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The existence of weak solutions to the stationary quantum drift-diffusion equations for
semiconductor devices is investigated. The proof is based on minimization procedure of
non-linear functional and Schauder fixed-point theorem. Furthermore, the semiclassical
limit ε → 0 from the quantum drift-diffusion model to the classical drift-diffusion model
is discussed.
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1. Introduction

Due to the ongoing miniaturization of electronic devices, mathematical models of ultra small semiconductors have to
incorporate the quantum mechanical effects [1,2,6]. This paper is concerned with quantum drift-diffusion models. In Ref. [3],
Jüngel and Pinnau have proved the existence of solution in one dimension, the proof is finished by introducing a positivity-
preserving numerical scheme. Then the conclusion is extended to multi-dimensions in Ref. [4]. The solutions they have got
are all strong solutions, but the assumptions they imposed are somewhat strict.

The scaled equations of the quantum drift-diffusion model read:

nt − ∇ · J = 0,

n∇V + ∇r(n) − ε2n∇
(

�
√

n√
n

)
= J ,

−λ2�V = n − C (1)

where n(x, t) is the electron density, J (x, t) the current density, and V (x, t) the electrostatic potential. The dimensionless
constants ε and λ are the scaled Planck constant and the scaled Debye length, respectively. The doping profile C(x) models
fixed background charges, r(n) is the pressure function.

We assume Ω ⊂ R
N (N = 1,2,3) is a bounded domain, and the boundary ∂Ω splits into two disjoint parts ΓD and ΓN ,

where ΓD models the Ohmic contacts of the device and ΓN represents the insulating parts of the boundary. Assuming
∂Ω ∈ C0,1, ΓD has nonvanishing (N − 1)-dimensional Lebesgue measure. Let γ denote the unit outward normal vector
along ∂Ω .
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The objective of this paper is to analyze the stationary version

∇ · J = 0, J = n∇ F ,

F = V + h(n) − ε2 �
√

n√
n

,

−λ2�V = n − C (2)

subject to the boundary conditions

n = nD , V = V D , F = F D on ΓD ,

∂n

∂γ
= ∂V

∂γ
= ∂ F

∂γ
= 0 on ΓN .

We shall make use of the following assumptions.

(A1) nD , V D , F D , C ∈ L∞(Ω) ∩ H1(Ω), inf nD > 0.
(A2) The enthalpy function h(s) (s � 0) is strictly monotone increasing, locally Lipschitz continuous, and

lim
s→0+ h(s) = −∞, lim

s→+∞ h(s) = +∞.

We introduce a new variable ρ = √
n, then from (2) we obtain

∇ · (ρ2∇ F
) = 0,

ε2�ρ = ρ
(

V + h
(
ρ2) − F

)
,

−λ2�V = ρ2 − C (3)

subject to the boundary conditions

ρ = ρD , V = V D , F = F D on ΓD ,

∂ρ

∂γ
= ∂V

∂γ
= ∂ F

∂γ
= 0 on ΓN , (4)

where ρD = √
nD .

2. Preliminaries

Given f ∈ L2(Ω), assume Φ ∈ L∞(Ω) ∩ H1(Ω) is the unique weak solution of

−λ2�Φ = f , Φ = 0 on ΓD ,
∂Φ

∂γ
= 0 on ΓN .

Define Φ̃[ f ] = Φ , then Φ̃[ · ] is a continuous linear mapping [7].
Let Φe ∈ L∞(Ω) ∩ H1(Ω) be the unique weak solution of

−�Φe = 0, Φe = V D on ΓD ,
∂Φe

∂γ
= 0 on ΓN .

Given ρ ∈ L2(Ω), then V = Φ̃[ρ2 − C] + Φe is the unique weak solution of

−λ2�V = ρ2 − C, V = V D on ΓD ,
∂V

∂γ
= 0 on ΓN .

