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a b s t r a c t

We introduce the new class of the (p; p1, . . . , pm; σ)-absolutely continuous multilinear
operators, that is defined using a summability property that provides the multilinear
version of the (p, σ )-absolutely continuous operators. We give an analogue of the Pietsch
domination theorem and amultilinear version of the associated factorization theorem that
holds for (p, σ )-absolutely continuous operators, obtaining in this way a rich factorization
theory. We present also a tensor norm which represents this multi-ideal by trace duality.
As an application, we show that (p; p1, . . . , pm; σ)-absolutely continuous multilinear
operators are compact under some requirements. Applications to factorization of linear
maps on Banach function spaces through interpolation spaces are also given.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction and notation

In 1987 Matter defined the ideal of (p, σ )-absolutely continuous linear operators in order to analyze super-reflexive
Banach spaces, establishing many of its fundamental properties in [1]. In the nineties, López Molina and Sánchez Pérez
studied the factorization properties and the trace duality for these operators in a series of papers, introducing the class of
tensor norms that represent these operator ideals (see [2–4]). Roughly speaking, the class of (p, σ )-absolutely continuous
operators can be considered as an ‘‘interpolated’’ ideal between the p-summing operators and the continuous operators,
preserving someof the characteristic properties of the first class. Let 1 ≤ p < ∞ and 0 ≤ σ < 1. A linear operator T between
Banach spaces X and Y is (p, σ )-absolutely continuous if there is a positive constant C such that for all n ∈ N, (xi)ni=1

⊂ X ,
we have

n
i=1

∥T (xi)∥
p

1−σ

 1−σ
p

≤ C sup
ξ∈BX∗


n

i=1


|⟨xi, ξ⟩|1−σ ∥xi∥σ

 p
1−σ

 1−σ
p

. (1.1)

The smallest constant C such that the inequality (1.1) holds is called the (p, σ )-absolutely continuous norm of T , and is
denoted by πp,σ (T ). It is in fact a norm on the space Pp,σ (X, Y ) of all (p, σ )-absolutely continuous linear operators from
X into Y , that becomes a Banach space. In particular, we have that Pp,0 (X, Y ) coincides with Πp (X, Y ), the well known
operator ideal of p-summing operators introduced by Pietsch in [5] (see also [6,7]).

The aim of this paper is to study the multilinear version of this class of operators and its tensor product representation,
and to provide some applications in the setting of the factorization theory of bilinear maps. For more details concerning
the nonlinear theory of absolutely summing operators and recent developments and applications we refer to [8–16].
Regarding compactness, we show that as in the case of the p-summing operators the (p, σ )-absolutely continuous operators
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are always completely continuous, allowing some direct applications for giving sufficient conditions for compactness
of multilinear maps on reflexive Banach spaces under weaker summability requirements. Other application is given by
proving that (p; p1, p2; σ)-absolutely continuous bilinear maps defined on products of Banach function spaces satisfy also a
concavity type property. This allows to prove a factorization theorem for operators between Banach function spaces through
interpolation spaces.

The paper is divided in five sections. After the introductory one, in Section 2 we extend to multilinear mappings
the concept of (p, σ )-absolutely continuous linear operators, for which the resulting vector space Lσ

as,(p;p1,...,pm)
of the

(p; p1, . . . , pm; σ)-absolutely continuous multilinear operators is a normed (Banach) multi-ideal. Continuing the work of
Matter [17], in the third sectionwe establish a domination theorem for such operators andwe give the factorization theorem
for the (p, σ )-absolutely continuous linear operators and its multilinear version.

In Section 4, we present a reasonable crossnorm βp,σ on X1 ⊗ · · · ⊗ Xm ⊗ Y that satisfies that the topological dual of
the corresponding normed tensor product is isometric to the space of Y ∗-valued (p; p1, . . . , pm; σ)-absolutely continuous
multilinear operators on X1 × · · · × Xm . We generalize in this way the result for the linear case that can be found in [2].

Finally, Section 5 is devoted to show some applications. Under adequate requirements we show that the summability
property formultilinear operators that is considered in the definition ofLσ

as,(p;p1,...,pm)
implies compactness, providing in this

way sufficient conditions for assuring such property for multilinear maps. We finish the paper by showing the factorization
theorem for linear operators between Banach function spaces mentioned above.

The notation used in the paper is in general standard. Letm ∈ N andXj, (j = 1, . . . ,m), Y be Banach spaces overK, (either
R or C). We will denote by L (X1, . . . , Xm; Y ) the Banach space of all continuousm-linear mappings from X1 ×· · ·×Xm into
Y , under the norm

∥T∥ = sup
xj∈BXj

,1≤j≤m

T (x1, . . . , xm)
where BXj denotes the closed unit ball of Xj(1 ≤ j ≤ m). If Y = K, we write L (X1, . . . , Xm). In the case X1 = · · · = Xm = X ,
we will simply write L (mX; Y ) .

Let now X be a Banach space and 1 ≤ p ≤ ∞. We write p∗ for the real number satisfying 1/p+ 1/p∗
= 1. We denote by

ℓnp (X) the space of all sequences (xi)ni=1
in X with the norm

(xi)ni=1


p =


n

i=1

∥xi∥p

 1
p

and by ℓnp,ω (X) the space of all sequences (xi)ni=1 in X with the norm

(xi)ni=1


p,ω = sup

∥ξ∥X∗≤1


n

i=1

|⟨xi, ξ⟩|p
 1

p

where X∗ denotes the topological dual of X .
Let ℓp (X) be the Banach space of all absolutely p-summable sequences (xi)∞i=1 in X with the norm

(xi)∞i=1


p =


∞
i=1

∥xi∥p

 1
p

.

We denote by ℓωp (X) the Banach space of all weakly p-summable sequences (xi)∞i=1 in X with the norm(xi)∞i=1


p,ω = sup

∥ξ∥X∗≤1

(ξ(xi))∞i=1


p .

If p = ∞ we are restricted to the case of bounded sequences and in ℓ∞ (X)we use the sup norm.
We denote by Lf (X1, . . . , Xm; Y ), the space of all m-linear mappings of finite type, which is generated by the mappings

of the special form

x∗

1 ⊗ · · · ⊗ x∗

m ⊗ y :

x1, . . . , xm


→ x∗

1


x1

. . . x∗

m


xm

y

for some non-zero x∗

j ∈ X∗

j (1 ≤ j ≤ m) and y ∈ Y .

Definition 1.1. An ideal of multilinear mappings (or multi-ideal) is a subclass M of all continuous multilinear mappings
between Banach spaces such that for allm ∈ N and Banach spaces X1, . . . , Xm and Y , the components M(X1, . . . , Xm; Y ) :=

L(X1, . . . , Xm; Y ) ∩ M satisfy:

(i) M(X1, . . . , Xm; Y ) is a linear subspace of L(X1, . . . , Xm; Y )which contains them-linear mappings of finite type.
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(ii) The ideal property: If T ∈ M(G1, . . . ,Gm; F), uj ∈ L(Xj;Gj) for j = 1, . . . ,m and v ∈ L(F; Y ), then v◦T ◦(u1, . . . , um)
is in M(X1, . . . , Xm; Y ).

If ∥.∥M : M → R+ satisfies
(i′) (M(X1, . . . , Xm; Y ), ∥.∥M) is a normed (Banach) space for all Banach spaces X1, . . . , Xm and Y and allm,
(ii′)

Tm
: Km

→ K : Tm

x1, . . . , xm


= x1 . . . xm


M

= 1 for allm,
(iii′) If T ∈ M(G1, . . . ,Gm; F), uj ∈ L(Xj,Gj) for j = 1, . . . ,m and v ∈ L(F , Y ), then ∥v ◦ T ◦ (u1, . . . , um)∥M ≤

∥v∥ ∥T∥M ∥u1∥ · · · ∥um∥ , then (M, ∥.∥M) is called a normed (Banach) multi-ideal.

Definition 1.2. Let M be a multi-ideal and operator ideals A1, . . . ,Am, an m-linear mapping A ∈ L(X1, . . . , Xm; Y ) is said
to be of type M ◦ (A1, . . . ,Am), in symbols A ∈ M ◦ (A1, . . . ,Am)(X1, . . . , Xm; Y ), if there are Banach spaces G1, . . . ,Gm,
linear operators uj ∈ Aj(Xj;Gj), 1 ≤ j ≤ m, and a continuous m-linear mapping M ∈ M(G1, . . . ,Gm; Y ) such that
A = M ◦ (u1, , . . . , um). The proof that M ◦ (A1, . . . ,Am) is an ideal of m-linear mappings can be found in [11, Theorem
2.2.2].

The definition of absolutely summingm-linear functionals is due to Pietsch [14]. In [12], Matos presented a definition for
vector-valued mappings.

Definition 1.3. Let 1 ≤ p, p1, . . . , pm < ∞,with 1
p ≤

1
p1

+ · · · +
1
pm
. Anm-linear operator T ∈ L(X1, . . . , Xm; Y ) is said to

be absolutely (p; p1, . . . , pm)-summing if there is a constant C > 0 such that for any xj1, . . . , x
j
n ∈ Xj we haveT x1i , . . . , xmi ni=1


p

≤ C
m
j=1

(xi)ni=1


pj ,ω

,

for every n,m ∈ N and j = 1, . . . ,m. The vector space of these mappings is indicated by Las,(p;p1,...,pm) (X1, . . . , Xm; Y ) and
the smallest C satisfying the inequality above, by ∥T∥Las,(p;p1,...,pm)

. This defines a norm on Las,(p;p1,...,pm) (X1, . . . , Xm; Y ).

