
J. Math. Anal. Appl. 400 (2013) 689–709

Contents lists available at SciVerse ScienceDirect

Journal of Mathematical Analysis and
Applications

journal homepage: www.elsevier.com/locate/jmaa

The large-time energy concentration in solutions to the Navier–Stokes
equations in the frequency space
Zdeněk Skalák
Department of Mathematics, Faculty of Civil Engineering, Czech Technical University, Thákurova 7, 166 29 Prague 6, Czech Republic

a r t i c l e i n f o

Article history:
Received 4 July 2012
Available online 8 November 2012
Submitted by Pierre Lemarie-Rieusset

Keywords:
Navier–Stokes equations
Large-time behavior of solutions
Energy concentration

a b s t r a c t

In the paper we study the large-time behavior of solutions to the Navier–Stokes equations
in the frequency space. We describe in detail the large-time energy concentration which
occurs in every (turbulent) solution. If the energy of the solution decreases exponentially
then it concentrates in frequencies localized in an annulus in the frequency space. The
annulus can be taken arbitrarily narrow and its diameter determines the rate of the
exponential decay. All the other solutions are characterized by the concentration of the
energy in the frequencies localized in a ball with an arbitrarily small diameter centered at
the origin of the coordinates. It will follow from the presented results that the frequencies
outside the annulus or the ball and especially the higher frequencies die out very quickly.
We will further observe the concentration occurring in any time derivative of the solution
or in the vorticity and its time derivatives with the same annulus or the ball for the
particular solution.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

The large-time behavior of solutions to the Navier–Stokes equations has been intensively studied for several decades;
see for example [1,2] or [3]. In this paper we are mostly interested in the large-time behavior of solutions in the frequency
space. It was proved in [4] that if u is a nonzero turbulent solution of the Navier–Stokes equations (that is a global weak
solution satisfying the strong energy inequality), then

lim
t→∞

∥(Ea+ε − Ea−ε)u(t)∥
∥u(t)∥

= 1 (1)

for every ε > 0, where a = limt→∞ ∥A1/2u(t)∥2/∥u(t)∥2 is a well defined nonnegative finite number. Here A is the Stokes
operator, {Eλ; λ ≥ 0} denotes the resolution of the identity of the Stokes operator and ∥ · ∥ is the L2-norm (see Section 2 for
other notation). We put Ea−ε = 0 if a − ε ≤ 0. This result holds for the case of any sufficiently smooth three-dimensional
domain. For the case of the whole three-dimensional space, the result can be formulated as follows: if a > 0 and ε ∈ (0, a)
then

lim
t→∞


B√

a+ε(0)\B
√
a−ε(0)

|F(u(t))(ξ)|2 dξ
R3 |F(u(t))(ξ)|2 dξ

= 1. (2)

If a = 0 and ε > 0 then

lim
t→∞


B√

ε(0)
|F(u(t))(ξ)|2 dξ

R3 |F(u(t))(ξ)|2 dξ
= 1. (3)

Here F denotes the Fourier transform, χB√
λ
(0) is the characteristic function of B√

λ(0) = {x ∈ R3
; |x| ≤

√
λ}.
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It follows from (2) and (3) that the energy of solutions concentrates in frequencies from an annulus if a > 0 (solutions
with exponentially decreasing energy—see [4]) or from a ball if a = 0. This result holds for any turbulent solution and for
any sufficiently smooth three-dimensional domain—in the sense of (1).

In the present paper we improve thementioned results for the case of the three-dimensional space. For example, wewill
show instead of (2) and (3) that for any α ≥ 0

lim
t→∞


KC
a,ε

|ξ |
4α

|F(u(t))(ξ)|2 dξ
Ka,ε

|ξ |4α|F(u(t))(ξ)|2 dξ
= 0, (4)

where Ka,ε = B√
a+ε(0) \ B√

a−ε(0) for (2) and Ka,ε = B√
ε(0) for (3). K C

a,ε = R3
\ Ka,ε . It is clear that (4) offers a much better

insight into the evolution of particular frequencies than (2) and (3).
Let us mention here that it is not difficult to find solutions with the large-time energy concentration in the low

frequencies—the solutions satisfying (4) with Ka,ε = B√
ε(0) for any ε > 0. Several classes of the initial conditions yielding

such solutions were described in [5]. In fact, every solution with the energy not decreasing exponentially has this property.
On the other hand, it is still an open problem to find a solution with exponentially decreasing energy and so satisfying (4)
with some Ka,ε = B√

a+ε(0) \ B√
a−ε(0) even though the existence of such solutions is very well known (see [6,7]).

In fact, we will prove that (4) remains true even if the solution u is replaced with the time derivative of u of any order
or with the vorticity and its time derivatives. It is interesting here that for a fixed solution the number a does not change
notwithstanding if we consider the solution itself, its time derivatives or the vorticity and its time derivatives.

The main results of the present paper are summed up in Theorem 1 and Corollary 1 in Section 3. The proofs and results
concerning time derivatives of solutions and the vorticity are presented in Sections 4 and 5.

The topic of the present paper seems to be connected with the study of the Navier–Stokes solutions in the Besov spaces.
The connection of the Besov spaces and the Navier–Stokes equations was studied in a series of papers; for example [8–11]
or [12]. In [13] the author studied the large-time behavior of turbulent solutions with initial conditions u0 ∈ L2σ such that

(1 + |x|)|u0(x)|dx < ∞.

Such solutions always lie in the homogeneous Besov space B−1
1,∞ and consequently in the homogeneous space B−5/2

2,∞ . Due
to the definition of B−5/2

2,∞ , the presence of the solution in this space gives us information on the distribution of energy
throughout the entire frequency spectrum. On the other hand, the results presented in the present paper seem to be
different: they give information on the relative incidence of frequencies in the frequency spectrum of the particular solution
and its evolution in time. Nevertheless it would be interesting to establish some deeper relation of the results presented in
the present paper with the results from the literature mentioned above.

2. Notation and preliminaries

The notation and most of the results from this section comes from [14].
Let q ∈ [1, ∞] and k ∈ N . Then Lq = Lq(R3) and W k,2

= W k,2(R3) denote the Lebesgue and Sobolev spaces
with the norms ∥ · ∥q and ∥ · ∥k,2. We will often denote ∥ · ∥ instead of ∥ · ∥2. Define L2σ , resp. W

1,2
0,σ , as the closure of

C∞

0,σ = {ϕ ∈ C∞

0 (R3)3; ∇ ·ϕ = 0} in (L2)3, resp. (W 1,2)3. Pσ denotes the Helmholtz projection from (L2)3 onto L2σ . The Stokes
operator A is defined as A = −∆ = −∂2/∂x21 − ∂2/∂x22 − ∂2/∂x23 with the domain D(A) = (W 2,2)3 ∩ L2σ . A is a positive
self-adjoint operator. {Eλ; λ ≥ 0} denotes the resolution of identity of A. If µ ∈ R, then the powers Aµ of A can be defined by
the use of {Eλ; λ ≥ 0} (see [14, Chapters II.3.2 and III.2.3]). The domains of Aµ are denoted by D(Aµ). {e−At

; t ≥ 0} denotes
the Stokes semigroup generated by −A. ||| · |||α = ∥ · ∥ + ∥Aα

· ∥ is the graph norm. F denotes the Fourier transform defined
as Fu(ξ) =


e−ix·ξu(x) dx. The Navier–Stokes equations in R3 can be written as

∂u
∂t

− 1u + u · ∇u + ∇p = 0 in R3
× (0, ∞), (5)

∇ · u = 0 in R3
× (0, ∞), (6)

u|t=0 = u0, (7)

where u = u(x, t) and p = p(x, t) denote the unknown velocity and pressure and u0 = u0(x) is a given initial velocity.
If u0 ∈ L2σ , a measurable function u defined on R3

× (0, ∞) is called a global weak solution of (5)–(7) if

u ∈ L∞((0, ∞); L2σ ) ∩ L2((0, T );W 1,2
0,σ ) for every T > 0

and the integral relation
∞

0
[− (u(t), ∂tφ(t)) + (∇u(t), ∇φ(t)) + (u(t) · ∇u(t), φ(t))]dt = (u0, φ(0))
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holds for all φ ∈ C∞

0 ([0, ∞); C∞

0,σ ). We say that a global weak solution satisfies the strong energy inequality if

∥u(t)∥2
+ 2

 t

s
∥∇u(σ )∥2dσ ≤ ∥u(s)∥2

for almost all s ≥ 0 including s = 0 and all t ≥ s. A global weak solution to (5)–(7) satisfying the strong energy inequality
is called a turbulent solution.

Let u0 ∈ D(A). A function u ∈ C([0, ∞);D(A)) ∩ C1((0, ∞); L2σ ) is called a global strong solution of (5)–(7) if u(0) = u0
and du/dt + Au + Pσ (u · ∇u) = 0 for every t > 0.

It is known that for u0 ∈ L2σ there exists at least one turbulent solution of (5)–(7). It is also known (see [14, Chapter
V]) that this solution becomes strong after some transient time which means that there exists T0 ≥ 0 such that u ∈

C([T0, ∞);D(A)) ∩ C1((T0, ∞); L2σ ) and du/dt + Au + Pσ (u · ∇u) = 0 for every t > T0.
We will now present several known results which we will use in the present paper.

(i) ∥∇u∥ = ∥A1/2u∥ for every u ∈ D(A1/2) = W 1,2
0,σ (see [14, Chapter III.2]).

