
J. Math. Anal. Appl. 347 (2008) 370–374
Contents lists available at ScienceDirect

J. Math. Anal. Appl.

www.elsevier.com/locate/jmaa

Skew exactness and range-kernel orthogonality II

Robin Harte

School of Mathematics, Trinity College, Dublin, Ireland

a r t i c l e i n f o a b s t r a c t

Article history:
Received 23 January 2008
Available online 13 June 2008
Submitted by G. Corach

Keywords:
Hermitian Banach algebra elements
Fuglede property
∗-Hyponormality
Self-commutator
Birkhoff–James orthogonality

The Fuglede property extends to ∗-hyponormal Banach algebra elements, and certain
Banach algebra elements are approximated by self-commutators.

© 2008 Elsevier Inc. All rights reserved.

Introduction

In this note we show that the ∗-hyponormal operators of Kirsti Mattila have the Fuglede property of Victor Shulman,
and make an extension to Banach algebra elements of a self-commutator approximation result of Duggal and Maher: unlike
them we have no need to assume that the Palmer subspace is closed under multiplication.

Suppose throughout that A is a complex Banach algebra, with identity 1, and dual space A†: then the numerical range
V A : A → 2C is given by

V A(a) = {
ϕ(a): ϕ ∈ State(A)

}
(a ∈ A), (0.1)

where

State(A) = {
ϕ ∈ A†: ‖ϕ‖ = 1 = ϕ(1)

}; (0.2)

now the hermitian elements of A are given by

Re(A) = {
a ∈ A: V A(a) ⊆ R

} = {
a ∈ A: ∀t ∈ R,

∥∥eita
∥∥ = 1

}
. (0.3)

Here the equivalence [1, Lemma 5.2] is Vidav’s lemma. The “Palmer subspace”

Reim(A) = Re(A) + i Re(A), (0.4)

is a closed complex-linear subspace of A, not necessarily closed under multiplication, and the condition

Reim(A) = A (0.5)

characterizes C∗ algebras [7]. Since [1, Lemma 5.7]
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Re(A) ∩ i Re(A) = {0}, (0.6)

the “real and imaginary parts” of elements of Reim(A) are well-defined, and hence we can successfully define ([1, Lem-
ma 5.8], [4]) a mapping a 	→ a∗ on Reim(A) by setting

(h + ik)∗ = h − ik, h,k ∈ Re(A). (0.7)

We claim that the Palmer subspace is actually a Lie subalgebra of A, relative to the usual bracket

[a,b] = ab − ba (a,b ∈ A). (0.8)

Theorem 1. If A is arbitrary then

[
Reim(A),Reim(A)

] ⊆ Reim(A), (1.1)

and for arbitrary a,b ∈ Reim(A)

[a,b]∗ = [b∗,a∗]. (1.2)

Proof. This all follows easily from inclusion [1, Lemma 5.4]

[
Re(A),Re(A)

] ⊆ i Re(A). � (1.3)

Self-adjoint operators on Banach spaces have a certain “range kernel orthogonality”: we write for subspaces E, F ⊆ X

E ⊥ F ⇐⇒ ∀x ∈ E, ‖x‖ � dist(x, F ), (1.4)

and [4] for operators S, T ∈ B(X)

S ⊥ T ⇐⇒ S−1(0) ⊥ T (X). (1.5)

When (1.5) holds with S = T we shall describe the operator T ∈ B(X) as self-orthogonal. It is Sinclair’s theorem [9, Proposi-
tion 1] that T is self-orthogonal if zero is not in the interior of its numerical range:

0 /∈ int V B(X)(T ) 
⇒ T ⊥ T ; (1.6)

this at once applies to hermitian T . We shall describe T ∈ ReimB(X) as “Fuglede” ([8]; [4, Definition 6]) provided

T −1(0) ⊆ T ∗−1(0); (1.7)

now a nice proof of Sinclair’s theorem is given [3, Corollary 7] by Fong, who uses the same argument to show [3, Lemma 3,
Theorem A] that normal operators are both self-orthogonal and Fuglede:

T normal 
⇒ T −1(0) ⊆ T ∗−1(0) ⊥ T (X). (1.8)

Here a ∈ A is said to be normal iff a = h + ik with mutually commuting h,k ∈ Re(A); equivalently a and a∗ commute. Since
“generalized inner derivations” La − Rb ∈ B(A) induced by hermitian or normal Banach algebra elements a,b ∈ A become
hermitian or normal operators on the underlying Banach space, a “Putnam–Fuglede theorem” for normal Banach algebra
elements follows. More generally, if A and B are Banach algebras, and M is a “Banach (left A, right B) bimodule,” in the
sense [4] of a Banach space on which left and right multiplications by elements of A and B act as bounded operators, then
to a ∈ A and b ∈ B we can associate the generalized derivation

La − Rb : x 	→ ax − xb (M → M). (1.9)

The self-orthogonality of T = La − Ra on M = A is [5] in some sense a quantitative version of the Wielandt–Wintner result
that no commutator of bounded operators can ever be the identity, consigning all discussion of Heisenberg uncertainty to
the realm of unbounded operators.

We have been unable to extend (1.8) to “hyponormal” elements, but Kirsti Mattila has extended the first part to what
she calls “∗-hyponormal” operators:

Definition 2. a ∈ Reim(A) is said to be positive if it has positive numerical range,

V A(a) ⊆ [0,∞), (2.1)

hyponormal if it has positive self-commutator,
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V A(a∗a − aa∗) ⊆ [0,∞), (2.2)

and ∗-hyponormal if

∥∥eza∗
e−za

∥∥ � 1 on C. (2.3)

Here we write z : C → C for the complex coordinate, or identity mapping. In this note we claim that ∗-hyponormal Banach
algebra elements induce derivations with the Fuglede property, which in turn leads to approximation by self-commutators.
As a piece of book keeping, we record

Theorem 3. If a ∈ Reim(A) there is implication

a ∗-hyponormal 
⇒ a hyponormal. (3.1)

Proof. This is just the argument of Mattila [6, Proposition 2] from the case A = B(X). If a ∈ A is ∗-hyponormal then, by (2.2),

1 �
∥∥eza∗

e−zae−za∗
eza

∥∥ = ∥∥1 − |z|2(a∗a − aa∗)
∥∥ + O

(|z|3) on D = {|z| � 1
}
.

If ϕ ∈ A† with ‖ϕ‖ = ϕ(1) = 1 then

∣∣1 − |z|2ϕ(a∗a − aa∗)
∣∣ = O

(|z|3) on D.

By (1.3) ϕ(a∗a − aa∗) ∈ R and hence

−ϕ(a∗a − aa∗) = O (t), 0 < t � 1. (3.2)

This means ϕ(a∗a − aa∗) � 0, giving (3.1). �
Specialising to A = B(X), ∗-hyponormal operators have [6, Theorem 3] the Fuglede property (1.7): if T ∈ B(X) then

T ∗-hyponormal 
⇒ T Fuglede. (3.3)

Like hyponormality [4, (10.3)], ∗-hyponormality is transmitted to multiplication operators:

Theorem 4. If M is a Banach (A, B) bimodule, and if a ∈ Reim(A) and b ∈ Reim(B), then

a,b∗ ∗-hyponormal 
⇒ La − Rb
∗-hyponormal, (4.1)

and hence for arbitrary m ∈ M there is implication

am = mb 
⇒ a∗m = mb∗. (4.2)

Proof. Observe

ez(La−Rb)∗ e−z(La−Rb) ≡ Leza∗ e−za Rezbe−zb∗ ,

giving (4.1). This with (3.2) gives (4.2). �
Specialising to the case A = B = M and a = b, the Fuglede property for La − Ra gives, if not the orthogonality we were

looking for, another kind of approximability:

Theorem 5. If the derivation induced by a ∈ Reim(A) has the Fuglede property,

(La − Ra)
−1(0) ⊆ (La∗ − Ra∗ )−1(0), (5.1)

then for arbitrary b ∈ Reim(A) there is implication

(La − Ra)(b) = 0 
⇒ ‖a‖ �
∥∥a − [b∗,b]∥∥. (5.2)

Proof. The trick [2] is to note

(La − Ra)(b) = 0 ⇐⇒ (Lb − Rb)(a) = 0.

