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Abstract

Under the assumption thatis a non-negative Radon measureRshwhich only satisfies some growth
condition, the authors obtain the boundedness in some Hardy-type spaces of multilinear commutators
generated by Calderon—-Zygmund operators or fractional integralsRB#O() functions, where the
Hardy-type spaces are some appropriate subspaces, associated to the cor88&DPed) functions, of
the Hardy spacé/(u) of Tolsa.
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1. Introduction

We will work on thed-dimensional Euclidean spa#¢ with a non-negative Radon measure
w which only satisfies the following growth condition: there exists a consfant 0 such that

M(B(x, r)) < Cor
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for all x € R? andr > 0, whereB(x,r) = {y e R%: |y — x| < r}, n is a fixed number and

0 < n < d. Since the measurg is not necessary to satisfy the doubling condition that there
exists a constanf > 0 such thatu(B(x, 2r)) < Cu(B(x,r)) for all x € suppgu) andr > 0,

we call suchR? a non-homogeneous space. It is well known that the doubling condition is a
key assumption in the analysis on spaces of homogeneous type. However, in recent years, a lot
of papers focus on the study of function spaces and the boundedness of Calder6n—-Zygmund
operators in non-homogeneous spaces and indicate that many classical results still hold in non-
homogeneous spaces; see [4—7,10-13] and their references. The analysis on non-homogeneot
spaces was proved to play a striking role in solving the long open Painlevé’s problem by Tolsa in
[14]; see also [15] for more background.

The main purpose of this paper is to establish the boundedness in some Hardy-type spaces
of multilinear commutators generated by Calderén—Zygmund operators or fractional integrals
with RBMQ(u) functions. Before stating our results, we first recall some necessary notation and
definitions.

Let K be a function orR? x R \ {(x, y): x = y} satisfying that forx # y,

|K(xa)’)|<c|x—)’|_na (11)
and for|x — y| > 2|x — x|,
lx — x|
|x — y|n+5’

wheres € (0,1] andC > 0 is a constant. The Calder6n—Zygmund operator associated to the
above kernek and the measure is formally defined by

|K(x,y) — K&, )|+ |K(»,x)—K(y.x)|<C 1.2)

T(f)(x)= / Kx, y)f(y)du(y). (1.3)
R4

This integral may be not convergent for many functions. Thus we consider the truncated operators
T for € > 0 defined by

T(f)(x) = / K. fO) dp(y).

[x—yl>€

We say thatl" is bounded onl.2(u) if the operatorsl, are bounded oi.2(x) uniformly on
€ > 0.

By a cubeQ c R? we mean a closed cube whose sides parallel to the axes and we denote
its side length by (Q). Let @ and 8; be positive constants such that- 1 andg; > «". For
a cubeQ, we say thatQ is («, 8)-doubling if u(¢Q) < Bu(Q), wherea Q denotes the cube
concentric withQ and having side lengtll(Q). In what follows, for definiteness, i andg are
not specified, by a doubling cube we mea(®a2¢+1)-doubling cube. Especially, for any given
cube Q, we denote by@ the smallest doubling cube in the fami{QkQ}k>o. For two cubes
01 C 02, set

Noj.0, k
w(2°01)
Kopo, =1+ Y o —0.
= 1(2*0y)"

whereNy, ¢, is the first positive integet such that (2Q1) > 1(Q»); see [10] for some basic
properties oK g, ¢,-
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Definition 1.1. Let p > 1 be some fixed constant. We say that a functi@anL
the spacdRBMQ(w) if there is a constanB > 0 such that

1
SS"W 0)

L .(w) belongs to

/|b(x) - mé(b)|du(x) < B < o0, (1.4)
0

and if 01 € Q> are doubling cubes,
|mQ1(b)_mQ2(b)| < BKg4,0, (1.5)

where the supremum is taken over all cubes centered at some point gf suim ;5 (b) is the
mean value ob on O, namely,

1
mg(b) M(Q)Q/ () dp(x)

The minimal constanB in (1.4) and (1.5) is defined to be tRBMQ(1) norm ofb and is denoted
by [[D]].

The spacd&RrBMQ(1) was introduced by Tolsa [11] and he proved there that the definition of
RBMQ() is independent of the choices of numbgrdn the sequel, we will choose= 2.

