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a b s t r a c t

An algorithm for calculating the third-order normal form of a nonresonant Hopf–Hopf
singularity in a neutral functional differential equation (NFDE) is established. The van der
Pol equation with extended delay feedback is investigated as an NFDE of second order. The
existence of Hopf–Hopf bifurcation is studied and the unfolding near these critical points
is given by applying this algorithm. Periodic solutions and quasi-periodic solutions are
found with the aid of the bifurcation diagram, and corresponding numerical illustrations
are presented. With the breaking down of the 3-torus, a chaotic attractor appears in this
NFDE of second order, following the Ruelle–Takens–Newhouse scenario which usually
arises for an ordinary differential equation of order at least 4. This transition is shown via
both theoretical and numerical approaches.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

The investigation of codimension 2 bifurcations in functional differential equations (FDE) has been the subject of much
recent activity; among these, the Hopf–Hopf bifurcations are particularly complicated because the oscillations have at least
two distinct frequencies, and thus quite rich dynamics may arise. For more details on codimension 2 bifurcations we refer
the reader to [1–5] and the references cited therein.

An important approach to bifurcation analysis is the normal formmethod; see [6–8]. The normal formmethod for NFDEs
was developed recently byWeedermann [9]; the author gave a computation procedure by employing themethod introduced
in [8]. In [10], the normal form for NFDEs with parameters was established and applied to study the Hopf bifurcation in the
lossless transmission line, which is the most famous equation of neutral type [11–13]. In [14], the authors found the system
of NFDEs naturally arising from the extended delay feedback control problem. Thus studying the codimension 2 bifurcation
in NFDEs is necessary for revealing the rich dynamics in those models, such as quasi-periodic oscillations, connecting orbits
and even chaos. As far as we know, these results are almost all for the retarded functional differential equations (RFDEs;
e.g. [1–5,8] and the references therein). However, there are very rare references concerning codimension 2 bifurcations of
NFDEs.

This paper is dedicated to extending the idea given in [8–10] to the nonresonant Hopf–Hopf singularity in an NFDE with
parameters:

d
dt

[Dxt − G(xt)] = L(α)xt + F(α, xt) (1)
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where xt ∈ C := C([−τ , 0],Rn), xt(θ) := x(t + θ). D and L(α) are bounded linear operators from C to Rn for any α ∈ Rp,
with Dφ = φ(0) −

 0
−τ

d[µ(θ)]φ(θ) and L(α)φ =
 0
−τ

d[η(θ, α)]φ(θ) for φ ∈ C , where µ(θ) and η(θ, α) are matrix-
valued functions of bounded variation which are continuous from the left on (−τ , 0) and such that η(0, α) = µ(0) = 0
and µ is non-atomic at zero. Note that Eq. (1) degenerates to an RFDE when Dφ = φ(0) and G(φ) ≡ 0. Thus the method
that we establish below is an extension to the RFDE case. Recall that at a nonresonant Hopf–Hopf bifurcation point, the
corresponding characteristic equation has two pairs of pure imaginary roots ±iω+ and ±iω−, and the ratio ω− : ω+ is not
a rational number.

For later use, we give an explicit and complete algorithm for dealing with the Hopf–Hopf singularity. Firstly, the center
manifold reduction and the normal form derivation in the parameterized NFDE are presented. Secondly, after calculating
the normal form near the Hopf–Hopf bifurcation point, we show that the dynamical behavior of (1) near the critical point
of the Hopf–Hopf bifurcation is governed by a four-dimensional system up to the third order with unfolding parameters
restricted to the center manifold. Finally, it can be further reduced to a two-dimensional amplitude system, where these
unfolding parameters can be expressed in terms of the perturbation parameters in the original system (1). Our algorithm is
a formulated procedure for studying the dynamical behavior near a nonresonant Hopf–Hopf bifurcation.

