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a b s t r a c t

A nonempty set F is called Motzkin decomposable when it can be expressed as the
Minkowski sum of a compact convex set C with a closed convex cone D. In that case,
the sets C and D are called compact and conic components of F . This paper provides
new characterizations of the Motzkin decomposable sets involving truncations of F (i.e.,
intersections of F with closed halfspaces), when F contains no lines, and truncations of
the intersectionF of F with the orthogonal complement of the lineality of F , otherwise.
In particular, it is shown that a nonempty closed convex set F is Motzkin decomposable
if and only if there exists a hyperplane H parallel to the lineality of F such that one of the
truncations ofF inducedbyH is compactwhereas the other one is a unionof closedhalflines
emanating from H . Thus, any Motzkin decomposable set F can be expressed as F = C + D,
where the compact component C is a truncation ofF . These Motzkin decompositions are
said to be of type Twhen F contains no lines, i.e., when C is a truncation of F . Theminimality
of this type of decompositions is also discussed.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

A nonempty set F ⊂ Rn is called Motzkin decomposable (M-decomposable in short) if there exist a compact convex set
C and a closed convex cone D such that F = C + D. Then we say that the pair (C,D) is a Motzkin decomposition of F with
compact and conic components C andD, respectively. This paper ismainly focused on thoseMotzkin decompositions of F such
that the compact component is a truncation of F (i.e., the intersection of F with some closed halfspace), which are called of
type T (MT-decomposition in short).

The classical Motzkin Theorem [1] asserts that any polyhedral convex set is M-decomposable. For this reason, Bair [2,3]
called these sets generalized convex polyhedral (unfortunately, the same name has been given by other authors to those sets
whose non-empty intersectionwith polytopes are polytopes, which are also called quasipolyhedral or boundedly polyhedral).
In the same vein, a function f : Rn

−→ R is called Motzkin decomposable (M-decomposable in short) when its epigraph is
M-decomposable. If f is M-decomposable, it is convex and lower semicontinuous (lsc in short) [4] and so any local minimum
of f is a global minimum of f . The main property of the M-decomposable functions in the optimization framework is that
they achieve their minima when they are bounded from below on Rn.

Any M-decomposable set F is closed, as it is the sum of a compact set with a closed set. Moreover F has a unique conic
component D = 0+F (the recession cone of F ) but multiple compact components when F is unbounded. Five different
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characterizations of the M-decomposable sets have been given in [5] and two more in [4], where calculus rules for M-
decomposable sets and functions have been developed. Themost relevant of these characterizations involve the intersectionF of F with the orthogonal complement of the lineality of F , withF = F whenever F contains no lines. In the latter case, there
exists a unique compact component of F , say C1, such that C1 ⊂ C for any compact component C of F ; such a set C1 is called
the minimal (or the smallest) compact component of F (the M-minimal component in short). The M-minimal component of
an M-decomposable set F without lines has been characterized in different ways in [5,4].

We associate with any hyperplane H such that F ∩ H ≠ ∅, which is called the slice of F induced by H , the truncations
of F induced by H, F ∩ H+ and F ∩ H−, where H+ and H− denote the closed halfspaces whose common boundary is H . If
F = C + 0+F , with C being a compact truncation of F , we say that


C, 0+F


is a Motzkin decomposition of F of type T. When

a compact component of F , say C2, is a truncation of F and C2 ⊂ C for any compact component C of F of the same type,
then C2 is called the minimal compact component of F of type T (MT-minimal component in short). Two questions arise in
connection with the MT-minimal components.

(i) Does any Motzkin decomposable set without lines admit a minimal Motzkin decomposition of type T?
(ii) If F admits a minimal Motzkin decomposition of type T, does the MT-minimal component of F coincide with the

M-minimal component of F?

In this paper we provide a negative answer for the first question and a positive one for the second one. If F is a compact
convex set, then any supporting hyperplane to F provides, by truncation, the unique (type T) Motzkin decomposition
of F , (F , {0n}), so that F is the MT-minimal component of F . Thus, we analyze in this paper the M-decomposability
of unbounded closed convex sets. The paper is organized as follows. Section 2 recalls the basic characterization of
the M-decomposability of F in terms of the boundedness of the set of extreme points of F [5, Theorem 11], which
provides alternative proofs of classical results due to Bair [3] and new results on M-decomposable sets and functions.
Section 3 characterizes the compact truncations and slices of closed convex sets whereas Section 4 provides new geometric
characterizations of the M-decomposable sets in terms of the existence of a hyperplane H whose associated truncations
forF satisfy certain conditions, e.g., that one of them is compact whereas the other one is the union of halflines emanating
from H (or, equivalently, its extreme points are contained in H). Finally, Section 5 characterizes those M-decomposable sets
without lines that have a minimal Motzkin decomposition of type T.

Throughout the paper we use the following notation. For any X ⊂ Rn, we denote by int X, cl X, bd X, rint X, span X,
conv X , and cone X = R+conv X , the interior, the closure, the boundary, the relative interior, the linear subspace spanned
by X , the convex hull of X , and the convex conical hull of X , respectively. If X is a nonempty convex set, dim X denotes the
dimension of X .

The scalar product of x, y ∈ Rn is denoted by x′y, the Euclidean norm of x by ∥x∥, the zero vector by 0n, the closed unit ball
by Bn, and the unit sphere by Sn−1. The orthogonal complement of a linear subspace X is X⊥

:=

y ∈ Rn

: x′y = 0∀x ∈ X

.

Given a convex cone X , its dual cone is X◦
:=


y ∈ Rn

: x′y ≥ 0∀x ∈ X

. If X is a convex set, extr X, 0+X and lin X :=

0+X

∩


−0+X


denote the set of extreme points, the recession cone and the lineality space of X , respectively.

Given f : Rn
−→ R = R ∪ {±∞}, we denote by epi f and dom f its epigraph and its domain, respectively. Given

α ∈ R, max {f , α} is said to be the truncation of f by α (observe that epi max {f , α} is a truncation of epi f ).
Any set X ⊂ Rn is represented in a unique way by its indicator function

δX (x) :=


0, if x ∈ X,
+∞, otherwise.

The indicator function δX is M-decomposable if and only if X is M-decomposable.

2. Motzkin sets and functions revisited

Given a closed convex set F such that ∅ ≠ F ⊂ Rn, we denote Q (F) := cl conv extr

F ∩ (lin F)⊥


. So, if F contains no

lines, Q (F) = cl conv extr F . The next result characterizes the Motzkin decomposability of F in terms of the boundedness
of Q (F). We illustrate the importance of this characterization for the analysis of Motzkin decomposable sets and functions
with several immediate applications.

Theorem 1 ([4, Theorem 11]). Let F be a closed convex set, ∅ ≠ F ⊂ Rn. Then the following statements hold:

(i) F is Motzkin decomposable if and only if extr

F ∩ (lin F)⊥


is bounded. In that case, Q (F) is a compact component of F .

(ii) If F is a Motzkin decomposable set without lines, then Q (F) is the M-minimal component of F .

