that

1y (6) = jg(I < Lol = yll* ", (6)

E is said to have a Fréchet differentiable norm if for all x € U = {x €
E:|lxll =1}

e+l =l
lim ——

t—>0 t

exists and is attained uniformly in y € U. In this case there exists an
increasing function b: [0,%) — [0, ) with lim, _, ,+b(¢) = 0 such that

1 1 1
Ellxll2 +<h, j(x)) < Ellx +hl* < Ellxll2 + <h, j(x))> + b(lIAl),

Vx,h € E. (7)
In the sequel we shall need the following results:

LEmma TX [10, p. 303]. Let {a,f,_, and {b,),_, be sequences of
nonnegative real numbers such that 2, _, b, < « and

a,.,<a,+b,, n>1.

Then lim a, exists.

n—>x"n
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THEOREM GK [3, p. 109]. Let E be a uniformly convex Banach space, K
a closed convex subset of E, and T: K — E a nonexpansive mapping. Then
(I — T) is demiclosed at zero.

3. MAIN RESULTS

For the rest of this paper, A is the constant appearing in (1), L is the
Lipschitz constant of 7, and Cyo dq, wq(t), and L, are the constants
appearing in inequalities (4)—(6). We now prove the following:

LEmMMA 1. Let E be a real gq-uniformly smooth Banach space and K a
nonempty convex subset of E. Let T: K — K be a strictly pseudocontractive
map and let {e, Y, _,{ B,):_, be real sequences in [0, 1]. Define T,: K — K by

T,x=1-a)x+aT(1-pB)x+BTx), xe€K.
Then for all x,y € K
”Tnx - Tny”q = [1 + 8n]||x _YHq - an[Aq71Q(1 - Bn) - cqar?il]

x|lx = T(g.(x)) = (v = (&))", (8)

where 8, = 2qa, B,A"'d, (1 + L) + qa, L, (1 + L)""BI~", g.(x) =
(= B)x + B,Txand g (y) = (1 — B,y + B,Ty.

Proof.
IT,x — T,yll*
—x =y = apx = T(g,(0)) = (v = (g, ()]
< llx = yl17 = ga{x = T(g,(%)) = (¥ = T(8.(¥))): j,(x = ))

+ afe,flx = T(g,(x)) = (v = T(2. (M) (using (4)).
(9)

Observe that
(x = T(8,(0)) = (¥ = T(8(9))): Jo(x = ¥))
=(x = g,(x) = (¥ = 8.(»)): i, (x = ¥))
+(8,(x) = T(8,(x)) = (8(¥) = T(2,(1))):y(x = ¥)
= B, lx = Tx = (y = V) + M,(x,y)  (using (3)), (10)
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where

M,(%,y) =(8.(x) = T(8,(x)) = ((¥) = T(2,(3)))-Jy(x =)
=(8,(x) = T(,(x)) = (8.(») — T(8.(»)))-
Jo(x = ¥) = Jo(8u(x) = 2.(»)))
+(8,(x) = T(8,(x)) = (8(¥) — T(84(»)))-
Jo(8,(%) = £.())
2 27 g,(x) = T(&.(x)) = (2.(3) = T(g.())]’
+H(8,(x) = T(8,(¥)) = (&,(») = T(&.())),

Jo(x =¥) = jg(8.(x) =8, (») . (11)
Furthermore, if we set Z(x,y) = llg(x) — T(g,(x) — (g,(y) —
T(g,(yMIY, then

Z,(x,y) =[(1 = B)(x = T(g,(x))) = (y = T(8.(»)))
+B,[Tx = T(g,(x)) = (T = T(g. ()]
> (1= B,)]lx = T(g,(x)) = (v = T(g.()))
+ B, Tx = T(g,(x)) = (Ty = T(g.(N)II'
—w,(B)d,lx—Tx = (y = )" (using (5)). (12)

From (9)-(12) we obtain
IT,x — T,yll

<l =yl — qa{ B, AT x = Tx = (v = Ty) |
+017H(1 = )x = T(8,(x) = (v = T(8.())’
+ X7, | T = T(g,(x)) = (Ty = T(g.(»))|"
Xy (B)d,|x— Tr = (y — )
+(8.(x) = T(g.(x)) = (8.(») = T(2.(1)))

Jo(x =) =i (8a(%) = 8.(1))) }
tafe )l x = T(8.(x)) = (v = T(g. ()
<llx = yll” = a,[gA? (1 = B,) = af ¢,
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X[x = T(g.(x)) = (v = T(8.(¥Y)))]I

+qd A e, 0,(B,)llx = Tx = (y = Ty)lI?

