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First, we identify the critical values for Hopf-pitchfork bifurcation. Second, we derive the
normal forms up to third order and their unfolding with original parameters in the system
near the bifurcation point, by the normal form method and center manifold theory. Then
we give a complete bifurcation diagram for original parameters of the system and obtain
complete classifications of dynamics for the system. Furthermore, we find some interesting
phenomena, such as the coexistence of two asymptotically stable states, two stable periodic
orbits, and two attractive quasi-periodic motions, which are verified both theoretically and
numerically.
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1. Introduction

In the research of nonlinear dynamical system, van der Pol equation is one of the most intensely studied equation (see
[12,15] and the references therein). This celebrated equation has a nonlinear damping

ẍ + ε
(
x2 − 1

)
ẋ + x = f (x), x ∈ R, ε > 0, (1)

which originally was a model for an electrical circuit with a triode valve, and was extensively studied as a host of a rich
class of dynamical behavior, including relaxation oscillations, quasi-periodicity, elementary bifurcations and chaos [3]. Noting
that most practical implementations of feedback have inherent delays, some researchers have considered the effect of time
delay in van der Pol’s oscillator [8,13,14,18,20,23,24]. It is shown that the presence of time delay can change the amplitude
of limit cycle oscillations.

Although the van der Pol equation has been studied over wide parameter regimes, from perturbations of harmonic
motion to relaxation oscillations, bifurcations and high-codimensional singularities of the system with or without delay
have been discussed little, such as Hopf-pitchfork bifurcation, double Hopf bifurcation and Bogdanov–Takens singularity etc.
[1,11,14,16]. Particularly, by our existing knowledge, there is no study in Hopf-pitchfork bifurcation of van der Pol’s equation
with delayed feedback. Moreover, there are only a few articles on Hopf-pitchfork bifurcation in delay differential equations
(see [9,17,19,25]).
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In this study we consider the forcing f of being a delayed feedback of the position x. Since the limit cycle disappears
when ε = 0, it is convenient to scale the parameters by ε. Hence, Eq. (1) will be considered with f (x) = εg(x(t − τ )) and
we assume that g ∈ C3 is an odd function and satisfies

g(0) = g′′(0) = 0, g′(0) = k �= 0, g′′′(0) = 3!b �= 0.

The equilibrium at the origin exhibits a diversity of local bifurcations. Among them, a codimension-1 bifurcation with
a single zero eigenvalue (see reference [13]), Hopf bifurcation [20], Bogdanov–Takens bifurcation (analyzed in reference [14])
and also a Hopf-pitchfork bifurcation occur at the corresponding critical values, respectively. The present analysis will focus
on the study of the Hopf-pitchfork bifurcation of the origin, which occurs when the parameters satisfy k = 1

ε ,

τ = τ0 =

⎧⎪⎪⎨
⎪⎪⎩

arcsin(ε
√

2−ε2)√
2−ε2

, 1 � ε <
√

2,

π−arcsin(ε
√

2−ε2)√
2−ε2

, 0 < ε < 1,

and 0 < ε <
√

2. In fact, the characteristic equation associated with Eq. (1) with the above parameters has a single zero root
and a pair of purely imaginary roots ±iω0 with

ω0 =
√

2 − ε2,

and the remaining roots have negative real parts (see reference [13]).
This paper can be regarded as a further study of [13,14,20]. We shall use the normal form method introduced by Faria

and Magalhaes [10] to investigate the stability of the fixed point and the dynamics near the zero solution under the Hopf-
pitchfork bifurcation. The normal form method has been applied effectively in the study of singularities of vector fields
and in bifurcation theory (e.g., see [2,5–7,21,22,26–28]). It provides a convenient tool to compute a simple form of the
original differential equation, which can be used to analyze the dynamic behavior of the system, such as periodic solutions,
quasi-periodic motions, and more complex bifurcation solutions.