Let T be the Calder6n—Zygmund operator defined by (1.3). In what follows, we will always
assume thal is bounded orL2(u). We now fix aT, which is a weak limit ag — 0 of some
subsequence of the uniformiZ(x) bounded operators one > 0; see [11, p. 141]. It is easy
to dgduce thaf is still bounded orL.2(u); moreover, forf € L2(1) whose support is not all
of R4,

T(f)x)= / K, ) ) du®y)
Rd

with the sameK as inT, which satisfies (1.1) and (1.2). For suchi an € Nandb; € RBMQ(u),
i=12,...,m,we formally define the multilinear commutatgy by

T;() ) = [ [bm—1. -, b1, T1--- ] () x). (1.6)

A such type of multilinear commutators whenis the d-dimensional Lebesgue measure was
firstintroduced by Pérez and Trujillo-Gonzalez in [9]. Whers a non-doubling measure, it was
proved in [10] form = 1 and in [3] form > 1 that if T’ is bounded orL2(x) andb; € RBMO(1)
fori =1,...,m, thenT} is bounded onL”(u) for 1 < p < co. But Tj; is not bounded from
HL(RY) to L1(R?) even wheru is thed-dimensional Lebesgue measure ane- 1; see [8]. In
this paper, motivated by [8], we will first prove that for amye N, 7; is bounded from some
subspace oH1 (1) associated witth into L(w), in analogy with the result established by Pérez
in [8] with u being thed-dimensional Lebesgue measure.

In the sequel, for X i < m, we denote byC!" the family of all finite subsetsr =
{o(D),...,0(@)} of {1,2,...,m} with i different elements. For any € C", the complemen-
tary sequence’ is given byo’ ={1,2,...,m}\o. Leth = (b1, b2, ..., by) be afinite family of
locally integrable functions. For allg i <m ando = {0 (1),...,0(i)} € CI", we define

[b(x) —b()], = [bo)(X) = bo@y(V)] - [bo )y () = boiy ()],
[b(x) — mQ(b)](, = [boy(x) —=mo(bo)] - [bo)(x) — mo(bs@i))],
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and

[mr®b) —mo )], =[mrbs) —mobe)]: - [mrboi) —mobsw)].
whereQ andR are cubes iiR¢ andx, y € R, With this notation, we write

1o e = l1bo (1)l - -+ 15 -
If o ={1,..., m}, we simply write

1Bl = b1l -+ 1bml-

Definition 1.2. Letp >1,1<p<ooandy,teN. Supposé; e RBMOw) fori =1,2,...,7
A functionh € L,OC(M) is called a(b, p, t, y)-atomic block if

(a) there exists some culesuch that supf®) C R;

(b) frah(y)du(y) =0

(©) Jra h(Mbs(y)du(y)=0forall 1<i <t ando € C7;

(d) for j =1, 2, there are functiona; supported on cub®; C R and numbers.; € R such
thath = A1a1 + Apap, and

1/p—-1,.—
lajllzrgn < [neON]" Ko

Then we denote

Mz =1l + .

We say thatf € Hz’fy(’“ if there are(E, p, T, y)-atomic blockg Ay }ren such that

f=Y I
k=1

. 00 1p . .
with ) 77 |hk|H£‘§y(u) < 0. TheHEYr’y(;L) norm of f is defined by

1712 g mf{Zwu w)}

where the infimum is taken over all the possible decompositiong of (b, p, T, y)-atomic
blocks.

Remark 1.1. By an argument similar to that in [10], we easily see that the above definition is
independent of the chosen constant 1. If t =0, the spaceHﬁ P (w) is just the atomic Hardy

space introduced by Tolsa in [10] when= 1 and whery > 1 by the authors in [2], which was
proved in [2,10] to be the Hardy spaég'(u) of Tolsa in [13] with equivalent norms; see also

Definition 1.4 below. However, it is still open if the spadeé P (M) are equivalent for any fixed

7 € N and differenty e N and 1< p < co. But we have the followmg obvious properties that
foranyt e N, 1< p <ooandyi, y2 e Nwith 1 < y1 < y»,

Hﬂp (M)CFL: (w c HY(w),
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and for anyr, y e Nand 1< p; < p2 < o0,
1,00 1p2 1p1 1
Hy = () C Hp () C Hp' () € HE ().
Here is one of the main results of this paper.

