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Abstract

The objective of this note is to give an estimate for a positive perturbed semigroup in terms of
the free one. Here we consider perturbation by a potential and the estimate is given by a pointwise
Holder inequality. As a consequence it is shown that ultracontractivity and Gaussian upper bounds
are preserved by such perturbations.
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1. Introduction

Motivated by the Schrodinger equation, a by now classical subject is perturbation of
semigroups by a potential, i.e., a multiplication operdtoMore precisely, we consider
a positiveCo—semigroup(e’A),;0 on a spacd.”(£2) and consider an admissible positive
potentialV, i.e., we assume thatA*"») converges strongly to @p-semigroup which we
denote symbolically bye'4*")),~o whereV,, = inf{n, V}. Perturbations by admissible
potentials have been studied systematically by Voigt [11,12]. Here we prove the following
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pointwise Hoélder inequality
et(A-i—V)f < (et(A+pV)f)1/[7(etAf)l/[?/7 (1)

where

1 1
1<p<oo, —+—=1, 0< fel’(R2).
p P

If the semigroup is given by a stochastic process and the Feynman—Kac formula is valid,
then this is just the classical Holder's inequality (see [10]). However, in the general case the
proof is more involved: we use Trotter’s formula and techniques from positive semigroups.
The Holder's inequality (1) has interesting consequences. Even though the semigroup
¢!tV is larger thare’4 (in the sense of positive (by which we mean positivity preserv-
ing) operators), several properties are preservedlfis ultracontractive, so ig'4+")

and ife’4 admits Gaussian upper bounds so dgést"). The classical case is i is the
Laplacian andV is in the Kato class. But we may also replace the Laplacian by a general
elliptic operator with measurable coefficients or even by an operator of the form

d
A=A=)"biDj Vo )
j=1
with unbounded drift (see [1]). In both cases Gaussian estimates hold. This implies that
a positiveV in the Kato class is admissible also for these operators and the perturbed
semigroup admits upper Gaussian bounds. Note that Gaussian estimates have important
consequences concerning regularity and spectrum (see [2,8]).

We should explain the choice of the sign: Af= A is the Laplacian, we consider
potentialsV > 0 here. Then & ¢4 < ¢/(2*V) in the sense of positive (i.e., positivity
preserving) operators. Moreovet{4+VD) < ¢/ (4+V2) if 0 < V; < Vo and Vs is admissible.

This monotonicity property is used throughout.

2. Holder's inequality for potentials

LetE=L"(£2),1<r < oo, where(£2, X, u) is ac-finite measure space. Ldtbe the
generator of a positive?o-semigroup(e’A),20 on E. Then forV e L*°(£2) the operator
A+V (givenby(A+V)f=Af+VfonD(A+ V)= D(A))generates &p-semigroup
(e' ATV, 50 given by Trotter's formula

et(A—i—V)f: lim (eéAe£V)”f (3)

n—0o0

forall f € E.
Now assume that & f € E. Then the following Hélder's inequality holds.

Proposition 2.1.Let1 < p < co. Then
1 1/p’
et(A+V)f < (et(A+pV)f) /P(etAf) /p 4)

forall 0< f € E, 1 > 0wheres + 2 = 1.
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For the proof we use the following.

Lemma 2.2.LetS: (0, 00) — B(L*(£2)) be a function such that
St+s)=S®)S¢s) (t,5s>0)
andS(r) > 0forall > 0.LetV € L®(£2),1< p < oo, %Jr ﬁ =1.Thenfort > 0,n e N

(s(3)e) e ((S(%)e;,,v)“f)”ﬂ (s ©)

ae.forfeE,.

Note that (5) is an inequality between measurable functions2otiere we denote
by E. the cone of those functions i = L"(£2) which are> 0 almost everywhere. We
do not assume any continuity of the semigrauprhis will be important in the proof of
Proposition 2.1.

Proof of Lemma 2.2. By the Gelfand—Naimark theorem [9, 11.18] there exists a compact
spaceK and an algebra isomorphisth: C(K) — L*°(£2). In particular, forf € C(K)
one hasf(x) > 0 forallx € K if and only if (Jf)(y) > 0 u-a.e. Thus, in order to prove
the lemma we may replade™ (£2) by C(K).