This definition is equivalent to say that

T (x1i , . . . , x

m
i )
∞
i=1 belongs to ℓp(Y ) for every (x

j
i)

∞

i=1 ∈ ℓωpj(Xj).

The next results can be found in [11,12], and will be used in the sequel.

Proposition 1.4. Let 1 ≤ p, p1, . . . , pm < ∞, with 1
p =

1
p1

+ · · · +
1
pm

and T ∈ L (X1, . . . , Xm; Y ). The following statements
are equivalent:

(a) T is absolutely (p; p1, . . . , pm)-summing.
(b) There is a constant C > 0 and regular Borel probability measures µj on BX∗

j
(with the weak star topology) so that for all

x1, . . . , xm


∈ X1 × · · · × Xm the inequality

T x1, . . . , xm ≤ C
m
j=1


BX∗

j

φj(xj)
pj dµj(φj)

 1
pj

, (1.2)

is valid.
(c) (Factorization Theorem) There exist Banach spaces G1, . . . ,Gm, an m-linear mapping S ∈ L (G1, . . . ,Gm; Y ) and operators

uj ∈ Πpj


Xj,Gj


, j = 1, . . . ,m, such that

T = S ◦ (u1, . . . , um)

Moreover, we have

∥T∥Las,(p;p1,...,pm)
= inf {C > 0 : for all C verifying the inequality (1.2)}

= inf


∥S∥

m
j=1

πpj


uj


: T = So(u1, . . . , um)


.

Proposition 1.5. Let 1 ≤ p ≤ q < ∞ and 1 ≤ pj ≤ qj < ∞, j = 1, . . . ,m be such that
m
j=1

1
pj

−
1
p

≤

m
j=1

1
qj

−
1
q
.

Then

Las,(p;p1,...,pm) (X1, . . . , Xm; Y ) ⊂ Las,(q;q1,...,qm) (X1, . . . , Xm; Y ) .
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2. (p;p1, . . . , pm;σ)-absolutely continuous multilinear operators

In this sectionwe extend the definition of class of (p, σ )-absolutely continuous linear operators to the case of multilinear
operators and we show that the inclusion between a couple of multi-ideals of the class with different parameters works as
one would expect.

Let 1 ≤ p, p1, . . . , pm < ∞ with 1
p ≤

1
p1

+ · · · +
1
pm

and 0 ≤ σ < 1. For all (xji)
n
i=1 ⊂ Xj, (1 ≤ j ≤ m)we put

δpjσ ((x
j
i)
n
i=1) = sup

φj∈BX∗
j

 n
i=1

φj(x
j
i)

1−σ xjiσ
pj

1−σ

 1−σ
pj

.

It is clear that(xji)ni=1

 pj
1−σ ,ω

≤ δpjσ ((x
j
i)
n
i=1), for all (xji)

n
i=1 ⊂ Xj, (1 ≤ j ≤ m). (2.1)

Definition 2.1. A mapping T ∈ L(X1, . . . , Xm; Y ) is (p; p1, . . . , pm; σ)-absolutely continuous if there is a constant C > 0
such that for any xj1, . . . , x

j
n ∈ Xj, (1 ≤ j ≤ m)we haveT x1i , . . . , xmi ni=1

 p
1−σ

≤ C
m
j=1

δpjσ ((x
j
i)
n
i=1). (2.2)

We denote this class of mappings by Lσ
as,(p;p1,...,pm)

(X1, . . . , Xm; Y )which is a normed space with the norm

∥T∥Lσas,(p;p1,...,pm)
= inf {C > 0 : for all C verifying the inequality (2.2)} .

It is obvious that ∥T∥ ≤ ∥T∥Lσas,(p;p1,...,pm)
for all T ∈ Lσ

as,(p;p1,...,pm)
(X1, . . . , Xm; Y ). For σ = 0, we have L0

as,(p;p1,...,pm)

(X1, . . . , Xm; Y ) = Las,(p;p1,...,pm) (X1, . . . , Xm; Y ).

The next proposition asserts that (Lσ
as,(p;p1,...,pm)

, ∥.∥Lσas,(p;p1,...,pm)
) is a Banach multi-ideal. The proof is straightforward

and will be omitted.

Proposition 2.2. (i) Every m-linear mapping of finite type is (p; p1, . . . , pm; σ)-absolutely continuous.
(ii) If T ∈ Lσ

as,(p;p1,...,pm)
(X1, . . . , Xm; Y ), R ∈ L (Y , Z) and uj ∈ L


Ej, Xj


, j = 1, . . . ,m then R ◦ T ◦ (u1, . . . , um) is

(p; p1, . . . , pm; σ)-absolutely continuous and

∥R ◦ T ◦ (u1, . . . , um)∥Lσas,(p;p1,...,pm)
≤ ∥R∥ ∥T∥Lσas,(p;p1,...,pm)

m
j=1

uj
 .

(iii)
Tm

: Km
→ K : Tm


x1, . . . , xm


= x1 . . . xm


Lσas,(p;p1,...,pm)

= 1 for all m.

(iv) (Lσ
as,(p;p1,...,pm)

(X1, . . . , Xm; Y ) , ∥.∥Lσas,(p;p1,...,pm)
) is a Banach space.

We can establish the following comparison between the classes of (p; p1, . . . , pm; σ)-absolutely continuous and
absolutely (p; p1, . . . , pm)-summingm-linear operators.

Proposition 2.3. Let 1 ≤ pj, p < ∞, j = 1, . . . ,m such that 1
p =

1
p1

+ · · · +
1
pm

and 0 ≤ σ < 1. Then

Las,( p
1−σ ;

p1
1−σ ,...,

pm
1−σ )

(X1, . . . , Xm; Y ) ⊂ Lσ
as,(p;p1,...,pm) (X1, . . . , Xm; Y ) .

Consequently,

Las,(p;p1,...,pm) (X1, . . . , Xm; Y ) ⊂ Lσ
as,(p;p1,...,pm)(X1, . . . , Xm; Y ).

Proof. It is immediate by the inequality (2.1) and Proposition 1.5. �

Proposition 2.4. (Inclusion Theorem).
Let p ≤ q, pj ≤ qj(1 ≤ j ≤ m). If 1

p1
+ · · · +

1
pm

−
1
p ≤

1
q1

+ · · · +
1
qm

−
1
q , then

Lσ
as,(p;p1,...,pm) (X1, . . . , Xm; Y ) ⊂ Lσ

as,(q;q1,...,qm)(X1, . . . , Xm; Y ).
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Proof. By the monotonicity of the ℓs-norms we may assume

1
p1

+ · · · +
1
pm

−
1
p

=
1
q1

+ · · · +
1
qm

−
1
q
.

Considering 1 ≤ r, rj < ∞ with 1
r +

1
q =

1
p ,

1
rj

+
1
qj

=
1
pj
(1 ≤ j ≤ m) it follows that 1

r1
+ · · · +

1
rm

=
1
r .

Now select a multilinear mapping T in Lσ
as,(p;p1,...,pm)

(X1, . . . , Xm; Y ) and xj1, . . . , x
j
n ∈ Xj, for j = 1, ..,m. Then, with

λ
j
i =

T x1i , . . . , xmi  q
rj , we haveT (λ1i x1i , . . . , λmi xmi ) p

1−σ =
T x1i , . . . , xmi  q

1−σ .

An application of Hölder’s inequality reveals that
n

i=1

T x1i , . . . , xmi  q
1−σ

 1−σ
p

=


n

i=1

T (λ1i x1i , . . . , λmi xmi ) p
1−σ

 1−σ
p

≤ ∥T∥Lσas,(p;p1,...,pm)

m
j=1

δpjσ


λ
j
ix

j
i

n
i=1



= ∥T∥Lσas,(p;p1,...,pm)

m
j=1

sup
φj∈BX∗

j

 n
i=1


λ
j
i

φj(x
j
i)

1−σ xjiσ
pj

1−σ

 1−σ
pj

≤ ∥T∥Lσas,(p;p1,...,pm)

m
j=1

λjini=1


rj

1−σ

δqjσ


xji
n
i=1



= ∥T∥Lσas,(p;p1,...,pm)


n

i=1

T x1i , . . . , xmi  q
1−σ

 1−σ
r m

j=1

δqjσ


xji
n
i=1


.

Since 1−σ
p −

1−σ
r =

1−σ
q ,we end up withT x1i , . . . , xmi ni=1

 q
1−σ

≤ ∥T∥Lσas,(p;p1,...,pm)

m
j=1

δqjσ


xji
n
i=1


.

Hence T ∈ Lσ
as,(q;q1,...,qm)

(X1, . . . , Xm; Y ) and ∥T∥Lσas,(q;q1,...,qm)
≤ ∥T∥Lσas,(p;p1,...,pm)

. �

3. Domination and factorization theorems

3.1. Pietsch domination theorem

In the case of (p, σ )-absolutely continuous linearmaps it is possible to obtain a domination theorem as the one that holds
for p-summing operators (see [1]). It can be also extended to the multilinear case. For the proof of this domination theorem
we use the full general Pietsch domination theorem recently presented by Pellegrino et al. in [13].

Let X1, . . . , Xm, Y and E1, . . . , Ek be (arbitrary) non-void sets, H be a family of mappings from X1 × · · · × Xm to Y . Let
also K1, . . . , Kt be compact Hausdorff topological spaces, G1, . . . ,Gt be Banach spaces and suppose that the maps

Rj : Kj × E1 × · · · × Ek × Gj → [0,+∞), j = 1, . . . , t
S : H × E1 × · · · × Ek × G1 × · · · × Gt → [0,+∞)

satisfy

(1) For each xl ∈ El and b ∈ Gj, with (j, l) ∈ {1, . . . , t} × {1, . . . , k} the mapping (Rj)x1,...,xk,b : Kj → [0,+∞) defined by
(Rj)x1,...,xk,b(φ) = Rj(φ, x1, . . . , xk, b) is continuous.