Theorem 1.1. Letl < p < oco,m e Nandb; e RBMQu) fori =1,2,...,m. LetT andT; be
as in (1.3) and (1.6), respectively. Suppose th#tis bounded onL?(x). Then the multilinear
commutator7; is bounded frorTHg”z erl(;L) into L1(w).

Remark 1.2. Let us consider the multilinear commutator of the fractional integral opetgter,
defined by

L. () = / H [bi (x) — bi (y)]fL)_du(y), (1.7)
lx — yl"=«
]Rdl 1
wherem € N, b; e RBMQ(u) fori =1,2,...,m and O< «a < n. By an argument similar to the

proof of Theorem 1.1, we can prove the following result !9;,; and we omit the details by
similarity.

Theorem 1.2. LetO<a <n,l<p<oo,meN, b, e RBMQu) fori =1,2,...,m, andla;,;
be as in(1.7). Thenl, ; is bounded fronﬂgl’rz an ) into L™/ (=) ().

In [1], the authors proved thdt is bounded on the Hardy spaéel(u) if 7%(1) = 0. Moti-
vated by this, we now consider the boundednesg;dfom H (u) into H1(w) with the

assumption thaTa (1) =0. Here, byTa (1) =0, we mean that for any bounded functibnvith
compact support satisfying (b) and (c) of Definition 1.2,

/Tl;(h)(x)d,u(x) =0. (1.8)

R4

We point out that for a such functiol, it is easy to see thdt € H[;l‘n’; m+2(“) and therefore,

T;(h) € LY() by Theorem 1.1. Also, iff;(h) € H'(w), thenT;(h) should satisfy (1.8) by
the definition of the Hardy spacH(11); see [10,13] or Definition 1.4 below. Thus, in some
sense, condition (1.8) is also necessary. We remark that this result is new evem \iére
d-dimensional Lebesgue measure.

Definition 1.3. Given f € Lloc(u), we set

Mo () =sup{ / fodul.
ol J,

where the notatiop ~ x means thap € L1(x) N C1(R?) and satisfies
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0) ol <1
(i) 0 <o(y)<|y—x|"forallyeR? and
(i) Vo) <y —x|~@*+D forall y e R, whereV = (8/0x1, ..., 3/dxq).

Based on Theorem 1.2 of Tolsa in [13], we define the Hardy spélcg) as follows.

Definition 1.4. The Hardy spaced!(u) is the set of all functionsf e L1(u) satisfying that
Jga fdu=0andMe f € L1(11). Moreover, we define the norm gfe H (1) by

1A e = 1 £ g + 1Mo £ L1-
Another main result of this paper is as follows.

Theorem 1.3. Letl < p < oo, m e Nandb; e RBMQu) fori =1,2,...,m. LetT andT}; be
as in(1.3) and (1.6), respect|vely Suppose thétis bounded oan(u) and Tﬁ (H)=0asin
(1.8). ThenTj is bounded from‘L P (1) into Hl(w).

In what follows,C always denotes a positive constant that is independent of the main parame-
ters involved but whose value may differ from line to line. For any ingex[1, co], we denote
by p’ its conjugate index, namely/2 + 1/p’' =1

2. Proof of Theorem 1.1
We begin with some necessary lemmas.

Lemma2l. Letl<p <oo,meNandbh; e RBMOpu) fori =1,2,...,m. LetT and T; be
as in(1.3)and (1.6), respectively. Suppose thAtis bounded orL.2(u). ThenTj} is bounded on
L?(w) with the norm no more thaﬁllgll*, whereC > 0is a constant.

Lemma 2.1 was proved by Tolsa for the case- 1 in [10] and by the authors for the cases
m > 1in [3]. The following Lemma 2.2 is a simple corollary of the John—Nirenberg inequality
with non-doubling measure; see [10].