An immediate consequence of Theorem1 in theMotzkin decomposition framework is that the intersection of an arbitrary
family of compact components of F is a compact component too, whereas the counterpart of this intersection property for
the subfamily of compact components of F which are truncations of F fails (see Example 20 in Section 3, where F is a convex
polyhedral set). Nevertheless, we get the following characterization of the hyperplanes inducing a Motzkin decomposition
of type T.
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Corollary 2. A hyperplane H induces a Motzkin decomposition of type T of a closed convex set F if and only if F ∩H ≠ ∅, F ∩H+

is compact and extr F ⊂ H+, where H+ denotes one of the closed halfspaces determined by H.
Proof. For the ‘‘only if’’ part, take H such that F ∩ H+ is compact and F = F ∩ H+

+ 0+F . Then it is easy to see that
extr F ⊂ F ∩ H+

⊂ H+. For the ‘‘if’’ part, note that extr F ⊂ H+ entails extr F ⊂ F ∩ H+, so that extr F is bounded. Invoking
Theorem 1, we have

F = Q (F) + 0+F ⊂ F ∩ H+
+ 0+F ⊂ F ,

implying that F = F ∩ H+
+ 0+F , and this a Motzkin decomposition of F of type T. �

Corollary 3 ([3, 2.4]). Any face of a Motzkin decomposable set is Motzkin decomposable too.
Proof. Let G be a face of an M-decomposable set F . Obviously, lin G ⊂ lin F . We prove now that lin F ⊂ lin G. Let u ∈ lin F
and take an arbitrary x ∈ G. Given λ ≥ 0, we have x =

1
2 [(x + λu) + (x − λu)], with x ± λu ∈ F . Thus x ± λu ∈ G for all

λ ≥ 0, i.e., u ∈ lin G. Denote L := lin F = lin G.
Since G ∩ L⊥ is a face of F ∩ L⊥, extr


G ∩ L⊥


⊂ extr


F ∩ L⊥


and the conclusion follows from Theorem 1. �

The truncations and slices of an M-decomposable set are not necessarily M-decomposable: if F is the ‘‘ice-cream

cone’’ with axis (0, 0, 1), i.e. F =


x ∈ R3

:


x21 + x22 ≤ x3


, andH+ is one of the closed halfspaces determined by a vertical

hyperplane H ⊂ R3, then extr

F ∩ H+


= extr (F ∩ H) = {03} when 03 ∈ H , whereas extr (F ∩ H) ⊂ extr


F ∩ H+


, both

sets being unbounded because extr (F ∩ H) is a hyperbola, otherwise. Nevertheless, if H is a hyperplane supporting an M-
decomposable set F , the corresponding slice is M-decomposable by Corollary 3. Concerning functions, although Example 20
in [4] shows that the sublevel sets of the M-decomposable functions are not necessarily M-decomposable, Corollary 3 will
allow us to show that the optimal set of any unconstrained optimization problemwith M-decomposable objective function
inherits this desirable property.

Corollary 4. If f : Rn
−→ R is Motzkin decomposable and bounded from below, then the set of global minima of f is Motzkin

decomposable.
Proof. The set of global minima of f is f −1 (α), where α := inf {f (x) : x ∈ Rn}. Since f is lsc and convex [4], f −1 (α) =

{x ∈ Rn
: f (x) ≤ α} is a nonempty closed convex set. The hyperplane H :=


(x1, . . . , xn+1) ∈ Rn+1

: xn+1 = α

supports

epi f at any point (x, α) such that x ∈ f −1 (α). Then, by Corollary 3, epi f ∩ H = f −1 (α) × {α} is M-decomposable. Hence
f −1 (α) is M-decomposable too. �

In general, the restriction of an M-decomposable function to a hyperplane is not M-decomposable. For instance, if
f (x) = ∥x∥ and H is a hyperplane in R2, then

(f |H) (x) :=


∥x∥ , x ∈ H,
+∞, otherwise,

is M-decomposable if and only if 02 ∈ H . From Corollary 3, if F is M-decomposable and G is a face of F , then δG is M-
decomposable because epi δG is a face of epi δF . This observation suggests the next result.

Corollary 5. If f : Rn
−→ R is Motzkin decomposable and H is a supporting hyperplane to dom f , then f |H is Motzkin

decomposable.
Proof. Since H × R is a supporting hyperplane to the M-decomposable set epi f , epi (f |H) = epi f ∩ (H × R) is M-
decomposable too. The conclusion follows from Corollary 3. �

Proposition 6. Let A be a closed convex set and let B and A + B be Motzkin decomposable sets such that 0+B ⊂ lin A. Then A is
Motzkin decomposable.
Proof. Let A be a closed convex set and let B and F := A+B beM-decomposable sets. We have B = C1 +D1 and F = C2 +D2
for some compact convex sets C1 and C2 and some closed convex cones D1 and D2. Denote L := lin A. Let a be an exposed
point of A∩ L⊥ and p ∈ Rn be such that a is the unique minimizer of x → p′x on A∩ L⊥. We can assume w.l.o.g. that p ∈ L⊥.
Then the set of minimizers of x → p′x on A is {a} + L. We also have p ∈ L⊥

⊂

0+B

◦
= D◦

1, so that the infimum of x → p′x
on B is achieved at some point b ∈ C1. Clearly, a + b is a minimizer of x → p′x on

A ∩ L⊥

+ L + B = A + B = C2 + D2.

It follows that p belongs to the dual cone D◦

2 of D2. We have a + b = c + d for some c ∈ C2 and d ∈ D2. Since p ∈ D◦

2,

p′ (a + b) = p′c + p′d ≥ p′c ≥ p′ (a + b) ;

hence p′d = 0. As a consequence, for every λ ≥ 0 the point c + λd is a minimizer of x → p′x on C2 + D2. This implies
that d ∈ L, because the set of minimizers is contained in {a} + L + B. Hence a = c − b + d ∈ C2 − C1 + L. We have thus
proved that the set of exposed points of A∩ L⊥ is contained in the compact set (C2 − C1 + L)∩ L⊥. By Straszewicz’s Theorem
[6, Theorem 18.6], extr


A ∩ L⊥


⊂ (C2 − C1 + L)∩L⊥. According to Theorem 1, we conclude that A is M-decomposable. �
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The assumption 0+B ⊂ lin A in Proposition 6 is not superfluous: consider A =

x ∈ R2

: x2 ≥ x21


and B =
x ∈ R2

: x1 ≥ 0

.

We finish this section by showing that an interesting result by Bair on M-decomposable sets can be obtained in a
straightforwardway fromProposition 6 and a lemma (see Lemma8),which is a consequence of the so-called Lexicographical
Separation Theorem. To this aim, we introduce the necessary notation: for x = (x1, . . . , xn), (y1, . . . , yn) ∈ Rn, by x<L ywe
mean that x ≠ y and for k = min{i ∈ {1, . . . , n} : xi ≠ yi} we have xk < yk; we write x≤L y if x<L y or x = y.

Theorem 7. Lexicographical Separation Theorem ([7, p. 258], [8, Theorem 1.1]). Let C be a convex subset of Rn and x0 ∈ Rn
\ C.

Then there exists an n × n matrix M such that Mx<L Mx0 for all x ∈ C.

Lemma 8. Let A, B ⊂ Rn. If A is convex, B is a nonempty compact set and A + B is closed, then A is closed.