Let B = { f ∈ L2(Ω) | inf F D � f � sup F D}. Given F ∈ B , δ ∈ (0,∞), for all ρ ∈ L2(Ω), define

Eδ(ρ) = ε2
∫
Ω

|∇ρ|2 dx +
∫
Ω

Hδ

(
ρ2) dx + λ2

2

∫
Ω

∣∣∇Φ̃
[
ρ2 − C

]∣∣2
dx +

∫
Ω

ρ2Φe dx −
∫
Ω

Fρ2 dx,

where Hδ(s) = ∫ s
1 hδ(u)du, hδ(u) = max{h(u),h(δ)}.

Assuming ρc ∈ L∞(Ω) ∩ H1(Ω) and ρc = ρD on ΓD , we set X = ρc + H1(Ω).
0
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Lemma 1. Given F ∈ B, if there exists a minimizer ρδ of Eδ(ρ) in X , we set V = Φ̃[ρ2 − C] + Φe . Then ρδ is a weak solution of

ε2�ρ = ρ
(

V + hδ

(
ρ2) − F

)
, ρ = ρD on ΓD ,

∂ρ

∂γ
= 0 on ΓN .

Proof. For all ϕ ∈ H1
0(Ω), ρ ∈ X , s ∈ R satisfying ρ + sϕ ∈ X , it holds

Eδ(ρ + sϕ) − Eδ(ρ) = ε2
(∫

Ω

|∇ρ + s∇ϕ|2 dx −
∫
Ω

|∇ρ|2 dx

)
+

∫
Ω

(
Hδ

(
(ρ + sϕ)2) − Hδ

(
ρ2))dx

+ λ2

2

∫
Ω

(∣∣∇Φ̃
[
(ρ + sϕ)2 − C

]∣∣2 − ∣∣∇Φ̃
[
ρ2 − C

]∣∣2)
dx

+
(∫

Ω

(ρ + sϕ)2Φe dx −
∫
Ω

ρ2Φe dx

)
+

(∫
Ω

F (ρ + sϕ)2 dx −
∫
Ω

Fρ2 dx

)

= I1 + I2 + I3 + I4 + I5.

According to mean value theorem of integral, we obtain

I2 =
∫
Ω

( (ρ+sϕ)2∫
ρ2

hδ(u)du

)
dx =

∫
Ω

2ρsϕhδ

(
ρ2)dx + o(s).

By integration by parts and the linear property of Φ̃[ · ], we get

I3 = λ2

2

∫
Ω

Φ̃
[
(ρ + sϕ)2 − C

] (ρ + sϕ)2 − C

λ2
dx − λ2

2

∫
Ω

Φ̃
[
ρ2 − C

]ρ2 − C

λ2
dx

= λ2

2

∫
Ω

Φ̃
[
(ρ + sϕ)2 − C

]( (ρ + sϕ)2 − C

λ2
− ρ2 − C

λ2

)
dx + λ2

2

∫
Ω

Φ̃
[
2ρsϕ + s2ϕ2]ρ2 − C

λ2
dx

= λ2

2

(∫
Ω

Φ̃
[
ρ2 − C

]2ρsϕ

λ2
dx + o(s)

)
+ λ2

2

∫
Ω

Φ̃
[
ρ2 − C

]2ρsϕ + s2ϕ2

λ2
dx

= λ2

2

(
4

λ2

∫
Ω

Φ̃
[
ρ2 − C

]
ρsϕ dx + o(s)

)

= 2
∫
Ω

Φ̃
[
ρ2 − C

]
ρsϕ dx + o(s).

By simply calculating, we get

I1 = ε2
∫
Ω

2∇ρ · s∇ϕ dx + o(s), I4 =
∫
Ω

2ρsϕΦe dx + o(s), I5 =
∫
Ω

2ρsϕF dx + o(s).

To sum up, we obtain

Eδ(ρ + sϕ) − Eδ(ρ) = 2

(∫
Ω

ε2∇ρ · s∇ϕ dx +
∫
Ω

ρ(hδ + V − F )sϕ dx

)
+ o(s).

