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Abstract

The aim of this paper is to outline a formal framework for the analytical analysis of the Hopf bifurcations
in the delay differential equations with two independent time delays. Some results for the differential–
difference equations with two delays, when the both of the coefficients of linearized equation are negative
were obtained in [X. Li, S. Ruan, J. Wei, Stability and bifurcation in delay-differential equations with two
delays, J. Math. Anal. Appl. 236 (1999) 254–280]. In the paper we present some remarks on the case studied
in [X. Li, S. Ruan, J. Wei, Stability and bifurcation in delay-differential equations with two delays, J. Math.
Anal. Appl. 236 (1999) 254–280] and also two other cases, namely when the coefficients of linearized
equation have different signs and when coefficients are both positive.
© 2006 Elsevier Inc. All rights reserved.

Keywords: Delays; Stability analysis; Hopf bifurcation; Stability switches

1. Introduction

There have arisen several papers related to ordinary differential equations with two delays
in last twenty years. One of them focus on investigation the stable region for the two delay
differential equation [11,13], other obtain some results for equation in special form such as the
logistic equation with two delays [4,9] or motor control equation [1–3].

Some results for ordinary differential equations with two delays, when the coefficients of
linearized equation are negative were obtained in [14]. We realized that there are some mistakes
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in [14], which were reflected in lemmas and theorems formulated in [14], so they were needed
to be correct. However the main ideas of proofs presented in [14] are correct and we follow them
in this paper. Therefore, we omit these parts of the proofs which are similar to those in [14].

In presented paper we consider the case studied in [14] and also two other cases, namely
when the coefficients of linearized equation are positive or have different signs. Following [14],
we choose one of delays as a bifurcation parameter and investigate the possibility of the Hopf
bifurcation occurance.

It is important to realize that in this paper we assume that both of the delays are equally
important, so we cannot scale time to obtain one of the delays equal to 1, as it was done in [4].

Consider the equation

d

dt
x(t) = f

(
x(t − τ1), x(t − τ2)

)
, (1)

with an initial continuous function x0 : [−τ̃ ,0] → R+ ∪{0}, where τ1, τ2 and τ̃ = max(τ1, τ2) are
the nonnegative constants. Suppose that Eq. (1) has the trivial stationary solution, i.e., f (0,0) = 0
and f : R2 → R is continuously differentiable.

It is easy to see, [10], that if x0 : [−τ̃ ,0] → R+ ∪{0} and f : R2 → R are continuous functions,
finding the solution to Eq. (1) for t � t0 satisfying x(t) = x0(t), t ∈ [−τ̃ ,0] is equivalent to
finding a solution to the integral equation x(t) = x0(0) + ∫ t

0 f (x(s − τ1), x(s − τ2)) ds, t � 0
with x(t) = x0(t) for t ∈ [−τ̃ ,0].

Using the step method (see, e.g., [7,10]) we can show that if there exists a solution for t ∈
[(n − 1)τ , nτ ], then the solution for t ∈ [nτ, (n + 1)τ ], where τ = min{τ1, τ2}, is defined by the
formula

x(t) = x(nτ) +
t∫

nτ

f
(
x(s − τ1), x(s − τ2)

)
ds. (2)

We see that the right-hand side of Eq. (2) is well defined because s − τ1, s − τ2 ∈ [(n − 1)τ , nτ ].
Notice that the step method gives the existence of unique solution to Eq. (1) for all t � 0.

Linearizing Eq. (1) around the trivial solution we obtain

d

dt
x(t) = −A1x(t − τ1) − A2x(t − τ2), (3)

where −A1, −A2 are the first derivatives of f with respect to appropriate co-ordinates. The
characteristic equation related to Eq. (3) has the form

z = −A1e
−zτ1 − A2e

−zτ2 . (4)

It is obvious that if A1 = A2 = 0 or A1 < 0, A2 > 0 and |A1| = A2 (i.e., A = 1), then the
assumptions of the linearization theorem are not satisfied for Eq. (1) and because of that for
those cases we have to apply other technique to examine the stability of the trivial solution. In
this paper we use the linearization and therefore, we exclude the case from our analysis.

If A1 = 0 and A2 �= 0 or A2 = 0 and A1 �= 0, then Eq. (3) becomes the equation with one
discrete delay. The theory of stability of solutions and Hopf bifurcations for the class of ordinary
differential equations with one discrete delay is well known (see, e.g., [7,8] or [10]), so we not
look after such cases.