From Lemma 1, (5.1) and the left-hand side of (5.2) we have
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(Lb − Rb)(a) = (Lb∗ − Rb∗ )(a) = 0

and hence, with b = h + ik with h,k ∈ Re(A),

(Lh − Rh)(a) = (Lk − Rk)(a) = 0.

By either Sinclair’s theorem (1.6) or Fong’s theorem (1.8) it follows

∀x ∈ A, ‖a‖ �
∥∥a − [h, x]∥∥;

taking in particular x = 2ik gives (5.2). �
Theorem 5 has been obtained by Maher [5] for normal a ∈ A = B(X) for a Hilbert space X , and extended by Duggal

[2, Theorem 2.1] to a Banach space X , under the assumption that the subspace Reim(A) is closed under multiplication.
The same argument extends to the situation ([5, Theorem 4.1, 4.2], [2, Theorem 2.3]) in which J ⊆ A is a two-sided ideal
and also a continuously embedded Banach space: if a ∈ J∩Reim(A) and if b ∈ A with [b∗,b] ∈ J then the implication (5.2)
continues to hold, but in the J norm.

If we make the Duggal assumption

Re(A)2 ⊆ Reim(A) (5.3)

that Reim(A) is a subalgebra of A, then equivalently [1, Theorem 5.3]

h,k ∈ Re(A) 
⇒ hk + kh ∈ Re(A), (5.4)

which together with (1.3) gives

(ba)∗ = a∗b∗ (
a,b ∈ Reim(A)

)
. (5.5)

Now (cf. [2, Theorem 2.6]) we can also say something about La Ra − I:

Theorem 6. Suppose Reim(A) ⊆ A is a subalgebra: if a ∈ Reim(A) with

(La Ra − I)−1(0) ⊆ (La∗ Ra∗ − I)−1(0), (6.1)

and if also

b ∈ Reim(A)∩(La Ra − I)−1(0), (6.2)

then it follows

a ∈ (Lb∗b Rb∗b − I)−1(0) (6.3)

and hence

∀ x ∈ A, ‖a‖ �
∥∥a − [b∗b, x]∥∥. (6.4)

Proof. The first part (6.3) follows the argument of Theorem 2, and then (6.4) uses the fact that b∗b is hermitian, which
follows from (5.5). �

We have been unable to settle

Problem 7. If T ∈ B(X) is ∗-hyponormal then T is self-orthogonal?

By (3.2) it would be sufficient to show that

T −1(0)∩T ∗−1(0) ⊥ T (X), (7.1)

an interesting property in its own right. Following the argument [3, Lemma 1] of Fong, we might define E : X† → X† by
setting

∀x ∈ X, ∀ϕ ∈ X†: (Eϕ)(x) = glimnϕ
(
enT ∗

e−nT x
)
, (7.2)

where

glim : �∞ → C (7.3)
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is a “Banach limit”: then we would have

ST − T S = ST ∗ − T ∗ = 0 
⇒ E S† = S† E; (7.4)

∀x ∈ X: T x = T ∗x = 0 
⇒ ∀ϕ ∈ X†, (Eϕ)(x) = ϕ(x); (7.5)

∀ϕ ∈ X†: ϕT = ϕT ∗ = 0 
⇒ Eϕ = ϕ. (7.6)

It is not however immediately obvious that

eT ∗
e−T E = E = E2. (7.7)

If T ∗T = T T ∗ then of course (7.7) is clear, which suggests a slightly simpler proof of the normal case (1.8). An affirmative
solution to the following would [4, Definition 6] enhance the significance of ∗-hyponormality:

Problem 8. If T ∈ B(X) is ∗-hyponormal does it follow that there is k > 0 for which

∥∥T ∗(·)∥∥ � k
∥∥T (·)∥∥ on X? (8.1)
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