If ρδ is a minimizer of Eδ(ρ) in X , then as s → 0,

Eδ(ρδ + sϕ) − Eδ(ρδ) = 2

(∫
Ω

ε2∇ρδ · s∇ϕ dx +
∫
Ω

ρδ(hδ + V − F )sϕ dx

)
+ o(s) � 0.

Let s → 0+ and s → 0− , respectively. Then∫
Ω

ε2∇ρδ · ∇ϕ dx +
∫
Ω

ρδ(hδ + V − F )ϕ dx = 0. �
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Lemma 2 (Pseudo-convexity inequality). For all s ∈ (0,1), ρ1,ρ2 ∈ L2(Ω) and |ρ1| 
= |ρ2|, one has

Eδ

(√
sρ2

1 + (1 − s)ρ2
2

)
< sEδ(ρ1) + (1 − s)Eδ(ρ2).

Proof. Set ρ =
√

sρ2
1 + (1 − s)ρ2

2 , then

∇ρ = sρ1∇ρ1 + (1 − s)ρ2∇ρ2

ρ
,

s|∇ρ1|2 + (1 − s)|∇ρ2|2 −
∣∣∣∣ sρ1

ρ
∇ρ1 + (1 − s)ρ2

ρ
∇ρ2

∣∣∣∣
2

= s(1 − s)ρ2
2

ρ2
|∇ρ1|2 + s(1 − s)ρ2

1

ρ2
|∇ρ2|2 − 2s(1 − s)

ρ1ρ2

ρ2
∇ρ1 · ∇ρ2

= s(1 − s)

∣∣∣∣ρ2

ρ
∇ρ1 − ρ1

ρ
∇ρ2

∣∣∣∣
2

� 0.

So we get

|∇ρ|2 � s|∇ρ1|2 + (1 − s)|∇ρ2|2.
Next, we prove that for all x0 ∈ Ω , Hδ(ρ

2(x0)) < Hδ(ρ
2
1 (x0)) + Hδ(ρ

2
2 (x0)).

We just need to prove

ρ2(x0)∫
1

hδ(u)du � s

ρ2
1 (x0)∫
1

hδ(u)du + (1 − s)

ρ2
2 (x0)∫
1

hδ(u)du

or

ρ2(x0)∫
ρ2

1 (x0)

hδ(u)du � (1 − s)

ρ2
2 (x0)∫

ρ2
1 (x0)

hδ(u)du.

There is no loss in generality in assuming that ρ1(x0) < ρ2(x0). According to the mean value theorem, there exist ξ1 ∈
(ρ2

1 (x0),ρ
2(x0)), ξ2 ∈ (ρ2(x0),ρ

2
2 (x0)) satisfying

(1 − s)

ρ2
2 (x0)∫

ρ2
1 (x0)

hδ(u)du = (1 − s)
(
ρ2(x0) − ρ2

1 (x0)
)
hδ(ξ1) + (1 − s)

(
ρ2

2 (x0) − ρ2(x0)
)
hδ(ξ2)

� (1 − s)
(
ρ2

2 (x0) − ρ2
1 (x0)

)
hδ(ξ1)

= (
ρ2(x0) − ρ2

1 (x0)
)
hδ(ξ1)

=
ρ2(x0)∫

ρ2
1 (x0)

hδ(u)du.

Then from |ρ1| 
= |ρ2|, we get Hδ(ρ
2(x0)) < Hδ(ρ

2
1 (x0)) + Hδ(ρ

2
2 (x0)).

According to the linear property of Φ̃[ · ], we obtain

∇Φ̃
[
ρ2 − C

] = s∇Φ̃
[
ρ2

1 − C
] + (1 − s)∇Φ̃

[
ρ2

2 − C
]
.