+qa,] g,(x) = T(g,(x)) — (&.() = T(g.())]

X[ j,(x = ¥) = j,(8.(x) = g.(»)]- (13)

Observe that o (B,) = B,(1 — B)7 + BI(1 — B,) <2B,; llx — Tx —
(-l <+ Dllx -yl

1, (x =y) —j,(8.(x) =g <Ly BT lx — Tx — (y — )1
(using (6))
<L, (1+L)"7'BrYx -yl

and
lg,(x) = T(8,(x)) = (8.(¥) = T(&.(»)))]l
< (1 +L)lg.(x) = g.(»)ll
< (L+L)[(1 - B)llx =yl + B,Lllx =yl
<(1+L)lx—yl
Hence
1T, x — T, yll

< [1+2a, 8,07 'qd,(1+ L) + a, B¢ 'qL o (1 + L) [Ix = yI?
- an[qu_l(l - Bn) - al?_lcq]

x||x = T(g.(x)) = (v = (&))",

completing the proof of Lemma 1. |

Remark 1. Let y = min{1, X(g/c,)"/"~ D}, choose any a € (0, y], and
set @, =a, B,=0, Vn>1 in Lemma 1. Then we obtain 7,: K - K
defined for all x € K by

T,x=(1-a)x+ aTx.
Furthermore,
7, x — T,yll" <llx —yll? — a[q)\"_l - a"_lcq]llx —Tx — (y - )Y,
Vx,y € K. (14)
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By the choice of a, we have [gA?™ ! — a‘f’lcq] > 0 so that it follows from
(14) that IT,x — T,yll < llx — yll,Vx, y € K. Thus T, is nonexpansive and
F(T) = F(T)).

LEMMA 2. Let E be a real g-uniformly smooth Banach space and let K be
a nonempty convex subset of E. Let T: K — K be a strictly pseudocontractive
mapping with a nonempty fixed-point set F(T). Let {a,} and {B,} be real
sequences satisfying the conditions

i 0<e,B,<1l,n>1

(i) 0<a=<al™'<b<(grr"/c X1~ B,),VYn =1 and for some
constants a, b € (0, 1)

(i) X, _, Bi < o, where 7 = min{1,(g — 1}.

Let {x,} be the sequence generated from an arbitrary x, € K by

%
—_

yn=(1_Bn)xn+BnTxn7 n

xn+1=(1_an)xn+anTyna nZl-
Then

(@ lim, Jllx, — x*| exists for every x* € F(T).
) lim,_.lly, — Tyl = 0.

Proof. Set x =x,, y =x* in Lemma 1. Then
lx,,, —x*II < [1+ §,]llx, — x*
—a,[qA (1 = B,) — af e, ]llx, — Ty, )% (15)
Condition (ii) implies that
g '(1-B,) —cd 2 [qr (1 - B,) —¢,b] >0, Vn=1
(16)
Hence (15) reduces to
lx,.; —x*I? < [1+ §,]llx, —x*II%, n>1. (17)
It follows from condition (iii) that ¥, _, §, < %, and hence (17) implies

that {|lx, — x*|}} is bounded. Let |lx, — x*|| < M, n > 1. Then (17) implies
that

llx, ., —x*I? <llx, —x*I? + M9§,,
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and it follows from Lemma TX that lim, _ llx, — x*|| exists, completing
the proof of (a). Using (16) in (15) we obtain

llx, . —x*I17 < llx, —x*[|?