(ii) D(Ak) = (W 2k,2)3 ∩ L2σ for any k ∈ N . If g ∈ (W k,2)3, then Pσ (g) ∈ (W k,2)3 and Pσ (∇kg) = ∇
kPσ g (see [14, Chapter

III.2]).
(iii) If u is a global strong solution of (5)–(7), then u(t) ∈ D(An) for any n ∈ N and t > 0. Consequently, it follows from (ii)

that Pσ (u · ∇u(t)) ∈ D(An) for any n ∈ N .
(iv) If α ∈ [0, 3/4), q ∈ [2, ∞) and 2α + 3/q = 3/2, then there exists c = c(α, q) such that ∥u∥q ≤ c∥Aαu∥ for every

u ∈ D(Aα) (see [14, Chapter III.2.4]).
(v) Let u be a global strong solution of (5)–(7). Then for any t, δ ≥ 0

u(t + δ) = e−Aδu(t) −

 δ

0
e−A(δ−s)Pσ (u · ∇u(t + s)) ds (8)

(see [14, Chapter V.1.3]).
(vi) If 0 ≤ z < y < x and u ∈ D(Ax) then a so called moment inequality holds:

∥Ayu∥ ≤ ∥Azu∥
x−y
x−z ∥Axu∥

y−z
x−z . (9)

(vii) Let k ∈ N . There exists a positive constant c(k) such that

∥Ak/2u∥ ≤ ∥∇
ku∥ ≤ c(k)∥Ak/2u∥

for every u ∈ D(Ak/2) (it follows directly from [14, Lemma 2.3.2]).
(viii) If u is a global strong solution of (5)–(7) and ∥u(t)∥ = O(t−µ), t → ∞, for some µ ≥ 0, then for any α ≥ 0

∥Aαu(t)∥ = O(t−α−µ), t → ∞, (10)

(see [15]).
The following result was proved in [16].

(ix) Let Assumption 1 be satisfied. Let 0 ≤ α ≤ β < ∞. Then there exist C = C(α, β) > 1, δ0 = δ0(α, β) ∈ (0, 1) and
t0 = t0(α, β) such that

∥Aβu(t)∥
∥Aαu(t + δ)∥

≤ C

for every t ≥ t0 and every δ ∈ [0, δ0].
(x) The equality F(Eλu) = χB√

λ
(0)F(u) holds for every u ∈ L2 and every λ > 0 (see [17]). χA denotes the characteristic

function of A, B√
λ(0) = {x ∈ R3

; |x|2 ≤ λ} and F is the Fourier transform.

Assumption 1. We suppose that u is a turbulent solution to (5)–(7) such that u(t) ≠ 0 for every t ∈ [T , ∞) for some
T ≥ 0.

Remark 1. It is not clear if Assumption 1 is satisfied for any turbulent solution to (5)–(7) with a nonzero initial condition.
However, if Assumption 1 was not satisfied for some solution, it would mean that this solution is equal to zero for every
sufficiently large time. So such a solution is not interesting from the point of view of the large-time dynamics.

3. Large-time localization of Aαu in the frequency space

We will start this section with a precise formulation of the main result.
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Theorem 1. Let 0 ≤ α < β < ∞. Let Assumption 1 be satisfied. Then a = limt→∞


∥Aβu(t)∥
∥Aαu(t)∥

1/(β−α)

is a well defined finite
nonnegative number independent of α and β . Further, if ε > 0 then

lim
t→∞

|||Ea,εAαu(t)|||β−α

|||Aαu(t)|||β−α

= lim
t→∞

∥Ea,εAαu(t)∥
∥Aαu(t)∥

= 1, (11)

where Ea,ε = Ea+ε − Ea−ε if a > 0 (we put Ea−ε = 0 if a − ε ≤ 0) and Ea,ε = Eε if a = 0. Moreover,

lim
t→∞


Ka,ε

|ξ |
4α

|F(u(t))(ξ)|2 dξ
R3 |ξ |4α|F(u(t))(ξ)|2 dξ

= 1, (12)

where Ka,ε = B√
a+ε(0) \ B√

a−ε(0) if a > ε > 0, Ka,ε = B√
a+ε(0) if ε ≥ a > 0 and Ka,ε = B√

ε(0) if a = 0, Br(0) = {x ∈

R3
; |x| < r} and F denotes the Fourier transform.

Corollary 1. It follows immediately from (11) that

lim
t→∞

∥(I − Ea,ε)Aαu(t)∥
∥Ea,εAαu(t)∥

= 0 (13)

and

lim
t→∞


KC
a,ε

|ξ |
4α

|F(u(t))(ξ)|2 dξ
Ka,ε

|ξ |4α|F(u(t))(ξ)|2 dξ
= 0, (14)

where K C
a,ε = R3

\ Ka,ε .

The following lemma is a key result for the proof of Theorem 1.

Lemma 1. Let Assumption 1 be satisfied and 0 ≤ α < β < ∞. Then

lim
t→∞

∥Aβu(t)∥2

∥Aαu(t)∥2
(15)

is well defined and it is a nonnegative finite number.

Proof. We can suppose without loss of generality that k/2+ 1/2 ≤ α < β ≤ k/2+ 1 for some k ∈ N0 ∪ {−1}. There exists
t0 ≥ 2 such that u is strong on [t0 − 1, ∞). Let κ(t) = ∥Aβu(t)∥2/∥Aαu(t)∥2 for t ≥ t0. First, it follows from (5) that

d
dt

∥Aαu(t)∥2
= −2∥Aα+1/2u(t)∥2

− 2(Pσ (u · ∇u(t)), A2αu(t)).

Therefore,

κ ′(t) =
−2(∥Aβ+1/2u(t)∥2

+ (Pσ (u · ∇u(t)), A2βu(t)))∥Aαu(t)∥2

∥Aαu(t)∥4

+
2∥Aβu(t)∥2(∥Aα+1/2u(t)∥2

+ (Pσ (u · ∇u(t)), A2αu(t)))
∥Aαu(t)∥4

=
−2(Aβ+1/2u(t), Aβ+1/2u(t) + Aβ−1/2Pσ (u · ∇u(t)))

∥Aαu(t)∥2

+ κ(t)
2(Aβ+1/2u(t), A2α−β+1/2u(t))

∥Aαu(t)∥2
+ κ(t)

2(Pσ (u · ∇u(t)), A2αu(t))
∥Aαu(t)∥2

=
−2(Aβ+1/2u(t), Aβ+1/2u(t) + Aβ−1/2Pσ (u · ∇u(t)) − κ(t)A2α−β+1/2u(t))

∥Aαu(t)∥2
+ κ(t)

2(Pσ (u · ∇u(t)), A2αu(t))
∥Aαu(t)∥2

.

Since

(κ(t)A2α−β+1/2u(t), Aβ+1/2u(t) + Aβ−1/2Pσ (u · ∇u(t)) − κ(t)A2α−β+1/2u(t))

=
∥Aβu(t)∥2

∥Aαu(t)∥2
∥Aα+1/2u(t)∥2

+ κ(t)(A2αu(t), Pσ (u · ∇u(t))) −
∥Aβu(t)∥4

∥Aαu(t)∥4
∥A2α−β+1/2u(t)∥2,
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we have

κ ′(t) =
−2(Aβ+1/2u(t) − κ(t)A2α−β+1/2u(t), Aβ+1/2u(t) + Aβ−1/2Pσ (u · ∇u(t)) − κ(t)A2α−β+1/2u(t))

∥Aαu(t)∥2

− 2
∥Aβu(t)∥2

∥Aαu(t)∥4
∥Aα+1/2u(t)∥2

+ 2
∥Aβu(t)∥4

∥Aαu(t)∥6
∥A2α−β+1/2u(t)∥2.

The sum of the last two terms is smaller than or equal to zero, so

κ ′(t) ≤
−2∥Aβ+1/2u(t) − κ(t)A2α−β+1/2u(t)∥2

∥Aαu(t)∥2
+

−2(Aβ+1/2u(t) − κ(t)A2α−β+1/2u(t), Aβ−1/2Pσ (u · ∇u(t)))
∥Aαu(t)∥2

≤
∥Aβ−1/2Pσ (u · ∇u(t))∥2

∥Aαu(t)∥2
.

If 0 ≤ α < β < 1/2, then

∥Aβ−1/2Pσ (u · ∇u(t))∥2
≤ c∥Aβ+1/4u(t)∥2

∥A1/2u(t)∥2
≤ c∥Aαu(t)∥2

∥A2β−α+1/2u(t)∥ ∥A1−αu(t)∥

and

κ ′(t) ≤ c∥A2β−α+1/2u(t)∥ ∥A1−αu(t)∥ ≤ c(1 + t)−3/2.

If 0 ≤ α < β = 1/2, then

∥Pσ (u · ∇u(t))∥2
≤ c∥u(t)∥2

6∥∇u(t)∥2
3 ≤ c∥A1/2u(t)∥2

∥∇u(t)∥ ∥∇u(t)∥6

≤ c∥A1/2u(t)∥3
∥Au(t)∥ ≤ c∥Aαu(t)∥3/2

∥A1−αu(t)∥3/2
∥Aαu(t)∥1/2

∥A2−αu(t)∥1/2

and

κ ′(t) ≤ c∥A1−αu(t)∥3/2
∥A2−αu(t)∥1/2

≤ c(1 + t)−3/2.

