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Abstract

The concept of generalized convex functions introduced by Beckenbach [E.F. Beckenbach, General-
ized convex functions, Bull. Amer. Math. Soc. 43 (1937) 363–371] is extended to the two-dimensional
case. Using three-parameter families, we define generalized convex (midconvex, M-convex) functions
f :D ⊆ R

2 → R and show some continuity properties of them.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

By the standard definition, a function f : I → R is called convex if, for any two distinct points
on the graph of f , the segment joining these points lies above the corresponding part of the
graph. In [1] Beckenbach generalized this classical definition by replacing the segments by some
curves—the graphs of functions belonging to a two-parameter family. The generalized convex
functions obtained in such a way have many properties similar to those of convex functions (cf.,
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e.g., [1–5]). However, all these results are formulated for functions defined on real intervals.
In this note we extend the idea given by Beckenbach to two-variable functions. Using a three-
parameter family F, we define F-convex, F-midconvex, and (F,M)-convex functions and show
their important properties. In particular, we prove that F-convex functions defined on a convex
set D ⊂ R

2 are continuous on intD and lower semicontinuous F-midconvex and (F,M)-convex
functions are also F-convex.

2. Three-parameter families

Let F be a family of continuous real functions defined on a convex set D ⊆ R
2 with nonempty

interior. We say that F is a three-parameter family on D if, for any three non-collinear points
x1, x2, x3 ∈ D and for any t1, t2, t3 ∈ R, there exists exactly one ϕ ∈ F such that

ϕ(xi) = ti for i = 1,2,3.

The unique function ϕ ∈ F determined by the points x1, x2, x3 ∈ D and values t1, t2, t3 ∈ R will
be denoted by ϕ(x1,t1)(x2,t2)(x3,t3).

Example 2.1. Consider the following classes of functions ϕ : R2 → R:

(1) F1 = {ϕ(u, v) = au + bv + c: a, b, c ∈ R};
(2) F2 = {ϕ(u, v) = u2 + v2 + au + bv + c: a, b, c ∈ R};
(3) F3 = {ϕ(u, v) = h(u, v) + au + bv + c: a, b, c ∈ R}, where h : R2 → R is an arbitrary con-

tinuous (but not necessarily differentiable) function;
(4) F4 = {ϕ(u, v) = m(u,v)(au + bv + c): a, b, c ∈ R}, where m : R2 → R \ {0} is an arbitrary

continuous function;
(5) F5 = {ϕ(u, v) = g(au + bv + c): a, b, c ∈ R}, where g : R → R is an arbitrary continuous

injection.

The above classes of functions are examples of three-parameter families on R
2. One can check

it easily by use of Cramer’s theorem and the fact that points (u1, v1), (u2, v2), (u3, v3) ∈ R
2 are

non-collinear iff

det

⎡
⎣u1 v1 1

u2 v2 1

u3 v3 1

⎤
⎦ �= 0.

We will use the following notation. For a, b ∈ R
2, a �= b, we denote by [a, b] the closed

segment joining a and b (i.e., [a, b] = {(1 − t)a + tb: 0 � t � 1}), and by L(a, b)—the line
spanned by a, b (i.e., L(a, b) = {(1 − t)a + tb: t ∈ R}). For non-collinear points a, b, c ∈ R

2,
L(a, b)c stands for the open half-plane determined by L(a, b) containing c. By �abc we denote
the closed triangle with vertices a, b, c, and by �a

bc—the extension of this triangle via a, that is,

�a
bc = {

x ∈ R
2: a ∈ [x, z] for some z ∈ �abc, z �= a

}
.

The sets �abc and �a
bc can also be expressed in terms of barycentric coordinates, namely

�abc = {ra + sb + tc: r, s, t � 0, r + s + t = 1},
�a

bc = {ra + sb + tc: s, t � 0, r + s + t = 1}.
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In the sequel D ⊂ R
2 will be a convex set with non-empty interior and F be a fixed three-

parameter family on D.

Lemma 2.2. Let ϕ1, ϕ2 ∈ F and x1, x2, x3 be non-collinear points in D. If ϕ1(x1) = ϕ2(x1),
ϕ1(x2) = ϕ2(x2) and ϕ1(x3) � ϕ2(x3), then ϕ1(x) � ϕ2(x) for every x ∈ L(x1, x2)x3.