The paper is organized as follows. In Section 2, we perform the center manifold reduction and normal form computation,
and derive the normal forms with the Hopf-pitchfork singularity for the van der Pol’s equation (1); in Section 3, we give
a complete bifurcation analysis; in Section 4 the numerical simulation results are shown to demonstrate the theoretical
predictions; and in Section 5, we summarize our results.

2. Computation of normal form with original parameters

We rewrite van der Pol equation (1) in the following form:

ẋ(t) = y(t),

ẏ(t) = −x(t) + εg
(
x(t − τ )

) − ε
(
x(t)2 − 1

)
y(t). (2)

Then the characteristic equation of the linearization equation at the trivial equilibrium of (2) is given by

λ2 − ελ − εke−λτ + 1 = 0. (3)

We can check that when 0 < ε <
√

2, k = 1
ε and τ = τ0 Eq. (3) has a single zero root and a pair of purely imaginary roots

±iω0. Moreover, all the other eigenvalues have negative real parts [13]. This implies that Eq. (2) undergoes a Hopf-pitchfork
bifurcation at the origin when 0 < ε <

√
2, k = 1

ε and τ = τ0.
Rescaling the time by t �→ t

τ to normalize the delay, and expanding the function g in Eq. (2), we get

ẋ(t) = τ y(t),

ẏ(t) = −τ x(t) + ετ
(
kx(t − 1) + bx3(t − 1)

) − ετ
(
x2(t) − 1

)
y(t) + h.o.t. (4)

We let k = 1
ε and τ = τ0, and choose

η(θ) =
⎧⎨
⎩

τ0 B0, θ = 0,

τ0 B1, θ ∈ (−1,0),

B2, θ = −1

with

B0 =
(

0 1
0 ε

)
, B1 =

(
0 0
1 0

)
, B2 =

(
0 0
0 0

)
.

Then the linearization equation at the trivial equilibrium of (4) is

Ẋ(t) = L0 Xt,
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where L0ϕ = ∫ 0
−1 dη(θ)ϕ(ξ)dξ , ϕ ∈ C = C([−1,0], R2), and the bilinear form on C∗ × C is

(ψ,ϕ) = ψ(0)ϕ(0) −
0∫

−1

θ∫
0

ψ(ξ − θ)dη(θ)ϕ(ξ)dξ

= ψ(0)ϕ(0) − τ0

−1∫
0

ψ2(ξ + 1)ϕ1(ξ)dξ,

where ϕ(θ) = (ϕ1(θ), ϕ2(θ)) ∈ C , ψ(s) = ( ψ1(s)
ψ2(s)

) ∈ C∗ . Then the phase space C is decomposed by Λ = {0,±iτ0ω0} as C =
P ⊕ Q , where Q = {ϕ ∈ C : (ψ,ϕ) = 0, for all ψ ∈ P∗}, and the bases for P and its adjoint P∗ are

Φ(θ) =
(

1 eiτ0ω0θ e−iτ0ω0θ

0 iω0eiτ0ω0θ −iω0e−iτ0ω0θ

)
, −1 � θ � 0 (5)

and

Ψ (s) =
⎛
⎝

ε
ε−τ0

− 1
ε−τ0

D(ε − iω0)e−iτ0ω0s −De−iτ0ω0s

D(ε + iω0)eiτ0ω0s −Deiτ0ω0s

⎞
⎠ , 0 � s � 1,

respectively, where (Ψ,Φ) = I and D = (ε + 2iω0 − τ0eiτ0ω0 )−1. Thus the dual bases satisfy

Φ̇ = ΦB and −Ψ̇ = BΨ with B =
⎛
⎝0 0 0

0 iτ0ω0 0

0 0 −iτ0ω0

⎞
⎠ .