Suppose now that k/2 + 1/2 ≤ α < β ≤ k/2 + 1 for some k ∈ N0. Then

∥Aβ−1/2Pσ (u(t) · ∇u(t))∥2
≤ ∥Ak/2Pσ (u · ∇u)∥2(k+2−2β)

∥Ak/2+1/2Pσ (u · ∇u)∥2(2β−k−1)

≤


k

j=0

∥∇
ju · ∇

k−j+1u∥

2(k+2−2β) k+1
j=0

∥∇
ju · ∇

k−j+2u∥

2(2β−k−1)

× ∥∇
ju · ∇

k−j+1u∥ ≤ ∥∇
ju∥6∥∇

k−j+1u∥3

≤ c∥Aj/2+1/2u∥ · ∥Ak/2−j/2+1/2u∥1/2
∥Ak/2−j/2+1u∥1/2

≤ c∥Ak/2+1u∥(2k+5)/(2k+4)

≤ c∥Aαu∥[(2k+5)(2β̃−k−2)]/[2(2k+4)(β̃−α)]
∥Aβ̃u∥[(2k+5)(k−2α+2)]/[2(2k+4)(β̃−α)],

where β̃ is sufficiently large. Analogically,

∥∇
ju · ∇

k−j+2u∥ ≤ c∥Aαu∥[(2k+7)(2β̃−k−3)]/[2(2k+6)(β̃−α)]
∥Aβ̃u∥[(2k+7)(k−2α+3)]/[2(2k+6)(β̃−α)].

So,

∥Aβ−1/2Pσ (u(t) · ∇u(t))∥2
≤ c∥Aαu∥γ1∥Aβ̃u∥γ2 ,

where

γ1 =
2k + 5
k + 2

2β̃ − k − 2

2(β̃ − α)
(k + 2 − 2β) +

2k + 7
k + 3

2β̃ − k − 3

2(β̃ − α)
(2β − k − 1)

and

γ2 =
2k + 5
k + 2

k − 2α + 2

2(β̃ − α)
(k + 2 − 2β) +

2k + 7
k + 3

k − 2α + 3

2(β̃ − α)
(2β − k − 1).

It is possible to verify elementarily that γ1 ≥ 2 and α(γ1 −2)+ β̃γ2 > 3/2 if β̃ is sufficiently large. Using (10) we then have

∥Aβ−1/2Pσ (u(t) · ∇u(t))∥2
≤ c∥Aαu∥2

∥Aαu∥γ1−2
∥Aβ̃u∥γ2 ≤ c∥Aαu∥2(1 + t)−3/2.

Consequently, κ ′(t) ≤ c(1 + t)−3/2 and a nonnegative limt→∞ κ(t) exists. �
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Definition 1. Let 0 ≤ α < β < ∞. Let u be a global strong solution of (5)–(7), u ≠ 0. We define (dropping for simplicity
the index α)

C(β) = lim
t→∞

∥Aβu(t)∥
∥Aαu(t)∥

,

Mβ =


λ ≥ 0; lim inf

t→∞

|||EλAαu(t)|||β−α

|||Aαu(t)|||β−α

> 0


,

Lβ =


λ ≥ 0; lim sup

t→∞

|||EλAαu(t)|||β−α

|||Aαu(t)|||β−α

> 0


,

M =


λ ≥ 0; lim inf

t→∞

∥EλAαu(t)∥
∥Aαu(t)∥

> 0


,

L =


λ ≥ 0; lim sup

t→∞

∥EλAαu(t)∥
∥Aαu(t)∥

> 0


,

aβ = infMβ , dβ = inf Lβ , a = infM, d = inf L.

Theorem 1 will be proved as an immediate consequence of lemmas presented in the rest of this section. We suppose
throughout the rest of the section that Assumption 1 is satisfied. We also suppose that 0 ≤ α < β < ∞. First, we will
get as the main consequence of Lemmas 2–11 that a = aβ = d = dβ = C(β)1/(β−α)—see Remark 2.

Lemma 2. Let λ > C(β)1/(β−α). Then

lim inf
t→∞

∥EλAαu(t)∥
∥Aαu(t)∥

≥
(λ2(β−α)

− C(β)2)1/2

λβ−α
> 0, (16)

lim inf
t→∞

|||EλAαu(t)|||β−α

|||Aαu(t)|||β−α

≥
(λ2(β−α)

− C(β)2)1/2

λβ−α(1 + C(β))
> 0. (17)

Proof.

∥Aβu(t)∥2

∥Aαu(t)∥2
≥

λ2(β−α)
∥(I − Eλ)Aαu(t)∥2

∥Aαu(t)∥2
= λ2(β−α) ∥A

αu(t)∥2
− ∥EλAαu(t)∥2

∥Aαu(t)∥2
,

thus

C(β)2 ≥ lim sup
t→∞

λ2(β−α)


1 −

∥EλAαu(t)∥2

∥Aαu(t)∥2


= λ2(β−α)(1 − γ ),

where γ = lim inft→∞ ∥EλAαu(t)∥2/∥Aαu(t)∥2. It gives that γ ≥ (λ2(β−α)
− C(β)2)/λ2(β−α) and (16) follows. Further,

|||EλAαu(t)|||β−α

|||Aαu(t)|||β−α

≥
∥EλAαu(t)∥

∥Aαu(t)∥ + ∥Aβu(t)∥
≥

∥EλAαu(t)∥
∥Aαu(t)∥


1 +

∥Aβu(t)∥
∥Aαu(t)∥

−1

. (18)

So, it follows from (16) and Definition 1 that

lim inf
t→∞

|||EλAαu(t)|||β−α

|||Aαu(t)|||β−α

≥
(λ2(β−α)

− C(β)2)1/2

λβ−α(1 + C(β))

and (17) is also proved. �

Lemma 3. a ≤ aβ ≤ C(β)1/(β−α).

Proof. The second inequality is an immediate consequence of (17). To prove the first inequality we suppose, by
contradiction, that aβ < λ < a. Then

lim inf
t→∞

|||AαEλu(t)|||β−α

|||Aαu(t)|||β−α

≤ lim inf
t→∞

∥AαEλu(t)∥ + ∥AβEλu(t)∥
∥Aαu(t)∥

≤ lim inf
t→∞

∥EλAαu(t)∥(1 + λβ−α)

∥Aαu(t)∥
= 0

and it is the contradiction with the fact that λ > aβ . �
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Lemma 4. Let λ > a. Then

lim
t→∞

∥EλAαu(t)∥
∥Aαu(t)∥

= 1. (19)

Proof. Let a < λ1 < λ and δ ∈ (0, 1). Put

g(t) =
∥(I − Eλ)Aαu(t)∥

∥Eλ1Aαu(t)∥
.

Since λ1 > a, the function g is well defined and continuous on an interval [t0, ∞) for some non-negative t0. It is easy to
show that

∥(I − Eλ)e−AδAαu(t)∥
∥Eλ1e−AδAαu(t)∥

≤ e−(λ−λ1)δ
∥(I − Eλ)Aαu(t)∥

∥Eλ1Aαu(t)∥
. (20)

Using the point (v) from Section 2 we have

g(t + δ) ≤
∥(I − Eλ)e−AδAαu(t)∥ + J

∥Eλ1e−AδAαu(t)∥ − J
,

where J can be estimated in the following way: let α ∈ [k/2, k/2 + 1/2), k ∈ N0. Then

J ≤

 δ

0
∥Aαe−A(δ−s)Pσ (u · ∇u(t + s))∥ ds ≤

 δ

0
∥AαPσ (u · ∇u(t + s))∥ ds

≤

 δ

0
∥Ak/2Pσ (u · ∇u(t + s))∥k−2α+1

∥Ak/2+1/2Pσ (u · ∇u(t + s))∥2α−k ds

× ∥Ak/2Pσ (u · ∇u(t + s))∥ ≤ c∥∇kPσ (u · ∇u(t + s))∥ = c∥Pσ ∇
k(u · ∇u(t + s))∥

≤ c∥∇k(u · ∇u(t + s))∥ ≤ c

 k
γ=0

∇
γ u · ∇

k+1−γ u(t + s)


≤ c

k
γ=0

∥∇
γ u · ∇

k+1−γ u(t + s)∥ ≤ c
k

γ=0

∥∇
γ u(t + s)∥6 ∥∇

k+1−γ u(t + s)∥3

≤ c
k

γ=0

∥∇
γ u(t + s)∥6∥∇

k+1−γ u(t + s)∥1/2
∥∇

k+1−γ u(t + s)∥1/2
6

≤ c
k

γ=0

(∥A(γ+1)/2u(t + s)∥ ∥Ak/2−γ /2+1/2u(t + s)∥1/2
∥Ak/2−γ /2+1u(t + s)∥1/2)

≤ c∥u(t + s)∥2−(2k+5)/(2k+4)
∥Ak/2+1u(t + s)∥(2k+5)/(2k+4)

≤ c∥u(t + s)∥2−(2k+5)/(2k+4)
∥Ak2+(9/2)k+5−2αk−4αu(t + s)∥1/(2k+4)

∥Aαu(t + s)∥
≤ r(t)∥Aαu(t + δ)∥,

where limt→∞ r(t) = 0. In the last inequality we used the point (ix) from Section 2. Similarly,

∥Ak/2+1/2Pσ (u · ∇u(t + s))∥ ≤ c
k+1
γ=0

∥∇
γ u(t + s)∥6 ∥∇

k+2−γ u(t + s)∥3

≤ c
k+1
γ=0

(∥A(γ+1)/2u(t + s)∥ ∥Ak/2−γ /2+1u(t + s)∥1/2
∥Ak/2−γ /2+3/2u(t + s)∥1/2)

≤ c∥u(t + s)∥2−(2k+7)/(2k+6)
∥Ak/2+3/2u(t + s)∥(2k+7)/(2k+6)

≤ c∥u(t + s)∥2−(2k+7)/(2k+6)
∥Ak2+(13/2)k+21/2−2αk−6αu(t + s)∥1/(2k+7)

∥Aαu(t + s)∥
≤ r(t)∥Aαu(t + δ)∥.