Proof. If ϕ1(x3) = ϕ2(x3) then, by the fact that F is a three-parameter family, we have
ϕ1 = ϕ2, which finishes the proof. Now, assume that ϕ1(x3) < ϕ2(x3) and suppose there exists
x4 ∈ L(x1, x2)x3 such that ϕ1(x4) > ϕ2(x4). By the continuity of ϕ1, ϕ2 there exists x0 ∈ [x3, x4]
such that ϕ1(x0) = ϕ2(x0). Indeed, consider ψ : [0,1] → R defined by

ψ(t) = ϕ1
(
(1 − t)x3 + tx4

) − ϕ2
(
(1 − t)x3 + tx4

)
, t ∈ [0,1].

Since ψ is continuous and ψ(0) < 0, ψ(1) > 0, there exists t0 ∈ (0,1) such that ψ(t0) = 0.
Then for x0 = (1 − t0)x3 + t0x4 we have ϕ1(x0) = ϕ2(x0). Since F is a three-parameter family
and x1, x2, x0 are non-collinear, this implies that ϕ1 = ϕ2, which contradicts the assumption
ϕ1(x3) < ϕ2(x3). �
Lemma 2.3. Let ϕ1, ϕ2 ∈ F and x1, x2, x3 be non-collinear points in D. If ϕ1(xi) � ϕ2(xi),
i = 1,2,3, then ϕ1(x) � ϕ2(x) for all x ∈ �x1x2x3 .

Proof. Consider ϕ11, ϕ12 ∈ F such that

ϕ11(xi) = ϕ1(xi), i = 1,2, and ϕ11(x3) = ϕ2(x3),

ϕ12(x1) = ϕ1(x1) and ϕ12(xi) = ϕ2(xi), i = 2,3.

Then, using Lemma 2.2 three times, we get

ϕ1(x) � ϕ11(x) � ϕ12(x) � ϕ2(x)

for all x ∈ �x1x2x3 . �
3. F-convex functions

A function f :D → R is said to be F-convex if for any non-collinear a, b, c ∈ D,

f (x) � ϕ(a,f (a))(b,f (b))(c,f (c))(x), x ∈ �abc.

Lemma 3.1. Let f :D → R be F -convex and a, b, c ∈ D be non-collinear. Then

f (x) � ϕ(a,f (a))(b,f (b))(c,f (c))(x), x ∈ (�a
bc ∪ �b

ac ∪ �c
ab

) ∩ D.

Proof. Fix, for instance, x0 ∈ �c
ab ∩ D. Then c ∈ �abx0 . Let ϕ = ϕ(a,f (a))(b,f (b))(c,f (c)) and

ϕ1 = ϕ(a,f (a))(b,f (b))(x0,f (x0)). By the F-convexity of f we have

ϕ(c) = f (c) � ϕ1(c).

Hence, by Lemma 2.2,

ϕ(x) � ϕ1(x) for every x ∈ L(a, b)c.



832 M. Adamek et al. / J. Math. Anal. Appl. 330 (2007) 829–835
In particular,

ϕ(x0) � ϕ1(x0) = f (x0),

which completes the proof. �
Theorem 3.2. If f :D → R is F-convex, then it is continuous on intD.

Proof. Fix x0 ∈ intD and take a, b, c ∈ D such that x0 ∈ int�abc . Consider the triangles �1 =
�abx0 , �2 = �acx0 and �3 = �bcx0 , and take

ϕ1 = ϕ(a,f (a))(b,f (b))(x0,f (x0)), ϕ2 = ϕ(a,f (a))(c,f (c))(x0,f (x0)),

ϕ3 = ϕ(b,f (b))(c,f (c))(x0,f (x0)).

By the F-convexity of f , we have

f (x) � ϕi(x) for all x ∈ �i , i = 1,2,3.

Hence

f (x) � max
{
ϕi(x): i = 1,2,3

}
, x ∈ �abc. (1)

On the other hand, by Lemma 3.1, we get

f (x) � ϕi(x) for all x ∈ �x0
i ∩ D, i = 1,2,3

(here �x0
i denotes the extension of �i via x0) and hence

f (x) � min
{
ϕi(x): i = 1,2,3

}
, x ∈ �abc. (2)

Since ϕi are continuous and ϕi(x0) = f (x0), i = 1,2,3, therefore inequalities (1) and (2) imply
that f is continuous at x0, which was to be proved. �
Remark 3.3. We can give another definition of generalized convex functions involving only two
points. Namely, let Φ be a family of continuous functions defined on straight lines in R

2. Φ is
called a two-parameter family if for any a, b ∈ R

2, a �= b, and for any t1, t2 ∈ R there exists
exactly one ϕ ∈ Φ such that ϕ :L(a, b) → R and

ϕ(a) = t1, ϕ(b) = t2.