The van der Pol equation has a long history of being used in both the physical and biological sciences [15,16] and has been
widely studied bymany authors since it was first formulated for an electrical circuit with a triode valve; see, e.g., [3,6,17–19].
Using these theoretical results, we study the nonresonant Hopf–Hopf bifurcation in van der Pol’s equation with extended
delay feedback. This method is actually the so-called extended time delay autosynchronization; see [20–22]. The equation is
equivalent to a systemofNFDEs. The universal unfoldings near theHopf–Hopf point are obtained and the detailed bifurcation
sets indicate the existence of a stable periodic solution and a quasi-periodic solution on the torus. We find that Hopf–Hopf
bifurcation admits a three-dimensional torus which vanishes via a saddle connection bifurcation through perturbations.
According to the famous result of Newhouse et al. [23], a strange attractor might exist. Thus the strange attractor in van der
Pol’s equation with extended delay feedback is investigated with the aid of the Hopf–Hopf bifurcation set. The transition
from the three-dimensional torus to the strange attractor is also illustrated by a numerical method.

The paper is organized as follows. Section 2 is devoted to calculating the normal forms for system (1) near the nonresonant
Hopf–Hopf singularity. Section 3 focuses on van der Pol’s equation. The conditions for the existence of Hopf–Hopf bifurcation
are obtained. The corresponding normal form is calculated, and the detailed bifurcation sets are drawn. Appropriate
simulations are carried out to illustrate the theoretical results, e.g., the existence of a 2-torus or 3-torus and the transition
from quasi-periodic oscillations to chaos. Finally a conclusion section is provided, in which we also give some discussion.

2. The normal form for NFDEs with Hopf–Hopf singularity

In this section, we present the regular normal form method for system (1), and then calculate the normal form near
a nonresonant Hopf–Hopf bifurcation point. Assume that xt is differentiable, F and G are CN -smooth, α ∈ R2, N ≥ 3,
F(α, 0) = G(0) = 0, F ′(α, 0) = G′(0) = 0 and G does not depend on φ(0) in (1), where the notation ′ stands for the Fréchet
derivative. Under these hypotheses, obviously xt = 0 is an equilibrium of Eq. (1), whose equivalent form is

d
dt

Dxt = L(α)xt + F(α, xt)+ G′(xt)ẋt . (2)

By introducing the enlarged phase space BC , in which the functions from [−τ , 0] to Rn are uniformly continuous on [−τ , 0)
with a possible discontinuous jump at 0, Eq. (2) can be written as an abstract ODE on BC:

d
dt

xt = Axt + X0[L(α)− L(0)]xt + X0F(α, xt)+ X0G′(xt)ẋt (3)

where Aφ := φ′
+ X0[L(0)φ − Dφ′

] is the infinitesimal generator of the semigroup of solutions to the linear system
d
dtDxt = L(0)xt . X0(θ) = 0 for −τ ≤ θ < 0 and X0(0) = Idn×n. Regarding α as a new variable, we can consider Eq. (3)
as an ODE with no parameters in the product space BC := BC × R2.

Generally, Hopf–Hopf bifurcation occurs in Eq. (1) when α = (α1, α2) = 0 if Λ = {±iω1,±iω2} belongs to the point
set spectrum σ(A) and the rest of the elements have nonzero real part. This is just to say that the characteristic equation of
Eq. (2), det(∆(λ)) = det(λD(eλ·)−L(eλ·)) = 0, has two pairs of pure imaginary roots.Without loss of generality, we assume
thatω1 < ω2. Following [8,9] we summarize the calculation of the normal forms for Eq. (3) as follows. Note that here we use
xt ∈ C := C([−τ , 0],Cn). C is the space of the complex numbers. The operators L, D, F are extended to complex functions
in the natural way.

Decompose BC by using BC = P 
Ker π , whereP = P × R2, and P is the generalized eigenspace for A associated with

Λ. π is the projection of BC ontoP . Φ = (φ1, φ2, φ3, φ4) is a basis for P with (Ψ ,Φ) = Id4×4 where Ψ = (ψ1, ψ2, ψ3, ψ4)

is a basis for P∗, the dual space of P , and (ψ, φ) = ψ(0)φ(0) −
 0
−τ

d
 θ

0 ψ(ξ − θ)dµ(ξ)

φ(θ) +

 0
−τ

 θ
0 ψ(ξ −

θ)dη(θ, 0)φ(ξ)dξ .
Write B = diag{iω1,−iω1, iω2,−iω2}, such that AΦ = ΦB. If we carry out the decompositions xt = Φz(t) + w1

and αt = α(t) + w2, where z(t) = (z1(t), z2(t), z3(t), z4(t))T ∈ C4 and (w1, w2) ∈ Kerπ , then (3) has a corresponding
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decomposition. Noting thatw2(0) = 0 becausew2 ∈ R2, and dropping some auxiliary equations, we get the equation