We now introduce two bifurcation parameters by k = 1
ε +μ1 and τ = τ0 +μ2 in Eq. (4), and denote μ = (μ1,μ2). Then

Eq. (4) can be written as

Ẋ(t) = L(μ)Xt + F (Xt,μ), (6)

where

L(μ)Xt =
(

(τ0 + μ2)yt(0)

−(τ0 + μ2)xt(0) + ε(τ0 + μ2)(
1
ε + μ1)xt(−1) + ε(τ0 + μ2)yt(0)

)
,

and

F (Xt,μ) =
(

0

ε(τ0 + μ2)bx3
t (−1) − ε(τ0 + μ2)x2

t (0)yt(0)

)
+ h.o.t.,

where h.o.t. stands for higher order terms.
As in Faria and Magalhães [10], we consider the enlarged phase space BC of functions from [−1,0] to R2, which are

continuous on [−1,0) and with a possible jump discontinuity at zero. This space can be identified with C × R2. Thus its
elements can be written in the form φ = ϕ + X0c, where ϕ ∈ C , c ∈ R2 and X0 is the 2 × 2 matrix-valued function defined
by X0(θ) = 0 for θ ∈ [−1,0) and X0(0) = I . In BC, Eq. (6) becomes an abstract ODE,

d

dt
u = Au + X0 F̃ (u,μ), (7)

where u ∈ C , and A is defined by

A : C1 → BC, Au = u̇ + X0
[
L0u − u̇(0)

]
,

and

F̃ (u,μ) = [
L(μ) − L0

]
u + F (u,μ).

By the continuous projection π : BC �−→ P ,π(ϕ + X0c) = Φ[(Ψ,ϕ) + Ψ (0)c], we can decompose the enlarged phase space
by Λ = {0, ±iτ0ω0} as BC = P ⊕ Ker π . Let ut = Φx(t) + y, Eq. (7) is therefore decomposed as the system

ẋ = Bx + Ψ (0) F̃ (Φx + y,μ),

ẏ = A Q 1 y + (I − π)X0 F̃ (Φx + y,μ), (8)

where y ∈ Q 1 := Q ∩ C1 ⊂ Ker π , A Q 1 is the restriction of A as an operator from Q 1 to the Banach space Ker π . Neglecting
higher order terms with respect to parameters μ1 and μ2, Eq. (8) can be written as
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ẋ1 = ε

ε − τ0
F 1

2 − 1

ε − τ0
F 2

2 − 1

ε − τ0
F 2

3 + h.o.t.,

ẋ2 = iτ0ω0x2 + D(ε − iω0)F 1
2 − D F 2

2 − D F 2
3 + h.o.t.,

ẋ3 = −iτ0ω0x3 + D(ε + iω0)F 1
2 − D F 2

2 − D F 2
3 + h.o.t.,

ẏ = A Q 1 y + (I − π)X0 F̃ (Φx + y,μ),

where

F 1
2 = μ2

(
iω0x2 − iω0x3 + y2(0)

)
,

F 2
2 = (−1 + iω0ε + e−iτ0ω0

)
μ2x2 + (−1 − iω0ε + eiτ0ω0

)
μ2x3 + μ2

(−y1(0) + y1(−1) + εy2(0)
)

+ ετ0μ1
(
x1 + x2e−iτ0ω0 + x3eiτ0ω0 + y1(−1)

)
,

F 2
3 = ετ0

[
b
(
x1 + x2e−iτ0ω0 + x3eiτ0ω0 + y1(−1)

)3 − (
x1 + x2 + x3 + y1(0)

)2(
iω0x2 − iω0x3 + y2(0)

)]
+ εμ1μ2

(
x1 + x2e−iτ0ω0 + x3eiτ0ω0 + y1(−1)

)
.

Let M2 denote the operator defined in V 5
2 (C3 × Ker π), with

M1
2 : V 5

2

(
C

3) �−→ V 5
2

(
C

3), and
(
M1

2 p
)
(x,μ) = Dx p(x,μ)Bx − Bp(x,μ),

where V 5
2 (C3) denotes the linear space of the second order homogeneous polynomials in five variables (x1, x2, x3,μ1,μ2),

and with coefficients in C
3. Then it is easy to check that one may choose the decomposition

V 5
2

(
C

3) = Im
(
M1

2

) ⊕ Im
(
M1

2

)c

with complementary space (Im(M1
2))c spanned by the elements( x2

1
0
0

)
;

( x2x3
0
0

)
;

( x1μi
0
0

)
;

(
μ2

1
0
0

)
;

(
μ2

2
0
0

)
;

(
μ1μ2

0
0

)
;

( 0
x1x2

0

)
;

( 0
x2μi

0

)
;

( 0
0

x1x3

)
;

( 0
0

x3μi

)
, i = 1,2.