So

J ≤

 δ

0
r(t)∥Aαu(t + δ)∥ ds = r(t)δ∥Aαu(t + δ)∥. (21)
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Since

∥Aαu(t + δ)∥ ≤ ∥Aαu(t)∥ +

 δ

0
∥Aαe−A(δ−s)Pσ (u · ∇u(t + s))∥ ds

≤ ∥Aαu(t)∥ + r(t)δ∥Aαu(t + δ)∥,

we have for all sufficiently large t that

∥Aαu(t + δ)∥ ≤ 2∥Aαu(t)∥. (22)

So, it follows from (21) that

J ≤ r(t)δ∥Aαu(t)∥.

Further, since λ1 > a, we can suppose that for a sufficiently large t0

∥Aαu(t)∥ ≤ c∥Eλ1A
αu(t)∥ ≤ ceλ1δ∥Eλ1e

−AδAαu(t)∥

for every t ≥ t0 and so we have

g(t + δ) ≤
∥(I − Eλ)e−AδAαu(t)∥ + cδ∥Eλ1e

−AδAαu(t)∥r(t)
∥Eλ1e−AδAαu(t)∥ − cδ∥Eλ1e−AδAαu(t)∥r(t)

.

Using (20), we arrive at the inequality

g(t + δ) ≤
e−(λ−λ1)δ

1 − cδr(t)
g(t) +

cδr(t)
1 − cδr(t)

.

If t0 is sufficiently large then there exist α0 such that

e−(λ−λ1)δ

1 − cδr(t)
≤ α0 < 1 for all t ≥ t0,

which gives

g(t + δ) ≤ α0g(t) +
cδr(t)

1 − cδr(t)
for all t ≥ t0.

It follows immediately that lim supt→∞ g(t) < ∞ and subsequently limt→∞ g(t) = 0. (19) now follows from the following
inequalities:

1 ≥ lim
t→∞

∥EλAαu(t)∥
∥Aαu(t)∥

= lim
t→∞


1 −

∥(I − Eλ)Aαu(t)∥2

∥Aαu(t)∥2

1/2

≥ lim
t→∞


1 −

∥(I − Eλ)u(t)∥2

∥Eλ1u(t)∥2

1/2

= lim
t→∞

(1 − g(t))1/2 = 1. �

Lemma 5. a = aβ .

Proof. Due to Lemma 3 it is sufficient to prove that aβ ≤ a. Suppose, by contradiction, that a < λ0 < aβ < λ. Then

lim
t→∞

|||(Eλ − Eλ0)A
αu(t)|||β−α

|||Aαu(t)|||β−α

≤ lim
t→∞

∥(Eλ − Eλ0)A
αu(t)∥ + λβ−α

∥(Eλ − Eλ0)A
αu(t)∥

∥Aαu(t)∥

≤ lim
t→∞

(1 + λβ−α)
∥(Eλ − Eλ0)A

αu(t)∥
∥Aαu(t)∥

= 0,

where we used Lemma 4 for the last equality. So,

lim inf
t→∞

|||Eλ0A
αu(t)|||2β−α

|||Aαu(t)|||2β−α

≥ lim inf
t→∞

∥Eλ0A
αu(t)∥2

+ ∥AβEλ0u(t)∥
2

|||Aαu(t)|||2β−α

= lim inf
t→∞

∥EλAαu(t)∥2
+ ∥AβEλu(t)∥2

|||Aαu(t)|||2β−α

≥
1
2
lim inf
t→∞

|||EλAαu(t)|||2β−α

|||Aαu(t)|||2β−α

> 0

and it is a contradiction, since λ0 < aβ . �



Z. Skalák / J. Math. Anal. Appl. 400 (2013) 689–709 697

Lemma 6. Let λ > aβ . Then

lim
t→∞

|||EλAαu(t)|||β−α

|||Aαu(t)|||β−α

= 1. (23)

Proof. We proceed analogically as in the proof of Lemma 4. Let aβ < λ1 < λ and δ ∈ (0, 1). Put

g(t) =
|||(I − Eλ)Aαu(t)|||β−α

|||Eλ1Aαu(t)|||β−α

.

Since λ1 > aβ , the function g is defined and continuous on an interval [t0, ∞) for some non-negative t0. It is easy to show
that

|||(I − Eλ)e−AδAαu(t)|||β−α

|||Eλ1e−AδAαu(t)|||β−α

≤ e−(λ−λ1)δ
|||(I − Eλ)Aαu(t)|||β−α

|||Eλ1Aαu(t)|||β−α

. (24)

Using the point (v) from Section 2 we get:

g(t + δ) ≤
|||(I − Eλ)e−AδAαu(t)|||β−α + J

|||Eλ1e−AδAαu(t)|||β−α − J
,

where

J ≤

 δ

0
∥Aαe−A(δ−s)Pσ (u · ∇u(t + s))∥ + ∥Aβe−A(δ−s)Pσ (u · ∇u(t + s))∥ ds

≤ r(t)δ(∥Aαu(t)∥ + ∥Aβu(t)∥) = r(t)δ|||Aαu(t)|||β−α ≤ cr(t)δ|||Eλ1e
−AδAαu(t)|||β−α.

In the last inequality we used the fact that λ1 > aβ = a. We have

g(t + δ) ≤
|||(I − Eλ)e−AδAαu(t)|||β−α + cr(t)δ|||Eλ1e

−AδAαu(t)|||β−α

|||Eλ1e−AδAαu(t)|||β−α − cr(t)δ|||Eλ1e−AδAαu(t)|||β−α

.

Using (24), we arrive at the inequality

g(t + δ) ≤
e−(λ−λ1)δ

1 − cδr(t)
g(t) +

cδr(t)
1 − cδr(t)

and we can derive exactly in the same way as in the proof of Lemma 4 that

lim
t→∞

g(t) = 0. (25)

We now have

|||EλAαu(t)|||β−α

|||Aαu(t)|||β−α

=
(∥Aαu(t)∥2

− ∥(I − Eλ)Aαu(t)∥2)1/2 + (∥Aβu(t)∥2
− ∥(I − Eλ)Aβu(t)∥2)1/2

|||Aαu(t)|||β−α

=


∥Aαu(t)∥2

|||Aαu(t)|||2β−α

−
∥(I − Eλ)Aαu(t)∥2

|||Aαu(t)|||2β−α

1/2

+


∥Aβu(t)∥2

|||Aαu(t)|||2β−α

−
∥Aβ(I − Eλ)u(t)∥2

|||Aαu(t)|||2β−α

1/2

. (26)

Now, by contradiction, if (23) does not hold then there would exist α0 ∈ [0, 1) and a sequence {tj}∞j=1, limj→∞ tj = ∞, such
that

lim
j→∞

|||EλAαu(tj)|||β−α

|||Aαu(tj)|||β−α

= α0. (27)

We can suppose, without loss of generality, that there exist α1, α2 ∈ [0, 1] such that

lim
j→∞

∥Aαu(tj)∥2

|||Aαu(tj)|||2β−α

= α1,

lim
j→∞

∥Aβu(tj)∥2

|||Aαu(tj)|||2β−α

= α2
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and
√

α1 +
√

α2 = 1. Returning to (26) and using (25) we obtain that

lim
j→∞

|||EλAαu(tj)|||β−α

|||Aαu(tj)|||β−α

=


α1 − 0 +


α2 − 0 = 1,

which is a contradiction with (27). So, (23) holds and Lemma 6 is proved. �

Lemma 7. aβ = C(β)1/(β−α) for every β > α.

Proof. Due to Lemma3 it is sufficient to prove that aβ ≥ C(β)1/(β−α). Suppose, by contradiction, that aβ < λ < C(β)1/(β−α).
Using Lemmas 6, 5, 4 and the definition of C(β) we get

1 = lim
t→∞

|||EλAαu(t)|||β−α

|||Aαu(t)|||β−α

= lim
t→∞

∥EλAαu(t)∥ + ∥EλAβu(t)∥
∥Aαu(t)∥ + ∥Aβu(t)∥

≤ lim
t→∞

(1 + λβ−α)∥EλAαu(t)∥
∥Aαu(t)∥ + ∥Aβu(t)∥

= lim
t→∞

(1 + λβ−α)
∥EλAαu(t)∥
∥Aαu(t)∥

1 +
∥Aβu(t)∥
∥Aαu(t)∥

=
1 + λβ−α

1 + C(β)
.

So λβ−α
≥ C(β) and λ ≥ C(β)1/(β−α), which is the contradiction with the assumption above and Lemma 7 is proved. �

Lemma 8. d ≤ dβ ≤ C(β)1/(β−α).

Proof. The second inequality is an immediate consequence of the previous lemma and the fact that dβ ≤ aβ . To prove the
first inequality we suppose, by contradiction, that dβ < λ < d. Then

lim sup
t→∞

|||EλAαu(t)|||β−α

|||Aαu(t)|||β−α

= lim sup
t→∞

∥EλAαu(t)∥ + ∥EλAβu(t)∥
|||Aαu(t)|||β−α

≤ lim sup
t→∞

∥EλAαu(t)∥(1 + λβ−α)

∥Aαu(t)∥
= 0

and it is the contradiction with the fact that λ > dβ . �

Lemma 9. d = dβ .

Proof. Due to Lemma 8 it is sufficient to prove that dβ ≤ d. Suppose, by contradiction, that d < λ0 < dβ ≤ a < λ. Then

lim sup
t→∞

|||Eλ0A
αu(t)|||β−α

|||Aαu(t)|||β−α

≥ lim sup
t→∞


∥Eλ0A

αu(t)∥
∥Aαu(t)∥

∥Aαu(t)∥
|||EλAαu(t)|||β−α

|||EλAαu(t)|||β−α

|||Aαu(t)|||β−α


.