ż = Bz + Ψ (0)[(L(α)− L(0))(Φz + w1)+ F(Φz + w1, α)+ G′(φz + w1)(Φ ż + ẇ1)]

ẇ1 = AQ 1w1 + (Id − π)X0[(L(α)− L(0))(Φz + w1)+ F(Φz + w1, α)] + (Id − π)G′(Φz + w1)(Φ ż + ẇ1) (4)

where the newly defined AQ 1 is the restriction of A to Q 1
:= Q


C1 with Q being the complementary space of P in C . Write

the Taylor expansion

ż = Bz +


j≥2

1
j!
f 1j (z, w1, α)

ẇ1 = AQ 1w1 +


j≥2

1
j!
f 2j (z, w1, α).

(5)

To derive the normal form of jth order, we carry out transformations of variables for j ≥ 2: (z, w1, α) → (ẑ, ŵ1, α̂), given by
(z, w1, α) = (ẑ, ŵ1, α̂)+

1
j!
Uj(ẑ, α̂)with Uj = (U1

j ,U
2
j ,U

3
j ) ∈ V 6

j (C
4)×V 6

j (Q
1)×V 6

j (R
2),Uj = (U1

j ,U
2
j ), where for a normed

space X , we denote by V 6
j (X) the linear space of homogeneous polynomials of degree j in six variables with coefficients in X .

To compute the normal formwe define the operatorMj on V 6
j (C

4
×Kerπ) byMj(q, h) = (M1

j q,M
2
j h), where (M1

j q)(z, α) =

Dzq(z, α)Bz − Bq(z, α), (M2
j h)(z, α) = Dzh(z, α)Bz − AQ 1h(z, α), with q(z, α) ∈ V 6

j (C
4), h(z, α)(θ) ∈ V 6

j (Q
1) and the

operator Dz stands for the derivative with respect to z. Then we have the following decompositions:

V 6
j (C

4) = Im(M1
j )


Im(M1

j )
c, V 6

j (C
4) = Ker(M1

j )


Ker(M1
j )

c,

V 6
j (Kerπ) = Im(M2

j )


Im(M2
j )

c, V 6
j (Q

1) = Ker(M2
j )


Ker(M2

j )
c .

Denote the projections associated with the above decompositions of V 6
j (C

4) × V 6
j (Kerπ) over Im(M

1
j ) × Im(M2

j ) and of
V 6
j (C

4) × V 6
j (Q

1) over Ker(M1
j )

c
× Ker(M2

j )
c by, respectively, PI,j = (P1

I,j, P
2
I,j) and PK ,j = (P1

K ,j, P
2
K ,j). The jth-order term in

the normal form becomes gj = f̄j − MjUj, where f̄j denotes the terms of order j obtained after computation of the normal
form up to order j − 1. Following [8] we have an adequate choice of Uj given by Uj(z, α) = M−1

j PI,j f̄j(z, 0, α) and thus
gj(z, 0, α) = (I − PI,j)f̄j(z, 0, α).

Recall that ω1 : ω2 ≠ 1 : 2 or 1:3; we have that (Im(M1
2 ))

c is spanned by the elements
{z1αie1, z2αie2, z3αie3, z4αie4}, i = 1, 2, with e1 = (1, 0, 0, 0)T , e2 = (0, 1, 0, 0)T , e3 = (0, 0, 1, 0)T , e4 =

(0, 0, 0, 1)T . Thus the normal form of (1) on the center manifold of the origin near (α1, α2) = 0 has the form

ż = Bz +
1
2
g1
2 (z, 0, α)+ h.o.t., (6)

with g1
2 (z, 0, α) = Proj(Im(M1

2 ))
c f 12 (z, 0, α).

To find the third-order normal form of the Hopf–Hopf singularity, letM3 denote the operator defined in V 4
3 (C

4
×Ker(π)).

Here we neglect the high order terms of the perturbation parameters. (Im(M1
3 ))

c is spanned by

{z21z2e1, z
2
2z1e2, z

2
3z4e3, z

2
4z3e4, z1z3z4e1, z2z3z4e2, z1z2z3e3, z1z3z4e4}.