—a,[qA (1 = B,) — ¢,b|llx, = Ty,lI” + M%,. (18)

Since lim,, ,.[qgA?"'(1 — B,) — ¢ b1 =qr"” L c,b > 0, then there exists
a positive integer N, such that q)\q 'a-s,) - c b > 1[q)ﬂ ' —¢,bl>
0, Yn > N,. Hence it follows from (18) that

arT
—[q)\q_l — cqb]llxn -1y 17 <llx, —x*? = llx,., —x*I? + M9§,,
Vn > Ny,
so that
aq+1 n n
3 [q)\"_1 - cqb] 2l = Tyl < llxy, —x*I17 + M7} 8,

J=Ny J=Ny
o0
< ey, —x*17 + M? Y 5 < .
j=0

Hence X7 _,llx, — Ty,|l? < %, and this implies liml/x, — 7y,|l = 0. Since
lx, — Tx,l < (A + Dllx, —x* < M1 + L), Vn > 1 and

0<lly, = Tl <y, —x,Il +llx, = Ty,ll
<BA1+LYM+|x,-Tyll -0 asn— =,
we have lim|ly, — Ty, |l = 0, completing the proof of Lemma 2. |

COROLLARY 1.  Let E be a real g-uniformly smooth Banach space and K a
nonempty closed convex subset of E. Let T, {«,}, {B,}, and {x,} be as in
Lemma 2. If {x,} clusters strongly at some point p, then p € F(T) and {x,}
converges strongly to p.

Proof. {x,} has a subsequence {x, } which converges strongly to p € K.
It follows from Lemma 2 that {x,} is bounded. Since I7x, — x*| < Lllx, —

x*|l, Vx* € F(T), then {Tx,} is bounded. Consequently, ||Tx, — pll <
D, Yn > 1 and for some D > 0. Observe that

0<ly, —pl<(1-8,)lx, —pll+B,|ITx, — pl
<lix,, = pll + B, ITx, — pl

< ||an - pll + ,8,,J_D -0 as j — oo,
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so that Yo, =P @S j — . Since T is continuous at p, then Ty, — Tp as
j— . Hence lim ||yn Tyn l=1lp—Tpll=0, so that p F(T) From
Lemma 2, lim||x,, pﬂ exists, "and since lim ||x — pll = 0, we have lim||x,,
— pll = 0, completing the proof of Corollary O |

Remark 2. In view of Corollary 1, we can conclude that if K is also
closed in Lemma 2, then either {x,} converges strongly to a fixed point of
T or {x,} has no subsequence which converges strongly. In particular, if K
is compact, then {x,} converges strongly to a fixed point of 7.

COROLLARY 2. Let E be a real g-uniformly smooth Banach space and K a
nonempty closed convex subset of E. Let T: K — K be a demicompact strictly
pseudocontractive map with a nonempty fixed point-set. Let {«,}, { B,}, and
{x,} be as in Lemma 2. Then {x,} converges strongly to a fixed point of T.

Proof.  Since {y,} is bounded and {y, — Ty,} converges strongly, then
there exists a subsequence { y,,} of {y,} which converges strongly to some
point p € K. The cont1nu1ty of T and lim|| v, — Iy,|l = 0 implies p € F(T).
Furthermore, y, —p =x, —p + Bnl(Txnj - xnj), so that

lx,, = pll <y, = pll + B, ITx, —x, |
<y, —pl+B,M(1+L)—>0 asj—> =
Hence {x,} converges strongly to p € F(T), and it now follows from

Lemma 2 (or Remark 2) that {x,} converges strongly to p € F(T), com-
pleting the proof of Corollary 2. |

LEMMA 3. Let E be a real q-uniformly smooth Banach space which is also
uniformly convex. Let K be a nonempty convex subset of E and let T: K —» K
be a strictly pseudocontractive map with a nonempty fixed-point set F(T). Let
{a,}, (B}, and {x,} be as in Lemma 2. Then for all p,, p, € F(T), the limit

tim llec, + (1= 0)p, — p,|

n— o

exists for all t € [0,1].

Proof. Let a,(t) = |ltx, + 1 —)p, — p,Il. Then lim,_, .a,0) = |p,
— p,ll, and from Lemma 2, lim,, _, .a,(1) = lim, _ llx, — p,|l exists. It now
remains to prove the lemma for t € (0,1). Let 7, be as in Lemma 1. Then

IT,x — T,yll < [1+8,]lx —yll=k,llx—yl, Vx,yek,
where k, = 1 + §,. Since 2, _, 8, < o, then [T} _ k, < . Set

Sy =Tyin Tyir o...T,, m>1.

n,m nos
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Then

n+m-—1

1S, m% = S, Il < ( I] kj)llx =yl Vx,y € K5 S, %, =X
j=n
and S, mp=p,Vp EF(T).