Proof. Let {ak} be a sequence in A converging to a ∈ Rn. Suppose that a ∉ A. Then, by the Lexicographical Separation
Theorem, there exists an n × n matrix M such that Mx<L Ma for all x ∈ A. Take a lexicographical maximum b over B of the
mapping x −→ Mx, that is,My≤L Mb for all y ∈ B. The existence of such a lexicographical maximum follows by successively
applying Weierstrass Theorem n times. We thus have M (x + y) <L M (a + b) for all x ∈ A and y ∈ B. Hence a + b ∉ A + B,
which, as this point is the limit of the sequence {ak + b}, contradicts the closedness assumption on A+B. Thus amust belong
to A, and therefore A is closed. �

Corollary 9 ([2, Proposition 1]). Let A and B be convex sets such that B is bounded and A + B is M-decomposable. Then A is
M-decomposable too.

Proof. Let A and B be convex sets such that B is bounded and F := A + B is M-decomposable. Then A + cl B = F , because

F = A + B ⊂ A + cl B ⊂ cl F = F .

Thus,we can assumew.l.o.g. thatB is compact. Hence, by Lemma8,A is closed. The conclusion follows fromProposition 6. �

3. Compact truncations

We associate with a ∈ Rn
\ {0n} and α ∈ R the hyperplane Ha,α :=


x ∈ Rn

: a′x = α

and the corresponding closed

halfspaces H+
a,α :=


x ∈ Rn

: a′x ≥ α

and H−

a,α :=

x ∈ Rn

: a′x ≤ α

. In this section we consider as given a closed convex

set F such that F ∩Ha,α ≠ ∅ and analyze the boundedness of the truncations and the slice induced byHa,α, F ∩H−
a,α, F ∩H+

a,α ,
and F ∩ Ha,α .

Observe that the truncations of F that are not slices have the same dimension as F , i.e.,

dim

F ∩ H+

a,α


< dim F ⇒ F ∩ H+

a,α = F ∩ Ha,α. (1)

For proving it, assume the contrary, that is, the existence of x ∈ F ∩ H+
a,α such that a′x > α. Since F = cl rint F , there existx ∈ Rn and ε > 0 such that (x + εBn) ∩ aff F ⊂ F and a′x > α for all x ∈x + εBn. Then (x + εBn) ∩ aff F ⊂ F ∩ H+

a,α , so that
dim


F ∩ H+

a,α


= dim F .

On the other hand, the truncations of F that are slices are exposed faces of F . The proof is immediate whenever the slice
corresponds to the same couple (a, α), i.e., F ∩ H+

a,α = F ∩ Ha,α , because F ∩ Ha,α is the set of minimizers of the function
x −→ a′x over the set F , so by definition it is an exposed face. Assume now that F ∩ H+

a,α = F ∩ Hb,β , with (a, α) ≠ (b, β).
Then Hb,β is a supporting hyperplane of F . Suppose it is not. Then the sets F ∩ int H+

b,β and F ∩ int H−

b,β are nonempty, which

implies that conv


F ∩ int H+

b,β


∪


F ∩ int H−

b,β


intersects F ∩ Hb,β = F ∩ H+

a,α , but this is impossible because

conv


F ∩ int H+

b,β


∪


F ∩ int H−

b,β


= conv


F \


F ∩ Hb,β


= conv


F \


F ∩ H+

a,α


= F ∩ int H−

a,α.

Lemma 10. Let ∅ ≠ C ⊂ Rn be a closed convex cone and d ∈ Rn
\ {0n}. Then d ∈ int C◦ if and only if for every c ∈ C \ {0n} it

holds d′c > 0. Thus, C is pointed if and only if int C◦
≠ ∅.

Proof. Assume that d ∈ int C◦ and there exists c ∈ C \ {0n} such that d′c = 0. We have d −
c
k ∈ C◦ for k sufficiently large.

Then

d −

c
k

′ c = 0 −
∥c∥2

k < 0, which is a contradiction.
Assume that d′c > 0 for every c ∈ C \ {0n} and suppose that d ∉ int C◦, i.e., d ∈ bd C◦. There exists a sequence {dk}k≥1

such that dk → d and dk ∉ C◦, k = 1, 2, . . . . Then we can find ck ∈ C such that ∥ck∥ = 1 and d′

kck < 0, k = 1, 2, . . .
W.l.o.g. we may assume that ck → c ∈ C , with ∥c∥ = 1. Therefore, after taking the limit we get the contradiction d′c ≤ 0.

Now we assume that C is pointed. Since (span C◦)⊥ ⊂ C◦◦
= C, (span C◦)⊥ = {0n}, that is, span C◦

= Rn, which
is equivalent to int C◦

≠ ∅. Conversely, if int C◦
≠ ∅, we can take d ∈ int C◦; if ±c ∈ C \ {0n}, we have ±d′c > 0

(contradiction). Hence C is pointed. �
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Lemma 11. Let ∅ ≠ C ⊂ Rn be a closed, convex, pointed cone and a ≠ 0n. Then C ∩ Ha,0 = {0n} if and only if
a ∈ int C◦

∪ −int C◦.
Proof. Let us suppose that a ∈ int C◦

∪ −int C◦ and there exists d ≠ 0n such that d ∈ C ∩ Ha,0. Then a′d = 0, which is a
contradiction by Lemma 10.

Now, let C ∩ Ha,0 = {0n} and suppose that a ∉ int C◦
∪ −int C◦. Then there exists d+, d−

∈ C different from 0n
such that a′d+

≤ 0 and a′d−
≥ 0. The assumption implies that a′d+ < 0 and a′d− > 0. Let α > 0 be such that

a′d+
+ αa′d−

= a′

d+

+ αd−


= 0. The vector d+
+ αd−

∈ C and is different from 0n because C is a pointed cone.
This is a contradiction. �

Theorem 12. Let F ⊂ Rn be a closed, convex set, a ∈ Rn
\ {0n} and α ∈ R such that F ∩Ha,α ≠ ∅. The following statements are

true.
(i) F ∩ H−

a,α is compact if and only if a ∈ int

0+F

◦.
(ii) F ∩ H+

a,α is compact if and only if a ∈ −int

0+F

◦.
(iii) a ∈ int


0+F

◦
∪ −int


0+F

◦ if and only if F ∩ Ha,α is compact and F contains no lines.

Proof. By the Convex Separation Theoremwe can write F =


t∈T H
+
at ,αt

, for two sets {at , t ∈ T } ⊂ Rn and {αt , t ∈ T } ⊂ R.
Obviously,

0+F
◦

=

x ∈ Rn

: a′

tx ≥ 0, t ∈ T
◦

= (cone {at , t ∈ T })◦◦

= cl cone {at , t ∈ T } . (2)

(i) By [9, Corollary 9.3.1] and (2), F∩H−
a,α is bounded if and only if the sublevel sets of the linear semi-infinite programming

problem

min

a′x s.t. a′

tx ≥ bt , t ∈ T


are bounded if and only if a ∈ int cone {at , t ∈ T } = int

0+F

◦.
(ii) By (i), F ∩ H+

a,α = F ∩ H−

−a,−α is bounded if and only if −a ∈ int

0+F

◦.
(iii) If a ∈ int


0+F

◦
∪−int


0+F

◦ then, by (i) and (ii), at least one of the two truncations of F induced byHa,α is bounded.
Thus F ∩Ha,α is bounded. Moreover, int


0+F

◦
≠ ∅ means that 0+F is pointed (by Lemma 10), i.e., that F contains no lines.