The normal form of (1) up to the third order is

ż = Bz +
1
2!

g1
2 (z, 0, α)+

1
3!

g1
3 (z, 0, 0)+ h.o.t., (7)

where g1
3 (z, 0, 0) = Proj(Im(M1

3 ))
c f̄ 13 (z, 0, 0), with (f̄ 13 , f̄

2
3 )

T
= (f 13 , f

2
3 )

T
+

3
2 [(Dz,w(f 12 , f

2
2 )

TU2 − (Dz,wU2)(g1
2 , g

2
2 ))] and

U2(z, α) = (U1
2 ,U

2
2 )

T
= M−1

2 PI,2f2(z, 0, α).

Remark 2.1. Generally, we need to compute the normal form up to the third order to investigate a Hopf–Hopf point. In the
absence of the quadratic terms of xt in NFDE (1), the calculations are quite simple because (f̄ 13 , f̄

2
3 )

T
= (f 13 , f

2
3 )

T . In van der
Pol’s equation with extended feedback, the situation is of this type (see Section 3). In the presence of the quadratic terms in
xt in NFDE (1), the calculation is complicated, as we need to calculate U2(z, α). In any case, we can obtain the normal form
by using the method above.

Now, we are in a position to give the normal form of Eq. (1) near the Hopf–Hopf bifurcation.
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Table 1
The twelve unfoldings of system (9).

Case Ia Ib II III IVa IVb V VIa VIb VIIa VIIb VIII

d0 +1 +1 +1 +1 +1 +1 −1 −1 −1 −1 −1 −1
b0 + + + − − − + + + − − −

c0 + + − + − − + − − + + −

d0 − b0c0 + − + + + − − + − + − −

Theorem 2.2. Suppose that in system (1) the infinitesimal generator A has two pairs of nonresonant pure imaginary eigenvalues
Λ = {±iω1,±iω2}, and all the other eigenvalues have negative real part. Then the dynamics in (1) near xt = 0, α = 0 is
governed by the normal form ż = Bz +


j≥2

1
j!gj(z, 0, α), whose exact form is, truncated to the third order,

ż1 = iω1z1 + a11α1z1 + a12α2z1 + c11z21z2 + c12z1z3z4,

ż2 = −iω1z2 + ā11α1z2 + ā12α2z2 + c̄11z1z22 + c̄12z2z3z4,

ż3 = iω2z3 + a21α1z3 + a22α2z3 + c21z1z2z3 + c22z23z4,

ż4 = −iω2z4 + ā21α1z4 + ā22α2z4 + c̄21z1z2z4 + c̄22z3z24 .

(8)

Proof. The nonresonance conditions (see [8]) are naturally satisfied since all the roots except those inΛ have negative real
part. By the center manifold theory given in [24,25] and the general work in [8], the theorem is proved. �

Remark 2.3. In the normal form (8), the coefficients c11, c12, c21 and c22 are important for determining the dynamics near
the bifurcation point. If none of these four coefficients has zero real part, we can use the discussion below to investigate the
dynamical behavior; otherwise, the normal form is degenerate, and we need to calculate a fifth-order normal form.

Eq. (8) is complicated. Make the transformation z1 = r1 cos θ1 + ir1 sin θ1, z2 = r1 cos θ1 − ir1 sin θ1, z3 = r2 cos θ2 +

ir2 sin θ2, z4 = r2 cos θ2 − ir2 sin θ2, r1, r2 > 0, and define ϵ1 = Sign(Rec11), ϵ2 = Sign(Rec22). After carrying out the
rescaling r̂1 = r1

√
|Rec11|, r̂2 = r2

√
|Rec22| and t̂ = tϵ1, then Eq. (8) becomes, after dropping the hats,

ṙ1 = r1(c1 + r21 + b0r22 ),

ṙ2 = r2(c2 + c0r21 + d0r22 ),
(9)

where c1 = ϵ1Rea11α1 + ϵ1Rea12α2, c2 = ϵ1Rea21α1 + ϵ1Rea22α2, b0 =
ϵ1ϵ2Rec12

Rec22
, c0 =

Rec21
Rec11

, and d0 = ϵ1ϵ2. Eq. (9) has
twelve distinct kinds of unfoldings (see Table 1). The detailed phase portraits can be found in Section 7.5 of [6].