(2) The following inequalities hold:
Rj(φ, x1, . . . , xk, ηjbj) ≤ ηjRj(φ, x1, . . . , xk, bj)
S(f , x1, . . . , xk, α1b1, . . . , αtbt) ≥ α1 . . . αtS(f , x1, . . . , xk, b1, . . . , bt),

for every φ ∈ Kj, xl ∈ El (with l = 1, . . . , k), 0 ≤ ηj, αj ≤ 1, bj ∈ Gj with j = 1, . . . , t and f ∈ H .
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Definition 3.1. If 0 < q1, . . . , qt , q < ∞, with 1
q =

1
q1

+ · · · +
1
qt
, a mapping f : X1 × · · · × Xm −→ Y in H is said to be

R1, . . . , Rt-S-abstract (q1, . . . , qt)-summing if there is a constant C > 0 so that
n

i=1

S(f , x1i , . . . , x
k
i , b

1
i , . . . , b

t
i )

q

 1
q

≤ C
t

j=1

sup
φ∈Kj


n

i=1

Rj(φ, x1i , . . . , x
k
i , b

j
i)
qj

 1
qj

,

for all xs1, . . . , x
s
n ∈ Es, b

j
1, . . . , b

j
n ∈ Gj, n ∈ N and (s, j) ∈ {1, . . . , k} × {1, . . . , t}.

Theorem 3.2 ([13]). A map f ∈ H is R1, . . . , Rt-S-abstract (q1, . . . , qt)-summing if and only if there is a constant C > 0 and
regular Borel probability measures µj on Kj such that

S(f , x1, . . . , xk, b1, . . . , bt) ≤ C
t

j=1


Kj
Rj(φ, x1, . . . , xk, bj)qjdµj(φ)

 1
qj

,

for all xl ∈ El, l ∈ {1, . . . , k} and bj ∈ Gj with j = 1, . . . , t.

Theorem 3.3. Let 1 ≤ p, p1, . . . , pm < ∞ with 1
p =

1
p1

+ · · · +
1
pm

and 0 ≤ σ < 1. An m-linear operator T ∈

L (X1, . . . , Xm; Y ) is (p; p1, . . . , pm; σ)-absolutely continuous if and only if there is a constant C > 0 and regular Borel
probability measures µj on BX∗

j
, 1 ≤ j ≤ m, (with the weak star topology) so that for all


b1, . . . , bm


∈ X1 × · · · × Xm

the inequality

T (b1, . . . , bm) ≤ C
m
j=1


BX∗

j

φ(bj)1−σ bjσ pj
1−σ

dµj(φ)

 1−σ
pj

(3.1)

is valid.
The infimum of all these possible C is equal to ∥T∥Lσas,(p;p1,...,pm)

.

Proof. Note that by choosing the parameters

t = m
Ej = K, j = 1, . . . , k
Gj = Xj, j = 1, . . . ,m
Kj = BX∗

j
, j = 1, . . . ,m

H = L (X1, . . . , Xm; Y )

q =
p

1 − σ
, qj =

pj

1 − σ
, j = 1, . . . ,m

S(T , x1, . . . , xk, b1, . . . , bm) =
T b1, . . . , bm

Rj(φ, x1, . . . , xk, bj) =
φ(bj)1−σ bjσ , j = 1, . . . ,m

we can easily conclude that T : X1×· · ·×Xm −→ Y is (p; p1, . . . , pm; σ)-absolutely continuous if and only if T is R1, . . . , Rm-
S-abstract ( p1

1−σ , . . . ,
pm
1−σ )-summing. Theorem 3.2 tells us that T is R1, . . . , Rm-S-abstract (

p1
1−σ , . . . ,

pm
1−σ )-summing if and

only if there is a C > 0 and there are regular Borel probability measures µj on Kj, j = 1, . . . ,m, such that

S(T , x1, . . . , xk, b1, . . . , bt) ≤ C
t

j=1


BX∗

j

Rj(φ, x1, . . . , xk, bj)
pj

1−σ dµj(φ)

 1−σ
pj

i.e;

T (b1, . . . , bm) ≤ C
m
j=1


BX∗

j

φ(bj)1−σ bjσ pj
1−σ

dµj(φ)

 1−σ
pj

and we obtain the inequality in the statement of the theorem. �
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3.2. Pietsch factorization theorem

Now we give the Pietsch factorization theorem for the (p, σ )-absolutely continuous linear operators and its multilinear
version for (p; p1, . . . , pm; σ)-absolutely continuousmultilinear operators.We start by proving the result for the linear case.
Although this result is essentially already known (it was proved byMatter, see [17, Theorem B]), wewrite a new direct proof
that highlights the role of the spaces C(BX∗) and Lp(η), where η ∈ (C(BX∗))∗.

Let X be a Banach space, p ≥ 1, 0 ≤ σ < 1 and let η be a regular Borel probability measure on BX∗ (with the weak star
topology). We denote by iX the isometric embedding X → C(BX∗) given by iX (x) = ⟨x, .⟩.

For f ∈ iX (X) ⊂ C(BX∗), we define the seminorm,

∥f ∥p,σ = inf

 n
k=1

∥fk∥σiX (X) .


BX∗

|fk|p dη

 1−σ
p

, f =

n
k=1

fk, (fk)nk=1 ⊂ iX (X)

 .
Let S be the closed subspace of iX (X) given by S =


f ∈ iX (X), ∥f ∥p,σ = 0


. We write Lp,σ (η) for the quotient space

iX (X)/S with the norm ∥[f ]∥p,σ = ∥f ∥p,σ , where [f ] is the equivalence class of f ∈ iX (X); notice that the value of the
norm is the same for all g ∈ iX (X) belonging to the class of f . In [17] the role of the space Lp,σ (η) is in fact played by the
real interpolation space


iX (X)η, Lp(η)


1−σ ,1, where iX (X)η is the quotient space of iX (X) by the kernel of the inclusion in

Lp(η) with the natural quotient norm. If X = C(BX∗), (C(BX∗))η is obtained from C(BX∗) by identifying functions which
coincide η-almost everywhere, and ((C(BX∗))η, Lp(η))1−σ ,1 turns out to be the Lorentz space L p

1−σ ,1
(η). Consider now the

map Jp,σ : iX (X) → Lp,σ (η) given by the composition of the projection on the quotient iX (X)η and the identification of the
elements of this space with classes of functions of Lp,σ (η).

Lemma 3.4. The canonical map Jp,σ : iX (X) → Lp,σ (η) is (p, σ )-absolutely continuous, and πp,σ (Jp,σ ) ≤ 1.

Proof. Let δω : C(BX∗) → K, f → f (ω) be Dirac’s delta associated with ω ∈ BX∗ . Since ∥δω∥ = 1, we may write for every
(fk)nk=1 ⊂ iX (X)

n
k=1

Jp,σ (fk) p
1−σ

 1−σ
p

≤


BX∗

n
k=1

∥fk∥
σp
1−σ |fk|p dη

 1−σ
p

≤ sup
ω∈BX∗

 n
k=1

∥fk∥
σp
1−σ . |fk(ω)|p


1−σ
p

= sup
φ∈B(iX (X))∗

 n
k=1


∥fk∥σ |⟨fk, φ⟩|

1−σ  p
1−σ


1−σ
p

.

Then Jp,σ ∈ Pp,σ

iX (X), Lp,σ (η)


and πp,σ (Jp,σ ) ≤ 1. �

Note that the same computations show that the operator Jp,σ , when considered from C(BX∗) to Lp,σ (η), is also (p, σ )-
absolutely continuous and πp,σ ≤ 1 also in this case. We write Jp,σ for such an operator.

Theorem 3.5. For every operator T : X → Y , the following statements are equivalent.
(i) T is (p, σ )-absolutely continuous.
(ii) There exist a regular Borel probability measure µ on BX∗ , a (closed) subspace Xp,σ of Lp,σ (µ) and an operatorT : Xp,σ → Y

such that the following diagram commutes

X
T

−→ Y
iX ↓ ↑T
iX (X)

Jp,σ
−→ Xp,σ

∩ ∩

C (BX∗)
Jp,σ
−→ Lp,σ (µ).

Proof. (i)H⇒(ii) If T is (p, σ )-absolutely continuous, the domination theorem (see [1, Theorem4.1]) provides a regular Borel
probability measure µ on BX∗ for which

∥Tx∥ ≤ πp,σ (T ). ∥x∥σ .


BX∗

x, x∗
p dµ 1−σ

p

for all x ∈ X .

This informs us that if we denote the range of Jp,σ ◦ iX by M and consider it to be a normed subspace of Lp,σ (µ), the map
M → Y : Jp,σ ◦ iX (x) → Tx is a well-defined operator. It is continuous for the Lp,σ (µ)-topology with norm ≤ πp,σ (T ), since
∥Tx∥ ≤ πp,σ (T ). ∥⟨x, .⟩∥p,σ ,∀x ∈ X . Let Xp,σ be the closure ofM in Lp,σ (µ). Then the natural extension of our map to Xp,σ is
the operatorT we are looking for.
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(ii)H⇒(i) From T ◦ Jp,σ ◦ iX = T and the previous lemma we get T is (p, σ )-absolutely continuous and πp,σ (T ) ≤T · πp,σ (Jp,σ ) · ∥iX∥ =
T. �

Theorem 3.6 (Multilinear Version). Let 1 ≤ p, p1, . . . , pm < ∞ with 1
p =

1
p1

+ · · · +
1
pm

and 0 ≤ σ < 1. Then

T ∈ Lσ
as,(p;p1,...,pm) (X1, . . . , Xm; Y )

if and only if there exist Banach spaces G1, . . . ,Gm, (pj, σ )-absolutely continuous linear operators uj ∈ L(Xj,Gj) and anm-linear
mapping S ∈ L(G1, . . . ,Gm; Y ) so that

T = S ◦ (u1, . . . , um).