Lemma?22. Letm e N, b; e RBMQu) fori =1,2,...,m, p > 1land1< p < oco. Then there
exists a constant > 0 such that for any cube@,

m 1/p m
1 f
|bi(x) =mgz®)|"du)p < C|]Ibills

Proof of Theorem 1.1. By a standard argument, it suffices to verify that for ahyp, m, m + 1)-
atomic blocks as in Definition 1.2 withp = 4, T;(h) is in LY(w) with norm no more than

Clh| 1 )’ whereC > 0 is a constant independent/ofLet all the notation be the same as
b,m,m+1
in Definition 1.2. By our choicesy;, j =1, 2, now satisfies the following size condition:

lajliLeqy < n@QHYP Ko, r17"HY. 2.1)
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Write
/ |70 ()| dje () = / |70 ()| dpa () + / |70 ()| dje(x) = M+ N.
d 2R RI\2R

To estimate M, we further decompose

2
M<Y 1l / |T(a,)(X)|du(X)+ZI?~I / |T5(a)) ()| dp(x) = M1+ M.

=l 29, i=1 2r;\20;

From the Holder inequality, Lemma 2.1 and (2.1), it follows that

2 2
M1 <Y I T5@p | oy 1 RONYP < ClBIL Y I3 lllajllrgorOHY?
j=1 j=1

2
<Clbll Y a1,
j=1

Let Nj1= N2g; 2r; for j = 1, 2. With the aid of the formula that for, y € R¢,

m

[T —bin]=)" > [ =mg ®)],[mg,®) —b(»)],, (2.2)

i=1 i=0o0eCy"

where ifi =0, theno’ = {1,2,...,m} ando = @, by (1.1), the Holder inequality, Lemma 2.2
and (2.1), we easily obtain

M2<Z|x |Z

J T = 5K ;09 dia() dao)
k=1

0, i=1

2k+1Q .\zk Qj

<cDMZZZ [ @ -mg o,

i=0 oeCl" k= 12k+1Q-\2ij

x/|[m5j(b) ]|

du(y)du(x)
lx — y|"

, 1/p
P du(y)}

1/p
<CZ|A |Z > {/|a,(y)|pdu(y)} {/|[m§j(b)—b(y)]0,
Qj

i=0 oeCl"

{zzzww

Clkl

[ 1) =m0 g )= mg @],
2k+1Qj
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1/p M(2k+2Q] i
<Clbl+ ZM llajllLeq)mn(2Q;) Z > Z MEINE (K5 5775)]

i=0 oeCl" k=1

<Clblls Z MjlllajllLrgonOHYP (Ko, g1
j=1

2
<Clbls Y Il
j=1

where we have used the fact that for ang k < N; 1, KQV 2k+1Q < CKg, r; see [10].
Now we turn to estimate N. Denote the centerR)by XR. The propositions (b) and (c) of

Definition 1.2, (2.2), (1.2), the Holder inequality, Lemma 2.2 and (2.1) lead to

N= f [ T1io) = b ][K (e, ) = K (e, xp) ]h () d ()| dia(x)
Ri\2g 'R =1
ey Y Z/| b(y) —mzb)],,
i=00eC" k=17%
_ 8
x / [bx) = mz®)], I%dumdu@)
2k+1R\2kR
CZM |Z > {Z > /![b@)—mg_,(b)]n[mgj(b)—m,san]n,
i=0 oeCl"

=0 nec]m—i 0;

x ||aj(y)|du(y)}

. I(R)
AT S

K Oeecj k=1
< [l =m0 I - o)), du(X)}
2k+1p
1 2R)(R) i
CZM I} (u)Z > ks ||*Z 10, (K 517

i=0 oeCl"

X2 2 {/I[b(y>—mgj<b)],7[maj(b)—m,;(b)],7,

=0 nec]m—i 0;

) 1/p'
b du(y)}

2
<Clbl Y InjlllajllLrgor)™P (Ko, 1™
j=1
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2
<Clbls Y Il
j=1

Combining the estimates for M and N, we have finished the proof of Theorem @.1.
3. Proof of Theorem 1.3

In order to prove Theorem 1.3, we first recall the following basic fact in [1].
Lemma 3.1. Let My be as in Definitiorl.3and1 < p < co. ThenMg is bounded orL” ().
Proof of Theorem 1.3. Just as in the proof of Theorem 1.1, we only need to verify that for any

(5, p.m, m + 2)-atomic blocks as in Definition 1.2 witho = 4, T; (k) is in H(w) with norm

no more tharC|h|H},p 0’ whereC > 0 is a constant independent /of By our choices, for

b,m,m+2
Jj =1,2,a; satisfies the following size condition that
lajliLegy < w@QHYP Ko, g1~ 2, (3.1)