The unique function ϕ ∈ Φ determined by the points a, b ∈ R
2 and t1, t2 ∈ R will be denoted by

ϕ(a,t1)(b,t2). We say that a function f :D → R is Φ-convex if for any a, b ∈ D, a �= b,

f (x) � ϕ(a,f (a))(b,f (b))(x), x ∈ [a, b].

At the first sight such a definition may seem to be a better counterpart of the classical one.
However, the properties of Φ-convex functions are not as good as those of F-convex functions.
For instance, Φ-convex functions need not be continuous as it is shown by the next example.

Example 3.4. Let h : R2 → R be a function whose restrictions to every straight line in R
2 are

continuous. Consider the family Φh of all functions ϕ :L(a, b) → R of the form

ϕ
(
(1 − t)a + tb

) = h
(
(1 − t)a + tb

) + αt + β, t ∈ R,
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where a, b ∈ R
2, a �= b, and α,β ∈ R. It is easy to verify that Φh is a two-parameter family on

R
2 and the function h itself is Φh-convex. Now, take h0 : R2 → R defined by

h0(x) =
{

x2
1x2

x4
1+x2

2
, if x = (x1, x2) �= (0,0),

0, if x = (0,0).

Then h0 is Φh0 -convex, but it is not continuous at x = (0,0).

4. F-midconvex and (F,M)-convex functions

A function f :D → R is said to be F-midconvex if for all non-collinear points a, b, c ∈ D,

f

(
a + b + c

3

)
� ϕ(a,f (a))(b,f (b))(c,f (c))

(
a + b + c

3

)
.

To replace the arithmetic mean in the above definition by a more general mean, we introduce
the notion of strict means on D as follows. A three variable function M :D3 → D is called a
strict mean on D if, for all non-collinear points a, b, c ∈ D,

M(a,b, c) ∈ int�abc.

Given a strict mean M :D3 → D, a subset C ⊆ D is called M-convex if M(x,y, z) ∈ C for all
non-collinear elements x, y, z ∈ C. A function f :D → R is said to be (F,M)-convex if for all
non-collinear points a, b, c ∈ D,

f
(
M(a,b, c)

)
� ϕ(a,f (a))(b,f (b))(c,f (c))

(
M(a,b, c)

)
.

A set C ⊆ D is called two-dimensional if it cannot be covered by a line, i.e., it contains at
least three non-collinear points. The next two lemmas establish the equivalence of convexity and
M-convexity of two-dimensional closed sets under certain conditions on the mean M . In the first
one we assume that M is contractive in its third variable, whereas in the second one that M is a
weighted arithmetic mean with the weights separated from 0.

Lemma 4.1. Let M :D3 → D be a strict mean which is contractive in its third variable, i.e., for
all x, y, z′, z′′ ∈ D with z′ �= z′′,∣∣M(x,y, z′) − M(x,y, z′′)

∣∣ < |z′ − z′′|.
Furthermore, assume that, for x �= y in D,

M(x,y, x),M(x, y, y) /∈ {x, y}. (3)

Then any two-dimensional closed M-convex set C ⊆ D is also convex.

Proof. Assume, on the contrary, that C is not convex. Then there exist two points of C, say p

and q , such that the segment [p,q] is not contained in C. Due to the closedness of C, there exists
a subsegment [x, y] of [p,q] such that

x, y ∈ C and ]x, y[ ∩ C = {
tx + (1 − t)y: 0 < t < 1

} ∩ C = ∅.

Since C is two-dimensional, there exists a point z ∈ C which is not on the line L(x, y). Then
x, y, and z are non-collinear. Define the sequence (zn) by the recursion

z1 := z, zn+1 := M(x,y, zn) (n ∈ N).
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By our contractivity assumption on M , the map u 
→ M(x,y,u) is a contractive selfmap (a Pic-
card iteration) of the triangle �xyz (which is a compact metric space). Therefore, by a well-known
result of iteration theory, the sequence converges to a limit point w ∈ �xyz which is the unique
fixed point of the map u 
→ M(x,y,u), i.e., w = M(x,y,w). If x, y and w were non-collinear,
then, by the strict mean value property, the point w = M(x,y,w) is in the interior of the triangle
�xyw , which is impossible. Thus, w is an element of the segment [x, y]. The equalities w = x

and w = y contradict (3), therefore w ∈ ]x, y[.
On the other hand, C is M-convex, therefore, by induction, it follows that the sequence (zn)

is contained in C. In view of the closedness, the limit point w is also in C. This however yields
the contradiction w ∈ ]x, y[ ∩ C. Thus the proof is complete. �
Lemma 4.2. Let λ1, λ2, λ3 :D3 → (0,1) be given functions such that

λ1(x, y, z) + λ2(x, y, z) + λ3(x, y, z) = 1, x, y, z ∈ D, (4)

and, for all non-collinear points x, y, z ∈ D,

inf
u∈�xyz

λi(x, y,u) > 0, i ∈ {1,2}. (5)

Let

M(x,y, z) = λ1(x, y, z)x + λ2(x, y, z)y + λ3(x, y, z)z, x, y, z ∈ D. (6)

Then any two-dimensional closed M-convex set C ⊆ D is also convex.