Let from now on: A1 �= 0, A2 > 0, λ = z
|A1| , A = A2|A1| , τ1 = r1|A1| , τ2 = r2|A1| .

Note that under assumption A1 > 0 Eq. (4) has the form

λ = −e−λr1 − Ae−λr2, (5)
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whereas for A1 < 0

λ = e−λr1 − Ae−λr2 . (6)

It is easy to see that if τ1 = τ2 = 0, then for A1 + A2 > 0 the trivial solution to Eq. (3)
is asymptotically stable, while for A1 + A2 < 0 it is unstable. By continuity, for sufficiently
small τ1, τ2 > 0, the trivial solution to Eq. (3) is asymptotically stable under the assumption
A1 + A2 > 0 and unstable in the case A1 + A2 < 0.

2. The Hopf bifurcation analysis

The occurance of the Hopf bifurcation and investigation of the type of this bifurcation for
the case A1,A2 > 0 was studied in [14]. It is important to realize that there are some mistakes
in [14], which need to be correct.

In this section we shall study the Hopf bifurcation of Eq. (1) under the assumption A1,A2 > 0
as well as cases when A1 and A2 have different signs and have the same signs but A1,A2 < 0.
Following the ideas presented in [14] we choose r2 as a bifurcation parameter. We focus on the
improvement of the results from the original paper [14] and give remarks about the corresponding
results.

2.1. Case A1,A2 > 0

To prove the existence of the Hopf bifurcation (see, e.g., [12]), we need to investigate the
existence of a pair of purely imaginary roots and location of the rest complex roots of character-
istic equation associated with Eq. (3). After that we check the condition under which the purely
imaginary roots are able to pass through the imaginary axis as the bifurcation parameter changes.

Equation (5) has purely imaginary roots ±iω, where ω > 0, if the following system of equa-
tions is satisfied

cos(ωr1) = −A cos(ωr2),

ω − sin(ωr1) = A sin(ωr2). (7)

Squaring and adding up both equations, we obtain

sin(ωr1) = ω2 + 1 − A2

2ω
. (8)

Denote

g(ω) = ω2 + 1 − A2

2ω
, ω ∈ (0,+∞). (9)

Because properties of the function g(ω) strongly depends on A, so we shall consider three cases:
A ∈ (0,1), A = 1 and A > 1.

It is easy to see that ω ∈ [1 − A,1 + A] for A ∈ (0,1), ω ∈ (0,2] for A = 1 and ω ∈ [−1 + A,

1 + A] for A > 1.

2.1.1. Subcase A > 1
In [14] there was formulated Lemma 3.1 which says that if A1,A2 > 0, A > 1 and r1 <

5π
2(A+1)

, then Eq. (8) has a unique solution in [A − 1,A + 1]. It occurs that the range of r1 stated

in this lemma is too large. Consider the example with A = 2 and r1 = 5π−0.1 . Figure 1 shows
6
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Fig. 1. The graph of g(ω) (width —) and sin( 5π−0.1
6 ω) (—) for ω ∈ [1,3].

Fig. 2. The graph of g(ω) (—) and sin( 2ωπ
1+A

) (– –) for A > 1.

that Eq. (8) has three solutions in the interval [1,3]. The consequences of this false lemma are
reflected in others lemmas and theorems formulated in [14]. Instead of Lemma 3.1 in [14] we
propose the following one.

Lemma 1. If A > 1, then for every arbitrary r1 > 0 the functions sin(ωr1) and g(w) intersect at
least once, moreover for r1 ∈ (0, 2π

1+A
], sin(ωr1) and g(w) intersect only once for ω ∈ [−1 + A,

1 + A], compare Fig. 2.

It is clear that for any r1 > 0 Eq. (8) has the finite number (m ∈ Z+) of solutions, denoted by
ω1, . . . ,ωm.
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It is obvious that for every arbitrary chosen r1 > 0 and for each ωk we have infinite number
of r2 such that cos(ωkr1) = −A cos(ωkr2). For all k ∈ {1, . . . ,m} we define rk

2 in following way
rk

2 = min{r2 ∈ R+: cos(ωkr1) = −A cos(ωkr2)}. Let

r0
2 = min

{
rk

2 : k ∈ {1, . . . ,m}}. (10)

It should be noticed that the definitions of the sequence rk
2 and the values r0

2 are slightly different
than in [14], i.e., without reversing of the cosine function. Therefore, we do not loose the infor-
mation about the whole sequence and can discuss stability switches (compare the last section).
We see that for some k ∈ {1, . . . ,m} there is rk

2 = r0
2 , so for that k we have define ω0 = ωk .