Then the normal form of Eq. (6) on the center manifold of the origin near μ = 0 has the form (see [10])

ẋ = Bx + 1

2
g1

2(x,0,μ) + h.o.t., (9)

where g1
2 is the function giving the quadratic terms in (x,μ) for y = 0, and is determined by g1

2(x,0,μ) = Proj(Im(M1
2))c ×

f 1
2 (x,k0,μ), where f 1

2 (x,0,μ) is the function giving the quadratic terms in (x,μ) for y = 0 defined by the first equation
of (8). Then, the normal form in Eq. (2) is truncated to the second order, as

ẋ1 = − ετ0

ε − τ0
μ1x1 + h.o.t.,

ẋ2 = iτ0ω0x2 + D(iε + 2ω0)ω0μ2x2 − Dετ0e−iτ0ω0μ1x2 + h.o.t.,

ẋ3 = −iτ0ω0x3 + D(−iε + 2ω0)ω0μ2x3 − Dετ0eiτ0ω0μ1x3 + h.o.t. (10)

Since Eq. (10) is degenerate, we need calculate the higher order normal form. To find the third-order normal form, let
M3 denote the operator defined in V 3

3 (C3 × Ker π), with

M1
3 : V 3

3

(
C

3) �−→ V 3
3

(
C

3), and
(
M1

3 p
)
(x,μ) = Dx p(x,μ)Bx − Bp(x,μ),

where V 3
3 (C3) denotes the linear space of the third order homogeneous polynomials in three variables (x1, x2, x3), and with

coefficients in C
3. Then it is easy to check that one may choose the decomposition

V 3
3

(
C

3) = Im
(
M1

3

) ⊕ Im
(
M1

3

)c

with complementary space (Im(M1
3))c spanned by the elements( x3

1
0

)
;

( x1x2x3
0

)
;

( 0
x2

1x2

)
;

( 0
x2

2x3

)
;

( 0
0

2

)
;

( 0
0

2

)
.

0 0 0 0 x1x3 x2x3
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Then we can derive the normal form up to the third order

ẋ = Bx + 1

2! g1
2(x,0,μ) + 1

3! g1
3(x,0,0) + h.o.t., (11)

where

1

3! g1
3(x,0,0) = 1

3!
(

I − P 1
I,3

)
f 1

3 (x,0,0),

and f 1
3 (x,0,0) is the function giving the cubic terms in (x,μ, y) for μ = 0, y = 0 defined by the first equation of (8). Then,

Eq. (11) can be written as

ẋ1 = − ετ0

ε − τ0
μ1x1 − bετ0

ε − τ0

(
x3

1 + 6x1x2x3
) + h.o.t.,

ẋ2 = iτ0ω0x2 + D(iε + 2ω0)ω0μ2x2 − Dετ0e−iτ0ω0μ1x2 − Dετ0
[(

3be−iτ0ω0 − iω0
)(

x2
1x2 + x2

2x3
)] + h.o.t.,

ẋ3 = −iτ0ω0x3 + D(−iε + 2ω0)ω0μ2x3 − Dετ0eiτ0ω0μ1x3

− Dετ0
[(

3beiτ0ω0 + iω0
)(

x2
1x3 + x2x2

3

)] + h.o.t. (12)

In the above expressions, the higher order terms in the parameter μ have been omitted.