Letx € K, t > 0. Thenu, , := S(t)’'8, defines a positive Radon measurefonwhere
S(r)’ denotes the adjoint f(¢). Let0< f € C(K). Then

((S(t/myerV)" £)(x)

:/egvm)/eﬁvwn_l),_,

K K

r )
X/e”V(M)f(yl)dﬂé,yz(.Vl)"'dﬂﬁ,yn(ynfl)dﬂﬁ,x()’n)

K
L
= / / enVOEtYON f(y)dprs , (31) - dpts ()
K K

1y
r ) )
S [f.../enp(v())1)+ +V(}l))f(yl)d/"l':l’y2(yl)..dl"l’rtl,x(y”)}
K K

, 1/p
[//11’ f(yl)du)tl’),z()’l)"'dljv”l,x(yn):|
K K

= {[G)etm) o} awonwre.

Proof of Proposition 2.1. Let D(A); = E+ N D(A). Since lim AR, A)f = f
(with R(x, A) = (A — A)~ 1) in E for all f € E, it follows that D(A) . is dense inE,.
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Thus it suffices to prove (2.2) foraft e D(A),. Let f € D(A)4. LetA > w(A) (the type
of the semigrour(e’A)l>o). There exist € E such thatf = R(A, A)v. Letw € E such
that |v] < w andw(x) > 0 a.e. Thert := R(A, A)w > 0 a.e. In fact, if not there exists
0< f € E’, the dual space af, f # 0 such thatu, f) =0.

Then(Au, f) = lim,_o L% > 0,

Thus O< (w, f) = (Au, f) — (Au, f) = —(Au, f) <0, a contradiction.

Note that

00 [e'9) [e'9)
etAu — e'A/e_)‘seSAwds Z/e—)\se(t—s—s)Awds — ekt / e—krerAwdr
0 0 t

< MR Aw = eMu.
Thus the space
E,:={h€E: |h| <m-ufor somem € N}

is invariant undee’4 for all t > 0. The mappingy: L>°(2) — E,, g — gu iS an isomor-
phism.

Moreover.e'V ¢ = pe'V (r > 0).

Let S()g = %e“‘(ug) for g € L*°(2). ThenS(#)S(s) = St + s) for s, > 0 and
(S(LyenVyrg = LentenVy (ug) for g € L®(2), t > 0, n € N. Thus, by Lemma 2.2,
forg=1L,

(ehesV)" f =u(St/mer¥)"g
< u((S(t/n)e%pV)ng)l/[’ . (S(t)g)l/p/

1 /p rq 1/p
:u(—(e%Ae%pv)nug> (—etA(ug)>
u u

_ uu—l/[’((eﬁAeﬁpV)nf)l/I’u—l/p’ (etAf)l/p’
_ ((eﬁAe%pV)”f)l/ﬁ(etAf)l/[’/

which proves the claim. O

Definition 2.3. A measurable functiofv : 2 — [0, oo] is calledadmissible(with respect
to A)iffort >0, f € E,
lim AtV f = S(r) f

n—oo

exists inE and defines &o-semigroupss on E. HereV, (x) = inf{V (x), n}. In that case
we denote byA + V the generator of and writee!‘A*") := §(1), t > 0.

Admissible potentials were studied systematically by Voigt [11,12]. Below we will con-
sider some concrete examples.

Now we can formulate the general version of Hélder’s inequality for admissible positive
functions, which follows immediately from Proposition 2.1.
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Theorem 2.4(The potential Holder's inequality)let E = L"(£2), 1 < r < oo, with a
o -finite measure spaocg?, X, u).

Let V:2 — [0, co] be a measurabld < p < oo % + % = 1. Assume thapV is
admissible. Leff € E.. Then
o ATY) £ < (et(A+pV)f)1/P(ezAf)1/P/ (6)
n-a.e.

We note a consequence in terms of norms instead of pointwise inequalities.

Corollary 2.5. Let V: 2 — [0, o¢] be measurablel < p < oo, + , = 1. Assume that
pV is admissible. Then

||et(A+V)f||r < ”et(A-i-pV)f”i/l’ ) ”etAf”;L/P/
forall 0< f € L"(£2). Consequently,

”et(AJrV) “,E:(LV) < ||et(A+pV) ||]£-)/(I;f “ “ Hg(lzr

Proof. Letgi=p-r,q2=p'-r. Theng1 > 1 and - + = = 1. Applying Holder's in-
equality to (6) we obtain for & f € L"(£2),
[ A £, <AV )P )M