From literature (e.g., [8] or [10]) it is known that if A > 1, then for r2 = 0 and any r1 � 0 all
roots of Eq. (5) have strictly negative real parts.

Because we know the localization of roots of Eq. (5) for r2 = 0, so we are able to deduce (by
using Rouché’s Theorem, [6]) the localization of the roots of Eq. (5) on the complex plane for
r2 ∈ [0, r0

2 ) and r2 = r0
2 . For details see [14].

Let Ω1 = ⋃
l∈N

[2lπ, π
2 + 2lπ], Ω2 = ⋃

l∈N
[(2l + 1)π, 3

2π + 2lπ] and Ω = Ω1 ∪ Ω2, where
N are the natural numbers with zero.

Lemma 2. Let A1,A2 > 0, A > 1 and Ω defined as above.

(1) If r2 ∈ [0, r0
2 ), then Eq. (5) has all roots with strictly negative real parts.

(2) If r2 = r0
2 and ω0r

0
2 ∈ Ω , then Eq. (5) has a pair of simple purely imaginary roots and all

other roots have strictly negative real parts.

Instead of Lemma 3.5 postulated in [14], which assumes that π
2r1

<
√

A2 − 1 < 3π
2r1

, we pro-
pose more general lemma guaranteeing that the purely imaginary roots to Eq. (5) (and Eq. (6) as
well) pass through the imaginary axis at ±iω0.

Let now λ(r2) = �(λ(r2)) + i	(λ(r2)) be a root of Eq. (5) (or Eq. (6)) such that there exists
some r2 = r0

2 > 0 for which �(λ(r0
2 )) = 0 and 	(λ(r0

2 )) = ω0 > 0. By simple calculations we
are able to prove the following lemma.

Lemma 3.

(1) If ω0r
0
2 ∈ Ω1, then d

dr2
�(λ(r2))|r2=r0

2
> 0.

(2) If ω0r
0
2 ∈ Ω2, then d

dr2
�(λ(r2))|r2=r0

2
< 0.

Lemma 2 and statement (1) of Lemma 3 imply that if ω0r
0
2 ∈ Ω1, then the purely imaginary

roots of Eq. (5) must pass through the imaginary axis from the negative to the positive half-plane
as r2 increases. Moreover, Lemma 2 and statement (2) of Lemma 3 tell as that if ω0r

0
2 ∈ Ω2, then

roots cross the imaginary axis at ±iω0 from the right to the left half-plane as r2 increases.
In Lemmas 2 and 3 we have checked all assumptions of the Hopf bifurcation theorem (see,

e.g., [12]) and we are able to show the existence of periodic solutions to Eq. (1).

Theorem 1. Let A2 > A1 > 0 and τ 0
2 = r0

2
A1

, where r0
2 is defined by (10).

(1) For τ2 ∈ [0, τ 0
2 ) the trivial solution to Eq. (1) is asymptotically stable.
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(2) If ω0τ
0
2 A1 ∈ Ω1, then the Hopf bifurcation occurs at τ2 = τ 0

2 for Eq. (1).

(3) If ω0τ
0
2 A1 ∈ Ω2, then there is no Hopf bifurcation at τ2 = τ 0

2 for Eq. (1).

Corollary 1. If A2 > A1 > 0, τ1 < 2π
A1+A2

and π
2τ1

<

√
A2

2 − A2
1 < π

τ1
, then there exists τ 0

2 such

that for τ2 ∈ [0, τ 0
2 ) the trivial solution to Eq. (1) is asymptotically stable and for τ2 = τ 0

2 the
Hopf bifurcation occurs.

Corollary 2. If A2 > A1 > 0 and π
A1+A2

< τ1 < π√
A2

2−A2
1

, then there exists τ 0
2 such that for

τ2 ∈ [0, τ 0
2 ) the trivial solution to Eq. (1) is asymptotically stable and for τ2 = τ 0

2 the Hopf
bifurcation occurs.