3. Hopf–Hopf bifurcation in van der Pol’s equation with extended delay feedback

In this section, van der Pol’s equation with extended delay feedback is studied. Hopf–Hopf points are detected by
analyzing the associated characteristic equation. Near these points, we calculate the normal form by using the algorithm
given in Section 2, and all the key values are obtained. Thus the bifurcation sets are drawn on the plane of parameters; by
this means, the periodic solutions, the quasi-periodic solutions on a 2-torus, the quasi-periodic solution on a 3-torus and
the strange attractor are obtained.

3.1. The existence and the normal form derivation

Consider the following van der Pol equation:

ẍ + ε(x2 − 1)ẋ + x = εkϑ(t) (10)

where ε > 0. k is the strength of the extended delay feedback (see [20–22]) ϑ(t). ϑ(t) depends on the current state and a
sequence of the past states, which is defined by

ϑ(t) = (1 − µ)x(t)+ µϑ(t − τ), (11)

with 0 < µ < 1. Eq. (10) together with the extended delay feedback (11) is equivalent to

ẍ − µẍ(t − τ)+ ε(x2 − 1)ẋ − µε(x2(t − τ)− 1)ẋ(t − τ)+ x − µx(t − τ) = εk(1 − µ)x(t). (12)

Introduce a new variable y(t) = ẋ(t); then (12) becomes a system of NFDEs
ẋ = y
ẏ − µẏ(t − τ) = [−1 + εk(1 − µ)]x + εy + µx(t − τ)− εµy(t − τ)− εx2y + εµx2(t − τ)y(t − τ).

(13)
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The characteristic equation of the corresponding linearized equation at the trivial equilibrium E0 = (0, 0)T of (13) is

λ2 − µλ2e−λτ
− ελ+ εµλe−λτ

− µe−λτ
+ 1 − εk(1 − µ) = 0. (14)

We investigate Hopf–Hopf bifurcation by detecting the intersection of the Hopf bifurcation curves in Eq. (13). By
substituting λ = iω, ω > 0 into (14) and separating the real and imaginary parts, we have

(µω2
− µ) cosωτ + εµω sinωτ = ω2

− 1 + εk(1 − µ)

−(µω2
− µ) sinωτ + εµω cosωτ = εω

(15)

which is solved by
cos(ωτ) =

(µω2
− µ)(ω2

− 1 + εk(1 − µ))+ (εµω)(εω)

(µω2 − µ)2 + (εµω)2

sin(ωτ) =
−(µω2

− µ)(εω)+ (εµω)(ω2
− 1 + εk(1 − µ))

(µω2 − µ)2 + (εµω)2
.

(16)

Hence, we have

W (ρ) = aρ2
+ bρ + c = 0 (17)

where ρ = ω2, a = (1 + µ), b = [2εk − 2(1 + µ) + ε2(1 + µ)], c = ε2k2(1 − µ) − 2εk + 1 + µ. Assume that
(H1) : k < min


1
ε
,

1+µ
ε

−
ε(1+µ)

2


; then we have c > 0, b < 0. Furthermore if (H2) : ∆ = (b2 − 4ac) > 0 holds,

then (17) is solved by two positive roots ω± =
√
ρ±, where ρ± =

−b±
√

b2−4ac
2a . Denote by τ+

0 (or τ−

0 ) the unique root of
Eq. (16) when ω = ω+ (or ω = ω−), such that ωτ±

0 ∈ [0, 2π). Furthermore, we define

τ±

j = τ±

0 +
2jπ
ω±

, j = 0, 1, 2, . . . (18)

Take the derivative with respect to τ in Eq. (14), and use Eq. (16). After a few straightforward calculations, we have

Sign

Re
dλ
dτ


τ=τ±

j

 = Sign(W ′(ρ))|ρ=ω2
±
. (19)

On the basis of the above preparation, together with the Hopf bifurcation theorem in [13], we can give the conclusions
about the Hopf bifurcation in (13).