Note that condition (5) is easily satisfied if λ1 and λ2 are continuous function on D3 because
�xyz is compact.

Proof. Suppose, on the contrary, that C is not convex. Then, as in the proof of the previous
lemma, there exist points x, y ∈ C such that ]x, y[ ∩ C = ∅ and a point z ∈ C such that x, y, z

are non-collinear. Consider the sequence (zn) defined by

z1 := z, zn+1 := M(x,y, zn) (n ∈ N).

Since all zn ∈ �xyz, there exists a subsequence (znk
) of (zn) convergent to a point w ∈ �xyz. We

will show that w ∈ ]x, y[. Using the representation (6) (nk − 1) times, we can express znk
in the

form

znk
= rkx + sky + tkz, (7)

where the barycentric coordinates rk, sk, tk depend on values of λ1, λ2, λ3 at the points (x, y, zi),
i = 1, . . . , nk − 1. It is easily seen that

rk > λ1(x, y, znk−1), sk > λ2(x, y, znk−1) and tk =
nk−1∏
i=1

λ3(x, y, zi),

for every k > 1. On account of assumptions (4) and (5), we have

sup
u∈�xyz

λ3(x, y,u) < 1.

Consequently, by the above formula on tk , we obtain tk → 0. The sequences (rk) and (sk) contain
subsequences convergent to some points r, s ∈ [0,1], respectively. For simplicity assume that
rk → r and sk → s. Since

rk > λ1(x, y, znk−1) � inf
u∈� λ1(x, y,u) > 0,
xyz
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we get r > 0. Similarly, s > 0. Now, letting k → ∞ in (7), we obtain

w = rx + sy.

Hence w ∈ ]x, y[. On the other hand, since C is closed and znk
∈ C for all k ∈ N, we have w ∈ C.

This contradicts the fact that ]x, y[ ∩ C = ∅ and finishes the proof. �
The next theorem is an analogy of the well-known result stating that every midconvex function

f :D → R with closed epigraph (or, equivalently, lower semicontinuous) is continuous on intD.

Theorem 4.3. Let M :D3 → D be a strict mean satisfying the conditions of Lemma 4.1 or of
Lemma 4.2. If f :D → R is a lower semicontinuous (F,M)-convex function, then it is also
F-convex and continuous on intD.

Proof. Let a, b, c be arbitrary non-collinear points in D. Define the set C ⊆ �abc as follows:

C := {
x ∈ �abc: f (x) � ϕ(a,f (a))(b,f (b))(c,f (c))(x)

}
.

Then, obviously a, b, c ∈ C and thus C is two-dimensional. Due to the lower semicontinuity
of f , the set C is also closed.

To show that C is M-convex let x, y, z be arbitrary non-collinear points of C. Then

ϕ(x,f (x))(y,f (y))(z,f (z))(u) � ϕ(a,f (a))(b,f (b))(c,f (c))(u) (8)

if u ∈ {x, y, z}. Therefore, by Lemma 2.3, this inequality is valid for all u ∈ �xyz. Particularly,
(8) is also true if u = M(x,y, z). On the other hand, by the (F,M)-convexity of f , we also have

f
(
M(x,y, z)

)
� ϕ(x,f (x))(y,f (y))(z,f (z))

(
M(x,y, z)

)
.

This inequality combined with (8) yields that M(x,y, z) ∈ C, i.e., the set C is indeed M-convex.
Using Lemma 4.1 (or Lemma 4.2), it follows that C is convex, hence C = �abc (because

a, b, c ∈ C). This yields that, for all x ∈ �abc ,

f (x) � ϕ(a,f (a))(b,f (b))(c,f (c))(x).

Thus the proof of the F-convexity of f is complete. The continuity of f on intD follows from
Theorem 3.2. �

Obviously, the arithmetic mean satisfies all the requirements of Lemma 4.1 (and also of
Lemma 4.2). Therefore, as an immediate consequence of the previous theorem, we obtain the
following result.

Corollary 4.4. If f :D → R is a lower semicontinuous F-midconvex function, then it is also
F-convex and continuous on intD.
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