Set b, ,, =S, (&, + A —-0p) —1S, ,x, — A =08, ,pl, D:=

n,m”n

(l_[°]°:1k’j)2||x1 — pill. Let & denote the modulus of convexity of E. We
prove that

D 4 n+m-—1
=8 Sbum| < | IT & |lx, —pill = llx, 0 —=pill. - (19)
2°\D jn

If |x, — p,ll = 0 for some n,, then x, = p,, Yn > n, so that clearly (19)
holds and in fact {x,} converges strongly to p, € F(T). Thus we may
assume |lx, — p,ll > 0, Vn > 1. Tt is well known (see, for example, 2, p.
108)) that

lox + (1 — 1)yl <1 — 2min{z, (1 — )} 5(llx — yll)

<1—=2t(1 =1)5(llx — yll) (20)

for all ¢+ € [0,1] and for all x,y € E such that ||x|| < 1, [lyll < 1. Set
— Sn,mpl - Sn,m(txn + (1 - t)pl)

o (T2 Y, — ol
Sym(tt, + (L= 1)p) =S, ,x

n,m’n

Znm n+m—
(1- t)(njjn 1kj)||xn —pill

>

Then [lw, Il < 1and |z, Il <1 so that it follows from (20) that
2t(1 = 1)8(lw, y — 2z, ll) =1 = llw, , + (1 = 1)z, Il (21)
Observe that

b

n,m

and

||Wl’l m _Zﬂ m” =
oI T = o (TR, — pll
“S x _Sn,mle

n,m”n

(n?:,:nilkj)”xn _p1|| ’

169, + (1 = 1)z, ll =
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so that it follows from (21) that

n+m-—1

2¢(1 —t)( I1 k,-)llxn - pillé
j=n

bn m
(1= O (T2 kI, —pln)
n+m-—1
=< ( n kj)”xn _pIH - ||Sn,mxn - Sn,mpln' (22)
j=n

Observe that

n+m-—1

1=\ D
f(l—f)( Il kj)||x,,—p1||sz(l_[kj) ey = pill =
J=n j=1

1
(since t(1—-1) < 7 Vi e [0,1]].

Since E is uniformly convex, then 2} is nondecreasing and hence it
follows from (22) that

D 4 n+m-—1
?B(an,m) =< ( jl:!t kj)“xn _p1” - “Sn,mxn - Sn,mpln

n+m—1
= ( I'1 kj)llx,, —pill = llx, 1 = Pull,
j=n

establishing (19). From Lemma 2, lim, _ llx, — p,|l exists and hence
lim, lx, — p,l = lim,_ lx,,,, — p;ll. Since &(0) = 0 and
lim, . IT;_,k; = 1, then the continuity of ¢ yields lim, b, ,, = 0 uni-
formly for all m. Observe that

an+m(t) S||txn+m + (1 - t)pl _Pz
+(Sn,m(txn + (1 - t)pl) - tSn,mxn - (1 - t)Sn,mpl)”
= (S, + (1= 0)py) = 18, i, = (1= 0)S, py)|
= ||Sn,m(txn + (1 - t)pl) _pZH + bn,m
= ||S”,m(lxn + (1 - t)pl) - Sn,mp2” + bn,m
n+m-—1
< ( [T %
j=n

”t‘xn + (1 - t)pl _p2” + bn,m

n+m-—1
=( 11 kj)an(t) + b, -
j=n
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Hence limsup,, ,.a,(t) < liminf, , .a,(t), completing the proof of Lem-
ma3. |1

LEMMA 4. Let E be a real g-uniformly smooth Banach space which is also
uniformly convex. Let K be a nonempty convex subset of E and let T: K —» K
be a strictly pseudocontractive map with a nonempty fixed-point set F(T). Let
{a,}, {B,), and {x,} be as in Lemma 2. Then for all p,, p, € F(T),
lim,_, x,,j(p, —p,)) exists. Furthermore if o,(x,) denotes the set of
weak subsequential limits of {x,}, then {p — q, j(p, —p,)> =0, Vp,, p, €
F(T), and Vp, q € o,(x,).