Moreover,

∥T∥Lσas,(p;p1,...,pm)
= inf


∥S∥

m
j=1

πpj,σ


uj


: T = So(u1, . . . , um)


(i.e., Lσ

as,(p;p1,...,pm)
= L ◦ (Pp1,σ , . . . ,Ppm,σ ) holds isometrically.)

Proof. For the ‘‘if’’ part, if T has such a factorization, we haveT (x1, . . . , xm) =
S u1


x1

, . . . , um


xm
 ≤ ∥S∥

m
j=1

uj (xj)


for all (x1, . . . , xm) ∈ X1 × · · · × Xm.
We know that (see [1, Theorem 4.1]), for each j = 1, . . . ,m, there is µj ∈ C(BX∗

j
)∗, such that

uj

xj
 ≤ πpj,σ


uj


BX∗
j

xj, φ1−σ xjσ pj
1−σ

dµj

 1−σ
pj

.

Now we have

T (x1, . . . , xm) ≤ ∥S∥
m
j=1

πpj,σ


uj
 m

j=1


BX∗

j

xj, φ1−σ xjσ pj
1−σ

dµj


1−σ
pj

.

Therefore T is (p; p1, . . . , pm; σ)-absolutely continuous and

∥T∥Lσas,(p;p1,...,pm)
≤ ∥S∥

m
j=1

πpj,σ


uj

.

To prove the ‘‘only if’’ part, take T ∈ Lσ
as,(p;p1,...,pm)

(X1, . . . ., Xm; Y ). Then, there exist regular Borel probability measures
µj ∈ C(BX∗

j
)∗, (1 ≤ j ≤ m) such that for all


x1, . . . , xm


∈ X1 × · · · × Xm,T (x1, . . . , xm) ≤ ∥T∥Lσas,(p;p1,...,pm)

m
j=1
(

BX∗

j

xj, φ1−σ xjσ pj
1−σ

dµj(φ))
1−σ
pj .

We now consider the operator u0
j : Xj → Lpj,σ (µj)which is given by u0

j (x
j) =


xj, .


and notice that we have

u0
j (x

j)
 =

xjpj,σ ≤
xjσXj .


BX∗

j

xj, φpj dµj

 1−σ
pj

, for all xj ∈ Xj and 1 ≤ j ≤ m

with ∥xj∥pj,σ = inf{
n

k=1 ∥xjk∥
σ
Xj
.(

BX∗

j
|⟨xjk, φ⟩|

pjdµj)
1−σ
pj , xj =

n
k=1 x

j
k, (x

j
k)

n
k=1 ⊂ Xj}.

Let Gj be the closure in Lpj,σ (µj) of the range of u0
j and let uj : Xj → Gj be the induced operator. Note that u0

j is
(pj, σ )-absolutely continuous (see [1, Theorem 4.1]). By Lemma 3.4 the operator uj is (pj, σ )-absolutely continuous with
πpj ,σ


uj


≤ 1.

Let S0 be the operator defined on u0
1(X1)× · · · × u0

m(Xm) by

S0(u0
1


x1

, . . . , u0

m


xm

) := T (x1, . . . , xm).
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We prove that the mapping S0 is well defined and continuous, so we have

S0 u0
1


x1

, . . . , u0

m


xm
 ≤ ∥T∥Lσas,(p;p1,...,pm)

m
j=1


BX∗

j

xj, φ1−σ xjσ pj
1−σ

dµj

 1−σ
pj

.

Fix j = 1 and ε > 0. Then there exists

x1k
n
k=1 ⊂ X1 such that x1 =

n
i=1 x

1
k and

n
k=1

i1(x1k)σi1(X1) .


BX∗
j

|⟨xjk, φ⟩|
p1 dµj

 1−σ
p1

≤ ε +
i1(x1)p1 ,σ ,

where i1 is the isometric embedding X1 → C(BX∗
1
) given by i1(x) = ⟨x, .⟩. So we have

S0 u0
1


x1

, . . . , u0

m


xm
 =

S0

u0
1


n

k=1

x1k


, . . . , u0

m


xm


≤

n
i=1

S0 u0
1


x1k

, . . . , u0

m


xm


≤ ∥T∥Lσas,(p;p1,...,pm)

n
k=1

x1kσ .


BX∗
1

x1k, φp1 dµ1

 1−σ
p1

×

m
j=2


BX∗

j

xj, φ1−σ xjσ pj
1−σ

dµj


1−σ
pj

≤ ∥T∥Lσas,(p;p1,...,pm)


ε +

x1p1 ,σ m
j=2


BX∗

j

xj, φ1−σ xjσ pj
1−σ

dµj


1−σ
pj

.

We can write the same domination result for j = 2, with this new domination, to obtainS0 u0
1


x1

, . . . , u0

m


xm
 ≤ ∥T∥Lσas,(p;p1,...,pm)


ε +

x1p1 ,σ ε +
x2p2 ,σ

×

m
j=3


BX∗

j

xj, φ1−σ xjσ pj
1−σ

dµj


1−σ
pj

.

By induction, we getS0 u0
1


x1

, . . . , u0

m


xm
 ≤ ∥T∥Lσas,(p;p1,...,pm)

m
j=1


ε +

xjpj ,σ

.

Since this is true for all ε > 0, we obtainS0 u0
1


x1

, . . . , u0

m


xm
 ≤ ∥T∥Lσas,(p;p1,...,pm)

x1p1 ,σ . . . xmpm ,σ .
It follows that S0 is continuous on u0

1(X1)×· · ·×u0
m(Xm) and has a unique extension S to u0

1(X1)×· · ·×u0
m(Xm) = G1×· · ·×Gm

with ∥S∥ ≤ ∥T∥Lσas,(p;p1,...,pm)
.

Finally, note that T = S ◦ (u1, . . . , um)where uj ∈ Ppj,σ (Xj,Gj), (1 ≤ j ≤ m), S ∈ L(G1, . . . ,Gm; Y ) and

∥S∥
m
j=1

πpj,σ


uj


≤ ∥T∥Lσas,(p;p1,...,pm)
.

This completes the proof. �
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Proposition 2.2 can be directly deduced from the factorization theorem.

Remark 3.7. Since Ppj,σ is a Banach operator ideal (1 ≤ j ≤ m), (see [1]), the space Lσ
as,(p;p1,...,pm)

= L ◦ (Pp1,σ , . . . ,Ppm,σ )

is a Banach multi-ideal (see Theorem 2.2.2 in [11]).

Example 3.8. Regarding Proposition 2.3 and Theorem 3.6, let us show with some examples the difference between
absolutely summing and absolutely continuous multilinear operators.
(a) Let m ∈ N,m ≥ 2, p > 1, 0 < σ < 1 such that p∗ <

p
1−σ and p > m. Consider the m-linear mapping

S : ℓ p
1−σ

× · · · × ℓ p
1−σ

→ ℓ p
1−σ
, S


x1, . . . , xm


=

x1i x

2
i . . . x

m
i

∞
i=1 ,

where xj = (xji)
∞

i=1 ∈ ℓ p
1−σ

, j = 1, . . . ,m. Consider also u ∈ L(ℓp∗ , ℓ p
1−σ
) defined by u(ei) = ( 1i )

1
p ei, where (ei)∞i=1 is the

unit vector basis of ℓp∗ . Them-linear operator T ∈ L

ℓp∗ , . . . , ℓp∗; ℓ p

1−σ


given by T = S ◦(u, . . . , u) is ( p

m ; p, . . . , p; σ)-

absolutely continuous but it is not absolutely ( p
m ; p, . . . , p)-summing. In order to see this, note that by López Molina and

Sánchez-Pérez [2, Example. 1.9] we have u ∈ Pp,σ (ℓp∗ , ℓ p
1−σ
). It is easy to see that S is well-defined and continuous.

Then by Theorem 3.6 we have

T ∈ Lσ

as,( p
m ;p,...,p;σ)


ℓp∗ , . . . , ℓp∗; ℓ p

1−σ


.

On the other hand,
(ei)ni=1


p,ω = 1 for every n ∈ N but

(T (ei, . . . , ei))ni=1

 p
m

=
u(ei)mni=1

 p
m

=
(u(ei))ni=1

m
p =


n

i=1

1
i

m
p

→ +∞.

This implies that

T ∉ Las,( p
m ;p,...,p)


ℓp∗ , . . . , ℓp∗; ℓ p

1−σ


.