Now we assume that Ha,α ∩ F is a compact set and F contains no lines. Then Ha,0 ∩ 0+F = 0+

Ha,α ∩ F


= {0n}; hence,

since 0+F is pointed, from Lemma 11, we get a ∈ int

0+F

◦
∪ −int


0+F

◦. �

From the argument for proving statement (i), if a ∈ int

0+F

◦, then F ∩ H−
a,α is compact for any α ∈ R, but the converse

does not hold when F ∩ H−
a,α = ∅. In fact, we may have int


0+F

◦
= ∅ (e.g., take F =


x ∈ R2

: x2 ≥ 1

, a = (0, 1) and

α = −1).

Example 13. Consider the closed convex set

F =

(x, y) :

√
x +

√
y ≥ 1, x ≥ 0, y ≥ 0


=


(x, y) :

√
x +

√
y = 1, x ≥ 0, y ≥ 0


+ R2

+
.

Here 0+F = R2
+

=

0+F

◦ is pointed and full dimensional. Moreover, given a ∈ R2
\ {02} and α ∈ R, F ∩ Ha,α ≠ ∅

if and only if a ∉ R2
+

∪ −R2
+

or a ∈ R2
+

with a1a2
a1+a2

≤ α, or a ∈ −R2
+

with a1a2
a1+a2

≥ α. Moreover, assuming that
F ∩ Ha,α ≠ ∅, F ∩ H−

a,α is compact if and only if the set 0+

F ∩ H−

a,α


= 0+(F) ∩ H−

a,0 = R2
+

∩ H−

a,0 reduces to {02},
that is, if and only if a = (a1, a2) ∈ R2

++
(see Fig. 1) and, similarly, F ∩ H+

a,α is compact if and only if a = (a1, a2) ∈ −R2
++

.
Observe that F is M-decomposable with M-minimal (MT-minimal) component

Q (F) = conv

(x, y) :

√
x +

√
y = 1, x ≥ 0, y ≥ 0


= F ∩ H−

(1,1),1.

(see Fig. 2)

Corollary 14. Let F be a closed convex set without lines and H be a hyperplane such that F ∩ H ≠ ∅. Then, F ∩ H is compact if
and only if at least one of the two truncations of F induced by H is bounded.
Proof. It is a straightforward consequence of statement (iii) in Theorem 12. �

Corollary 15. Let F be a nonempty closed convex set. Then F contains no lines if and only if there exists a compact truncation of
F . In that case, if F ∩ H− is a compact truncation of F induced by a hyperplane H, then F ∩


a + H−


is a compact truncation of

F for any a ∈ Rn such that F ∩ (a + H) ≠ ∅.
Proof. The first part is a consequence of statements (i)–(ii) in Theorem 12, recalling that int


0+F

◦
≠ ∅ iff F contains no

lines, and the second part comes from (i), which shows that the compactness of a truncation F ∩ H−
a,α is independent of α

provided F ∩ Ha,α ≠ ∅. �



40 M.A. Goberna et al. / J. Math. Anal. Appl. 400 (2013) 35–47

Fig. 1. Truncations induced by Ha,α in F .

Fig. 2. Minimal compact component of F .

From Corollary 15, if an unbounded, closed, convex set F admits an M-decomposition of type T, F cannot contain lines.

Corollary 16. Let f : Rn
−→ R be a convex, lsc, proper function. Then f is inf-compact if and only if (0n, 1) ∈ int


0+ epi f

◦.

Proof. Let F := epi f ⊂ Rn+1 and a := (0n, 1), and let α ∈ R be such that {x ∈ Rn
: f (x) ≤ α} ≠ ∅. Then, by Theorem 12,

{(x, y) ∈ epi f : y ≤ α} is bounded iff (0n, 1) ∈ int

0+ epi f

◦. So, it remains to be shown that {(x, y) ∈ epi f : y ≤ α}

is bounded iff {x ∈ Rn
: f (x) ≤ α} is bounded. The direct statement is a consequence of the continuity of the orthogonal

projection of Rn+1 on H :=

x ∈ Rn+1

: xn+1 = 0

, which projects {(x, y) ∈ epi f : y ≤ α} onto {x ∈ Rn

: f (x) ≤ α} × {0}.
For proving the converse statement, assume that {x ∈ Rn

: f (x) ≤ α} is bounded. Then β := min {f (x) : f (x) ≤ α} ∈ R
because the lsc function f attains its minimum on the compact set {x ∈ Rn

: f (x) ≤ α}, and that minimum cannot be −∞

as f is proper. So, the set

{(x, y) ∈ epi f : y ≤ α} ⊂

x ∈ Rn

: f (x) ≤ α


× [β, α]

is bounded too. �

Example 17. Consider f : R −→ R such that

f (x) =


+∞, x < 0,
1 −

√
x
2

, 0 ≤ x ≤ 1,
0, x > 1.
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Taking into account that epi f is the set F in Example 13, we can write

epi f = conv

(x, y) :

√
x +

√
y = 1, x ≥ 0, y ≥ 0


+ R2

+
,

so that f isM-decomposable and bounded frombelow, but its sublevel sets are unboundedbecause (0, 1) ∉ int

0+ epi f

◦
=

R2
++

.

Proposition 18. Let F be a nonempty closed convex set. Then the following statements hold.

(i) If F contains no lines, there exist compact slices of F . The converse holds when int 0+F ≠ ∅.
(ii) If F contains lines, then there exist compact slices of F if and only if F is a Motzkin decomposable set whose conic component

is a line.

Proof. (i) The direct statement follows from (iii) in Theorem 12 and Lemma 10. For the converse, we shall prove that if
F contains lines, int 0+F ≠ ∅, and a ∈ Rn and α ∈ R are such that F ∩ Ha,α ≠ ∅, then F ∩ Ha,α is unbounded. Take
d ∈ 0+F ∩


−0+F


\ {0n}. If a′d = 0 then one clearly has d, −d ∈ 0+


F ∩ Ha,α


; so, in this case, F ∩ Ha,α is unbounded.

Assume now that a′d ≠ 0, and take d0 ∈ int 0+F . Then d0 + td ∈ int 0+F for every t ∈ R and, by a′d ≠ 0, we have
a′ (d0 + t0d) = 0 for some t0 ∈ R. If d0 + t0d = 0 then F = Rn and hence F ∩ Ha,α = Ha,α . We can thus assume that
d0 + t0d ≠ 0, in which case, since d0 + t0d ∈ 0+


F ∩ Ha,α


, the set F ∩ Ha,α is unbounded.

(ii) Denote L := lin F . Assume that F = C + L, where C is a compact convex set and dim L = 1. Then L⊥ is a hyperplane
such that 0+


F ∩ L⊥


= L ∩ L⊥

= {0n}, so that the slice F ∩ L⊥ is compact.
Now we assume that Ha,α is a hyperplane such that Ha,α ∩ F is compact. Assume that dim L > 1. Then, dim


Ha,0 ∩ L


≥

dim L − 1 > 0. Thus, {0n} $ Ha,0 ∩ L ⊂ Ha,0 ∩ 0+F = 0+

Ha,α ∩ F


, which contradicts the compactness of Ha,α ∩ F . Hence

dim L = 1. Let u ∈ L \ {0n}. If a′u = 0, then u ∈ Ha,0 ∩ L ⊂ 0+

Ha,α ∩ F


(contradiction). Hence a′u ≠ 0.