Since
∥Aαu(t)∥

|||EλAαu(t)|||β−α

=
∥Aαu(t)∥

∥EλAαu(t)∥ + ∥EλAβu(t)∥
≥

∥Aαu(t)∥
(1 + λβ−α)∥EλAαu(t)∥

we have by the use of (19) that

lim inf
t→∞

∥Aαu(t)∥
|||EλAαu(t)|||β−α

≥
1

(1 + λβ−α)
> 0.

Further, it follows from (23) and Lemma 5 that

lim
t→∞

|||EλAαu(t)|||β−α

|||Aαu(t)|||β−α

= 1.

Since λ0 > d, it leads to the conclusion that

lim sup
t→∞

|||Eλ0A
αu(t)|||β−α

|||Aαu(t)|||β−α

≥ lim sup
t→∞

∥Eλ0A
αu(t)∥

∥Aαu(t)∥
1

(1 + λβ−α)
> 0.

The preceding inequalities are in contradiction with the fact that λ0 < dβ . Therefore, d = dβ and Lemma 9 is proved. �

Lemma 10. Let λ ∈ (d, a) and ε ∈ (0, λ). Then

lim sup
t→∞

∥(Eλ+ε − Eλ−ε)Aαu(t)∥
∥Aαu(t)∥

= 1, (28)

lim sup
t→∞

|||(Eλ+ε − Eλ−ε)Aαu(t)|||β−α

|||Aαu(t)|||β−α

= 1. (29)
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Proof. Let λ ∈ (d, a). Put

g(t) =
∥(I − Eλ)Aαu(t)∥

∥EλAαu(t)∥
.

Here it is not excluded that g can be equal, for some t ≥ 0, to infinity. It follows from thedefinition of d and a (seeDefinition 1)
that

lim sup
t→∞

g(t) = ∞ (30)

and

lim inf
t→∞

g(t) < K < ∞ (31)

for some K > 1. At first, we will show (28). Suppose, by contradiction, that ε < min(λ − d, a − λ) and

lim sup
t→∞

∥(Eλ+ε − Eλ−ε)Aαu(t)∥
∥Aαu(t)∥

= α0 < 1. (32)

For sufficiently large t , either

∥Eλ−εAαu(t)∥
∥EλAαu(t)∥

≥


1 − α2

0

2
, (33)

or

∥(I − Eλ+ε)Aαu(t)∥
∥(I − Eλ)Aαu(t)∥

≥


1 − α2

0

2
. (34)

Indeed, if both (33) and (34) did not hold then we would get the following contradiction:

1 =
∥Eλ−εAαu(t)∥2

+ ∥(Eλ+ε − Eλ−ε)Aαu(t)∥2
+ ∥(I − Eλ+ε)Aαu(t)∥2

∥Aαu(t)∥2

<
1 − α2

0

4
+


α0 + 1

2

2

+
1 − α2

0

4
< 1.

Suppose now that g(t) = K for some t sufficiently large. Let δ ∈ (0, 1). We get from the point (v) from Section 2 that

g(t + δ) ≤
∥(I − Eλ)e−AδAαu(t)∥ + J

∥Eλe−AδAαu(t)∥ − J
,

where the inequality J ≤ r(t)δ∥Aαu(t)∥ can be derived exactly in the same way as in Lemma 4. Since

K = g(t) =
∥(I − Eλ)Aαu(t)∥

∥EλAαu(t)∥
=


∥Aαu(t)∥2

− ∥EλAαu(t)∥2
1/2

∥EλAαu(t)∥
,

we have ∥Aαu(t)∥ = (1 + K 2)1/2∥EλAαu(t)∥ ≤ 2K∥EλAαu(t)∥ ≤ 2Keλδ
∥Eλe−AδAαu(t)∥.

First, suppose that (33) holds. Then

∥(I − Eλ)e−AδAαu(t)∥
∥Eλe−AδAαu(t)∥

=
∥(I − Eλ)e−AδAαu(t)∥

(∥(Eλ − Eλ−ε)e−AδAαu(t)∥2 + ∥Eλ−εe−AδAαu(t)∥2)1/2

≤
e−λδ

∥(I − Eλ)Aαu(t)∥
(e−2λδ∥(Eλ − Eλ−ε)Aαu(t)∥2 + e−2(λ−ε)δ∥Eλ−εAαu(t)∥2)1/2

=
∥(I − Eλ)Aαu(t)∥

(∥(Eλ − Eλ−ε)Aαu(t)∥2 + e2εδ∥Eλ−εAαu(t)∥2)1/2

= g(t)


∥(Eλ − Eλ−ε)Aαu(t)∥2

∥EλAαu(t)∥2
+ e2εδ

∥Eλ−εAαu(t)∥2

∥EλAαu(t)∥2

−1/2

=: g(t)H1.

Thus,

g(t + δ) ≤
∥(I − Eλ)e−AδAαu(t)∥ + cr(t)δ∥Eλe−AδAαu(t)∥

∥Eλe−AδAαu(t)∥ − cr(t)δ∥Eλe−AδAαu(t)∥

≤
H1g(t)

1 − cr(t)δ
+

cr(t)δ
1 − cr(t)δ

. (35)
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If we put for simplicity

F =
∥(Eλ − Eλ−ε)Aαu(t)∥2

∥EλAαu(t)∥2
, B =

∥Eλ−εAαu(t)∥2

∥EλAαu(t)∥2
, C = cr(t),

we can write the right hand side of (35) as

f (δ) =
K

(F + e2εδB)1/2
1

1 − Cδ
+

Cδ

1 − Cδ
.

We use F + B = 1 and compute elementarily that

f ′(0) = K(−εB + C) + C .

Since B ≥ (1 − α2
0)/4, we have

f ′(0) ≤ K(−ε(1 − α2
0)/4 + cr(t)) + cr(t)

and since limt→∞ r(t) = 0, we conclude, that for t sufficiently large f ′(0) < 0. Thus, g(t + δ′) < g(t) = K for all δ′ > 0
sufficiently small. This result holds for every t sufficiently large such that g(t) = K . It is in contradiction with (30). Thus,
(32) does not hold and (28) follows immediately.

Suppose, second, that (34) holds. Then

∥(I − Eλ)e−AδAαu(t)∥
∥Eλe−AδAαu(t)∥

=
(∥(I − Eλ+ε)e−AδAαu(t)∥2

+ ∥(Eλ+ε − Eλ)e−AδAαu(t)∥2)1/2

∥Eλe−AδAαu(t)∥

≤
(e−2(λ+ε)δ

∥(I − Eλ+ε)Aαu(t)∥2
+ e−2λδ

∥(Eλ+ε − Eλ)Aαu(t)∥2)1/2

e−λδ∥EλAαu(t)∥

=
(e−2εδ

∥(I − Eλ+ε)Aαu(t)∥2
+ ∥(Eλ+ε − Eλ)Aαu(t)∥2)1/2

∥EλAαu(t)∥

= g(t)

e−2εδ ∥(I − Eλ+ε)Aαu(t)∥2

∥(I − Eλ)Aαu(t)∥2
+

∥(Eλ+ε − Eλ)Aαu(t)∥2

∥(I − Eλ)Aαu(t)∥2

1/2

=: g(t)H2.

Thus,

g(t + δ) ≤
H2g(t)

1 − cr(t)δ
+

cr(t)δ
1 − cr(t)δ

. (36)

If we put

F =
∥(I − Eλ+ε)Aαu(t)∥2

∥(I − Eλ)Aαu(t)∥2
, B =

∥(Eλ+ε − Eλ)Aαu(t)∥2

∥(I − Eλ)Aαu(t)∥2
, C = cr(t),

we can write the right hand side of (36) as

f (δ) =
K(Fe−2εδ

+ B)1/2

1 − Cδ
+

Cδ

1 − Cδ
.

We use F + B = 1 and compute elementarily that

f ′(0) = K(−εF + C) + C .

Since F ≥ (1 − α2
0)/4, we have

f ′(0) ≤ K(−ε(1 − α2
0)/4 + cr(t)) + cr(t)

and so for t sufficiently large f ′(0) < 0. As above, (28) follows immediately.
Prove now (29). Let λ0 > a. Then

lim sup
t→∞

|||(Eλ+ε − Eλ−ε)Aαu(t)g|||β−α

|||Aαu(t)|||β−α

= lim sup
t→∞


(∥Eλ0A

αu(t)∥2
− ∥Eλ−εAαu(t)∥2

− ∥(Eλ0 − Eλ+ε)Aαu(t)∥2)1/2

∥Eλ0Aαu(t)∥ + ∥Eλ0Aβu(t)∥

+
(∥AβEλ0u(t)∥

2
− ∥AβEλ−εu(t)∥2

− ∥Aβ(Eλ0 − Eλ+ε)u(t)∥2)1/2

∥Eλ0Aαu(t)∥ + ∥Eλ0Aβu(t)∥



= lim sup
t→∞


1 −

∥Eλ−εAαu(t)∥2

∥Eλ0Aαu(t)∥2
−

∥(Eλ0 − Eλ+ε)Aαu(t)∥2

∥Eλ0Aαu(t)∥2

1/2
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+


∥AβEλ0u(t)∥

2

∥Eλ0Aαu(t)∥2
−

∥AβEλ−εu(t)∥2

∥Eλ0Aαu(t)∥2
−

∥Aβ(Eλ0 − Eλ+ε)u(t)∥2

∥Eλ0Aαu(t)∥2

1/2


×


1 +

∥AβEλ0u(t)∥
∥Eλ0Aαu(t)∥

−1

.