Proof. Since E is both uniformly convex and uniformly smooth, it has a
Fréchet differentiable norm. Set x = p; — p, and h = t(x, — p,) in (7) to
obtain

1
5”[’1 _P2||2 + t<xn 22 _P2)>

1
< Sl + (1= 0)p, — pol?
1 5 )
=< 5”171 -pll° + t<xn - P, Jj(p _P2)> + b([”xn _P1||)-

Since b is increasing and ||x, — p,ll < M, Vn > 1 and for some M > 0,
then

1
E”Pl _P2||2 +1(x, —p,j(p1 — P2))

1 2
EHlx" + (1 —=1t)p, —pall

IA

1 5 )
5”1’1 —pall” + t<xn =1, J( P _P2)> + b(tM).

Thus,

1 2 . .
SIp = pall” + tlim sup (x, = p1, j(py = p2))

n— o

IA

1
— lim [l&x, + (1 = t) p, —p2||2
2 noo

1
< 5||p1 _p2“2 + tlll’Il lnf <xn _p1>j(pl _p2)> + b(tM)
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Hence limsup, . <x,,j(p, — p,)) < liminf, | x,,j(p, — p,)y + 22,
Since lim, .22 =0, then lim,  (x,, j(p, — p,)) exists. Since
lim, , £x,,j(py —p,)) =<p,j(p, —p,), ¥p € w,(x,), we have {p —

q,j(p; —py)> =0,VYp, p, € F(T) and Vp,q € 0,(x,). 1

THEOREM 1. Let E be a real q-uniformly smooth Banach space which is
also uniformly convex. Let K be a nonempty closed convex subset of E and T
K — K a strictly pseudocontractive map. Then (I — T) is demiclosed at zero.

Proof. Let {x,} be a sequence in K such that {x,} converges weakly to
p and {(/ — T)(x,)} converges strongly to 0. Let « and 7, be as in
Remark 1. Then (I — 7, Xx,) = a(I — TXx,), so that {( — T, )(x,)} con-
verges strongly to 0. Since 7, is nonexpansive, it follows from Theorem GK
that (I — Ta) is demiclosed at 0, so that (I — 7T, )(p) = 0. Consequently,
(I — T)(p) = 0, completing the proof of Theorem 1.

THEOREM 2. Let E be a real q-uniformly smooth Banach space which is
also uniformly convex. Let K be a nonempty closed convex subset of E and let
T: K — K be a strictly pseudocontractive map with a nonempty fixed-point set
F(T). Let {e,}, {B,}, and {x,} be as in Lemma 2. Then {x,} converges
weakly to a fixed point of T.

Proof.  Since {x,} is bounded, it has a weakly convergent subsequence
{x, }] 1- Suppose {x, }converges weakly to p. Then p € K because K is
Weakly closed.

Since ||Tx, — x*|l < Lllx, — x*| < LM, ¥x* € F(T), n > 1, and for
some M > 0, it follows that {Tx,} is bounded. Let f & E* be arbitrary.
Then

0 <[f(y,) —f(p)|
~|(r = B)[FCx,) = 5] + B, [£(75,) = 10|

<|f(x,) = f(p)| + B I IITx, —pll >0 asn -,

so that {yn} converges weakly to p. Since lim,_ Jlly, — Ty, = 0 and
(I — T) is demiclosed at zero, we must have p — Tp = 0, so that p € F(T).
If {x,, } is another subsequence of {x,} which converges weakly to some g.
Then as for p, we must have ¢ € K and ¢ € F(T), and it follows from
Lemma 4 that p = g. Hence w,(x,) is singleton, so that {x,} converges
weakly to a fixed point of 7. |

Remark 3. If we set B, =0, Vi > 1 in our lemmas, corollaries, and
theorems, we obtain the corresponding results for the Mann iteration
method.
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Remark 4. Hilbert spaces are 2-uniformly smooth and satisfy (4) with
= 1. If we set g = 2, ¢, =1, and B, =0, Vi > 1 in Lemma 1, then

Theorem R follows from Remark 2. Furthermore, Theorem BP follows

from Corollary 2 and Theorem 2 by setting g = 2,¢, =1, B, = 0,

S

I’l=a

0,1 —k),Vn > 1.
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