(b) A bit more elaborated example of this kind can be given in the setting of the Hilbert spaces. Let L2 be a Hilbert space
(L2[0, 1] or ℓ2), and L1 the corresponding L1-space. For the case, p = 2 and0 ≤ σ < ∞ it is known that the ideal of (2, σ )-
absolutely continuous operators between a couple Hilbert spaces coincide with the one of 2

1−σ -approximable operators
(see 15.5 in [7] for the definition, and Proposition 5.1 in [1] for the result). It is also known that for all 1 ≤ r < ∞,
r-summing operators and 2-approximable operators (Hilbert–Schmidt operators) coincide on Hilbert spaces (see
Theorem 22.1.8 in [7]). This allows to construct an easy example of a bilinear map T : L2 × L2 → L1 which is
(1; 2, 2; σ)-absolutely continuous but is not ( 1

1−σ ;
2

1−σ ,
2

1−σ )-summing. Let 0 < σ < 1, and define such a T as
T (x1, x2) := u(x1) · u(x2), where u is a (2, σ )-absolutely continuous that is not a 2

1−σ -summing operator and ‘‘·’’ is the
pointwise product of elements in L2. Take n couples (x11, x

2
1) . . . (x

1
n, x

2
n) of elements of L2. Then, using Hölder’s inequality

and taking into account that u is (2, σ )-absolutely continuous, we obtain
n

i=1

T (x1i , x2i ) 1
1−σ
L1

1−σ

=


n

i=1

u(x1i ).u(x2i ) 1
1−σ
L1

1−σ

≤


n

i=1

u(x1i )L2 . u(x2i )L2 1
1−σ

1−σ

≤


n

i=1

u(x1i )L2 2
1−σ

 1−σ
2

.


n

i=1

u(x2i )L2 2
1−σ

 1−σ
2

≤ C .δ2σ ((x1i )
n
i=1).δ2σ ((x

2
i )

n
i=1),

and so T is (1; 2, 2; σ)-absolutely continuous. However, since u is not 2
1−σ -summing, there is a sequence (xi)∞i=1 of

functions in L2 such that

lim
n

n
i=1

∥u(xi)∥
2

1−σ
L2

= ∞ but sup
x∗∈BL2

∞
i=1

u(xi), x∗
 2

1−σ < ∞.

Therefore, the inequality
n

i=1

∥T (xi, xi)∥
1

1−σ
L1

1−σ

=


n

i=1

∥u(xi) · u(xi)∥
1

1−σ
L1

1−σ
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=


n

i=1


∥u(xi)∥L2

 2
1−σ

1−σ

≤ C · sup
x∗∈BL2


n

i=1

u(xi), x∗
 2

1−σ

 1−σ
2

· sup
x∗∈BL2


n

i=1

u(xi), x∗
 2

1−σ

 1−σ
2

does not hold for every n for any C , and so the bilinear map is not ( 1
1−σ ;

2
1−σ ,

2
1−σ )-summing.

4. Connection with tensor products

In this section we introduce a reasonable crossnorm (see [18, p.127]) on X1 ⊗ · · · ⊗ Xm ⊗ Y in such way that the
topological dual of this normed space is isometric to (Lσ

as,(p;p1,...,pm)
(X1, . . . , Xm; Y ∗), ∥.∥Lσas,(p;p1,...,pm)

). Our aim is to show

that the representation of our multi-ideal as a dual of a topological tensor product holds exactly for this tensor norm. Let
u ∈ X1 ⊗ · · · ⊗ Xm ⊗ Y . For 1 ≤ p, p1, . . . , pm, r < ∞, 0 ≤ σ < 1 with 1

p =
1
p1

+ · · · +
1
pm

and 1
r +

1−σ
p = 1, we consider

βp,σ (u) = inf
m
j=1

δpjσ ((x
j
i)
n
i=1)

(yi)ni=1


r

where the infimum is taken over all representations of u of the form

u =

n
i=1

x1i ⊗ · · · ⊗ xmi ⊗ yi

with xji ∈ Xj, yi ∈ Y , i = 1, . . . , n, j = 1, . . . ,m and n,m ∈ N.

Proposition 4.1. βp,σ is a reasonable crossnorm and ϵ ≤ βp,σ ,where ϵ denotes the injective tensor norm on X1 ⊗· · ·⊗Xm ⊗Y .

Proof. Let u′, u′′
∈ X1 ⊗ · · · ⊗ Xm ⊗ Y , and let ε > 0. Choose representations of u′ and u′′ of the form

u′
=

n′
i=1

x′1
i ⊗ · · · ⊗ x′m

i ⊗ y′

i, u′′
=

n′′
i=1

x′′1
i ⊗ · · · ⊗ x′′m

i ⊗ y′′

i

such that

βp,σ (u′)+ ε ≥

m
j=1

δpjσ ((x
′j
i )

n′

i=1) ·

(y′

i)
n′

i=1


r

and βp,σ (u′′)+ ε ≥

m
j=1

δpjσ ((x
′′j
i )

n′′

i=1) ·

(y′′

i )
n′′

i=1


r

we can write u′, u′′ in the following way

u′
=

n′
i=1

z ′1
i ⊗ · · · ⊗ z ′m

i ⊗ t ′i , u′′
=

n′′
i=1

z ′′
1

i ⊗ · · · ⊗ z ′′m
i ⊗ t ′′i

with

z ′j
i =


βp,σ (u′)+ ε

 1−σ
pj

δpjσ


(x′j

i )
n′

i=1

 x′j
i , j = 1, . . . ,m, i = 1, . . . , n′,

t ′i =

m
j=1
δpjσ


(x′j

i )
n′

i=1



βp,σ (u′)+ ε

 1−σ
p

y′

i, i = 1, . . . , n′,

z ′′
j

i =


βp,σ (u′′)+ ε

 1−σ
pj

δpjσ


(x′′j

i )
n′′

i=1

 x′′j
i , j = 1, . . . ,m, i = 1, . . . , n′′,

t ′′i =

m
j=1
δpjσ


(x′′j

i )
n′′

i=1



βp,σ (u′′)+ ε

 1−σ
p

y′′

i , i = 1, . . . , n′′.
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It follows that

δpjσ ((z
′j
i )

n′

i=1) =

βp,σ (u′)+ ε

 1−σ
pj and

(t ′i )n′

i=1


r
≤

βp,σ (u′)+ ε

 1
r ,

δpjσ ((z
′′j
i )

n′′

i=1) =

βp,σ (u′′)+ ε

 1−σ
pj and

(t ′′i )n′′

i=1


r
≤

βp,σ (u′′)+ ε

 1
r .

Thus
m
j=1

δpjσ ((z
′j
i )

n′

i=1) ·

(t ′i )n′

i=1


r
≤ βp,σ (u′)+ ε ≤ βp,σ (u′)+ βp,σ (u′′)+ ε,

m
j=1

δpjσ ((z
′′j
i )

n′′

i=1) ·

(t ′′i )n′′

i=1


r
≤ βp,σ (u′′)+ ε ≤ βp,σ (u′)+ βp,σ (u′′)+ ε.

The last two inequalities implies that

βp,σ (u′
+ u′′) ≤ βp,σ (u′)+ βp,σ (u′′)+ ε, ∀ε > 0.

Hence the triangular inequality is proved for βp,σ . It is easy to see that βp,σ (λu) = |λ|βp,σ (u) for all u ∈ X1 ⊗ · · · ⊗ Xm ⊗ Y
and λ ∈ K.

Let u =
n

i=1 x
1
i ⊗ · · · ⊗ xmi ⊗ yi ∈ X1 ⊗ · · · ⊗ Xm ⊗ Y . By Hölder’s inequality and (2.1) we get

ϵ(u) = sup

 n
i=1

φ1(x1i ) . . . φm(xmi )ψ(yi)

 ;φj ∈ BX∗
j
, ψ ∈ BY∗


≤ sup

φj∈BX∗
j

φ1(x1i ) . . . φm(xmi )
n
i=1

 p
1−σ

(yi)ni=1


r

≤

m
j=1

(xji)ni=1

 pj
1−σ ,ω

(yi)ni=1


r

≤

m
j=1

δpjσ ((x
j
i)
n
i=1)

(yi)ni=1


r .

Since this holds for every representation of u, we obtain ϵ(u) ≤ βp,σ (u). Thus βp,σ (u) = 0 imply u = 0. Hence βp,σ is a
norm on X1 ⊗ · · · ⊗ Xm ⊗ Y .

It is clear that

βp,σ (x1 ⊗ · · · ⊗ xm ⊗ y) ≤
x1 · · ·

xm ∥y∥

for every xj ∈ Xj, j = 1, . . . ,m and y ∈ Y .
Let φj ∈ X∗

j with φj ≠ 0, j = 1, . . . ,m, let ψ ∈ Y ∗ and let u =
n

i=1 x
1
i ⊗ · · · ⊗ xmi ⊗ yi.

Then an application of Hölder’s inequality yields

|φ1 ⊗ · · · ⊗ φm ⊗ ψ(u)| =

φ1 ⊗ · · · ⊗ φm ⊗ ψ


n

i=1

x1i ⊗ · · · ⊗ xmi ⊗ yi


≤

n
i=1

φ1(x1i ) . . . φm(xmi )ψ(yi)


≤

m
j=1


n

i=1

φj(x
j
i)

 pj
1−σ

 1−σ
pj (ψ(yi))ni=1


r

≤ ∥φ1∥ · · · ∥φm∥ ∥ψ∥

m
j=1

 n
i=1

 φjφj
 (xji)


pj

1−σ


1−σ
pj (yi)ni=1


r

≤ ∥φ1∥ · · · ∥φm∥ ∥ψ∥

m
j=1

δpjσ ((x
j
i)
n
i=1)

(yi)ni=1


r .

From which it follows that

|φ1 ⊗ · · · ⊗ φm ⊗ ψ(u)| ≤ ∥φ1∥ · · · ∥φm∥ ∥ψ∥βp,σ (u).
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Therefore φ1 ⊗ · · · ⊗ φm ⊗ ψ is bounded and satisfies

∥φ1 ⊗ · · · ⊗ φm ⊗ ψ∥ ≤ ∥φ1∥ · · · ∥φm∥ ∥ψ∥

and we have shown that βp,σ is a reasonable crossnorm. �

In particular, note that when m = 1, the norm βp,σ is reduced to the norm dp,σ on X1 ⊗ Y was introduced by López
Molina and Sánchez Pérez in [2]. In what follows we consider the tensor product of linear operators in connection with the
reasonable crossnorm βp,σ . We show that the reasonable crossnorm βp,σ is actually a tensor norm [18, p. 127].