If we put

G(t) =
∥Eλ−εAαu(t)∥2

∥Eλ0Aαu(t)∥2
+

∥(Eλ0 − Eλ+ε)Aαu(t)∥2

∥Eλ0Aαu(t)∥2
,

H(t) =
∥AβEλ−εu(t)∥2

∥Eλ0Aαu(t)∥2
+

∥Aβ(Eλ0 − Eλ+ε)u(t)∥2

∥Eλ0Aαu(t)∥2
,

F(t) =
∥AβEλ0u(t)∥
∥Eλ0Aαu(t)∥

,

it follows from the equality (28) and Lemma 4 that there exists an increasing sequence {tj}∞j=1 such that limj→∞ tj =

∞, limj→∞ G(tj) = limj→∞ H(tj) = 0 and limj→∞ F(tj) = F ≥ 0. So we can write

lim
j→∞

|||(Eλ+ε − Eλ−ε)Aαu(tj)|||β−α

|||Aαu(tj)|||β−α

= lim
j→∞

(1 − G(tj))1/2 + (F 2(tj) − H(tj))1/2

1 + F(tj)
= 1.

Thus, (29) follows immediately and Lemma 10 is proved. �

Corollary 2. Let λ ∈ (d, a). Then

lim sup
t→∞

∥EλAαu(t)∥
∥Aαu(t)∥

= lim sup
t→∞

|||EλAαu(t)|||β−α

|||Aαu(t)|||β−α

= 1.

Lemma 11. dβ = C(β)1/(β−α).

Proof. Suppose that λ ∈ (dβ , C(β)1/(β−α)). Then, by the use of Lemma 9, Corollary 2 and the definition of C(β) we obtain
the following contradiction

1 = lim sup
t→∞

|||EλAαu(t)|||β−α

|||Aαu(t)|||β−α

= lim sup
t→∞


∥EλAαu(t)∥
∥Aαu(t)∥

+
∥AβEλu(t)∥
∥Aαu(t)∥


×


1 +

∥Aβu(t)∥
∥Aαu(t)∥

−1

≤ lim sup
t→∞

(1 + λβ−α)
∥EλAαu(t)∥
∥Aαu(t)∥


1 +

∥Aβu(t)∥
∥Aαu(t)∥

−1

≤
1 + λβ−α

1 + C(β)
<

1 + C(β)

1 + C(β)
= 1.

The proof of Lemma 11 now follows from Lemma 8. �

Remark 2. If we fix α ≥ 0, it follows immediately from Lemmas 2–11 that a = aβ = d = dβ = C(β)1/(β−α) for any β > α.
So C(β)1/(β−α) is independent of β . The validity of (11) follows from the definition of a, aβ , d and dβ in Definition 1. To finish
the proof of Theorem 1, it suffices to prove that the number a from Theorem 1 is independent of α. It is our goal in the rest
of this section.

Remark 3. Up until now we have not stressed (because of simplicity of notation) the possible dependence of the number a
on α. From now on we will write aα instead of a, meaning that aα possibly depends on the chosen α ≥ 0.

Lemma 12. Let 0 ≤ α1 < α2 < ∞. Then aα1 = 0 or aα1 = aα2 .
Proof.

aα1 = lim
t→∞


∥Aα2u(t)∥
∥Aα1u(t)∥

1/(α2−α1)

≤ lim
t→∞


∥A2α2−α1u(t)∥

∥Aα2u(t)∥

1/(α2−α1)

= aα2

and so aα1 ∈ [0, aα2 ]. Thus, if aα2 = 0 then aα1 = 0. Let aα2 > 0. Then for every ε ∈ (0, aα2/2)

lim
t→∞

∥(Eaα2−ε − Eε)Aα1u(t)∥

∥(Eaα2+ε − Eaα2−ε)Aα1u(t)∥
≤ lim

t→∞

εα1−α2∥(Eaα2−ε − Eε)Aα2u(t)∥

(aα2 + ε)α1−α2∥(Eaα2+ε − Eaα2−ε)Aα2u(t)∥
= 0

and so aα1 ∉ (0, aα2) due to (11) (see also Remark 2). �
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Lemma 13. Let α ≥ 0. Then ∥Aαu(t)∥ decreases exponentially for t → ∞ if and only if aα > 0.

Proof. Let α ≥ 0 and aα > 0. Take ε ∈ (0, aα) and δ ∈ (0, 1). It was proved in Lemma 4 thatAα

 δ

0
e−A(δ−s)Pσ (u · ∇u(t + s)) ds

 ≤ r(t)δ∥Aαu(t)∥,

where limt→∞ r(t) = 0. We have

(Eaα+ε − Eaα−ε)Aαu(t + δ) = (Eaα+ε − Eaα−ε)Aαe−Aδu(t)

−

 δ

0
(Eaα+ε − Eaα−ε)Aαe−A(δ−s)Pσ (u · ∇u(t + s)) ds,

∥(Eaα+ε − Eaα−ε)Aαe−Aδu(t)∥ ≤ e−(aα−ε)δ
∥(Eaα+ε − Eaα−ε)Aαu(t)∥

and

∥(Eaα+ε − Eaα−ε)Aαe−Aδu(t)∥ ≥ e−(aα+ε)δ
∥(Eaα+ε − Eaα−ε)Aαu(t)∥.

If we put f (t) = ∥(Eaα+ε − Eaα−ε)Aαu(t)∥ and use (11), we get for all sufficiently large t

e−(aα+ε)δ f (t) − 2δr(t)f (t) ≤ f (t + δ) ≤ e−(aα−ε)δ f (t) + 2δr(t)f (t).

It gives

(−aα − ε − 2r(t))f (t) ≤ f ′(t) ≤ (−aα + ε + 2r(t))f (t)

and there exists c > 0 so that

ce−(aα+ε)t
≤ f (t) ≤ ce−(aα−ε)t

for t sufficiently large. Consequently,

ce−(aα+ε)t
≤ ∥Aαu(t)∥ ≤ ce−(aα−ε)t

and so ∥Aαu(t)∥ decreases exponentially.
Let aα = 0. Let ε > 0. Then

∥EεAαu(t + δ)∥ ≥ ∥EεAαe−Aδu(t)∥ − δr(t)∥Aαu(t)∥ ≥ e−εδ
∥EεAαu(t)∥ − δr(t)∥Aαu(t)∥.

If f (t) = ∥EεAαu(t)∥, then f ′(t) ≥ −(ε + 2r(t))f (t), f (t) ≥ ce−2εt and by the use of (11)

∥Aαu(t)∥ ≥ ce−2εt

for some c > 0 and all sufficiently large t . Since ε > 0 has been chosen arbitrarily, ∥Aαu(t)∥ does not decrease exponentially
and lemma is proved. �

Lemma 14. aα is independent of α ∈ [0, ∞).

Suppose that aα > 0 for some α > 0. It means according to Lemma 13 that ∥Aαu(·)∥ decreases exponentially and since

∥Aα′

u(t)∥ ≤ ∥u(t)∥1−α′/α
∥Aαu(t)∥α′/α,

∥Aα′

u(·)∥ also decreases exponentially and consequently, due to Lemma 12, aα = aα′ for any α′
∈ (0, α). To finish the proof

it suffices to exclude the possibility that aα = a > 0 for every α > 0 and a0 = 0.
Thus, suppose that aα = a1/2 > 0 for every α > 0. Then according to the proof of Lemma 13 for every λ ∈ (0, a1/2)

lim
t→∞

∥A1/2u(t)∥eλt
= 0. (37)

Fix λ ∈ (0, a1/2). It suffices to show that

lim sup
t→∞

∥u(t)∥eλt < ∞. (38)

Indeed, it then follows from Lemma 13 that a0 > 0. We can write

u(t) = e−At


u0 −


∞

0
eAsEλPσ (u · ∇u(s)) ds


−

 t

0
e−A(t−s)(I − Eλ)Pσ (u · ∇u(s)) ds

+


∞

t
e−A(t−s)EλPσ (u · ∇u(s)) ds. (39)
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Let us remark that all the integrals presented here have sense due to (37). Applying the operator eAtA1/2Eλ on the equality
u(t) = e−Atu0 −

 t
0 e−A(t−s)Pσ (u · ∇u(s)) ds we get

eAtA1/2Eλu(t) = A1/2Eλu(0) −

 t

0
A1/2eAsEλPσ (u · ∇u(s)) ds.

Applying limt→∞ on both sides of the last equality, we get

0 = A1/2Eλu(0) −


∞

0
A1/2eAsEλPσ (u · ∇u(s)) ds = A1/2


Eλu(0) −


∞

0
eAsEλPσ (u · ∇u(s)) ds


and

Eλu(0) =


∞

0
eAsEλPσ (u · ∇u(s)) ds.

If we put η = u(0) −


∞

0 eAsEλPσ (u · ∇u(s)) ds then η = (I − Eλ)u(0) and it follows from (39)

u(t) = e−Atη −

 t

0
e−A(t−s)(I − Eλ)Pσ (u · ∇u(s)) ds +


∞

t
e−A(t−s)EλPσ (u · ∇u(s)) ds. (40)

Wewill now finish the proof by estimating the three terms on the right hand side of (40). Since η = (I −Eλ)η, the treatment
of the first term is clear. Let t > 1/(4λ). Then t

0
e−A(t−s)(I − Eλ)Pσ (u · ∇u(s)) ds

 ≤

 t−1/(4λ)

0
A1/4e−A(t−s)(I − Eλ)A−1/4Pσ (u · ∇u(s)) ds


+

 t

t−1/(4λ)

A1/4e−A(t−s)(I − Eλ)A−1/4Pσ (u · ∇u(s)) ds


≤

 t−1/(4λ)

0
λ1/4e−λ(t−s)

∥A1/2u(s)∥2 ds

+

 t

t−1/(4λ)

c(t − s)−1/4
∥A1/2u(s)∥2 ds

≤ c


∞

0
e−λ(t−s)e−2λs ds

+ ce−2λ(t−1/(4λ))

 t

t−1/(4λ)

(t − s)−1/4 ds ≤ ce−λt

and  ∞

t
e−A(t−s)EλPσ (u · ∇u(s)) ds

 =

 ∞

t
A1/4e−A(t−s)EλA−1/4Pσ (u · ∇u(s)) ds


≤


∞

t
λ1/4eλ(s−t)

∥A1/2u(s)∥2 ds ≤ ce−λt .