3. Bifurcation analysis

Let x1 = z, x2 = r cos θ + ir sin θ , and x3 = r cos θ − ir sin θ . Then Eq. (12) becomes

ż = − ετ0

ε − τ0
μ1z − bετ0

ε − τ0

(
z3 + 6zr2) + h.o.t.,

ṙ =
[(

2d1

G
ω2

0 − d2

G
εω0

)
μ2 − d3

G
ετ0μ1

]
r − ετ0

(
d2

G
ω0 + 3d3

G
b

)(
z2 + r2)r + h.o.t.,

θ̇ = τ0ω0 +
(

d1

G
εω0 + 2d2

G
ω2

0

)
μ2 − d4

G
ετ0μ1 − ετ0

(
−d1

G
ω0 + 3d4

G
b

)(
z2 + r2) + h.o.t., (13)

where

d1 = ε − τ0 + τ0ω
2
0,

d2 = ω0(2 − τ0ω0),

d3 = (
1 − ω2

0

)
d1 + εω0d2,

d4 = −εω0d1 + (
1 − ω2

0

)
d2,

G = d2
1 + d2

2.

Truncating higher order terms and removing the azimuthal term, we obtain the planar system (see [12])

ṙ = r
(
ε1 + r2 + b0z2),

ż = z
(
ε2 + c0r2 + d0z2), (14)

where

ε1 = −
[(

2d1

G
ω2

0 − d2

G
εω0

)
μ2 − d3

G
ετ0μ1

]
sign(d2ω0 + 3d3b),

ε2 = ετ0

ε − τ0
μ1 sign(d2ω0 + 3d3b),

b0 =
∣∣∣∣ (ε − τ0)(d2ω0 + 3d3b)

Gb

∣∣∣∣ = (τ0 − ε)

G

∣∣∣∣1

b
(d2ω0 + 3d3b)

∣∣∣∣,
c0 = 6bG

(ε − τ0)(d2ω0 + 3d3b)
,

d0 = sign

(
b

ε − τ0

)
sign(d2ω0 + 3d3b) = −sign

[
b(d2ω0 + 3d3b)

]
. (15)

Based on [12, §7.5], by the different signs of b0, c0,d0,d0 −b0c0 in Table 1 Eq. (14) has twelve distinct types of unfoldings,
which mean twelve essentially distinct types of phase portraits and bifurcation diagrams.



14 H. Wang, W. Jiang / J. Math. Anal. Appl. 368 (2010) 9–18
Table 1
The twelve unfoldings [12].

Case Ia Ib II III IVa IVb V VIa VIb VIIa VIIb VIII

d0 +1 +1 +1 +1 +1 +1 −1 −1 −1 −1 −1 −1
b0 + + + − − − + + + − − −
c0 + + − + − − + − − + + −
d0 − b0c0 + − + + + − − + − + − −

Fig. 1. The bifurcation diagram and phase portraits for Eq. (2) with parameter (k, τ ) near the coordinate origin ( 1
ε , τ0).

From (15) we know that b0 > 0, sign(c0) = sign(d0), sign(d0 − b0c0) = −sign(d0). So, only the cases Ib and VIa arise.
Hence, noting that k = 1

ε + μ1 and τ = τ0 + μ2, and by Figs. 7.5.2, 7.5.5 and 7.5.7 in [12, §7.5], the phase portraits and
bifurcation diagrams of the two cases can be given out and are shown in Fig. 1.

We note that M0 = (r, z) = (0,0) is always an equilibrium and the other equilibria are

M1 = (
√−ε1,0) for ε1 < 0,

M±
2 = (0,±√−ε2/d0) for ε2d0 < 0,

M±
3 =

(√
b0ε2 − d0ε1

d0 − b0c0
,±

√
c0ε1 − ε2

d0 − b0c0

)
for

b0ε2 − d0ε1

d0 − b0c0
,

c0ε1 − ε2

d0 − b0c0
> 0.