By the assumption thdrg*(l) =0, Theorem 1.1 and Definition 1.4, we deduce that the proof
of Theorem 1.3 can be reduced to proving that

| Mo[ T3] 11y < CIBIAIAL1r (3.2)

b,m,m+2

Write

HM(p[TE(h)]HLl(M)=/M¢[T5(h)](x)d,u(x)+ f Mo[T;(W)](x)du@x) =141l
4R RI\AR

Noting thatM is sublinear, we can control | by

|</M¢{[Tg(h)]X8R}(x)dM(x)+/Mq>{[T;;(h)]XRd\gR}(x)dM(x)=|1+|2-
4R 4R
From the fact that foj = 1,2, Q; C R, it follows that for anyz € Q; and anyy € 2¢+1R\ 2t R,

k>3, |y —z| > 1(2*~2R). By this fact, (ii) of Definition 1.3, (2.2), (1.1), Lemma 2.2 and (3.1),
we obtain

o< [sug [ G0 o) auco
ir " Ra\gr

S|

j=1 k=34R 2k+lR\2kR

[ T = 5i@)]& (.20 ) o)

Q; i=1

X du(y)du(x)

lx —y|"

<ngi PN |

i=0 0eCl" k=34p pi1j\2k g

Ib(y) —mg, ()]s

lx —y|"
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/ im g (b) = b(2)]6'11a; (2)]
X

- du(z)dpu(y)du(x)
ly —zl

J

w(@R) llajllLe
CZM |Z Z Zl(sz)" l(Jzk;)(,i){/|[Wl@‘j(b)—b(z)]a,
Qj

i=0 oeCl" k=3

N 1/p'
du(z)}

x / [6() = Mg (0) + mm (b) = mp(b) + mp(b) —m, (b)), | dpu(y)
2k+1pR
2
< CIble Y InjlllajllLegor Q)P
j=1

- o~ LAR) (2 2R) i ;
x Z Z Z 1(2%R)"1(2k Ry {[K§§<_E§] +[KQV_/,§] }

i=0 oeC? k=3

2
<Clblls Y a1,
j=1

To estimate {1, we write

2
1<) 1] / Mo {[T;(a))]xsr } (x) dpu(x)

j=1 40;

2
LYl / Mo {[T5(a)]xz0, } (¥) dp(x)
=1 arag;

2
+) 14yl / Mo {[T;(a))] xsr\20; } (x) dpu(x)
J=1 apvag;

=l11+l12+ 113

The Holder inequality, Lemma 3.1, Lemma 2.1 and (3.1) lead to

2
l11 < Z 2140 )7 | Mo {[T;(a)) ] xar }|
j=1
2
<C Y Ihjle@@HY | Ts@p | o
j=1

LP(w)

2
< CIbls Y InjlllajllLrgom @@ )P
j=1

2
<Clbls Y 141
j=1
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For j = 1,2, denoteNg; ag simply by N; . By (ii) of Definition 1.3, the Holder inequality,
Lemma 2.1 and (3.1), we have

|12<Z|k IZ / SlNJIO /T,;(aj)(y)tp(y)du(y)‘du(x)

=Pt 20

CZM |Z / l(sz 5 du(X)/ | T5(a )] dp(y)

k= 22A+1Q \2k Q]

CZP\ |Z l(2k )n ||T (a])”LP(,u)I’L(ZQ )1/[7

2

<Clbl Y IxjlllajllLrgonO NP Ko, &
j=1

2
< Clbll Y Ix1.
j=1

For l13, we further decompose it into

2 Ji
l13< Z|)\/|Z / M(Z)[|TB((JJ')|X2k+2Qj\2k—le](X)d//L()C)

j=1 k=2
J k+1 0; \ 2k Q;

+) Y / Mo [|T5(@))| Xmax2+20, 8r12+20, ] (1) d 1t (x)
Jj=1 k=22k+le\2ij

2 j.2
+Z|)‘j| Z / Md’[|Ti(aj)|X2k71Qj\2Qj](x)d/L(x)
j=1 k=22k+le\2k Q;
=E+F+G.

The Holder inequality, Lemma 3.1, (2.2), (1.1), Lemma 2.2 and (3.1) tell us that

E< ZM |ZM (210 1/,, | Mo [|T5ap) | X220 0210, 1 o

1/p
l
CDMZMZW /”{ / |Tg(aj)|pdu(y)}
2k+2Qj\2k—1Qj

2 m Nj2

<cXmy ¥ yu@to) [ b -ngo), |

=1 =0 m k=2
J i o€C; 2k+2Qj\2k—1Qj
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p

1/p
x du(y)}

/ [mg, ) = b(2)], K (v, 2)a;j(2) dn()

j

2k+l 1/
ch |Z > Z“(l(szQ’))n ! f\ g B —b@],

i=0 eC’”k 2

(2)|d(z)

1/p
X { / [6O) —m 5 (B) +m (b)—mgj(b)]g|pdu(y)}

2k+2Q 2k+2Q
2k+2Q .