Therefore, (38) follows from the previous estimates and Lemma 14 is proved.
Proof of Theorem 1. It follows immediately from Remark 2 and Lemma 14. (12) follows from the point (x) in Section 2. �

4. Large-time localization of time derivatives of Aαu

Theorem 1 in the previous section was proved for every solution satisfying Assumption 1. We will now prove that the
same results can also be derived for the time derivatives of u of any order.We again suppose in this section that Assumption 1
is satisfied and we use the notation from Definition 1 – especially the number a – and the results from the previous section.

Lemma 15. Let β ≥ 0 and l ∈ N0. Then

lim
t→∞

Aβ dlu
dt l

(t)


∥Aβ+lu(t)∥
= 1. (41)

Proof. We proceed by the mathematical induction. (41) holds if l = 0. We suppose that

lim
t→∞

Aβ dju
dt j

(t)


∥Aβ+ju(t)∥
= 1



704 Z. Skalák / J. Math. Anal. Appl. 400 (2013) 689–709

for every β ≥ 0 and j = 0, 1, . . . , l, l ∈ N0, and we will show that

lim
t→∞

Aβ dl+1u
dt l+1 (t)


∥Aβ+l+1u(t)∥

= 1 (42)

for every β ≥ 0. Let β ∈ [n/2, n/2 + 1/2) for some n ∈ N0. We start with the equality

Aβ dl+1u
dt l+1

(t) + Aβ+1 d
lu
dt l

(t) +
dl

dt l
AβPσ (u · ∇u(t)) = 0. (43)

Then  dl

dt l
AβPσ (u · ∇u(t))

 ≤

An/2 dl

dt l
Pσ (u · ∇u(t))

n+1−2β An/2+1/2 dl

dt l
Pσ (u · ∇u(t))

2β−n

,

An/2 dl

dt l
Pσ (u · ∇u(t))

 ≤ c
n

γ=0

l
j=0

 dj

dt j
∇

γ u(t) ·
dl−j

dt l−j
∇

n+1−γ u(t)


and  dj

dt j
∇

γ u(t) ·
dl−j

dt l−j
∇

n+1−γ u(t)
 ≤

∇γ dju
dt j

(t)

6
·

∇n+1−γ dl−ju
dt l−j

(t)

3

≤

A(γ+1)/2 d
ju
dt j

(t)
 ·

A(n+1−γ )/2 d
l−ju
dt l−j

(t)
1/2 ·

A(n+2−γ )/2 d
l−ju
dt l−j

(t)
1/2

≤ c∥A(γ+1+2j)/2u(t)∥ · ∥A(n+1−γ+2l−2j)/2u(t)∥1/2
· ∥A(n+2−γ+2l−2j)/2u(t)∥1/2

≤ c∥u(t)∥1−1/(2n+4l+4)
∥An/2+1+lu(t)∥(2n+4l+5)/(2n+4l+4).

So, An/2 dl

dt l
Pσ (u · ∇u(t))

 ≤ c∥u(t)∥1−1/(2n+4l+4)
∥An/2+1+lu(t)∥(2n+4l+5)/(2n+4l+4).

Analogically,An/2+1/2 dl

dt l
Pσ (u · ∇u(t))

 ≤ c∥u(t)∥1−1/(2n+4l+6)
∥An/2+3/2+lu(t)∥(2n+4l+7)/(2n+4l+6).

We further estimate

∥An/2+1+lu(t)∥ ≤ ∥u(t)∥(β−n/2)/(β+1+l)
∥Aβ+1+lu(t)∥(n/2+1+l)/(β+1+l),

∥An/2+3/2+lu(t)∥ ≤ ∥Aβ+1+lu(t)∥(β̃−n/2−3/2−l)/(β̃−β−1−l)
∥Aβ̃u(t)∥(n/2+1/2−β)/(β̃−β−1−l),

where β̃ is sufficiently large, and get dl

dt l
AβPσ (u · ∇u(t))

 ≤ c∥u(t)∥k1 ∥Aβ+1+lu(t)∥k2 ∥Aβ̃u(t)∥k3 , (44)

where k1, k3 > 0 and

k2 =
2n + 4l + 5
2n + 4l + 4

·
2n + 2 + l
2β + 2 + 2l

· (n + 1 − 2β) +
2n + 4l + 7
2n + 4l + 6

·
2β̃ − n − 3 − 2l

2β̃ − 2β − 2 − 2l
· (2β − n).

It is possible to verify that k2 > 1 for β̃ sufficiently large. It follows from (43), (44) and (10) and by the use of the induction
assumption that

∥Aβ+1+lu(t)∥(1 − ξ(t)) ≤

Aβ dl+1u
dt l+1

(t)
 ≤ ∥Aβ+1+lu(t)∥(1 + ξ(t)),

where limt→∞ ξ(t) = 0. (42) immediately follows and Lemma 15 is proved. �



Z. Skalák / J. Math. Anal. Appl. 400 (2013) 689–709 705

Corollary 3. Let α, β ≥ 0 and k, l ∈ N0. Then

lim
t→∞

Aβ dku
dtk

(t)
Aα dlu

dt l
(t)
 = a(β−α)+(k−l). (45)

If a = 0 and (β − α) + (k − l) < 0 then the right hand side of (45) is equal to infinity.

Proof. The proof follows immediately from Lemma 15, Theorem 1 and the equalityAβ dku
dtk

(t)
Aα dlu

dt l
(t)
 =

Aβ dku
dtk

(t)


∥Aβ+ku(t)∥
·
∥Aβ+ku(t)∥
∥Aα+lu(t)∥

·
∥Aα+lu(t)∥Aα dlu

dt l
(t)
 .

The following corollary is a consequence of Lemma 15 and the point (ix) from Preliminaries. The space–time derivatives
of the solution have bounded decays in the L2-norm on small time intervals. �

Corollary 4. Let α, β ≥ 0 and k, l ∈ N0 and β + k ≥ α + l. Then there exist C > 0, δ0 ∈ (0, 1) and t0 ≥ 0 so thatAβ dku
dtk

(t)
Aα dlu

dt l
(t + δ)

 ≤ C

for every t ≥ t0 and δ ∈ [0, δ0].

Theorem 2. Let α ≥ 0 and k ∈ N0. We suppose that Assumption 1 is satisfied. Let ε > 0. Then

lim
t→∞

Ea,εAα dku
dtk

(t)
Aα dku

dtk
(t)
 = 1 (46)

and

lim
t→∞


Ka,ε

|ξ |
4α
F  dku

dtk
(t)


(ξ)

2 dξ
R3 |ξ |4α

F  dku
dtk

u(t)


(ξ)

2 dξ
= 1, (47)

where a, Ea,ε and Ka,ε were defined in Theorem 1.

Proof. We proceed by the mathematical induction. It follows from Theorem 1 that (46) holds for k = 0. Suppose that (46)
holds for every α ≥ 0 and some k ∈ N0. We will prove its validity for every α ≥ 0 and k + 1. We start with

Ea,εAα dk+1u
dtk+1

(t) + Ea,εAα+1 d
ku
dtk

(t) + Ea,εAα dk

dtk
Pσ (u · ∇u(t)) = 0.

We know that (see (44))Ea,εAα dk

dtk
Pσ (u · ∇u(t))

 ≤

Aα dk

dtk
Pσ (u · ∇u(t))

 ≤ ξ(t)∥Aα+k+1u(t)∥,

where limt→∞ ξ(t) = 0. SoEa,εAα+1 d
ku
dtk

(t)
− ξ(t)∥Aα+k+1u(t)∥ ≤

Ea,εAα dk+1u
dtk+1

(t)


≤

Ea,εAα+1 d
ku
dtk

(t)
+ ξ(t)∥Aα+k+1u(t)∥.

Dividing the previous inequalities by ∥Aα+1 dku
dtk

(t)∥, applying limt→∞ and using the induction assumption and (41), we get

1 ≤ lim
t→∞

Ea,εAα dk+1u
dtk+1 (t)

Aα dk+1u
dtk+1 (t)

 ≤ 1.

(47) follows from (46) using the point (x) from Section 2. Theorem 2 is proved. �
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Corollary 5. It follows immediately from (46) that

lim
t→∞

(I − Ea,ε)Aα dku
dtk

(t)
Ea,εAα dku

dtk
(t)
 = 0 (48)

and

lim
t→∞


KC
a,ε

|ξ |
4α
F  dku

dtk
(t)


(ξ)

2 dξ
Ka,ε

|ξ |4α|F


dku
dtk

(t)


(ξ)|2 dξ
= 0, (49)

where K C
a,ε = R3

\ Ka,ε .

5. Large-time localization of vorticity

Up until nowwe have dealt with the solution u satisfying Assumption 1 and its time derivatives. We will now prove that
the same results can also be derived for the vorticity and its time derivatives. It is interesting that for a fixed solution the
number a does not change and plays the same role as in the previous sections. As before we suppose Assumption 1.

Define ω = (
∂u2
∂x3

−
∂u3
∂x2

,
∂u3
∂x1

−
∂u1
∂x3

,
∂u1
∂x2

−
∂u2
∂x1

).

Lemma 16. Let u ∈ W 1,2
0,σ . Then

|F(ω)(ξ)|2 = |ξ |
2
|F(u)(ξ)|2, almost all ξ

|F(Ea,εω)(ξ)|2 = χKa,ε (ξ)|ξ |
2
|F(u)(ξ)|2, almost all ξ .