So we conclude

s
∣∣∇Φ̃

[
ρ2

1 − C
]∣∣2 + (1 − s)

∣∣∇Φ̃
[
ρ2

2 − C
]∣∣2 − ∣∣∇Φ̃

[
ρ2 − C

]∣∣2 = s(1 − s)
∣∣∇Φ̃

[
ρ2

1 − C
] − ∇Φ̃

[
ρ2

2 − C
]∣∣2 � 0. �

Lemma 3. Given F ∈ B, there exists a unique nonnegative minimizer of Eδ(ρ) in X .
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Proof. From limu→∞ hδ(u) = ∞, we know that the functional Eδ is coercive with respect to the L2(Ω) norm. X is a
translate of a Hilbert space, thus the existence of minimizers of Eδ(ρ) follows from the H1(Ω)-weakly sequentially lower
semicontinuity of Eδ(ρ) (which is easy to see).

By the using of Lemma 2, we get that when |ρ1| 
= |ρ2|, one has

Eδ

(√
1

2
ρ2

1 + 1

2
ρ2

2

)
<

1

2
Eδ(ρ1) + 1

2
Eδ(ρ2).

So we obtain the uniqueness of the nonnegative minimizer.
Due to the above analysis, we obtain that given F ∈ L∞(Ω), δ ∈ (0,∞), there exists a unique solution (V δ,ρδ) satisfying

V δ ∈ L∞(Ω) ∩ H1(Ω), ρδ ∈ H1(Ω), and the equations

ε2�ρ = ρ
(

V + hδ

(
ρ2) − F

)
, −λ2�V = ρ2 − C, (5)

with the boundary condition

ρ = ρD , V = V D on ΓD ,
∂ρ

∂γ
= ∂V

∂γ
= 0 on ΓN . � (6)

Lemma 4. Let (A1), (A2) hold. Given F ∈ L∞(Ω), then there exists δ0 > 0 such that, for all δ ∈ (0, δ0), there exists a unique solution
(V δ,ρδ) to (5)–(6), which satisfies V δ ∈ L∞(Ω) ∩ H1(Ω), ρδ ∈ H1(Ω), ρδ > c, c > 0 is independent of δ.

Proof. Assuming h(s0) = 0, we obtain from the monotonicity of the enthalpy function, that for all δ ∈ (0, s0), one has

ρ2∫
s0

hδ(u)du � 0.

So we get

Hδ

(
ρ2) =

ρ2∫
1

hδ(u)du �
s0∫

1

hδ(u)du � (s0 − 1)hδ(1) � (s0 − 1)h(1).

Then from the definition of Eδ(ρ), we know Eδ is bounded from below uniformly for δ in X . So ‖ρδ‖H1(Ω) � c1, with c1 > 0
independent of δ.

From the second equation of (5), we get ‖V δ‖L∞(Ω) � c2, and c2 > 0 is independent of δ.
Using (ρδ − c)− = min{0,ρδ − c} as a test function for the first equation of (5) for 0 < c � infρD , we get

ε2
∫
Ω

∣∣∇(ρδ − c)−
∣∣2

dx =
∫
Ω

ρδ

(
V δ + hδ

(
ρ2

δ

) − F
)(−(ρδ − c)−

)
dx �

∫
Ω

ρδ

(
V δ + hδ

(
c2) − F

)(−(ρδ − c)−
)

dx.

From lims→0+ h(s) = −∞, we get that there exists (c, δ), with c > 0, δ > 0, such that for 0 < δ � δ, one has

ε2
∫
Ω

∣∣∇(ρδ − c)−
∣∣2

dx � 0.

Hence ρδ � c when 0 < δ � δ. Set δ0 = min{δ, c2}. Then when δ < δ0, it holds h(ρ2
δ ) � h(δ). This gives hδ(ρ

2
δ ) = h(ρ2

δ ). �
Lemma 4 immediately implies the following lemma.

Lemma 5. Let (A1), (A2) hold, given F ∈ L∞(Ω), there exists a unique solution (V ,ρ), with V ∈ L∞(Ω) ∩ H1(Ω), ρ ∈ H1(Ω), to
the equations

ε2�ρ = ρ
(

V + h
(
ρ2) − F

)
, −λ2�V = ρ2 − C, (7)

with the boundary conditions

ρ = ρD , V = V D on ΓD ,
∂ρ

∂γ
= ∂V

∂γ
= 0 on ΓN .