According to [6, Theorem 18.5], we can write

F = Q (F) + 0+

F ∩ L⊥


+ L. (3)

Given d ∈ 0+

F ∩ L⊥


⊂ L⊥, take v := d −

a′d
a′uu ∈ 0+F + L = 0+F . Then, a′v = 0, so that v ∈ Ha,0 ∩ 0+F = 0+


Ha,α ∩ F


.

Therefore, v = 0n and d =
a′d
a′uu ∈ L ∩ L⊥

= {0n}. Thus,

0+

F ∩ L⊥


= {0n} . (4)

Thus (3) reduces to F = Q (F) + span{u}.
The preceding argument actually shows that 0+F = 0+


F ∩ L⊥


+ L = {0n} + L = L. Hence, since ∅ ≠ Q (F) =

cl conv extr

F ∩ L⊥


⊂ F ∩ L⊥, in view of (4) we have 0+ (Q (F)) ⊂ 0+


F ∩ L⊥


= {0n}, so that Q (F) is bounded and

therefore F is the sum of the compact convex set Q (F) = cl conv extr

F ∩ L⊥


with the line span{u}. �

Example 19. The cylinder F =

x ∈ R3

: x21 + x22 ≤ 1

is M-decomposable, with conic component span {(0, 0, 1)} and

infinitely many compact components, e.g., the slices induced by hyperplanes which are not parallel to the vertical axis.
Thus the condition int 0+F ≠ ∅ in statement (i) of Proposition 18 is not superfluous. Observe also that the truncations of F
induced by vertical hyperplanes are unbounded, so that the ‘‘only if’’ statement in Corollary 14 is not true when F contains
lines.

If F is an unbounded M-decomposable set containing lines, {Q (F) + l : l ∈ lin F} is a family of pairwise disjoint compact
components of F , so that the intersection of all the compact components of F is empty. Otherwise, according to Theorem 1,
the intersection of all the compact components of F is its M-minimal component Q (F). A natural question arises when F
an M-decomposable set without lines: does the intersection of all the compact components of F which are truncations of F
coincide with Q (F)? The next example shows that the answer is negative, even for polyhedral convex sets.

Example 20. Consider the polyhedral convex set F = C + D, with

C = conv {(0, 0, 0) , (1, 0, 1) , (−1, 0, 1)} = Q (F)

and

D = cone {(0, 1, 1) , (0, −1, 1)} = 0+F .

Obviously,
0+F

◦
=


x ∈ R3

: x2 + x3 ≥ 0, −x2 + x3 ≥ 0

.
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Let us consider an arbitrary halfspace H−
a,α such that F ∩ Ha,α ≠ ∅, F ∩ H−

a,α is a compact set, and Q (F) ⊂ H−
a,α . As

(0, 0, 1) ∈ Q (F) ⊂ F ∩H−
a,α , we get a3 = a′ (0, 0, 1) ≤ α. Moreover, a ∈ int


0+F

◦ by Theorem 12, so that a2 + a3 > 0 and
−a2 + a3 > 0, i.e., a3 > 0 and |a2| < a3 ≤ α. As

0, ±
1
2
,
1
2


= (0, 0, 0) +

1
2

(0, ±1, 1) ∈ C + D = F ,

a′


0, ±

1
2
,
1
2


=

1
2

(a3 ± a2) ≤
1
2

(a3 + |a2|) < α,

and

0, ± 1

2 ,
1
2


∉ Q (F), we get

0, ±
1
2
,
1
2


∈


F ∩ H−

a,α


�Q (F).

Since H−
a,α was chosen arbitrarily among those hyperplanes inducing compact components of F which are truncations, we

have shown that the intersection of this family of truncations of anM-decomposable set without lines F may contain strictly
its M-minimal component Q (F).

4. Characterizing Motzkin decomposable sets via truncations

In this section we characterize in two different ways the M-decomposable sets in terms of the existence of certain
truncations. Each characterization is first obtained for closed convex sets without lines and then for arbitrary closed convex
sets.

We observe that the unbounded truncation arising in an M-decomposition of type T is M-decomposable. Indeed, if

F = F ∩ H+
+ 0+F (5)

and F∩H+ is compact, then0+F ⊂ 0+H− andhence one can easily prove that F∩H−
= F∩H+0+F . Indeed, if x ∈ F∩H− then,

by (5), one has x = y+ d for some y ∈ F ∩H+ and d ∈ 0+F . Clearly, there exists λ ∈ [0, 1] such that (1 − λ) x+λy ∈ F ∩H .
Since x = (1 − λ) x+ λy+ λd, it turns out that x ∈ F ∩H + 0+F . This proves the inclusion F ∩H−

⊂ F ∩H + 0+F , whereas
the reverse one is obvious. We thus have F ∩H−

= F ∩H−
∩H+

+0+F , which shows that an unbounded truncation F ∩H−

admits a decomposition by truncation with the same hyperplane H that generated it.

Lemma 21. Let F ⊂ Rn be a nonempty closed convex set without lines. Then the following statements are equivalent.
(i) F is Motzkin decomposable.
(ii) For every a ∈


0+F

◦
\ {0n} there exists α ∈ R such that

F ∩ H+

a,α = F ∩ Ha,α + 0+F . (6)

(iii) There exist a ∈ int

0+F

◦ and α ∈ R such that (6) holds.

Proof. (i) H⇒ (ii) Let F = C + 0+F , where C ⊂ Rn is a compact convex set and a ∈

0+F

◦
\ {0n}. Take α := maxx∈C a′x.

Given z ∈ F ∩H+
a,α , we can write z = x+ d, with x ∈ C ⊂ H−

a,α and d ∈ 0+F . If x ∈ Ha,α then z ∈ F ∩Ha,α + 0+F . If x ∉ Ha,α ,
take y ∈ ]x, z] ∩ Ha,α . Obviously, z = y + λd, where 0 ≤ λ < 1, which proves the inclusion F ∩ H+

a,α ⊂ F ∩ Ha,α + 0+F . The
reverse inclusion is a consequence of a ∈


0+F

◦.
(ii) H⇒ (iii) int


0+F

◦
≠ ∅ because 0+F is pointed by assumption. Thus a is any element of int


0+F

◦.
(iii) H⇒ (i) Let a ∈ int


0+F

◦ and α ∈ R satisfying (6). First we show that the corresponding slice is nonempty. Take
x ∈ F and d ∈


0+F


\ {0n}. By Lemma 10, a′d > 0, so that x + λd ∈ F ∩ H+

a,α for a sufficiently large λ. Thus F ∩ H+
a,α ≠ ∅,

and the nonemptiness of F ∩ Ha,α follows from (6). So, ∅ ≠ F ∩ Ha,α ⊂ F ∩ H−
a,α , the latter set being compact by statement

(i) in Theorem 12. Denote C := F ∩ H−
a,α . Then, by (6),

F =

F ∩ H−

a,α


∪


F ∩ H+

a,α


= C ∪


F ∩ Ha,α + 0+F


⊂ C ∪


C + 0+F


= C + 0+F ⊂ F ,

so that F = C + 0+F , where C is a compact convex set. �

In Example 13, a ∈

0+F

◦
\ {0n} satisfies condition (6) if and only if α ≥ max {a1, a2}. In that case, F ∩ Ha,α is compact

iff a ∈ int

0+F

◦.