2.1.2. Subcase A = 1
For A = 1 instead of Eqs. (7) and (8) we obtain

cos(ωr1) = − cos(ωr2),

ω − sin(ωr1) = sin(ωr2), (11)

and

sin(ωr1) = ω

2
, (12)

respectively. Denote g(ω) = ω
2 for ω ∈ (0,+∞).

It is easy to show that if A1,A2 > 0, A = 1 and r0
1 = 1

2 , then for r1 ∈ (0, 1
2 ] the functions

sin(ωr1) and g(w) do not intersect, and for r1 > 1
2 they intersect at least once for ω ∈ (0,2]

(compare Fig. 3). We see that for any r1 > r0
1 Eq. (12) has finite number (m ∈ Z+) of solutions,

we denote them by ω1, . . . ,ωm.
Using similar procedure as in case A1,A2 > 0 and A > 1 for every arbitrary chosen r1 > r0

1
and for each ωk we define rk

2 = min{r2 ∈ R+: cos(ωkr1) = − cos(ωkr2)}, and

r0
2 = min

{
rk

2 : k ∈ {1, . . . ,m}}. (13)

It is important to realize that in [14] authors claimed that if ωkr
k
2 ∈ (0,π], then ω0r

0
2 ∈ (0, π

2 ].
We give an example when ω0r

0
2 /∈ (0, π

2 ]. Let r1 = π
5 . Then Eq. (12) has exactly one solution

ω0 ∈ (0,2] (see Fig. 4). Moreover, ω0 − sin(ω0r1), cos(ω0r1) > 0 and from Eqs. (11) we obtain
that ω0r

0
2 ∈ (π

2 ,π). This implies that Lemma 3.14 and Theorem 3.16 in [14] are false.

Fig. 3. The graph of g(ω) (—) and sin( ω
2 ) (– –) for A = 1.
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Fig. 4. The graph of g(ω) (width —) and sin( π
5 ω) (—) and cos( π

5 ω) (– –) for A = 1.

Once again knowing that if A = 1, then for r2 = 0 and any r1 � 0 all roots of Eq. (5) have
strictly negative real parts we can prove lemma which gives as information about localization of
roots of Eq. (5) for positive r2.

Lemma 4. Let A1,A2 > 0 and A = 1.

(1) If r1 ∈ [0, r0
1 ] and r2 � 0, or r1 > r0

1 and r2 ∈ [0, r0
2 ), then Eq. (5) has all roots with strictly

negative real parts.
(2) If r1 > r0

1 and r2 = r0
2 and ω0r

0
2 ∈ Ω , then Eq. (5) has a pair of simply purely imaginary

roots and all other roots have strictly negative real parts.

Instead of Theorem 3.16 in [14], by collecting together Lemmas 3 and 4, we formulate the
following theorem.

Let

τ 0
1 = r0

1

A1
= 1

2A1
, τ 0

2 = r0
2

A1
, (14)

where r0
2 is defined by (13).

Theorem 2. Let A1 = A2 > 0 and τ 0
1 and τ 0

2 are defined by (14).

(1) For τ1 ∈ [0, τ 0
1 ] and τ2 > 0 or τ1 > τ 0

1 and τ2 ∈ [0, τ 0
2 ) the trivial solution to Eq. (1) is

asymptotically stable.
(2) If τ1 > τ 0

1 and ω0τ
0
2 A1 ∈ Ω1, then the Hopf bifurcation occurs at τ2 = τ 0

2 for Eq. (1).

(3) If τ1 > τ 0
1 and ω0τ

0
2 A1 ∈ Ω2, then there is no Hopf bifurcation at τ2 = τ 0

2 for Eq. (1).
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Corollary 3. If A1 = A2 > 0 and π
2A1

< τ1 � π
A1

, then there exists τ 0
2 such that for τ2 ∈ [0, τ 0

2 )

the trivial solution to Eq. (1) is asymptotically stable and for τ2 = τ 0
2 the Hopf bifurcation occurs.

2.1.3. Subcase A ∈ (0,1)

In this case we again use the function g(ω) defined by Eq. (9).
In the case A ∈ (0,1) there is also a mistake in [14], namely the authors defined r0

1 =
min{r1: sin(ωr1) intersects g(ω)} and suggest that if r1 > r0

1 , then sin(ωr1) and g(ω) intersect at
least twice. We present the example which shows that it is not truth. Let A = 1

3 . We see that for
r1 = 3

8π > r0
1 , sin(ωr1) and g(ω) intersect but for r1 = 3

2π > r0
1 they do not intersect, see Fig. 5.