1 1/p
ol G 4 e T

3. Ultracontractivity and Gaussian estimates

Let (e’A),>o be a positiveCg-semigroup onE = L"(£2) where 1< r < oo is fixed.
Assume that the semigroup udtracontractive of asymptotic dimensian> 0, i.e., there
exists a constant> 0 such that

1
T

le gyr 1oy Sct™27 (O<1< D). (7)
We choose such that also
| gy <S¢ O<t<D). (8)

By the Riesz—Thorin theorem it follows from (7), (8) that foK g < oo

[ P 20D (0<r< 1) 9)

Proposition 3.1.LetV : 2 — [0, co] be measurable ang > r such thatpV is admissible.
Let

Cp = Oiufl”et(AerV) H‘B(L’
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Then

A+V yp p —%G-1
o't )H%(L’,LI’)SC WP 270 (0<r<. (10)

Proof. First case r = 1. By the potential Holder’s inequality, Theorem 2.4, fox0
felLl
t(A+V) 1(A+pV) A\Y P 1A YD
e f<(e )7 (e )
< (et(A+pV)f)1/pc1/p’t*%% ”f”i/p"
Hence

[V, < e A+ p |2 e =8 Y

1 1 ’ _Q 1_1
<P 2D f

forO<r<1.
Second case > 1. Letg = p-r' —r'. Thenr < p < g. We now use (8) and (9).
LetO< felL’, 0<r<1.

By the potential Holder’s inequalitye’ (A" £)P < (! A+PY) £ (!4 f)
Since§ 1" =gq, it follows from Hélder's inequality that

1/r
[ gy <y ( [y
2 2

<epllfll- e r 4"

; _dcl_1y4q /
<cpll fllrc?” 2D ppdlr

P
I

Hence, for O<r <1,

A 1 Yp 1/p = 5G= 1 ey
Ay I A e e A s
1 ro_del 1
<GPV o

We recall the following converse of the Riesz—Thorin theorem (see [1, 7.3.2]), due to
Coulhon [13].

Extrapolation Theorem 3.2. Assume that9) holds wherer < g < co. Assume further-
more that

tA
oS e ey < 0

Then there exists a constarit> 0 such that

le gyr 1oy S€1T7E Q<1< D),

Applying this Extrapolation Theorem to the semigrcn(uf:fA+V)),>o, we deduce from
Proposition 3.1 the following.
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Theorem 3.3.Let (¢'4),>0 be an ultracontractive positiv€o-semigroup of asymptotic
dimensiond > 0 on E = L"(£2). Let V: 2 — [0, co] be measurable such thatV is
admissible for somg > r.

Assume that

sup || A+Y) . ) 11
0<t<pl”e ”‘B(L )y < (11)

Then(e!A+Y)),>¢ is ultracontractive of asymptotic dimensian

Alternatively, instead of (11) we may assume that the constgntd Proposition 3.1
can be controlled:

Proposition 3.4.Let the assumption of Propositidhl be satisfied, but assume thav

is admissible for allp > 0. If Iiﬁp_,ooc}/” < 00, then(e! V), 5 is ultracontractive of
asymptotic dimensiod.

This follows directly from Proposition 3.1.
Next we assume that= 1.
Then the ultracontractivity assumption (7) means #atis given by a kernek” €
L>®(£2 x £2) via
(e”*f)(x)=/K,A(x,y)f(y)du(y) x-ae, 1>0,
2
where

0< KA y)<et™? (0<t< D),
and consequently
0< KA (x,y) <cnt™ /%™ (1>0)

for somew > 0 and some constani > 0.
Now we want to estimate the kernel &f4*") by the free kernek /.
We assume now tha? c R? is open and that is the Lebesgue measure.

Lemma 3.5.Letkq, k2: 2 — [0, oo) be measurable and bounded such that

1/q
f ki) f ) dp(y) < ( f kz(y)f(y)du(y)>
2 22

forall 0< f e LY(£2), | fllL <1wherel< g < oo.
Thenki(y) < ka(y)¥, pn-a.e.