Corollary 22. If F ⊂ Rn is a Motzkin decomposable set without lines, then for every a ∈ int

0+F

◦ there exists α ∈ R such that
F ∩ H+

a,α is Motzkin decomposable with compact component F ∩ Ha,α .
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Proof. Let a ∈ int

0+F

◦. By Lemma 21, there exists α ∈ R such that (6) holds, with F ∩Ha,α compact and nonempty (recall
the proof of (iii) H⇒ (i) in Lemma 21). �

Corollary 23. Let f : Rn
−→ R be a convex, lsc, proper function such that dom f is bounded. Then, f is Motzkin decomposable

if and only if it is bounded on dom f .

Proof. Let F := epi f . By the assumptions on f , the set F contains no lines and 0+F = R+ (0n, 1). According to Lemma 21, f
is M-decomposable iff there exists α ∈ R such that epi f ∩ H+

(0n,1),α = epi f ∩ H(0n,1),α + R+ (0n, 1) or, equivalently,

epi max {f , α} = {(x, y) : f (x) ≤ α ≤ y} . (7)

If f is bounded on dom f then (7) holds with α = sup {f (x) : x ∈ dom f }, since in such a case epi max {f , α} =

dom f × [α, +∞[. Conversely, assume that (7) holds and let x ∈ dom f . Then, taking y ≥ max {f (x), α}, we clearly have
(x, y) ∈ epi max {f , α}, which, by (7), implies that f (x) ≤ α.Wehave thus proved that f is bounded above byα ondom f . �

So, according to Corollary 23, the sufficient condition for Motzkin decomposability established by statement (iii) in [4,
Theorem 13] is also necessary.

Lemma 24. Let C ⊂ Rn be a nonempty, closed, convex cone. Then

span C◦
= (lin C)⊥ .

Proof. Since lin C ⊂ C , we have C◦
⊂ (lin C)◦ = (lin C)⊥; hence span C◦

⊂ (lin C)⊥. On the other hand, from
(span C◦)⊥ ⊂ C we deduce that (span C◦)⊥ ⊂ lin C; therefore (lin C)⊥ ⊂ (span C◦)⊥⊥

= span C◦. �

Lemma 25. Let F ⊂ Rn be a nonempty closed, convex set. Then
0+


F ∩ (lin F)⊥

◦
=


0+F

◦
+ lin F .

Proof. Denote L := lin F . From 0+(F ∩ L⊥) = 0+F ∩ 0+(L⊥) = 0+F ∩ L⊥ it follows that

0+(F ∩ L⊥)

◦
=


0+F ∩ L⊥

◦
=

cl

0+F

◦
+


L⊥

◦
= cl


0+F

◦
+ L


=


0+F

◦
+ L. �

Corollary 26. Let F ⊂ Rn be a nonempty, closed, convex set. Then

int

0+


F ∩ (lin F)⊥

◦
= rint


0+F

◦
+ lin F . (8)

Proof. Let L := lin F , A :=

0+(F ∩ L⊥)

◦, and B :=

0+F

◦. We have rint (B + L) = rint B+ L because L is a linear subspace
such that B ⊂ L⊥. Since F ∩ L⊥ contains no lines, 0+(F ∩ L⊥) is pointed and, so, int A = int


0+(F ∩ L⊥)

◦
≠ ∅. Then, by

Lemma 25, we get

int A = rint A = rint (B + L) = rint B + L.

Therefore, (8) holds. �

Theorem 27. Let F ⊂ Rn be a nonempty, closed, convex set. Then the following statements are equivalent.

(i) F is Motzkin decomposable.
(ii) For every a ∈


0+F

◦
+ lin F


\ {0n} there exists α ∈ R such that

F ∩ H+

a,α = F ∩ Ha,α + 0+F . (9)

(iii) There exist a ∈ rint

0+F

◦
+ lin F and α ∈ R such that (9) holds.

Proof. Let L := lin F . Recall that F is M-decomposable if and only if F ∩ L⊥ is M-decomposable [4, Theorem 6], and
use Lemma 21 with F replaced by this latter set. Concerning statements (ii) and (iii), see Lemma 25 and Corollary 26,
respectively. �

From now on, for x ∈ Rn and d ∈ Rn
\ {0n}, we denote by rx,d := {x + λd : λ ≥ 0} the closed halfline emanating from x

in the direction of d.

Proposition 28. Let F ⊂ Rn be an unbounded, closed, convex set without lines and F ∩ H+ be a truncation induced by the
hyperplane H. Then, F ∩ H+ is a union of closed halflines emanating from H if and only if extr


F ∩ H+


⊂ H.

Proof. Let F ∩ H+ be a union of closed halflines emanating from H . Let z ∈ F ∩ H+
\ H and x ∈ H, d ∈ Rn

\ {0n} be such
that z ∈ rx,d. Then we can write z = x + λd for some λ > 0 (λ ≠ 0 because z ≠ x). Since z ∈


x +

λ
2d, x + 2λd


, with

x +
λ
2d ≠ x + 2λd elements of rx,d ⊂ F ∩ H+, we have z ∉ extr


F ∩ H+


.
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Now we assume that extr

F ∩ H+


⊂ H . By [6, Theorem 18.5],

F ∩ H+
= cl conv extr


F ∩ H+


+ 0+


F ∩ H+


⊂ F ∩ H + 0+


F ∩ H+


.

Then, any z ∈ F ∩H+
\H can be written as z = x+ d, with x ∈ F ∩H and d ∈ 0+


F ∩ H+


\ {0n}, so that z ∈ rx,d ⊂ F ∩H+.

Therefore,

F ∩ H+
\ H ⊂


x∈F∩H

d∈0+(F∩H+)\{0n}

rx,d.

Since any x ∈ F ∩ H+
∩ H = F ∩ H belongs to rx,d for all d ∈ 0+


F ∩ H+


\ {0n}, we get

F ∩ H+
=


x∈F∩H

d∈0+(F∩H+)\{0n}

rx,d. �

In Example 13, given a ∈ R2
++

and α ≥ max {a1, a2},

F ∩ H+

a,α = conv


α

a1
, 0


,


0,

α

a2


is a truncation of F satisfying

extr

F ∩ H+

a,α


=


α

a1
, 0


,


0,

α

a2


⊂ Ha,α,

and so it is a union of halflines emanating from Ha,α . In general, extr

F ∩ H+


⊂ H does not imply that F ∩ H+ is the

truncation of some translated closed convex cone (take as F a truncated cylinder).

Lemma 29. Let F ⊂ Rn be an unbounded, closed, convex set without lines. Then F is Motzkin decomposable if and only if there
exists a hyperplane H such that one of the truncations induced by H is compact and the other one is a union of closed halflines
emanating from H.
Proof. Assume first that F is M-decomposable. By Lemma 21 there exists a hyperplane H such that F ∩H+

= F ∩H + 0+F .
Then extr


F ∩ H+


⊂ F ∩ H and hence, by Proposition 28, F ∩ H+

a,α is a union of closed halflines emanating from H .
For proving the converse, assume the existence of H as in the statement and let K be the compact set obtained by taking

the intersection of F withH+ one of the closed halfspaces determined byH . Wewill see that F = K +0+F ; since K is convex,
this will show that F is M-decomposable. We only have to prove the inclusion ⊂, as the opposite one follows immediately
from K ⊂ F . Let x ∈ F . If x ∈ K , then x = x + 0n ∈ K + 0+F . If, on the contrary, x ∉ K then, by the assumption,
x ∈ rh,d ⊂ F ∩ H− for some h ∈ H and d ∈ Rn

\ {0n} ,H− being the other closed halfspace determined by H . Since
h ∈ rh,d ⊂ F and d ∈ 0+F , we have h ∈ H ∩ F ⊂ K , and therefore from x ∈ rh,d we conclude that x ∈ K + 0+F , which ends
the proof. �

In Example 13, the hyperplane H :=

x ∈ R2

: x1 + x2 = 1

satisfies the conditions of Lemma 29.