We propose the following observation. If A1,A2 > 0 and A ∈ (0,1), then for r1 < 1
2 the

functions sin(ωr1) and g(w) do not intersect, and for r1 � π
A

> π , sin(ωr1) and g(w) intersect
at least twice for ω ∈ [1 − A,1 + A], compare Fig. 6.

We know that for r1 > π
A

the function sin(ωr1) intersects g(ω) at least once, but we need (the
careful reader will see later why) a better estimation for r1 such that sin(ωr1) and g(ω) intersect
at least once. Let r̂1 = π

A
. We consider points ω̂n (n ∈ N) such that sin(ω̂nr̂1) = 1. Therefore,

Fig. 5. The graph of g(ω) (width —) and sin( 3
2 ωπ) (—) and sin( 3

8 ωπ) (– –).

Fig. 6. The graph of g(ω) (—) and sin( ω
2 ) (width – –) for A ∈ (0,1).
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ω̂n = 1
r̂1

(π
2 + 2nπ). We know that the period of sin(ωr̂1) is equal to 2A, so the graph of sin(ωr̂1)

and the graph of g(ω) intersect at least twice for ω ∈ (1 − A,1 + A]. Hence, there exists at
least one n such that 1 − A < ω̂n � 1 + A. Therefore, we obtain 1

2A
− 3

4 < n � 1
2A

+ 1
4 . Hence,

n = [ 2+A
4A

], where [x] denotes entier of x. Let r∗
1 be such that sin(r∗

1 (1 + A)) = 1 and

r∗
1 (1 + A) = π

2
+ 2nπ. (15)

Then sin(ωr1) intersects g(ω) at least twice for r1 � r∗
1 for ω ∈ [1 − A,1 + A].

It is easy to see that if A ∈ (0,1), then [ 2+A
4A

] = k (k ∈ N) iff 2
4k+3 < A � 2

4k−1 and [ 2+A
4A

] = 0

iff A ∈ ( 2
3 ,1). Therefore, r∗

1 as a function of A is not continuous, moreover r∗
1 < 1 for A ∈ ( 2

3 ,1).
Denote

r0
1 = min

{
r1 ∈ R+: sin(ωr1) intersects g(ω) exactly once, ω ∈ [1 − A,1 + A]}. (16)

It means that for 0 < r1 < r0
1 the functions sin(ωr1) and g(ω) do not intersect. It is clear that for

any r1 � r∗
1 Eq. (8) has a finite number (m ∈ Z+) of solutions, denoted by ω1, . . . ,ωm. Similarly

as before we see that for every arbitrary chosen r1 � r∗
1 and for each ωk we have infinite number

of r2 such that cos(ωkr1) = −A cos(ωkr2). As in the previous cases for all k ∈ {1, . . . ,m} we
define rk

2 = min{r2 ∈ R+: cos(ωkr1) = −A cos(ωkr2)}, and

r0
2 = min

{
rk

2 : k ∈ {1, . . . ,m}}. (17)

Let

r̄1 = arcsin(
√

1 − A2 )√
1 − A2

= arccos(−A)√
1 − A2

. (18)

From the theory of ordinary differential equations with one delay (for details see [5,10] or [8])
it is known that if r2 = 0 and A ∈ (0,1), then for r1 ∈ [0, r̄1) all roots of Eq. (5) have strictly
negative real parts; for r1 = r̄1 Eq. (5) has a pair of purely imaginary roots and all other roots
have strictly negative real parts; for r1 > r̄1 Eq. (5) has at least one root with positive real part.

It is obvious that if A ∈ (0,1) and we treat r̄1 and r∗
1 as functions of A, then for A ∈ (0,1) we

have r̄1 ∈ (1, π
2 ). Furthermore, if A ∈ ( 2

3 ,1), then r̄1 > 1 > r∗
1 (see Fig. 7). Because for A ∈ (0,1)

there is π
A

> π > r̄1, so now it is clear why we needed better estimation for r1 such that Eq. (8)
has at least one solution for ω ∈ [1 − A,A + 1].

Collecting together all those information about the roots of Eq. (4) we formulate the following
lemma and theorem.

Lemma 5. Let A1,A2 > 0 and A ∈ ( 2
3 ,1).