For the τ coordinate axis: k = 1
ε and lines L0: τ = τ0 + d3ετ0

ω0(2d1ω0−d2ε)
(k − 1

ε ), L1: τ = τ0 + ετ0
ω0(2d1ω0−d2ε)

(d3 − G
c0(ε−τ0)

)×
(k − 1

ε ), L2: τ = τ0 + ετ0
ω0(2d1ω0−d2ε)

(d3 − b0G
d0(ε−τ0)

)(k − 1
ε ) are pitchfork bifurcation critical lines; the line L3: τ =

τ0 + ετ0 (d3 − (b0+1)G
)(k − 1 ) is Hopf bifurcation critical line; on the curve H0: τ = τ0 + ετ0 ×
ω0(2d1ω0−d2ε) (c0−1)(ε−τ0) ε ω0(2d1ω0−d2ε)
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(d3 − (b0+1)G
(c0−1)(ε−τ0)

)(k − 1
ε ) + O((k − 1

ε )2) (see [12]), the system undergoes a saddle connection bifurcation, i.e. there is a pair
of symmetric heterclinic orbits connecting the two nontrivial saddle points.

Remark. In these phase portraits of Fig. 1, the horizontal axis is the r coordinate, and the vertical axis is the z coordinate.
We only draw the orbits in the first quadrant, since the orbits are symmetrical with respect to r coordinate.

According to the center manifold theory [4], Eqs. (13) on the center manifold determine the asymptotic behavior of so-
lutions of the full equations (2) when there exists no unstable manifold containing the trivial solution. And the bifurcation
analysis for the three-dimensional system (13) is based on the rotational symmetry. Rotating around the z-axis, correspon-
dences between 2-dimensional flows for (14) and 3-dimensional flows for (13) can be established. So for (13), equilibria on
the z-axis in Fig. 1 remain equilibria, while equilibria outside the z-axis become periodic orbits (period ≈ 2π/(τ0ω0)). Pe-
riodic solutions turn into quasi-periodic solutions with two basic periods (≈ 2π/(τ0ω0) and O(1/εi)) which constitutes an
invariant two torus (see [12, p. 410]) and the heterclinic orbits turn into the heterclinic orbits which is called the sphere-like
surface (see [12, Fig. 7.4.11]).

Furthermore, considering that ut = Φx, where ut is the flow on center manifold of (7), x is the solution of (12) and Φ

is expressed as in (5), and by rescaling the time t → t
τ , the above equilibria, periodic orbits, quasi-periodic solutions and

heterclinic orbits of (13) are corresponding with equilibria, periodic solutions (period ≈ 2π/ω0) and quasi-periodic solutions
with two basic periods (≈ 2π/ω0 and O(1/εi)) of the original system (2), respectively.

From the above discussion, we know that an equilibrium outside the z-axis in Fig. 1 is corresponding to a periodic
solution of the original system (2). So, we shall call the periodic solution the source (respectively, saddle, sink) periodic
solution of (2) when the equilibrium is a source (respectively, saddle, sink) in Fig. 1.

Hence, for the original system (2), in case Ib the above bifurcation criteria divide the parameter plane (k, τ ) into six
regions (see Fig. 1). In region D1, there is only one trivial equilibrium which is unstable; when the parameters vary across
the line L0 from region D1 to D2, the trivial equilibrium becomes a saddle point, and an unstable periodic solution (source)
is bifurcated; with the variation of the parameters from region D2 to D3, the trivial equilibrium becomes a sink, and two
nontrivial saddle points are bifurcated; in region D4, the two nontrivial saddle points become sources, and two unstable
periodic solutions (saddle) are bifurcated; when the parameters vary across the line L1 from region D4 to D5, three periodic
solutions overlap and become a periodic solution (saddle); from region D5 to D6, the periodic solution disappears, while
the stable trivial equilibrium becomes a saddle point.