Corollary 30. Let f : Rn
−→ R be a convex, lsc, proper function such that dom f contains no lines. Then f is Motzkin

decomposable if it is inf-compact and there exists a sublevel set Lα(f ) := f −1 (−∞, α], with α ∈ R, such that dom f \ Lα(f ) is a
union of halflines on each of which f is affine. In this case, the truncation of f by α,max {f , α}, is Motzkin decomposable.
Proof. Let α be as in the statement. The hyperplane H := {(x, xn+1) : xn+1 = α} induces in epi f two truncations:

{(x, xn+1) ∈ epi f : xn+1 ≤ α} = {(x, xn+1) : f (x) ≤ xn+1 ≤ α} ,

which is compact by the inf-compactness of f , and

{(x, xn+1) ∈ epi f : xn+1 ≥ α} = {(x, xn+1) : max {f (x), α} ≤ xn+1}

= epi max {f , α} .

Wewill prove that the latter set is a union of closed halflines emanating fromH . Let (x, xn+1) ∈ epimax {f , α}. Then xn+1 ≥ α
and f (x) ≤ xn+1. If f (x) ≤ α then (x, xn+1) belongs to the vertical line emanating from (x, α) ∈ H . Suppose now that
f (x) > α. Then x ∈ dom f \Lα(f ), and hence x ∈ ry,x−y for some y ∈ f −1 (α) such that y−x ∈ 0+dom f and f is affine on ry,x−y.
Wewill next show that r(y,α),(x−y,xn+1−α) ⊂ epi max {f , α}, which, as (x, xn+1) ∈ r(y,α),(x−y,xn+1−α) and (y, α) ∈ H , will finish
the proof. Consider a point (y, α)+µ (x − y, xn+1 − α) = (y + µ (x − y) , α + µ (xn+1 − α)), withµ ≥ 0. Since f is affine on
ry,x−y, we have f (y + µ (x − y)) = f (y)+µ (f (x) − f (y)) = α+µ (f (x) − α) ≤ α+µ (xn+1 − α); on the other hand, from
xn+1 ≥ α and µ ≥ 0 it follows that α ≤ α + µ (xn+1 − α). This proves that (y, α) + µ (x − y, xn+1 − α) ∈ epi max {f , α}.
From 29 we conclude that f is M-decomposable. Since, as we already observed at the beginning of this section, truncations
of an M-decomposable set are themselves M-decomposable, we conclude that max {f , α} is M-decomposable too. �
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The function f in Example 17 is M-decomposable but not inf-compact, so that the converse of Corollary 30 does not hold.

Theorem 31. Let F ⊂ Rn be an unbounded, closed, convex set. Then F is Motzkin decomposable if and only if there exists a
hyperplane H parallel to lin F such that H induces truncations of F ∩ (lin F)⊥ which are compact and union of closed halflines
emanating from H.

Proof. Denote L = lin F . If L = {0n}, the statement reduces to that of Lemma 29; we will thus assume w.l.o.g. that L ≠ {0n}.
It is known that F is M-decomposable iff F ∩ L⊥ is M-decomposable iff (by Lemma 29) there exists a hyperplane H in

L⊥ such that the intersection K of F ∩ L⊥ with one of the closed halfspaces H+ in L⊥ determined by H is compact and its
intersection with the other closed halfspace H− determined byH is a union of closed halflines emanating fromH .

If F isM-decomposable, takeH as above and denoteH = H+L. Clearly,H is a hyperplane parallel to L,H+
= H++L is one

of the closed halfspaces determined byH , and the intersection ofH+ with F∩L⊥ is compact: H+
∩F∩L⊥

= H+∩F∩L⊥
= K .

Let H− be the other closed halfspace determined by H; one clearly has H−
= H− + L. Let x ∈ F ∩ H− and consider the

projectionx of x on L⊥. We havex ∈ F ∩ L⊥
∩ H−

= F ∩ L⊥
∩ H− and therefore there exists rh,d ⊂ F ∩ L⊥

∩ H− ⊂ F ∩ H−,
with h ∈ F ∩ L⊥

∩ H ⊂ H and d ∈ 0+

F ∩ L⊥

∩ H−

, such thatx ∈ rh,d. Having this in mind and the fact that H is parallel

to L, we get that x ∈ rh,x−h ⊂ F ∩ H− in the case when x ≠ h. If, on the contrary, x = h, taking any l in the nonempty set
L \ {0n} we have x ∈ rh,l ⊂ F ∩ H−.

If there exists a hyperplane H as in the statement, define H = H ∩ L⊥. Since H is parallel to L,H is a hyperplane in L⊥.
Let H+ be the closed halfspace determined by H such that H+

∩ F ∩ L⊥ is compact, H− be the opposite closed halfspace
and denote Hi = Hi ∩ L⊥ (i = 1, 2). Then H+ and H− are the closed halfspaces in L⊥ determined by H . We have thatH+ ∩ F ∩ L⊥

= H+
∩ F ∩ L⊥ is compact and H− ∩ F ∩ L⊥

= H−
∩ F ∩ L⊥ is a union of closed halflines emanating from

H ∩ L⊥
= H . The proof is complete. �

From now on we will deal only with closed and convex sets without lines, or equivalently, possessing extreme points.

Corollary 32. Let F ⊂ Rn be a Motzkin decomposable set. Then F admits a Motzkin decomposition of type T if and only if it
contains no lines.

Proof. The ‘‘only if’’ statement is an immediate consequence of Corollary 15. For proving the converse, letH be a hyperplane
as in Theorem 31 such that F ∩ H+ is compact and F ∩ H− is a union of halflines emanating from F ∩ H , where H+,H− are
the halfspaces determined by H . Clearly F ∩ H+

+ 0+F ⊂ F . For the opposite inclusion, use Proposition 28 to deduce that
H ⊃ extr


F ∩ H−


⊃ (extrF) ∩ H−, from where it follows that extr F ⊂ F ∩ H+, and hence Q (F) + 0+F ⊂ F ∩ H+

+ 0+F .
Since F = Q (F) + 0+F by statement (i) in Theorem 1, we have established that F = F ∩ H+

+ 0+F . �

5. Minimal Motzkin decompositions of type T

Themain result in this section shows that theMT-minimal component of a closed and convex set without lines F is Q (F).

Theorem 33. Let F be an unbounded, closed, convex set without lines. The MT-minimal component of F , when it exists, coincides
with the M-minimal component of F .