(1) If r1 ∈ [0, r0
1 ) and r2 > 0 or r1 ∈ [r∗

1 , r̄1) and r2 ∈ [0, r0
2 ), then Eq. (5) has all roots with

strictly negative real parts.
(2) If r1 ∈ [r∗

1 , r̄1), r2 = r0
2 and ω0r

0
2 ∈ Ω , then Eq. (5) has a pair of simply purely imaginary

roots and all other roots have strictly negative real parts.

Let

τ 0
1 = r0

1

A1
, τ ∗

1 = r∗
1

A1
, τ̄1 = r̄1

A1
, τ 0

2 = r0
2

A1
, (19)

where r∗, r0, r0 and r̄1 are defined by (15), (16), (17), (18), respectively.
1 1 2
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Fig. 7. The graph of r∗
1 (– –) and r̄1 (—) for A ∈ (0,1).

Theorem 3. Let 2
3A1 < A2 < A1, τ ∗

1 , τ 0
1 , τ 0

2 , τ̄1 are defined by (19).

(1) If τ1 ∈ [0, r0
1 ) and τ2 > 0 or τ1 ∈ [τ ∗

1 , r̄1) and τ2 ∈ [0, τ 0
2 ), then the trivial solution to Eq. (1)

is asymptotically stable.
(2) If τ1 ∈ [τ ∗

1 , r̄1) and τ2 = τ 0
2 and ω0τ

0
2 A1 ∈ Ω1, then the Hopf bifurcation occurs at τ2 = τ 0

2
for Eq. (1).

(3) If τ1 ∈ [τ ∗
1 , r̄1) and τ2 = τ 0

2 and ω0τ
0
2 A1 ∈ Ω2, then there is no Hopf bifurcation at τ2 = τ 0

2
for Eq. (1).

2.2. Case A1 < 0, A2 > 0

In this section we investigate the occurance of the Hopf bifurcation for Eq. (1) under the
assumption A1 < 0 and A2 > 0. As before we choose r2 as a bifurcation parameter.

For Eq. (6) instead of condition (7), which guarantees the existence of purely imaginary roots
±iω (where ω > 0), we have the following one

cos(ωr1) = A cos(ωr2),

ω + sin(ωr1) = A sin(ωr2). (20)

By squaring and adding up both equations, we have

sin(ωr1) = A2 − ω2 − 1

2ω
. (21)

Let

g(ω) = −ω2 − 1 + A2

2ω
, ω ∈ (0,+∞). (22)

As before the properties of the function g(ω) strongly depends on A, however we shall con-
sider only two cases: A ∈ (0,1) and A > 1. We do not consider A = 1, because in this case the
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assumptions of the linearization theorem are not satisfied for Eq. (1). It is easy to see that the
inequality | sin(ωr1)| � 1 implies: ω ∈ [1 − A,1 + A] for A ∈ (0,1) and ω ∈ [−1 + A,1 + A]
for A > 1.

2.2.1. Subcase A > 1
It is easy to see that if A1 < 0, A2 > 0 and A > 1, then for every arbitrary r1 > 0 the functions

sin(ωr1) and g(w) intersect at least once, moreover for r1 ∈ (0, π
1+A

], sin(ωr1) and g(w) intersect
only once for ω ∈ [−1 + A,1 + A], see Fig. 8.

In the case when A1 · A2 < 0 and A > 1 most of the lemmas and theorems are analogous to
lemmas and theorems for the case A1,A2 > 0 and A > 1 even though the fact that there are some
changes in the definitions of r0

2 and g(ω). Hence, we only formulate the necessary definitions,
lemmas and final theorem.

It is clear that for any r1 > 0 Eq. (21) has finite number (m ∈ Z+) of solutions ω1, . . . ,ωm.
For every arbitrary chosen r1 > 0 and for each ωk we have an infinite number of r2 such
that cos(ωkr1) = A cos(ωkr2). As before for all k ∈ {1, . . . ,m} we define rk

2 = min{r2 ∈
R+: cos(ωkr1) = A cos(ωkr2)}. Let

r0
2 = min

{
rk

2 : k ∈ {1, . . . ,m}}. (23)

Because we know [5,10] that if A > 1, then for r2 = 0 and any r1 � 0 all roots of Eq. (6) have
strictly negative real parts, so we are able to prove the lemma below.

Lemma 6. Let A1 < 0, A2 > 0 and A > 1.

(1) If r2 ∈ [0, r0
2 ), then Eq. (6) has all roots with strictly negative real parts.