Proposition 4.2. Let Xj, Yj, X, Y be Banach spaces, and T ∈ L(X, Y ), Tj ∈ L(Xj, Yj), (j = 1, . . . ,m). Then there is a unique
continuous linear operator

T1 ⊗βp,σ · · · ⊗βp,σ Tm ⊗βp,σ T from

X1⊗ · · ·⊗Xm⊗X, βp,σ


into


Y1⊗ · · ·⊗Ym⊗Y , βp,σ


such that

T1 ⊗βp,σ · · · ⊗βp,σ Tm ⊗βp,σ T (x1 ⊗ · · · ⊗ xm ⊗ x) = (T1x1)⊗ · · · ⊗ (Tmxm)⊗ (Tx)

for every xj ∈ Xj, (j = 1, . . . ,m) and x ∈ X. MoreoverT1 ⊗βp,σ · · · ⊗βp,σ Tm ⊗βp,σ T
 = ∥T1 ⊗ · · · ⊗ Tm ⊗ T∥ = ∥T∥

m
j=1

Tj .
Proof. By [18, p.7] there is a unique linear operator

T1 ⊗ · · · ⊗ Tm ⊗ T : (X1 ⊗ · · · ⊗ Xm ⊗ X) → (Y1 ⊗ · · · ⊗ Ym ⊗ Y )

such that

T1 ⊗ · · · ⊗ Tm ⊗ T (x1 ⊗ · · · ⊗ xm ⊗ x) = (T1x1)⊗ · · · ⊗ (Tmxm)⊗ (Tx)

for every xj ∈ Xj, j = 1, . . . ,m and x ∈ X . We may suppose Tj ≠ 0, j = 1, . . . ,m and T ≠ 0. Let u ∈ X1 ⊗ · · · ⊗ Xm ⊗ X such
that

u =

n
i=1

x1i ⊗ · · · ⊗ xmi ⊗ xi,

hence the sum
n

i=1


T1x1i


⊗ · · · ⊗


Tmxmi


⊗ (Txi)

is a representation of T1 ⊗ · · · ⊗ Tm ⊗ T (u) in Y1 ⊗ · · · ⊗ Ym ⊗ Y . Then, for every 1 ≤ p, p1, . . . , pm, r < ∞, 0 ≤ σ < 1
with 1

p =
1
p1

+ · · · +
1
pm

and 1
r +

1−σ
p = 1, we have

βp,σ (T1 ⊗ · · · ⊗ Tm ⊗ T (u)) ≤

m
j=1

δpjσ ((Tjx
j
i)
n
i=1)

(Txi)ni=1


r

≤ ∥T∥

m
j=1

Tj m
j=1

δpjσ ((x
j
i)
n
i=1)

(xi)ni=1


r .

Since this holds for every representation of u, we obtain

βp,σ (T1 ⊗ · · · ⊗ Tm ⊗ T (u)) ≤ ∥T∥

m
j=1

Tjβp,σ (u).

So that the linear operator

T1 ⊗ · · · ⊗ Tm ⊗ T :

X1 ⊗ · · · ⊗ Xm ⊗ X, βp,σ


→

Y1 ⊗ · · · ⊗ Ym ⊗ Y , βp,σ


is continuous and we have ∥T1 ⊗ · · · ⊗ Tm ⊗ T∥ ≤ ∥T∥

m
j=1

Tj.
On the other hand, as βp,σ is an reasonable crossnorm we get that

∥Tx∥
m
j=1

Tjxj = βp,σ

(T1x1)⊗ · · · ⊗ (Tmxm)⊗ (Tx)


≤ ∥T1 ⊗ · · · ⊗ Tm ⊗ T∥βp,σ


x1 ⊗ · · · ⊗ xm ⊗ x


= ∥T1 ⊗ · · · ⊗ Tm ⊗ T∥ ∥x∥

m
j=1

xj .
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Thus

∥T1 ⊗ · · · ⊗ Tm ⊗ T∥ ≥ ∥T∥

m
j=1

Tj
and therefore ∥T1 ⊗ · · · ⊗ Tm ⊗ T∥ = ∥T∥

m
j=1

Tj.
Now taking the unique continuous extension of the operator T1 ⊗ · · · ⊗ Tm ⊗ T to the completions of X1 ⊗ · · · ⊗ Xm ⊗ X

and Y1 ⊗ · · · ⊗ Ym ⊗ Y which we denote by

T1 ⊗βp,σ · · · ⊗βp,σ Tm ⊗βp,σ T

we obtain a unique linear operator from

X1⊗ · · ·⊗Xm⊗X, βp,σ


into


Y1⊗ · · ·⊗Ym⊗Y , βp,σ


with the normT1 ⊗βp,σ · · · ⊗βp,σ Tm ⊗βp,σ T

 = ∥T∥

m
j=1

Tj . �

Following the idea of [12, Theorem 3.7] we prove the following result.

Theorem 4.3. The space (Lσ
as,(p;p1,...,pm)

(X1, . . . , Xm; Y ∗) , ∥.∥Lσas,(p;p1,...,pm)
) is isometrically isomorphic to (X1 ⊗ · · · ⊗ Xm ⊗

Y , βp,σ )
∗ through the mapping Ψ defined by

Ψ (T )(x1 ⊗ · · · ⊗ xm ⊗ y) = T (x1, . . . , xm)(y),

for every T ∈ Lσ
as,(p;p1,...,pm)

(X1, . . . , Xm; Y ∗) , xj ∈ Xj, j = 1, . . . ,m and y ∈ Y .

Proof. It is easy to see that the correspondence Ψ defined as above is linear. It remains to show the surjectivity and that

∥Ψ (T )∥(X1⊗···⊗Xm⊗Y ,βp,σ )∗ = ∥T∥Lσas,(p;p1,...,pm)

for all T in (Lσ
as,(p;p1,...,pm)

(X1, . . . , Xm; Y ∗)).
We take T ∈ Lσ

as,(p;p1,...,pm)
(X1, . . . , Xm; Y ∗), and let

u =

n
i=1

x1i ⊗ · · · ⊗ xmi ⊗ yi ∈ X1 ⊗ · · · ⊗ Xm ⊗ Y ,

where m ∈ N, (xji)
n
i=1 ⊂ Xj, (yi)ni=1 ⊂ Y , j = 1, . . . ,m. Hence, by Hölder’s inequality it follows that

|Ψ (T )(u)| =

 n
i=1

T (x1i , . . . , x
m
i )(yi)


≤

T (x1i , . . . , xmi )ni=1

 p
1−σ

(yi)ni=1


r

≤ ∥T∥Lσas,(p;p1,...,pm)

m
j=1

δpjσ ((x
j
i)
n
i=1)

(yi)ni=1


r .

So

|Ψ (T )(u)| ≤ ∥T∥Lσas,(p;p1,...,pm)
· βp,σ (u).

Since u is arbitrary it follows that

∥Ψ (T )∥(X1⊗···⊗Xm⊗Y ,βp,σ )∗ ≤ ∥T∥Lσas,(p;p1,...,pm)
.

In order to establish the reverse inequality, let φ ∈ (X1 ⊗ · · · ⊗ Xm ⊗ Y , βp,σ )
∗ and define the m-linear mapping

T ∈ L (X1, . . . , Xm; Y ∗) by

T (x1, . . . , xm)(y) = φ(x1 ⊗ · · · ⊗ xm ⊗ y).

Let (x1i , . . . , x
m
i )

n
i=1 ⊂ X1 × · · · × Xm. For each ε > 0, choose (yi)ni=1 ⊂ Y , ∥yi∥ = 1, j = 1, . . . ,m such that

n
i=1

T (x1i , . . . , xmi ) p
1−σ ≤ ε +

n
i=1

T (x1i , . . . , xmi )(yi) p
1−σ = (∗).
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With a convenient choice of λi ∈ K, |λi| = 1, i = 1, . . . , n we can write

(∗) = ε +

n
i=1

φ(x1i ⊗ · · · ⊗ xmi ⊗ yi)
 p
1−σ −1

φ(x1i ⊗ · · · ⊗ xmi ⊗ yi)


= ε +

 n
i=1

φ(x1i ⊗ · · · ⊗ xmi ⊗ yi)
 p
1−σ −1

λiφ(x1i ⊗ · · · ⊗ xmi ⊗ yi)


= ε +

φ


n
i=1

λi
φ(x1i ⊗ · · · ⊗ xmi ⊗ yi)

 p
1−σ −1

x1i ⊗ · · · ⊗ xmi ⊗ yi


≤ ε + ∥φ∥βp,σ


n

i=1

λi
φ(x1i ⊗ · · · ⊗ xmi ⊗ yi)

 p
1−σ −1

x1i ⊗ · · · ⊗ xmi ⊗ yi



≤ ε + ∥φ∥

m
j=1

δpjσ ((x
j
i)
n
i=1)

λi φ(x1i ⊗ · · · ⊗ xmi ⊗ yi)
 p
1−σ −1

yi
n
i=1


r

= ε + ∥φ∥

m
j=1

δpjσ ((x
j
i)
n
i=1)


n

i=1

φ(x1i ⊗ · · · ⊗ xmi ⊗ yi)
 p

1−σ −1

r

 1
r

≤ ε + ∥φ∥

m
j=1

δpjσ ((x
j
i)
n
i=1)


n

i=1

T (x1i , . . . , xmi ) p
1−σ −1


r

 1
r

.