Theorem 3.1. Assume (H1) , (H2) hold. If τ−

0 > τ+

0 , then E0 in system (13) is unstable for any τ ≥ 0. If τ−

0 < τ+

0 , then
there exists an integer m ≥ 0 such that E0 is stable when τ ∈ (τ−

0 , τ
+

0 ) ∪ (τ−

1 , τ
+

1 ) ∪ · · · ∪ (τ−
m , τ

+
m ), and is unstable

when τ ∈ (0, τ−

0 ) ∪ (τ+

0 , τ
−

1 ) ∪ · · · ∪ (τ+
m ,+∞). Moreover, system (13) undergoes a Hopf bifurcation at every τ+

j (or τ−

j ),
j = 0, 1, 2, . . ..

Now, we are in a position to give the condition under which a Hopf–Hopf bifurcation occurs. If we fix ε and µ, then the
exactly critical value can be obtained by the following process. The first step is to obtain ω± as a function of k from Eq. (17).
The second one is to substitute ω± and τ±

j into Eq. (16). For j0, j1 ∈ N, obtain k = k0 from
arccos

(µω2
+

− µ)(ω2
+

− 1 + εk(1 − µ))+ (εµω+)(εω+)

(µω2
+ − µ)2 + (εµω+)2

+ 2j0π
 

ω+

=


arccos

(µω2
−

− µ)(ω2
−

− 1 + εk(1 − µ))+ (εµω−)(εω−)

(µω2
− − µ)2 + (εµω−)2

+ 2j1π
 

ω−. (20)

Finally we compute τ0 = τ+

j0
from Eq. (18). Then we have that when k = k0, τ = τ0, system (13) undergoes a Hopf–Hopf

bifurcation. By estimating the ratio of ω± we can check whether this point is a nonresonant Hopf–Hopf point. Another
algorithm for detecting a k1 : k2 resonant Hopf–Hopf point can be found in [26]. Here we do not use their approach because
of the complexity of the characteristic equation (14).

Nowwewill use the algorithm in Section 2 to calculate the normal form of (13) for when a Hopf–Hopf bifurcation occurs
at (k, τ ) = (k0, τ0).

When τ > 0, carry out the rescaling t → t/τ , and define (k, τ ) = (k0 + α1, τ0 + α2); we have an equivalent form
of (13):ẋ = (τ0 + α2) y

ẏ − µẏ(t − 1) = (τ0 + α2) {[−1 + ε (k0 + α1) (1 − µ)] x + εy
+µx(t − 1)− εµy(t − 1)− εx2y + εµx2(t − 1)y(t − 1)}

. (21)
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When α1 = α2 = 0, the corresponding characteristic equation has four roots with zero real part,±iω1τ0,±iω2τ0. Following
the procedure in Section 2, we choose B = diag{iω1τ0,−iω1τ0, iω2τ0,−iω2τ0},

η(θ, α) =

0, θ = 0;
−B1, θ ∈ (−1, 0);
−B1 − B2, θ = −1,

with

B1 =


0 τ0 + α2

(τ0 + α2)[−1 + ε(k0 + α1)(1 − µ)] ε(τ0 + α2)


and

B2 =


0 0

(τ0 + α2)µ −(τ0 + α2)εµ


,

and then (13) can be considered as an abstract ODE such as Eq. (3). After quite a few calculations, we have that the bases of
P and P∗ are, respectively,

Φ(θ) =


eiθτ0ω1 e−iθτ0ω1 eiθω2τ0 e−iθω2τ0

ieiθτ0ω1ω1 −ie−iθτ0ω1ω1 ieiθω2τ0ω2 −ie−iθω2τ0ω2


,

Ψ (s) =


D1e−isτ0ω1


−e−iτ0ω1µϵ + ϵ + ie−iτ0ω1µω1 − iω1


−D1e−isτ0ω1

D̄1eisτ0ω1

−eiτ0ω1µϵ + ϵ − ieiτ0ω1µω1 + iω1


−D̄1eisτ0ω1

D2e−isω2τ0

−e−iω2τ0µϵ + ϵ − iω2 + ie−iω2τ0ω2µ


−D2e−isω2τ0

D̄2eisω2τ0

−eiω2τ0µϵ + ϵ + iω2 − ieiω2τ0ω2µ


−D̄2eisω2τ0


where D1 = (e−iτ0ω1


iµω1(ετ0 + 2)− µ(ε + τ0)+ µτ0ω

2
1


+ ε − 2iω1)