(2) If r2 = r0
2 and ω0r

0
2 ∈ Ω , then Eq. (6) has a pair of simply purely imaginary roots and all

other roots have strictly negative real parts.

Let λ(r2) = �(λ(r2))+ i	(λ(r2)) be the root of Eq. (6) such that there exists some r2 = r0
2 > 0

for which �(λ(r0
2 )) = 0 and 	(λ(r0

2 )) = ω0 > 0.
Collecting Lemmas 3 and 6 together we formulate the final theorem.

Fig. 8. The graph of g(ω) (—) and sin( ωπ
1+A

) (– –) for A > 1.
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Theorem 4. Let A1 < 0, A2 > |A1| and τ 0
2 = r0

2|A1| , where r0
2 is defined by (23).

(1) For τ2 ∈ [0, τ 0
2 ) the trivial solution to Eq. (1) is asymptotically stable.

(2) If ω0τ
0
2 |A1| ∈ Ω1, then the Hopf bifurcation occurs at τ2 = τ 0

2 for Eq. (1).

(3) If ω0τ
0
2 |A1| ∈ Ω2, then there is no Hopf bifurcation at τ2 = τ 0

2 for Eq. (1).

Corollary 4. If A1 < 0, A2 > |A1| and τ1 ∈ (0, π

2
√

A2
2−A2

1

], then there exists τ 0
2 such that for

τ2 ∈ [0, τ 0
2 ) the trivial solution to Eq. (1) is asymptotically stable and for τ2 = τ 0

2 the Hopf
bifurcation occurs.

2.2.2. Subcase A ∈ (0,1)

Now we focus on case A1 < 0 and 0 < A2 < |A1|. It is obvious that because A ∈ (0,1), so
A−1 < 0. Hence, the trivial stationary solution to Eq. (1) is unstable independently on the values
of both delays (for details see [11]). Through that for A1 < 0 and 0 < A2 < |A1| there is no Hopf
bifurcation.

Of course if A1 > 0 and A2 < 0, then we can exchange A1 for A2 and τ1 for τ2 and apply the
derived results.

2.3. Case A1,A2 < 0

This case is similar to the case A1 < 0 and 0 < A2 < |A1|. As before because A1,A2 < 0
implies that A1 + A2 < 0, so zero solution to Eq. (1) is unstable independently on the values of
both delays [11].

3. Discussion

In presented paper we considered differential equations with two independent discrete delays.
We focus on the existence of the Hopf bifurcation for equations whose linearization around the
trivial solution has the form

d

dt
x(t) = −A1x(t − τ1) − A2x(t − τ2). (24)

Three main cases, namely A1,A2 > 0, A1 · A2 < 0 and A1,A2 < 0 were presented. As a bifur-
cation parameter the second delay τ2 was chosen.

This paper is the first steep to investigation the possibility of existence of the stability switches
for the class of differential equations with two independent delays, i.e., existing a sequence of
values of τ2, namely

0 < τ 0
2 = τ

0,1
2 < τ

0,2
2 < τ

1,1
2 < τ

1,2
2 < τ

2,1
2 < τ

2,2
2 < · · ·

such that if τ2 = τ
i,1
2 for i ∈ N the stationary stable solution becomes unstable, and if τ2 =

τ
i,2
2 for i ∈ N unstable stationary solution becomes stable. It means there is a possibility of

repeatedly switching the stability of solution. The different, than in [14], definition of critical
value of delay r0

2 under which the Hopf bifurcation occurs allows us to create the candidate
sequence of values of τ2 which could assure the existing of stability switches. If we assume that
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the solution to Eq. (24) is stable for all τ1 � 0 as τ2 = 0, then the sufficient conditions to obtain
the stability switches have the following form

d

dτ2
�(

λ(τ2)
)∣∣

τ2=τ
i,1
2

> 0 for i ∈ N,
d

dτ2
�(

λ(τ2)
)∣∣

τ2=τ
i,2
2

< 0 for i ∈ N,

where λ(τ2) = �(λ(τ2)) + i	(λ(τ2)) is a root of linear equation (24) such that there exist τ2 =
τ

i,j

2 > 0 for which �(λ(τ
i,j

2 )) = 0 and 	(λ(τ
i,j

2 )) = ω0,i > 0 and i ∈ N, j ∈ {1,2}.
As the reader can see the investigation of stability switches becomes quite complicated.
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