< "+3Q, i
CZM D3PI Z @0,y Ko,57%5)]

i=0 O'ECW

1/p , yp
x {/|aj(z)|pdu(z)} {f|[m5j<b)—b<z>]g,|” du(z)}
Qj Q;

2
<CIbl Y InjlllajllLrqor@O)MP (K, g™
Jj=1

2
<CIblx Y141
j=1

By (ii) of Definition 1.3, (2.2), (1.1), the Holder inequality, Lemma 2.2 and (3.1), we easily see

2 Nj2
¥ [l [ o]
=t k=2mgiag, U 21,0,
2 Nj.2
T;
TS / Z / Md M dp(x)
j=1 k:22k+1Q.,~\2"Q.,~ I= 12’+1Q1\2’Q,
k-2 [[b(y) —m gz (D)]s]
cZu 3D Z / 2 ot
=0 0eCl" k=201 \2k g, =lar1p 020,
x /[ma(b)—b(z)]g/K(y,Z)aj(Z)dM(Z) dp(y)du(x)
Qj
p@o s 1
czu 3R YEEOT A [ b -mg 0o
- 1(2 Qj) _ 1(2 QJ) !
i=0 oeCl" k=2 =1 ZHle

, 1/p
P du(z)}

1/p
x {/|aj(z)\pdu(z)} {/’[maj(b)—b@]g/
Q; Qj
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n@H0) SR p@t20)) ;
<C|b Aj K
1511 Z | | 12(:) Ugm I; l(2k Qj)n ; l(lej)n [ Q_,',ZHle]

2

< Clbl Y 1jlllajllr gy )Y K, g1
j=1

2
<Clbls Y Il
j=1

An argument similar to the estimate for G can also give us a desired estimate for F. The estimates
for E, F and G lead us a desired estimate fgr Combining the estimates for4l, 112, l13and b
yield

|—/M¢ T~(h)](x)du(x)<C||b|| Zl)» | =Clbl. |, Lo i (3.3)
4R j=1

Now we turn to the estimate for Il. Invoking thﬁg(l) =0, we obtain

Ih= / p{/r(h)(y)[st)(y) 9(xR) du(y)’du(x)
o~x

RI\4R R4
S / ~p‘/Tq(h)(”[<"(y> o(xr)] du(y)‘du(x)
RI\4R T

+ / SUP{ f T;(W)(M[e(y) — e(xr)] du(y)‘ dp(x)
RI\4R - R4\2R
=11+ 1l
Note that for any, € 2R, x € 2°+1R\ 2R, k > 2, |x — z| > [(2*"?R). This together with (iii) of
Definition 1.3 and the mean value theorem leads to
[(R)
[(2k-2R)yn+1
for y € 2R. By (3.4), (2.2), (1.1), the Hd&lder inequality, Lemmas 2.1 and 2.2, and (3.1), we have

lo(») —p(xr)| < C (3.4)

2 0
<Y Y [ sl [ e leo) - el |
71 k=2 U arizg,

+ZIA IZ / Sgp[/ \Tg(aj)(y)Hw(y)—w(xR)Idu«(y)}du(X)
k= 22k+1R\2kR o 20;

Nj2-1

czixlzzz [ o [ bw-ngell

i=0 oeCl" k= 22k+1R\2kR =1 2+10\21Q;



Y. Meng, D. Yang / J. Math. Anal. Appl. 317 (2006) 228-244 241

x/l[ 5,(0) = b@)],| 122 dp(z) du(y) dp(x)

| |I‘l

I(R)
+CZIA IZ / [(2kRyn+1 [[T3@n]xa0; | 11, dm(x)
2’<+1R\2’<R
<CZ|A DIPIP Pl
l(2kR)n+l
i=0 oeCl" k=2
Nj2-1 1
y ; T / [6) —mg ®)], | duy)
= 21+1Q].
« / la;@)||[mg &) — b(=)],,
Qj
w(*+IR)I(R) '
+C X;I/\ IZ @Ry T3]z, I ogur@e™”
J
w(+IR)I(R)
< Clbl. ZM llaj Lok (2Q) 1”’ZW

j=1
Nje=1l = 142
w(@ZTe0;)