In case VIa the above bifurcation criteria divide the parameter plane (k, τ ) into eight regions (see Fig. 1). In region D1,
the trivial equilibrium is a source, and two nontrivial equilibria are saddle points; when the parameters vary across the line
L0 from region D1 to D2, the trivial equilibrium becomes a saddle point, and an unstable limit cycle (source) is bifurcated;
in region D3 the above unstable periodic solution becomes a saddle from a source, and two unstable periodic solutions
(source) are bifurcated; on H0, there is a pair of symmetric heterclinic orbits, each of which connects a nontrivial saddle
point and the saddle periodic solution; in region D4, there are two quasi-periodic motions, attractors, which are bifurcated
from the two source periodic solutions, respectively; on L3, there is also a pair of symmetric heterclinic orbits, each of which
connects a nontrivial saddle point and the saddle periodic solution; in region D5, two stable periodic solutions appear, while
the above quasi-periodic motions disappear; from region D5 to D6, two stable periodic solutions disappear and the trivial
equilibrium becomes a sink; in region D7, two stable nontrivial equilibria overlap and become the origin which is a sink;
next, in region D8 the unstable periodic solution disappears and the trivial equilibrium becomes a saddle point.

Summarizing the above analysis we obtain the following conclusions.

Proposition. System (2) undergoes a Hopf-pitchfork bifurcation at the origin when 0 < ε <
√

2, k = 1
ε and τ = τ0 . And for a given

odd function g(x) with g(0) = g′′(0) = 0, g′(0) = k, g′′′(0) = 3!b �= 0, we have

(1) If 0 < ε <
√

2 and b(d2ω0 + 3d3b) < 0, then bifurcation phenomena of case Ib occur near (x, y,k, τ ) = (0,0, 1
ε , τ0).

(2) If 0 < ε <
√

2 and b(d2ω0 + 3d3b) > 0, then bifurcation phenomena of case VIa occur near (x, y,k, τ ) = (0,0, 1
ε , τ0). Particu-

larly, some interesting phenomena are as follows.
(a) The trivial equilibrium is asymptotically stable when τ < τ0 + d3ετ0

ω0(2d1ω0−d2ε)
(k − 1

ε ) and k < 0 (that is (k, τ ) ∈ D7);

(b) There are two asymptotically stable nontrivial equilibria which are coexisted when τ < τ0 + ετ0
ω0(2d1ω0−d2ε)

(d3 − b0G
d0(ε−τ0)

)×
(k − 1

ε ) and k > 0 (that is (k, τ ) ∈ D6);

(c) There are two stable nontrivial periodic orbits which are coexisted when τ0 + ετ0
ω0(2d1ω0−d2ε)

(d3 − b0G
d0(ε−τ0)

)(k − 1
ε ) < τ <

τ0 + ετ0
ω0(2d1ω0−d2ε)

(d3 − (b0+1)G
(c0−1)(ε−τ0)

)(k − 1
ε ) and k > 0 (that is (k, τ ) ∈ D5);

(d) The two nontrivial periodic orbits undergo a secondary Hopf bifurcation, giving rise to the appearance of quasi-periodic mo-
tions when τ = τ0 + ετ0

ω0(2d1ω0−d2ε)
(d3 − (b0+1)G

(c0−1)(ε−τ0)
)(k − 1

ε ) and k > 0 (that is (k, τ ) ∈ L3), respectively;

(e) There are two attractive quasi-periodic motions which are coexisted when τ0 + ετ0
ω0(2d1ω0−d2ε)

(d3 − (b0+1)G
(c0−1)(ε−τ0)

)(k − 1
ε ) <

τ < τ0 + ετ0
ω0(2d1ω0−d2ε)

(d3 − (b0+1)G
(c0−1)(ε−τ0)

)(k − 1
ε ) + O((k − 1

ε )2) and k > 0 (that is (k, τ ) ∈ D4);
(f) There is a pair of symmetric heterclinic orbits, each of which connects a nontrivial saddle point and the saddle periodic solution

when τ = τ0 + ετ0
ω0(2d1ω0−d2ε)

(d3 − (b0+1)G
(c0−1)(ε−τ0)

)(k − 1
ε ) + O((k − 1

ε )2) and k > 0 (that is (k, τ ) ∈ H0).
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Fig. 2. (a) The stable trivial equilibrium. (b) Two asymptotically stable nontrivial equilibria are coexisted.