Lemma 6. Let ρ be the solution in Lemma 5. Then ρ ∈ L∞(Ω).
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Proof. We just need to prove ρ is bounded from above.
Using (ρ − a)+ = max{0,ρ − a}, for some a � supΓD

ρD > 0 to be determined, as a test function in the first equation
of (7), we get

ε2
∫
Ω

∣∣∇(ρ − a)+
∣∣2

dx =
∫
Ω

ρ
(

F − V − h
(
ρ2))(ρ − a)+ dx.

Following from lims→+∞ h(s) = +∞, we know that there exists a positive constant a � supΓD
ρD such that when ρ > a,

one has F − V − h(ρ2) < 0. Hence we get

ε2
∫
Ω

∣∣∇(ρ − a)+
∣∣2

dx � 0.

This gives ρ � a. �
3. Existence of weak solutions

Theorem 1. Let (A1), (A2) hold. Then there exists a solution (ρ, V , F ) ∈ L∞(Ω) ∩ H1(Ω) to (3)–(4).

Proof. We set F = f ∈ B in the second equation of (3) to get

∇ · (ρ2∇ F
) = 0,

ε2�ρ = ρ
(

V + h
(
ρ2) − f

)
,

−λ2�V = ρ2 − C . (8)

By Lemmas 5, 6, there exists a unique solution (ρ, V , F ) ∈ (L∞(Ω) ∩ H1(Ω))3 of (8) satisfying the boundary condition

ρ = ρD , V = V D , F = F D on ΓD ,

∂ρ

∂γ
= ∂V

∂γ
= ∂ F

∂γ
= 0 on ΓN . (9)

Using the maximum principle we get

inf F D � F � sup F D .

Hence F ∈ B .
Thus the mapping T : B → B , T ( f ) = F , is well defined. Moreover, it is not difficult to check that T is compact, noting

the compact embedding H1(Ω) ↪→ L2(Ω). Next we prove T is continuous.
Assume fn ∈ B is convergent to f as n → ∞ in L2(Ω), (ρ, V , F ) ∈ (L∞(Ω) ∩ H1(Ω))3 is a solution to (8)–(9), and

(ρ(n), V (n), F (n)) ∈ (L∞(Ω) ∩ H1(Ω))3 is a solution to (8)–(9) in which we have substituted fn for f .
Replace F with fn in the definition of Eδ(ρ) and define it as E(n)

δ (ρ). It is not difficult to conclude

lim
n→∞ E(n)

δ (ρ) = Eδ(ρ).

Thus one has

lim
n→∞ inf

ρ∈X
E(n)

δ (ρ) = inf
ρ∈X

Eδ(ρ).

Eδ(ρ) is continuous, so we get from Lemma 3

lim
n→∞

∥∥ρ(n) − ρ
∥∥ = 0.

From the first equation of (8) we obtain

lim
n→∞

∥∥F (n) − F
∥∥ = 0.

Hence T is continuous.
Finally we can finish the proof by Schauder fixed-point theorem. �
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4. Semiclassical limit

We analyze the semiclassical limit in the isothermal condition. The isothermal quantum drift-diffusion equations read:

∇ · (ρ2
ε∇ Fε

) = 0,

ε2�ρε = ρε

(
Vε + ln

(
ρ2

ε

) − Fε

)
,

−λ2�Vε = ρ2
ε − C (10)

with the boundary condition

ρε =
√

nε
D , Vε = V ε

D , Fε = F ε
D on ΓD ,

∂ρε

∂γ
= ∂Vε

∂γ
= ∂ Fε

∂γ
= 0 on ΓN . (11)

We impose the following assumptions.

(A3) nε
D , V ε

D , F ε
D ∈ L∞(Ω) ∩ H1(Ω), and there exists a K > 0 such that nε

D � K for all ε > 0. F ε
D is uniformly bounded.