Since ε is arbitrary and ( p
1−σ − 1)r =

p
1−σ , these inequalities imply

n
i=1

T (x1i , . . . , xmi ) p
1−σ

 1−σ
p

≤ ∥φ∥

m
j=1

δpjσ ((x
j
i)
n
i=1)

showing that

T ∈ Lσ
as,(p;p1,...,pm)


X1, . . . , Xm; Y ∗


and

∥T∥Lσas,(p;p1,...,pm)
≤ ∥φ∥ = ∥Ψ (T )∥(X1⊗···⊗Xm⊗Y ,βp,σ )∗ . �

Now we are ready to introduce a new formula of the tensor norm βp,σ in such way that we characterize the space of
(p; p1, . . . , pm; σ)-absolutely continuous multilinear forms.

Let u ∈ X1 ⊗ · · · ⊗ Xm ⊗ Y . For 1 ≤ p, p1, . . . , pm, r < ∞, 0 ≤ σ < 1 with 1
p =

1
p1

+ · · · +
1
pm

and 1
r +

1−σ
p = 1, we

consider

νp,σ (u) = inf
(λi)ni=1


r

m
j=1

δpjσ ((x
j
i)
n
i=1)

(yi)ni=1


∞

taking the infimum over all representations of u of the form

u =

n
i=1

λix1i ⊗ · · · ⊗ xmi ⊗ yi

with (xji)
n
i=1 ⊂ Xj, (yi)ni=1 ⊂ Y , (λi)ni=1 ⊂ K, j = 1, . . . ,m and n,m ∈ N.

Proposition 4.4. We haveνp,σ (u) = βp,σ (u) for all u ∈ X1 ⊗ · · · ⊗ Xm ⊗ Y .

Proof. We note first that every representation of u of the form
n

i=1 λix
1
i ⊗ · · · ⊗ xmi ⊗ yi can be written as

n
i=1 x

1
i ⊗ · · · ⊗

xmi ⊗ (λiyi) and hence

βp,σ (u) ≤

m
j=1

δpjσ ((x
j
i)
n
i=1)

(λiyi)ni=1


r

≤

m
j=1

δpjσ ((x
j
i)
n
i=1)

(λi)ni=1


r

(yi)ni=1


∞

from which it follows that βp,σ (u) ≤νp,σ (u).
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On the other hand, let
n

i=1 x
1
i ⊗ · · · ⊗ xmi ⊗ yi be a representation of u. We can write u as

n
i=1 λix

1
i ⊗ · · · ⊗ xmi ⊗ zi,

where λi = ∥yi∥ and ∥zi∥ ≤ 1 for every i = 1, . . . , n. Then

νp,σ (u) ≤
(yi)ni=1


r

m
j=1

δpjσ ((x
j
i)
n
i=1)

and henceνp,σ (u) ≤ βp,σ (u). �

Remark 4.5. Making F = K, in Theorem 4.3 we obtain that for every family of Banach spaces X1, . . . , Xm, the space of
(p; p1, . . . , pm; σ)-absolutely continuous multilinear forms

Lσ
as,(p;p1,...,pm) (X1, . . . , Xm) , ∥.∥Lσas,(p;p1,...,pm)


is isometric to (X1 ⊗ · · · ⊗ Xm ⊗ K,νp,σ )∗.

We recall that by the universal property of tensor products [19, Theorem 1.6.2], there is an algebraic isomorphism
between the m-linear mapping from X1 × · · · × Xm into Y and the linear mapping from X1 ⊗ · · · ⊗ Xm into Y . To each
m-linear mapping T corresponds the linear mappingT such thatT (x1 ⊗ · · · ⊗ xm) = T (x1, . . . , xm)

for every xj ∈ Xj, j = 1, . . . ,m.
In Proposition 4.1 if we take Y = K, then we identify X1 ⊗ · · · ⊗ Xm ⊗ K with X1 ⊗ · · · ⊗ Xm, and in this case the

corresponding tensor norm will be denoted by νp,σ and can be described as follows:

νp,σ (u) = inf
(λi)ni=1


r

m
j=1

δpjσ ((x
j
i)
n
i=1)

where the infimum is taken over all representations of u ∈ X1 ⊗ · · · ⊗ Xm of the form u =
n

i=1 λix
1
i ⊗ · · · ⊗ xmi with

(λi)
n
i=1 ⊂ K, (xji)

n
i=1 ⊂ Xj, j = 1, . . . ,m.

The next theorem and its proof are similar to Theorem 4.3.

Theorem 4.6. (Lσ
as,(p;p1,...,pm)

(X1, . . . , Xm) , ∥.∥Lσas,(p;p1,...,pm)
) is isometrically isomorphic to (X1 ⊗ · · · ⊗ Xm, νp,σ )

∗ through the

mapping T →T .
A consequence of Remark 4.5 and Theorem4.6we see that (X1⊗· · ·⊗Xm⊗K, βp,σ )

∗ is isometric to (X1⊗· · ·⊗Xm, νp,σ )
∗.

5. Some applications

5.1. Compactness and (p; p1, . . . , pm; σ)-absolutely continuous multilinear operators on reflexive Banach spaces

Compactness of multilinear maps is in general a property that is not easy to characterize, and it is nowadays not very
well known. In what follows we prove that under certain summability conditions we can ensure that the multilinear map
is compact, obtaining in this way some sufficient automatic conditions for compactness of multilinear maps. We relax the
requirements that are necessary for the case of p-summing multilinear maps by using Theorem 3.5 and the factorization
theorem for the class of (p; p1, . . . , pm; σ)-absolutely continuous multilinear operators that we have proved (Theorem 3.6).

Proposition 5.1. Let 0 ≤ σ < 1, 1 ≤ p < ∞ and X be a Banach space. The inclusion/quotient map i : X → Lp,σ (η) is
completely continuous.

Proof. Take a sequence (xn) in X converging weakly to zero. Then for each x∗
∈ X∗ we have that (⟨xn, x∗

⟩)n converges to 0.
But this means that the sequence (⟨xn, ·⟩)n converges pointwise to 0. Consider the functions |⟨xn, ·⟩|p∥xn∥

pσ
1−σ . Clearly, they

converge to 0 too, and its sequence is order bounded in L1(η) by the η-integrable function supn ∥xn∥
p

1−σ χBX∗ . The Dominated
Convergence Theorem gives that

lim
n


BX∗

|⟨xn, ·⟩|p∥xn∥
pσ
1−σ dη = 0.

Therefore, since

∥ [⟨xn, ·⟩] ∥
p

1−σ
Lp,σ ≤


BX∗

|⟨xn, ·⟩|p∥xn∥
pσ
1−σ dη

we obtain that ∥ [⟨xn, ·⟩] ∥Lp,σ →n 0. The result is proved. �
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Corollary 5.2. Let Y a Banach space, 0 ≤ σ < 1 and 1 ≤ p, p1, . . . , pm < ∞ with 1
p =

1
p1

+ · · · +
1
pm

and let X1, . . . , Xm be
reflexive Banach spaces. If T ∈ Lσ

as,(p;p1,...,pm)
(X1, . . . , Xm; Y ), then T is compact.

Proof. It is a consequence of Theorem 3.6 and the previous proposition. �

As a consequence of the factorization properties of compact bilinear maps that can be found in [15,16], we obtain the
following.

Corollary 5.3. Let Z be a Banach space, 0 ≤ σ < 1 and 1 ≤ p, q, r < ∞ with 1
p =

1
q +

1
r and let X, Y be reflexive Banach

spaces. If T ∈ Lσ
as,(p;q,r) (X, Y ; Z), then T factorizes through a (closed) subspace of c0 by means of a compact bilinear map and a

compact linear map.

For the proof, see Theorems 3 and 5 and Corollary 6 in [16].

Corollary 5.4. Let X, Y be reflexive Banach spaces and T ∈ Lσ
as,(p;q,r) (X, Y ; c0). Then T can be written as T (x, y) = (bn(x, y))n

for a norm null sequence (bn)n of continuous bilinear forms.

Proof. It is a consequence of Proposition 8 in [16]. �

It is known that certain multi-ideals satisfy the following property: an m-linear map belongs to a certain multi-ideal if
it factorizes through m linear maps that belong to the corresponding linear ideal (see [20,21]). This happens for the case of
compact multilinear maps. This means that we can apply our results in the case of operators that are defined on reflexive
spaces. As a consequence of the main result in [22] and Theorem 3.6, we obtain the following corollary (see also [20]).

Corollary 5.5. Let Y be a Banach space, 0 ≤ σ < 1, 1 ≤ p, p1, . . . , pm < ∞ with 1
p =

1
p1

+ · · · +
1
pm

and let X1, . . . , Xm be
reflexive Banach spaces. If T ∈ Lσ

as,(p;p1,...,pm)
(X1, . . . , Xm; Y ), then T is weak-to-norm continuous on bounded sets.

5.2. Absolutely continuous bilinear maps on Banach function spaces

Further domination requirements for the transpose of the p-summing operators provide the well-known class of the
(p, q)-dominated operators. In the interpolated case of the (p, σ )-absolutely continuous operators the same construction
provides also the class of the (p, σ , q, ν)-dominated operators, which is alsowell-known, specially regarding its domination
and factorization properties [2] as well as their tensor product representation (see [4]).