Proof. By Lebesgue’s Differentiation Theorem (see, e.g., [6, 1.7.1]),
[ e < Irim(

i 1 1 1/q
ki(x)=Iim ka(y)d
1= B 1o\ 1B, ()] / 2 ’“”)
By (x) B (x)

=ko()Y? x-ae. O
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Now we continue to assume (7), (8) foe= 1. Let 0< V be measurable such that
is admissible for somg > 1. Assume (11). Thuge'(A+Y)),5 ¢ is an ultracontractiveo-
semigroup on.1(£2) by Theorem 3.3. Thug'“+") is given by a kernek**". By the
potential Hélder’s inequality for & f e L1(£2) with || f]l1 < 1 we have

f KIAJ’_V(.X, y)f(y) dy — (et(A-l—V)f)(x) g (el(A+pV)f)l/p(x)(elAf)l/p/

2
4 B 1
<t (/Kt (x,y)f(y)dy) .
2

It follows from Lemma 3.5 that for almost afl € 2
d ’
KMV (e, y) <et 2K (x, )MP

foralmostally € 2,0< 1 < 1.
By Fubini’s theorem this means that

d /
KAV (x,y) <et 2 K2 (x, y)VP (12)

for almost all(x, y) € 2 x £2.
Now we assume thé(tztA)t>0 admits aGaussian estimatésee [2,3]), i.e., there exists
a constant such that

K2 (x,y) < const =5 e~ Wyt (13)
(0 <t < 1) for someb > 0. Then it follows from (12) that
K2V (x,y) < const =%~y p'bt

(0 <t <1). Thus we have proved the following.

Theorem 3.6.Assume tha(tefA)t>0 satisfies a Gaussian estimate. let2 — R be mea-
surable such thapV is admissible for somg > 1 and supy_, <1 [le' ™" [l L) < 0.

Then(e!A+Y)),> ¢ also satisfies a Gaussian estimate.

In Section 5 we will show by an example that in Theorem 3.6 it does not suffic&’that
is admissible.

We remark that the Gaussian estimate (13) implies that every opefatisrgiven by a
kernel K such that

d 12
0< KA (x,y) <const t =2 WyI7/br oot

forall + > 0 and some» > 0. Moreover, Gaussian estimates have interesting consequences
for regularity and spectral behaviour (see [2,3,8]).
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4. Schrodinger operators

We first consider the Gaussian semigr@Uf(t)),»o on LY(R?) given by

1
(U0 = G [ ay,

R4
The generator i%Al, whereA is the Laplacian o }(R¢) with domainD(Ap) = {f €
LYR?): Af e LY(R?)}. Following Voigt [11,12], we denote by
kdzikfeLLbdnvn@:=essam / |&ﬂx—yﬂ“ﬂxﬂdy<oo}
xeRd
lx—yl<1

theextended Kato clasand forV e K,

cﬂvrzg%<&5§mt/ kﬂx—ﬁHV@ﬂ@J,

R e Si<a
where
x| ifd=1,
ga(r) = { x N ifd=2,
—Jgﬁﬂﬂ”ﬂ if d > 3.

The Kato classK, is then defined byK; :={V € Ky: cg(V) = 0}. These two classes

of functions can be alternatively described as follows (see [11, 5.1]). A measurable func-
tion V is in Ky if and only if V£ e LY(R?) for all f € D(A1). Moreover,K; = {V €

Ka: IIVR(, A1)llgr1) — 0 (A — o0)}. Here we identifyV’ with the multiplication oper-

ator f — V - f from D(A1) into L1(RY).

Theorem 4.1.Let0O< V € Ky andcg (V) < 1. Then%Al—i- V with domainD (A1) N D(V)
generates a positiv€g-semigroup which admits Gaussian estimates.

Proof. It follows from [11, Remarks 5.2(b)] thgdV is admissible forp > 1 such that
cis(pV) < 1. Moreover, by, e.g., [5, Theorem 2.9],

sup llefGA1+Y)
0<z<pl”e I

) < OQ.
Now it follows from Theorem 3.10 that the semigro(qﬁ(%ﬂl“’)),;o admits Gaussian

estimates. [11, Theorem 5.3] implies that the generator of the semige61561+v))t>o
is the operato Ay + V with domainD(341+ V) = {f € D(A1): [|fIVdx <oo}. O