(A4) nε
D → nD , V ε

D → V D , F ε
D → F D in H1(Ω) as ε → 0.

Theorem 2. Let (A1)–(A4) hold, then there exist functions n, F , V ∈ L∞(Ω) ∩ H1(Ω) satisfying

∇ · (n∇ F ) = 0, F = V + ln(n), −λ2�V = n − C, (12)

subject to the boundary condition

n = nD , V = V D , F = F D on ΓD ,

∂n

∂γ
= ∂V

∂γ
= ∂ F

∂γ
= 0 on ΓN . (13)

Assuming ρε, Fε, Vε ∈ L∞(Ω) ∩ H1(Ω) solve (10)–(11), then there exists a subsequence of (ρε, Fε, Vε) (not relabeled) such that

ρ2
ε → n, Fε → F , Vε → V weakly in H1(Ω), strongly in L2(Ω) as ε → 0.

Proof. Set H(s) = ∫ s
1 ln(u)du, and define

I(n) �
∫
Ω

H(n)dx + λ2

2

∫
Ω

∣∣∇Φ̃[n − C]∣∣2
dx +

∫
Ω

nΦ̃e dx −
∫
Ω

Fn dx,

Eε(ρ) � ε2
∫
Ω

|∇ρ̃|2 dx +
∫
Ω

H
(
ρ2)dx + λ2

2

∫
Ω

∣∣∇Φ̃
[
ρ2 − C

]∣∣2
dx +

∫
Ω

ρ2Φe dx −
∫
Ω

Fερ
2 dx.

Similarly as in Section 3, we can prove that there exist functions n, F , V ∈ L∞(Ω) ∩ H1(Ω) satisfying (12)–(13), where n
is also the unique minimizer of I(n) in X . Furthermore, ρε is the unique minimizer of Eε(ρ) in Y � ρD + H1

0(Ω).
By using maximum principle, we obtain from (A3) that Fε is bounded uniformly for ε. This yields a uniform bound on

Eε(ρ). Hence we get the uniform bound on ρε . From the third equation of (10) we get the uniform bound on Vε . So there
exists a subsequence of (ρε, Fε, Vε) (not relabeled) such that

ρ2
ε → n∗, Fε → F ∗, Vε → V ∗ weakly in H1(Ω), strongly in L2(Ω)

as ε → 0.
From

√
n∗ ∈ Y we obtain limε→0 sup Eε(ρε) � limε→0 sup Eε(

√
n∗ ). Hence limε→0 sup Eε(ρε) � I(n∗),

Eε(ρε) = I
(
ρ2

ε

) + ε2
∫
Ω

|∇ρε|2 dx +
∫
Ω

(F − Fε)ρ
2
ε dx.

Then by the weakly lower semicontinuity of I(n) (which is easy to see) we get

lim
ε→0

inf Eε(ρε) � I(n).

So I(n∗) � I(n). n∗ is the unique minimizer of I(n), hence I(n) = I(n∗), n = n∗ .
Then it’s not difficult to prove F = F ∗ , V = V ∗ . �
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5. Conclusions

By the employing of the non-linear functional

Eδ(ρ) = ε2
∫
Ω

|∇ρ|2 dx +
∫
Ω

Hδ

(
ρ2) dx + λ2

2

∫
Ω

∣∣∇Φ
[
ρ2 − C

]∣∣2
dx +

∫
Ω

ρ2Φe dx −
∫
Ω

Fρ2 dx,

we obtain the relations between its unique nonnegative minimizer and the weak solution to the stationary quantum drift-
diffusion equations. Note the means we employ to remove the variable δ. Then the existence of weak solutions is proved by
the Schauder fixed point theorem. This method works well for the stationary problem, but not for the transient equations.
Therefore, seeking a new method for the transient quantum drift-diffusion equations will be our next work. Moreover, latest
studies of quantum semiconductor models are all related to two kinds of particles, namely electrons and holes [5]. So we
need to transfer our work focus to bipolar models in future.
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