−1 and D2 = (e−iτ0ω2(iµω2(ετ0 + 2)− µ(ε + τ0)

+ µτ0ω
2
2)+ ε − 2iω2)

−1.
Decomposing Eq. (21) as Eq. (3), following the algorithm in Section 2, recalling Remark 2.1 and carrying out the projection

onto (Im(M1
2 ))

c and (Im(M1
3 ))

c , we then have the following coefficients:

a11 = −D1ε(1 − µ)τ0, a12 = D1

k0ε(µ− 1)− µ


ω2

1 + 1

e−iτ0ω1 + ω2

1 + 1

,

c11 = −
1
2
D1


2iεµτ0ω1e−iτ0ω1 − 2iετ0ω1


, c12 = −D1


2iεµτ0ω1e−iτ0ω1 − 2iετ0ω1


,

a21 = −D2ε(1 − µ)τ0, a22 = D2

k0ε(µ− 1)− µ


ω2

2 + 1

e−iτ0ω2 + ω2

2 + 1

,

c21 = −D2

2iεµτ0ω2e−iτ0ω2 − 2iετ0ω2


, c22 = −

1
2
D2


2iεµτ0ω2e−iτ0ω2 − 2iετ0ω2


.

It is quite difficult to estimate the signs of b0, c0, d0 and d0 − b0c0; thus we give a numerical example in the following
section.

3.2. Illustrations

In this section we choose ε = 0.1 and µ = 0.5. Following Theorem 3.1, we have the bifurcation diagram shown in
Fig. 1(a). In Fig. 1(a), several colored Hopf bifurcation curves and a dotted fold bifurcation curve are presented. When τ = 0
the zero solution is unstable and a stable region of the zero solution is marked ‘‘Stable Region’’. One Bogdanov–Takens
point, three Hopf-fold points and two Hopf–Hopf points are marked as BT, HF1–HF3 and HH1–HH2, respectively. From
Eqs. (16), (17) and (20) we have that when k0 = 4.834585, τ0 = 8.815987, two different frequencies are obtained:
ω1 = 0.730796, and ω2 = 0.900735. By the calculations in the previous section we have c1 = 0.242977α1 −

0.298185α2, c2 = −0.200412α1 + 0.460212α2. Using Remark 2.3, we know that the normal form is non-degenerate
and b0 = 0.087454, c0 = −45.7383, d0 = −1, and d0 − b0c0 = 3. From Table 1, we have that the case VIa has
arisen. From Guckenheimer and Holmes [6], we have that near the Hopf–Hopf point HH1 there are eight different kinds
of phase diagrams in eight different regions, which are divided by lines L1–L8 as follows: L1: α2 = 0.435478α1, α1 > 0,
L2: α2 = 0.814854α1, α1 > 0, L3: α2 = 0.828102α1, α1 > 0, L4: α2 = 0.828985α1 + O(α2

1), α1 > 0, L5:
α2 = 0.828985α1, α1 > 0, L6: α2 = 0.874050α1, α1 > 0, L7: α2 = 0.435478α1, α1 < 0, L8: α2 = 0.814854α1, α1 < 0.
Recall that α1 = k − k0, α2 = τ − τ0; thus we give a bifurcation set on the plane of the original parameters in system (13)
(see Fig. 1(b)). In Fig. 2, we draw these phase portraits and label the positions at which the corresponding parameters lie.
In every portrait, a nontrivial equilibrium on the axis, an equilibrium with positive ri (i = 1, 2) and a cycle correspond to a
nonconstant periodic solution, a quasi-periodic solution on the two-dimensional torus and a quasi-periodic solution on the
three-dimensional torus of Eq. (13), respectively.

Fig. 3 illustrates the stable equilibrium and the periodic solution.When parameters are chosen in D6, there exists a stable
quasi-periodic solution on a 2-torus which is shown in Fig. 4. When parameters are chosen in D5, there exists a quasi-
periodic solution on a 3-torus which is shown in Fig. 6(a). Clearly, we find that the points on the Poincaré section exhibit
quasi-periodic behavior, which indicates that the solution is a quasi-periodic solution on a 3-torus.
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Fig. 1. (a) Partial bifurcation sets with parameters in the k–τ plane. The colored curves stand for Hopf bifurcation curves. (b) Complete bifurcation sets
near HH1.