Consider a couple of indexes 1 ≤ p1, p2 < ∞ such that 1
p1

+
1
p2

≤ 1. An operator T : X → Y is said to be (p1, σ , p2, σ )-
dominated if T can be dominated as

T (x), y∗

≤ C ∥x∥σ ∥S1(x)∥1−σ

y∗
σ ∥S2(y∗)∥1−σ , C > 0

for every x ∈ E and y∗
∈ Y ∗, where S1 : X → G1 and S2 : Y ∗

→ G2 are p1-summing and p2-summing operators on
Banach spaces G1 and G2, respectively. Now define r by (1−σ)

p1
+

(1−σ)
p2

=
1
r . In [2] the authors also prove the following

result: T is (p1, σ , p2, σ )-dominated if and only if there exist C > 0 such that for every finite sequence x1, . . . , xn ∈ X and
y∗

1, . . . , y
∗
n ∈ Y ∗T (xi), y∗

i

n
i=1


r
≤ Cδp1,σ ((xi)

n
i=1) · δp2,σ ((y

∗

i )
n
i=1).

This kind of domination is in fact the same thing that characterizes that BT , the bilinear operator associated to T , is
(r(1 − σ); p1, p2; σ)-absolutely continuous. This provides the domination (see [2, Theorem 2.4])

|⟨T (x), y∗
⟩| ≤ C


BX∗

x, x∗
1−σ ∥x∥σ

 p1
1−σ

dη1

 1−σ
p1

·


BY∗∗


|

y∗, y∗∗

1−σ y∗
σ dη2

 p2
1−σ

 1−σ
p2

,

where η1 and η2 are regular Borel probability measures on the corresponding unit balls.
After Theorem 3.5, we can find the following factorization scheme for the (p1, σ , p2, σ )-dominated operators (we use

the same notation as that in Theorem 3.5). Consider a (p1, σ , p2, σ )-dominated operator T : X → Y . Then there are regular
Borel probability measures η1 and η2 on BX∗ and BY∗∗ , respectively, such that T factorizes as

X
T

−→ Y
i ↓ ↑T
M1

i
−→ S1

and T ∗ factorizes as

Y ∗ T∗

−→ X∗

i ↓ ↑ T ∗

M2
i

−→ S2
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where S1 ⊆ Lp1,σ (η1) and S2 ⊆ Lp2,σ (η2) are the subspaces appearing in Theorem 3.5. In fact, our multilinear factorization
result Theorem 3.6 gives that the bilinear form BT associated to T factorizes as

X × Y ∗
→ S1 × S2 → R.

In the case of operators defined between Banach lattices, and as a consequence of our results, more can be said on
the factorization schemes for (p1, σ , p2, σ )-dominated operators. In order to do this, let us introduce now some notions
regarding Banach function spaces. Let (Ω,Σ, µ) be a σ -finite measure space. Let L0(µ) be the space of all (equivalence
classes of) C-valuedΣ-measurable functions moduloµ-null functions. We consider a Banach function space X(µ) ⊆ L0(µ)
in the sense of [23, p. 28], i.e. a Banach ideal of locally integrable functions containing all the characteristic functions of sets
of finite measure (see also this text or [24] for the definition of order continuity and the Fatou property and the main results
regarding this class of Banach lattices). We write X for short if the measure is clear in the context, and X(µ)′ for the Köthe
dual of X , i.e. the elements of the dual space that can be represented as integrals of measurable functions. Assume that the
Banach function space X(µ) is also p-convex. In this case, it is well-known that the p-th power space of X that is defined as

X[p] := {f ∈ L0(µ) : |f |1/p ∈ X(µ)}

with the quasi-norm ∥f ∥X[p] := ∥|f |1/p∥p
X(µ), is a Banach function space with a norm that is equivalent to ∥f ∥X[p] (see

Proposition 2.23 in [24] and the same book for the definitions and main results on p-th powers). As in the case of the
spaces Lp,σ that we have defined in the previous sections, we can define the interpolation space (X(µ), Lp(ν))σ , where
ν is absolutely continuous with respect to µ and X(µ) ↩→ Lp(ν) is the corresponding inclusion/quotient map. Then the
expression

∥f ∥p,σ := inf
n

i=1

∥fi∥σ


|fi|pdν
 1−σ

p

is well defined for f ∈ X , where the infimum is defined over all decompositions in X as
n

i=1
fi = f , is a seminorm on X . We

write (X(µ), Lp(ν))σ for the corresponding quotient space and i : X(µ) → (X(µ), Lp(ν))σ for the inclusion/quotient map.
Let X(µ) be a Banach function space, let E be a Banach space and let T : X(µ) → E be an operator. Let 1 ≤ p < ∞ and

let 0 ≤ σ < 1. We say that T is pσ -concave (see [25, Definition 3.1]) if there is a constant C > 0 such that for every finite
sequence of functions f1, . . . , fn ∈ X(µ), it holds

(T (fi))ni=1

 p
1−σ

≤ C




n
i=1

(|fi|1−σ∥fi∥σ )
p

1−σ

 1
p

1−σ

.

These operators are characterized as the ones that allow a domination by means of an interpolation formula as follows (see
Theorem 3.4 in [25]). Suppose that X(µ) is order continuous. An operator T : X(µ) → E is pσ -concave if and only if there is
a nonnegative element ϕ ∈ (X(µ)[p])′ such that for every f ∈ X(µ),

∥T (f )∥ ≤


|f |pϕdµ

 1−σ
p

∥f ∥σX .

A (p, σ )-absolutely continuous operator is always pσ -concave. This can be proved easily using Proposition 1.d.9 in [23]
(see Example 3.3 in [25]). This result can be extended to the case of bilinear maps using the same inequalities. Let 1/p =

1/p1 +1/p2 and 0 ≤ σ < 1 such that p
1−σ ≥ 1. It can be easily shown that every (p1, σ , p2, σ )-dominated operator satisfies

that there is a constant C > 0 such that for every f1, . . . , fn ∈ X(µ) and g∗

1 , . . . , g
∗
n ∈ Y ∗(ν),

⟨T (fi), g∗

i ⟩
n
i=1

 p
1−σ

≤ C ·




n
i=1


|fi|1−σ∥fi∥σ

 p1
1−σ

 1
p1


1−σ

X




n
i=1


|g∗

i |
1−σ

∥g∗

i ∥
σ
 p2

1−σ

 1
p2


1−σ

Y∗

.

We will say that such an operator satisfies a (p1, σ , p2, σ )-concave domination.

Theorem 5.6. Let T : X(µ) → Y (ν) be an operator between the order continuous Banach function space X(µ) and the Banach
function space with the Fatou property Y (ν) such that its Köthe dual is order continuous. Assume also that X(µ) is p1-convex and
Y (ν) is p∗

2-concave for 1 ≤ p < ∞. Let 0 ≤ σ < 1. The following statements are equivalent.

(i) The operator T satisfies a (p1, σ , p2, σ )-concave domination.
(ii) There is a couple of functions f ′

∈ X(µ)′ and g ∈ Y (µ) such that for all f ∈ X(µ) and g∗
∈ Y ∗(ν),⟨T (f ), g∗

⟩
 ≤


|f |p1 f ′dµ

 1−σ
p1

∥f ∥σX

 g∗
p2 gdν 1−σ

p2
∥g∗

∥
σ
Y∗ .
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(iii) There is a factorization for T as

E
T //

i

��

F

(X, Lp1(f0µ))σ
T̂ // ((Y ′, Lp2(g0ν))σ )∗

i′

OO

Consequently, each operator as above satisfying that the associated bilinear form is (p; p1, p2; σ)-absolutely continuous factorizes
as in (iii).

Proof. For the equivalence between (i) and (ii) it can be used the same argument based in Ky Fan’s Lemma that proves
Theorem 1 of [26]; for obtaining the right inequalities from the ones given in (i), see also the proof of Theorem 3.4 of [25]
that leads to the linear version of our result. Notice that the assumptions of X being p1-convex and Y being p∗

2-concave (and
so Y ∗ is p2-convex) is necessary for proving it. So are the requirements on the order continuity and the Fatou property, that
allows to ensure that X∗

= Y ′, Y ′∗
= Y ′′ and Y ′′

= Y .
Let us prove (ii) ⇒ (iii). Clearly, the assumptions on T allows to extend the bilinear formΦ(f , g) := ⟨T (f ), g⟩ as

X(µ)× Y ′(ν) → (X, Lp1(f0µ))σ × (Y ′, Lp2(g0ν))σ → R

with a continuous bilinear form

Φ̂ : (X, Lp1(f0µ))σ × (Y ′, Lp2(g0ν))σ → R.

Therefore we can define the map

TΦ̂ : (X, Lp1(f0µ))σ → ((Y ′, Lp2(g0ν))σ )∗

by

⟨TΦ̂(x), y
′
⟩ := Φ̂(x, y′).

We have that

i : Y ′
→ (Y ′, Lp2(g0ν))σ

and so

i′ : (Y ′, Lp2(g0ν))∗σ → (Y ′)∗.

Since Y ′ is order continuous, (Y ′)∗ = Y ′′ and the Fatou property of Y gives Y ′′
= Y . Consequently, the factorization is

obtained for T̂ := TΦ̂ . The converse implication is obvious. �

Remark 5.7. More applications in this setting can be obtained regarding the positive version of the (p, σ )-absolutely
continuous operators and theirmultilinear extensions. For example, boundedness properties for the associated bilinear form
of an operator as the ones provided by the (p, σ )-absolutely continuous operators for the integration map associated to a
vector measure provide information about the containment of an interpolated space into the space of integrable functions
with respect to m (see [27]). The same technique that we have shown above should provide also the corresponding result
for the multilinear case.
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