[ o ]’n
= 120 - 0;.240;

2
+C Y Iajlllagllie )Y
j=1

2
<CIbI Y IjllajliLrgon@ )Y (Ko, g™
j=1

2
<Clbll Y 1441
j=1

We further estimate $l by

lo=3 Sun{ f T;;’(h)()’)[(P()’)—fﬂ(XR)]d/L(y)‘dﬂ(x)
F=2pupiatr © RAZR
<) / Mo | Ty ()| Xprezg -1 ] () dia(x)
k= 22k+1R\2kR
> sy [ meleano |anw

k=25111p\ 2k R 42 R\2k-1R
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+ / sgp[ / |T;;(h)(y)|{<ﬂ(y)+<P(XR)}dM(}’)i|d,Uv(x)

k=22k+lR\2kR Rd\2k+2R

+y / sgp[ / !T;(h)(y)|{<p<y>+<p<xR>}du(y)}du<x>
k=251 p\ 2k R k-1R\2R
=121+ oo+ o3+ 1l 24.

From the Hoélder inequality, Lemma 3.1, (b) and (c) of Definition 1.2, (2.2), (1.2), Lemma 2.2
and (3.1), we can deduce that

o
21 < ZM(2k+1R)l/p [ Mo [|T;(h) | xkr2m2t-1r] |

LP(p)

k=2

Z 2k+1R 1p { [bi(y) —bi(z)][K(y,z) - K(y,xR)]

= 2k+2R\2k—1R R i=1

P 1/p

X h(z)du(z) du(y)}
CZ Z ZM(Zk—&-lR)l/p/{ / |[b(y)—m§(b)]g|p

i=0 oeCl" k=2 42R\ k1R

» 1/p

x /[m,;(b)—b(z)]g,[K(y,Z)—K(y,xR)]h(Z)dM(Z) du(y)}

R

m 2k+1p\1/ P (RS 1/p

<c 5 1 sl { / I[b(y)—mﬁ(b)]glpdu(y)}
2k Ry+

i=0 geCl" k=2 k2R
x/|[m§(b)—b(z)]0,

R

2

u(23R)(R)® i
eIy Y ol Z R K]
j=1 i=0 oeCl"
/p , 1/p'

x {/|aj(z)|pdu(z)} {f|[m,s<b)—b<z>]a, p du(z)}

Qj Qj

- 2 ’

<Clbll Y xjlllajllLrgonO NP (Ko, &1
j=1

2
<Clbl Y1l
j=1

An argument similar to the estimate fopilcan also give us a desired estimate fgp.ll
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Finally, we estimate Hs. By (b) and (c) of Definition 1.2, (ii) of Definition 1.3, (2.2), (1.2),
the Holder inequality, Lemma 2.2 and (3.1), we obtain

0 o m
ls< > / 3 / /!K(y,;z)—K(y,xR)\]"[!bi(y)—b,»<z>!
k=2o1r1p\okg FKH2om1p\00p R i=1

x |h(2)] du(z){ ; }du(y)du(X)

ly =xI" " |xgr — x|

n@HIR) 1R
CZM |Z Z Z Z l(sz)n l(ZIR)"""S f ’[b(y)—m,;(b)]ofd,u(y)

i=0 oeC" k=2 I=k+2

2+1p
x / Izt b)), |
Qj
2 m
<ClbI Y IjllajlLrgoun@@)YP > > (Ko, rl™™
j=1 i=0 geCl"

%o 00 k+1 142 B
«3 w(27T"R) p(2TR)I(R)

1
k [ py\n+38 [ ﬁqzﬂT]
Pl [(2kR)" [(2'R)" R

2
<Clblx Y141
j=1

An argument similar to the estimate fopdlcan also give us a desired estimate f@§.1I
Combining the estimates forH, I122, 1123 and ll4, we obtain a desired estimate fog.IThe
estimates for § and Ik tell us that

1= [ Mo[T00]@dne) < Clblyr (3.5)

b,m,m+2
RI\AR

The estimates (3.3) and (3.5) lead to (3.2) and this completes the proof of our theanem.
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