Proof. We must prove that, if H is a hyperplane which induces the minimal Motzkin decomposition of type T of F , then
F ∩ H−

= Q (F), where H− is one of the closed halfspaces determined by H .
Since F = F ∩ H−

+ 0+F and F ∩ H− is compact, we conclude from Theorem 1 that Q (F) ⊂ F ∩ H−. Thus, it suffices
to prove that F ∩ H−

⊂ Q (F). We sketch next the proof of this fact. We will assume for the sake of contradiction that this
inclusion does not hold, i.e. that there exists a point z ∈ (F ∩H−)\Q (F), fromwhichwe construct a point u ∈ (F ∩H)\Q (F).
We consider a hyperplanewhich separates u fromQ (F), and a positive combination of the normal vectors to this hyperplane
and to H turns out to be normal to a hyperplane H1 which also induces a Motzkin decomposition of F of type T, but such
that u ∉ F ∩ H−

1 , contradicting the minimality of the Motzkin decomposition of type T induced by H . We proceed now to
formalize this proof line.

Take a ∈ Rn
\ {0n} and α ∈ R such that H = Ha,α and H−

= H−
a,α . As F ∩ H−

a,α is compact by assumption, a ∈ int

0+F

◦

(recall Theorem 12). Let ε > 0 be such that a + εv ∈

0+F

◦ for all v ∈ Sn−1. Given y ∈

0+F


\ {0n}, −

y
∥y∥ ∈ Sn−1, so that

a′y ≥ ε ∥y∥ > 0. Therefore

a′y > 0 ∀y ∈

0+F


\ {0n}. (10)

Now we assume that the inclusion F ∩ H−
a,α ⊂ Q (F) fails, and hence there exists a point z ∈


F ∩ H−

a,α


\ Q (F). Since

F = Q (F) + 0+F by Theorem 1, z = w + d for some w ∈ Q (F), d ∈ 0+F . Clearly, d ≠ 0n (otherwise, z belongs to Q (F)). We
claim now that

a′w < α. (11)
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Otherwise, since w ∈ Q (F) ⊂ F ∩ H−
a,α , we have a′w = α, and hence, using (10),

a′z = a′w + a′d = α + a′d > α,

contradicting the fact that z ∈ H−
a,α . Hence z ∈ int H−

a,α . Observe now that the halfline rw,d must cut H , because otherwise
the whole halfline would be contained in H−

a,α , and since it is contained in F because w ∈ Q (F), d ∈ 0+F , we would be
contradicting the compactness of F ∩H−

a,α . Since w, the vertex of rw,d, belongs to int H−
a,α by (11), rw,d cuts Ha,α at one point,

say u = w+td. Note that t ≥ 1, becausew = w+0d ∈ intH−
a,α, w+d = z ∈ H−

a,α , so that points of the formw+sd ∈ intH+
a,α

for all s > t . Thus, z is in the segment between w and u. Taking into account that w ∈ Q (F), z ∉ Q (F), we conclude from
the convexity of Q (F) that u ∉ Q (F). We invoke now the Convex Separation Theorem to find b ∈ Rn, with ∥b∥ = 1, and
β ∈ R such that

b′u > β, (12)

b′x < β ∀x ∈ Q (F). (13)

Define

δ = min

a′y : y ∈ Sn−1

∩ 0+F

. (14)

Note that δ > 0 by (10) and the compactness of Sn−1
∩ 0+F . Take δ̄ ∈ ]0, δ[ such that c := a + δ̄b ≠ 0n and define

γ := α + δ̄β . We claim that Hc,γ induces a Motzkin decomposition of F of type T, and in view of Corollary 2, the claim will
be established if we prove the following.

(i) Q (F) ⊂ F ∩ H−
c,γ .

(ii) F ∩ H−
c,γ is compact.

For checking (i), take any x ∈ Q (F), and note that

c ′x = a′x + δ̄b′x < α + δ̄β = γ ,

using the fact that x ∈ Q (F) ⊂ H−
a,α and (13) in the inequality.

Now we look at (ii). Let δ̄ ∈ ]0, δ[ be such that c := a + δ̄b ∈ int

0+F

◦. Then c ≠ 0n (because F contains no lines) and
F ∩ H−

c,γ is compact by Theorem 12. This proves that Hc,γ induces a Motzkin decomposition of type T.
Now, the minimality of the decomposition induced by Ha,α among Motzkin decompositions of type T implies that

F ∩ H−
a,α ⊂ F ∩ H−

c,γ . Since u belongs to F ∩ Ha,α ⊂ F ∩ H−
a,α , we get that u ∈ F ∩ H−

c,γ , i.e., that

c ′u ≤ γ . (15)

On the other hand

c ′u = a′u + δ̄b′u = α + δ̄b′u > α + δ̄β = γ , (16)

using the definition of c in the first equality, the fact that u ∈ Ha,α in the second one, and (12) in the inequality. The
contradiction between (15) and (16) entails that F ∩ H−

a,α = Q (F), completing the proof. �

Corollary 34. A closed and convex set F , without lines, has an MT-minimal component if and only if Q (F) is a truncation of F .

Proof. The ‘‘only if’’ part follows directly from Theorem 33; the ‘‘if’’ part is a consequence of Corollary 2 and Theorem 1. �

Corollary 34will help us in the construction of sets inmore than two dimensions with andwithoutMT-minimal component
(the MT-minimal component of any unbounded M-decomposable set in R2 containing no lines is one of the truncations
induced by a line containing the vertices of its unbounded edges, see Example 13). Any application of Corollary 34 relies on
the identification of Q (F).

Example 35. Define F ⊂ R3 as F = C + D, where D =


x ∈ R3

:


x21 + x22 ≤ x3


and C is the unit bidimensional disk

C =

(x1, 0, x3) ∈ R3

: x21 + x23 ≤ 1

. Clearly, extr F ⊂ extr C = {(x1, 0, x3) ∈ R3

: x21 + x23 = 1}. In order to precisely
determine extr F , wemust exclude from extr C those points which belong to a halflinewith direction inD starting at another
point in extr C . After some elementary algebra, it can be seen that the points to be excluded are those with x3 > −

√
2
2 , so

that

extr F =


(x1, 0, x3) ∈ R3

: x21 + x23 = 1, x3 ≤ −

√
2
2


,
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and hence

Q (F) =


(x1, 0, x3) ∈ R3

: x21 + x23 ≤ 1, x3 ≤ −

√
2
2


,

which is not a face of F although dimQ (F) < dim F . Indeed, for c = (0, 0, −1) ∈ C, d1 =


0, 1 −

√
2
2 , 1 −

√
2
2


∈ D

and d2 =


0,

√
2
2 − 1, 1 −

√
2
2


∈ D one has c + d1, c + d2 ∈ F \ Q (F) and 1

2 (c + d1 + c + d2) ∈ Q (F). Thus, Q (F) is
not a truncation of F (see the discussion at the beginning of Section 3). In view of Corollary 34, we conclude that F has no
MT-minimal component.

Example 36. We take now F = B3 + D, with D as in Example 35, i.e. the vertical ‘‘ice-cream cone’’ in R3. A computation
similar to that of Example 35 shows that

Q (F) =


x ∈ R3

: ∥x∥ ≤ 1, x3 ≤ −

√
2
2


.

Observing that Q (F) = F ∩ H−
a,α for a = (0, 0, 1) and α = −

√
2
2 , by Corollary 34 we conclude that Q (F) is the MT-minimal

component of F .

Observe that, in general, the intersection of all the compact components of F which are truncations does not coincide
with its M-minimal component (recall Example 20), so that it is not necessarily the MT-minimal component either.
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