Proof. At first for u ∈ C∞

0,σ and then using the fact that C∞

0,σ is dense inW 1,2
0,σ . �

Lemma 17. Let 0 ≤ α < β < ∞. Let ε > 0. Then

lim
t→∞

∥Aβω(t)∥
∥Aαω(t)∥

= aβ−α

and

lim
t→∞

∥Ea,εAαω(t)∥
∥Aαω(t)∥

= 1,

where a and Ea,ε are the numbers from Theorem 1.
Proof. We have F(Aαu)(ξ) = |ξ |

2αF(u)(ξ). Therefore, by the use of Lemma 16

∥Aαω∥
2

= ∥F(Aαω)∥2
=


|ξ |

4α
|F(ω)(ξ)|2 dξ

=


|ξ |

4α+2
|F(u)(ξ)|2 dξ = ∥F(Aα+1/2u)∥2

= ∥Aα+1/2u∥2 (50)

and

∥Ea,εAαω∥
2

= ∥F(AαEa,εω)∥2
=


|ξ |

4α
|F(Ea,εω)(ξ)|2 dξ

=


Ka,ε

|ξ |
4α+2

|F(u)(ξ)|2 dξ = ∥F(Ea,εAα+1/2u)∥2
= ∥Ea,εAα+1/2u∥2.

The proof now follows from Theorem 1. �

Lemma 18. Let β ≥ 0 and l ∈ N0. Then

lim
t→∞

Aβ dlω
dt l

(t)


∥Aβ+lω(t)∥
= 1. (51)

Proof. We proceed by the mathematical induction. (51) holds if l = 0. We suppose that

lim
t→∞

Aβ djω
dt j

(t)


∥Aβ+jω(t)∥
= 1 (52)
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for every β ≥ 0 and j = 0, 1, . . . , l, l ∈ N0, and we will show that

lim
t→∞

Aβ dl+1ω
dt l+1 (t)


∥Aβ+l+1ω(t)∥

= 1 (53)

for every β ≥ 0. We start with the equation

Aβ dl+1ω

dt l+1
(t) + Aβ+1 d

lω

dt l
(t) +

dl

dt l
AβPσ (u · ∇ω(t)) −

dl

dt l
AβPσ (ω · ∇u(t)) = 0. (54)

Let β ∈ [n/2, n/2 + 1/2) for some n ∈ N0. Then dl

dt l
AβPσ (u · ∇ω(t))

 ≤

An/2 dl

dt l
Pσ (u · ∇ω(t))

n+1−2β An/2+1/2 dl

dt l
Pσ (u · ∇ω(t))

2β−n

, (55)

An/2 dl

dt l
Pσ (u · ∇ω(t))

 ≤ c
n

γ=0

l
j=0

 dj

dt j
∇

γ u ·
dl−j

dt l−j
∇

n+1−γ ω

 (56)

and  dj

dt j
∇

γ u ·
dl−j

dt l−j
∇

n+1−γ ω

 ≤ ∥∇
γ dju
dt j

∥6 ·

∇n+1−γ dl−jω

dt l−j

1/2 ∇n+1−γ dl−jω

dt l−j

1/2
6

≤ c
A(γ+1)/2 d

ju
dt j

 ·

A(n+1−γ )/2 d
l−jω

dt l−j

1/2 A(n+2−γ )/2 d
l−jω

dt l−j

1/2 . (57)

If we now use (41), the induction assumption (52), (50) and the moment inequality, we obtain dj

dt j
∇

γ u ·
dl−j

dt l−j
∇

n+1−γ ω

 ≤ c∥A(γ+2j)/2ω∥ · ∥A(n+1−γ+2l−2j)/2ω∥
1/2

∥A(n+2−γ+2l−2j)/2ω∥
1/2

≤ c∥Aβ+1+lω∥
(2n+4l+3)/(4β+4+4l)

∥ω∥
2−(2n+4l+3)/(4β+4+4l). (58)

Similarly,An/2+1/2 dl

dt l
Pσ (u · ∇ω(t))

 ≤ c
n+1
γ=0

l
j=0

 dj

dt j
∇

γ u ·
dl−j

dt l−j
∇

n+2−γ ω

 (59)

and if (γ , j) ≠ (0, 0) then as above dj

dt j
∇

γ u ·
dl−j

dt l−j
∇

n+2−γ ω

 ≤ c∥A(β+1+l)ω∥
(2n+4l+5)/(4β+4+4l)

∥ω∥
2−(2n+4l+5)/(4β+4+4l). (60)

If (γ , j) = (0, 0) then by the induction assumption and by the use of the inequality ∥u∥∞ ≤ ∥ω∥
1/2

∥ω∥
1/2
6 (see

[18, Lemma 2.1])u ·
dl

dt l
∇

n+2ω

 ≤ ∥u∥∞

 dl

dt l
∇

n+2ω


≤ ∥ω∥

1/2
∥ω∥

1/2
6

A(n+2)/2 d
lω

dt l

 ≤ ∥ω∥
1/2

∥A1/2ω∥
1/2

∥A(n+2+2l)/2ω∥

≤ ∥Aβ+1+lω∥
(2n+5+4l)/(4β+4+4l)

∥ω∥
2−(2n+5+4l)/(4β+4+4l). (61)

We still estimate

∥ω∥ = ∥A1/2u∥ ≤ ∥Aβ+3/2+lu∥1/(2β+3+2l)
≤ c∥Aβ+1+lω∥

1/(2β+3+2l). (62)

It now follows from (55)–(62) that dl

dt l
AβPσ (u · ∇ω(t))

 ≤ c∥Aβ+1+lu∥k, (63)

where it is possible to compute elementarily that

k =
4β + 3 + 4l
4β + 4 + 4l

+
1

4β + 4 + 4l
4β + 5 + 4l
2β + 3 + 2l

> 1.
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In the sameway as above one can get the same estimate for ∥
dl

dt l
AβPσ (ω ·∇u(t))∥. It now follows from (54) and the induction

assumption that

∥Aβ+1+lω∥(1 − ξ(t)) ≤

Aβ dl+1ω

dt l+1

 ≤ ∥Aβ+1+lω∥(1 + ξ(t)),

where limt→∞ ξ(t) = 0 and Lemma 18 is proved. �

Corollary 6. Let α, β ≥ 0 and k, l ∈ N0. Then

lim
t→∞

Aβ dkω
dtk

(t)
Aα dlω

dt l
(t)
 = a(β−α)+(k−l). (64)

If a = 0 and (β − α) + (k − l) < 0 then the right hand side of (64) is equal to infinity.

Proof. The proof follows immediately from the previous lemma and the equalityAβ dkω
dtk

(t)
Aα dlω

dt l
(t)
 =

Aβ dkω
dtk

(t)


∥Aβ+kω(t)∥
·
∥Aβ+kω(t)∥
∥Aα+lω(t)∥

·
∥Aα+lω(t)∥Aα dlω

dt l
(t)
 . �

Corollary 7. Let α, β ≥ 0 and k, l ∈ N0 and β + k ≥ α + l. Then there exist C > 0, δ0 ∈ (0, 1) and t0 ≥ 0 so thatAβ dkω
dtk

(t)
Aα dlω

dt l
(t + δ)

 ≤ C

for every t ≥ t0 and δ ∈ [0, δ0].

Theorem 3. Let α ≥ 0 and k ∈ N0. We suppose that Assumption 1 is satisfied. Let ε > 0. Then

lim
t→∞

Ea,εAα dkω
dtk

(t)
Aα dkω

dtk
(t)
 = 1 (65)

and

lim
t→∞


Ka,ε

|ξ |
4α
F  dkω

dtk
(t)


(ξ)

2 dξ
R3 |ξ |4α

F  dkω
dtk

(t)


(ξ)

2 dξ
= 1,

where a, Ea,ε and Ka,ε were defined in Theorem 1.

Proof. Weproceed by themathematical induction. Suppose that (65) holds for every α ≥ 0 and some k ∈ N0. Wewill prove
its validity also for every α ≥ 0 and k + 1. We start with

Ea,εAα dk+1ω

dtk+1
(t) + Ea,εAα+1 d

kω

dtk
(t) + Ea,εAα dk

dtk
Pσ (u · ∇ω(t)) − Ea,εAα dk

dtk
Pσ (ω · ∇u(t)) = 0.

We know that (see (63))Ea,εAα dk

dtk
Pσ (u · ∇ω(t))

 ≤

Aα dk

dtk
Pσ (u · ∇ω(t))

 ≤ ξ(t)∥Aα+k+1ω(t)∥,

where limt→∞ ξ(t) = 0. SoEa,εAα+1 d
kω

dtk
(t)
− ξ(t)∥Aα+k+1ω(t)∥ ≤

Ea,εAα dk+1ω

dtk+1
(t)


≤

Ea,εAα+1 d
kω

dtk
(t)
+ ξ(t)∥Aα+k+1ω(t)∥.
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Dividing the previous inequalities by ∥Aα+1 dkω
dtk

(t)∥, applying limt→∞ and using the induction assumption and (51), we get

1 ≤ lim
t→∞

Ea,εAα dk+1ω
dtk+1 (t)

Aα+1 dkω
dtk

(t)
 ≤ 1.

Theorem 3 is proved. �

Corollary 8. It follows immediately from (65) that

lim
t→∞

(I − Ea,ε)Aα dkω
dtk

(t)
Ea,εAα dkω

dtk
(t)
 = 0

and

lim
t→∞


KC
a,ε

|ξ |
4α
F  dkω

dtk
(t)


(ξ)

2 dξ
Ka,ε

|ξ |4α|F


dkω
dtk

(t)


(ξ)|2 dξ
= 0,

where K C
a,ε = R3

\ Ka,ε .
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