4. Numerical simulation

The above analytical information is a useful starting point for the use of adequate numerical tools. We choose

g(x) = a1

(
−1 + 2

1 + e−a2x

)

in Eq. (2), then g(0) = g′′(0) = 0, k = g′(0) = 1
2 a1a2 and g′′′(0) = − 1

4 a1a3
2. All the numerical work is considered only in the

case VIa. The aim is to show some interesting behavior including attractive equilibria, periodic solutions and quasi-periodic
behavior. If ε = 1, a1 = 0.4 and a2 = 5, then we get k = 1 = 1

ε , b = −2.0833, τ0 = 1.5708, ω0 = 1. Furthermore we have
d1 = 1, d2 = d3 = 0.4292, d4 = −1, G = 1.1842. Hence, it follows that

d0 = −1,

b0 = 0.5213 > 0,

c0 = −11.5090 < 0,

d0 − b0c0 = 5 > 0.

We know from Table 1 that bifurcation phenomena with the case VIa appear near (k, τ ) = ( 1
ε , τ0) when ε = 1, a1 = 0.4,

a2 = 5 and τ = τ0 = 1.5708 in Eq. (2). Here, in Fig. 1 bifurcation critical lines are, respectively,

L0: τ = 1.5708 + 0.4292(k − 1),

L1: τ = 1.5708 + 0.2489(k − 1),

L2: τ = 1.5708 − 0.6524(k − 1),

L3: τ = 1.5708 + 0.1769(k − 1),

H0: τ = 1.5708 + 0.1769(k − 1) + O
(
(k − 1)2).

In the following, fix ε = 1, a2 = 5, and let k = 1 + μ1, τ = 1.5708 + μ2.

(i) Fix μ2 = −0.0308. If μ1 = −0.0125, then (k, τ ) ∈ D7. Fig. 2(a) shows that the zero solution of Eq. (2) is asymptotically
stable, and the initial value is (x0, y0) = (0.01,0.01). If μ1 = 0.025, then (k, τ ) ∈ D6, there are two asymptotically stable
nontrivial equilibria in Eq. (2) which are coexisted (see Fig. 2(b)), and the initial values are (x0, y0) = (0.025,0.02) (red)
and (0.03,0.03) (blue).

(ii) When μ1 = 0.025, μ2 = 0.0044, then (k, τ ) ∈ D5. Fig. 3 shows that two stable nontrivial periodic solutions of Eq. (2)
are coexisted. The initial values are (x0, y0) = (0.05,0.02) (red) and (0.01,0.02) (blue), and simulation time is from 0
to 500 and from 500 to 1000, respectively.

(iii) When μ1 = 0.025, μ2 = 0.0062, then (k, τ ) ∈ D4. Fig. 4 shows that two attractive quasi-periodic motions of Eq. (2)
are coexisted. The initial values are (x0, y0) = (−0.001,−0.001) (red) and (0.001,0.001) (blue), and simulation time is
0 ∼ 500, 500 ∼ 1000, 1000 ∼ 1500 and 3000 ∼ 3500, respectively.
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Fig. 3. Two stable nontrivial periodic solutions are coexisted.

Fig. 4. Two attractive quasi-periodic motions are coexisted.

5. Conclusion

In this paper, we investigate the Hopf-pitchfork bifurcation of the zero solution for van der Pol’s oscillator with delayed
nonlinear feedback. Using the normal form method for FDE in Faria and Magalhaes [10], and the center manifold theory
in [4], we have derived the normal form of the reduced system on the center manifold, discussed the Hopf-pitchfork
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bifurcation with the parameter perturbations in Eq. (2), and completely determined the stability and bifurcation of the zero
solution near the critical value. We can obtain the coexistence of two asymptotically stable states, two stable periodic orbits
and two attractive quasi-periodic motions by choosing suitable feedback control. Our work is a further study of [13,14,20],
it is a helpful trying for study the complex phenomena caused by high co-dimensional bifurcation of delay differential
equation.
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