Next we will assume tha(re’A)t>0 is a positiveCo-semigroup onL1(£2) satisfying a
Gaussian estimate, wher2 ¢ R? is an open set. This is the case4fis a uniformly
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elliptic operator with measurable coefficients. More preciselylgth;, c;, co € L*(£2),
i,j=1,...,d, be real coefficients and assume that
d
> ajEE >l (xef)
ij=1
for all ¢ e R"”, wherex > 0. Consider the form

d d
a(u,v) =/< Z aijDiuDjv—l—Z(biDivu +ciDiuv—|—couv)> dx
Q i,j=1 i=1

with form domainD(a) = H3(2) or D(a) = H(£2).
Denote byA, the associated operator @&3(£2). In the case wher® (a) = H(}(Q) we
do not assume any regularity condition far, if D(a) = H(£2), then we assume thex-
tension propertyi.e., for each: € H1(£2) there existsi ¢ H1(R?), such thaii|o = u, see
[1, 7.3.6]). Then the semigrouf—42),~ admits Gaussian estimates. This was proved
in [3] for b;,c; € W-* and in the general case by Daners [4], where in the case of
D(a) = HY(£2) a stronger version of the extension property is assumed. Ouhabaz [7]
showed recently that the weak form of the extension property suffices (see also [8]).
Since (e*’AZ),go satisfies Gaussian estimates, the semigroup extrapolate’(1@)
and we denote bye~'47),> the extrapolated semigroup<lp < co. Now we consider
a potential 0< V € K. Because of the Gaussian estimate, the poteftia@ not only
admissible for the Laplacian dnt (R?) but also for the general elliptic operator considered
here. In fact, we have the following result.

Theorem 4.2.Let 0 < V € K;. ThenV is admissible for—A; and the semigroup
(e71A1HV)), 5 o has a Gaussian estimate.

Proof. (a) Denote byG the Gaussian semigroup dnt(R¢) with generator; A;. Then
the hypothesis implies that 41 < ¢G(br)e® for all r > 0 and for some» e R, ¢ > 0,
b > 0 (see [3]). Taking Laplace transforms we see tRét, A1) < cR((A — w)/b, %Al).
Since lim oo |[VR(A, %A1)||£(L1) =0, by [11, 4.7 and 2.1(b)], it follows that also
lim; oo IVR(A, A)llgr2) = 0. Then by [12, 4.7, 4.5]pV is admissible with respect
to A1 forall p > 0.

(b) In order to apply Theorem 3.6, we have to show that

t(A1+V) H

sup ||e < o0.

LOO
0<t<1 BL®)

For this, since/ is admissible, it suffices to show thiat (41=V) £l 100y < cforalln e N
and all 0< f € LN L™, | flloo < 1. Consider the adjoint form* given bya*(u, v) =
a(v, u) with form domainD (a*) = D(a). The associated operatorAg, the adjoint ofA».
Then the adjoint oAz + V,, is A5 + V,,. SinceV is admissible also foA] (the negative
generator of the extrapolated semigrougef 42), ¢ to L1) it follows from (a) that

oA+ g, <

forall f e L*NL>®, | fll;1 <1,n €N, >0. This implies the claim by duality. O
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5. Unbounded drift

As a further application we consider Schrodinger semigroups with unbounded drift. Let
b=(b1,...,by):R? = RY beC?functions and lety : R? — [0, co) bec continuous. Let
1 <r < o0. Assume thaly satisfies the condition

divb
— <Wo+c (14)
.
for some constant > 0. Define the maximal operator
d
Armaxt = Au— Y " b;Dju — Vou
j=1

on L” (R?) with domain
D(Ar’max) = {M € Wlé’cr (Rd) Ar,maxl/l € Lr (Rd)}

Then it is shown in [1] tha#i, max has a (unique) restrictioA, which generates a minimal
positive Co-semigroup orL.” (R?). Note that the drift functions; may be unbounded. In
that case the potentidfy is needed for compensation. Now assume thasatisfies the

stronger condition

divb < BVo+c¢ (15)
for someB < 1 and some > 0, and also
b)) <y Vo) (x eRY). (16)

Thenitis shown in [1] that th€0—semigroup(efAf)t>o admits Gaussian estimates. Conse-
quently, it has an extrapolation semigro@p®1),>o on L1(R%). The previous results allow
us to add a positive potenti&l. In fact, as in Section 4 we obtain the following result.

Theorem 5.1.Let0< V € K;. ThenV is admissible fordA; and the semigroup

() g
>

admits an upper Gaussian bound.

The proof is the same as for Theorem 4.2. Note that for the duality argument we need
the complete operator (also with coefficienfsas in the case considered above). We refer
to [1, Section 5].

Note added in proof

We are grateful to V. Liskevich who pointed out that Holder's inequality (6) appearsin a
more special situation in: Y. Semenov, Stability/df-spectrum of generalized Schrodinger
operators and equivalence of Green'’s function, Int. Math. Res. Not. 12 (1997) 573-593,
inequality (6.2).
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