Fig. 2. The eight distinct phase portraits near HH1 in D1–D8 . Below every figure, we mark the corresponding region in Fig. 1; e.g. the region D1 is between
L8 and L1 .

Fig. 3. Left: The trivial equilibrium of system (13) is stable when α1 = −0.1, α2 = −0.08 in D8 . Right: System (13) has a stable periodic solution when
α1 = −0.1, α2 = 0.1 in D7 .

3.3. The strange attractor near a Hopf–Hopf bifurcation

Generally, a vanishing 3-torus might yield strange attractors. More precisely, Newhouse et al. [23] have shown that
by means of a small C2 perturbation of a quasi-periodic flow on the 3-torus, one can produce strange Axiom A attractors
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Fig. 4. α1 = 0.1, α2 = 0.085 in D6; the bifurcated quasi-periodic solution of system (13) and the corresponding Poincaré map on the whole Poincaré
section y(t) = 0.

Fig. 5. The sketch of the saddle connection bifurcation curve (L4) on the 3-torus. (a) ι = 2; (b) ι = 2.4; (c) ι = 2.5.

Fig. 6. The phase portraits in x–y–y(·–τ) space and the corresponding Poincaré map on the whole Poincaré section y(t) = 0 for when parameters are
chosen at (a), (b) and (c) in Fig. 5, respectively. Note that we delete the transient states for a clear expression.

(see Smale [27]). They claimed that when three pairs of complex conjugate eigenvalues of a ODE have crossed (that is, the
oscillation has three frequencies), a motion asymptotic to a nontrivial Axiom A attractor may appear. The time dependence
of the flow then becomes chaotic, a situation which one may call turbulent. This idea is also studied by [28,29]. This route
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Fig. 7. The complete Poincaré maps near the saddle connection line L4 , for different values of ι on T in Fig. 5.

to chaos is often called ‘‘the Ruelle–Takens–Newhouse’’ scenario [30], which is the first insight into explaining a strange
attractor.

A 3-torus appears in a system of ordinary differential equations of dimension at least 4. However, we find that in
two-dimensional NFDEs, with the help of the Hopf–Hopf bifurcation sets, one can easily obtain the occurrence of a
3-torus and estimate where it appears and vanishes. Thus the existence of oscillations with a strange attractor can be traced
theoretically.

For the rest of this section we devote our attention to checking for the existence of a strange attractor in system (13);
we choose three points (a), (b) and (c) on the line T : (α1, α2) = (0.1ι, 0.081ι), ι > 0, which is shown in Fig. 5. In Fig. 6,
the phase portraits are drawn. At (a), the system has a quasi-periodic solution on a 3-torus, which vanishes via the saddle
connection bifurcation (b) on the 3-torus (the curve L4). At point (c), system (13) exhibits chaotic behavior and the strange
attractor is drawn on the Poincaré section y(t) = 0. Thuswe confirm that in an NFDE the breaking down of a 3-torus yields a
strange attractor. Fig. 7 is also an illustration of the transition where we give the complete Poincaré map for different values
of ι on line T , from which we find the strange attractor vanishing when ι = 2.6. After that, the system is stabilized to a
periodic solution with large amplitude.

4. Conclusions

In this paper, we mainly investigate the nonresonant Hopf–Hopf bifurcation in an NFDE with parameters, Eq. (1). We
compute the normal form near the bifurcation point. An explicit algorithm is given for calculating the four key variables:
b0, c0, d0 and d0 − b0c0, by means of which the twelve unfoldings are distinguished.

As an illustration of this theory, van der Pol’s equation with extended delay feedback is considered. Detailed dynamics
near the critical point are obtained by drawing the corresponding bifurcation set. Both the theoretical bifurcation set and
the simulations confirm the existence of stable periodic solutions and quasi-periodic solutions. With the guidance of the
bifurcation sets we also find that in van der Pol’s equation a strange attractor appears while the 3-torus vanishes via a
saddle connection bifurcation. Strange attractors have been encountered a lot in the research into FDEs, most of which are
illustrated by numerical methods. However, we find that the investigation of the normal form near a Hopf–Hopf point can
sometimes give a theoretical explanation for the existence of chaos.
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