
J. Math. Anal. Appl. 401 (2013) 641–653

Contents lists available at SciVerse ScienceDirect

Journal of Mathematical Analysis and
Applications

journal homepage: www.elsevier.com/locate/jmaa

Asymptotic derivation of quasistatic frictional contact models
with wear for elastic rods

J.M. Viaño a, Á. Rodríguez-Arós b,∗, M. Sofonea c

a Departamento de Matemática Aplicada, University de Santiago de Compostela, Spain
b Departamento de Métodos Matemáticos e Representación, University da Coruña, Spain
c Laboratoire de Mathématiques et Physique, Université de Perpignan, France

a r t i c l e i n f o

Article history:
Received 9 December 2011
Available online 2 January 2013
Submitted by Mr. V. Radulescu

Keywords:
Asymptotic analysis
Elastic rod
Frictional contact
Beams contact
Wear
Normal compliance

a b s t r a c t

The aim of this paper is to derive mathematical models for the bending–stretching of an
elastic rod in contact with a moving foundation, when the resulting wear is taken into
account. The process is assumed to be quasistatic, the contact is modeled with normal
compliance and the evolution of the wear function is described with Archard’s law. To
derive the models we start with the corresponding 3D problem, introduce a change
of variable together with the scaling of the unknowns and then we use arguments of
asymptotic analysis to obtain error estimates and a convergence result to the limit model.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

In solid mechanics, the obtention of models for rods, beams, bars, plates and shells is based on a priori hypotheses
on the displacement and/or stress fields which, upon substitution in the equilibrium and constitutive equations of three-
dimensional elasticity, lead to useful simplifications. Nevertheless, from both constitutive and geometrical point of views,
there is a need to justify the validity of most of the models obtained in this way.

In the past decades many models have been derived and justified by using the asymptotic expansion method, whose
foundations can be found in [16]. Earlier works were performed in [3,5] to justify the linearized theory of plate bending,
and later in [2] to justify the Bernoulli–Navier model for bending–stretching of elastic thin rods. More recently, the error
estimation of higher-order terms in the asymptotic expansion was provided in [12]. The nonlinear case was studied in [4].
The asymptoticmethodwas used in [30] to justify the Saint-Venant, Timoshenko andVlassovmodels of beams and in [23,24]
to derive models for the stretching–bending of viscoelastic rods.

Contact phenomena involving deformable bodies abound in industry and everyday life. For this reason, the engineering
literature concerning this topic is rather extensive. An early attempt to the study of frictional contact problems within the
framework of variational inequalities was made in [6]. Comprehensive references on analysis and numerical approximation
of variational inequalities arising from contact problems include [8,9,13]. Mathematical, mechanical and numerical state of
the art on the ContactMechanics can be found in the proceedings [17,20], in the special issue [26] and in themonograph [27],
as well.
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Wear of mechanical systems is a major factor which affects their proper functioning over time. Most of the wear is
generated by the frictional contact between various parts and components of themechanical systems. A simple and common
example is thewear of the car tires resulting from frictional contactwith the road. The literature dealingwith various aspects
ofwear includes [1,14,29]. Variational analyses of quasistatic viscoelastic frictional contact problemswithwear can be found
in [21,22,25], for instance.

Models of beams in frictional contact with wear, both in the dynamic and the quasistatic case, can be found in [7,28].
Nevertheless, these papers focus on the analysis of the models, including existence and uniqueness results for the weak
solutions, without providing an explanation on how the correspondingmodelswere derived. Therefore, despite the progress
made in the previous two papers, there is a real need to justify such kinds of models of contact with wear involving thin
structures.

The aim of the present paper is to contribute to the filling of this gap. More precisely, we derive models for the contact
with wear of an elastic rod, by using the asymptotic expansion method. To the best of our knowledge, this is the first time
such kinds of models have been rigorously derived. We obtain as a particular case of our main result, Theorem 6.1, the
following model:

∂2

∂x2


EI

∂2ξ

∂x2


= f + p(ξ − w − s) in (0, L) × (0, T ), (1.1)

ẇ = −kw|v∗
|p(ξ − w − s) in (0, L) × (0, T ). (1.2)

Here ξ is the flexion of the rod, w denotes the wear function, s is the initial gap between the rod and the obstacle, p is the
normal compliance function (which satisfies p(r) = 0 if r ≤ 0), v∗ the velocity of the moving foundation, kw is the wear
coefficient, and f represents external loads. Also, E is the Young’s modulus of thematerial, I the inertia moment for the cross
section, L is the length of the rod and T the period of observation.

The rest of the paper is organized as follows. In Section 2we introduce some notations and preliminarymaterial. Then, in
Section 3we show the existence and uniqueness of solution of the three-dimensional elasticity contact problem, formulated
in the volume Ωε occupied by the rod, ε being the size of the diameter of the transversal section ωε . The unknowns
are denoted uε, σε and wε , which represent the displacement, the stress and the wear function, respectively. The main
ingredient in our approach is developed in Section 4, and it consists of introducing a change of variable together with
the scaling of the unknowns. In this way, the problem is reduced to an equivalent one, formulated in a reference domain
Ω , with contact boundary ΓC . The unknowns of this new problem are denoted u(ε), σ(ε) and w(ε), and represent the
scaled displacement, the scaled stress and the scaled wear, respectively, for which we assume asymptotic expansions. The
mathematical justification of the model is provided in Section 5, and it is supported by error estimates and a convergence
result of the form u(ε) → u0 in [H1(Ω)]3 and w(ε) → w0 in L2(ΓC ), where u0

= (u0
i ) and w0 are the first order terms of

the respective asymptotic expansions. Finally, in Section 6, after the ‘‘descaling’’ of {u(ε), w(ε)}, which gives an asymptotic
expansion of {uε, wε

}, we characterize the zeroth order term of such expansions in terms of the solution of a problem,which
describes the axial deformation and bendings of an elastic beam in frictional contact with a moving foundation.

2. Notation and preliminaries

We denote by Sd the space of second order symmetric tensors on Rd, while ‘‘·’’ will represent the inner product on Sd and
Rd (in practice, d = 3). In addition, in what follows, unless the contrary is explicitly written, we use summation convention
on repeated indices. Moreover, Latin indices i, j, k, . . . take values in the set {1, 2, 3} whereas Greek indices α, β, ρ, . . .
(ε excluded) do it in the set {1, 2}. Also, an index which follows a comma means a partial derivative with respect to the
corresponding spatial variable, while a prime ′ denotes the derivative of a function with respect to its single spatial variable.

Let T > 0. For any real Banach space X we employ the usual notation for the spaces C([0, T ]; X), Ck([0, T ]; X), Lp(0, T ; X),
Hk(0, T ; X) with 1 ≤ p ≤ ∞, k = 1, 2, . . .. Moreover, for a function u : [0, T ] → X , we denote by u̇ and ü the first and
second derivatives of uwith respect to the time variable, when these derivatives exist.

Let ω be an open, bounded and connected set in R2 with area A(ω) which, for simplicity, we assume equal to one.
Denote by γ = ∂ω the boundary of ω, which is be supposed to be sufficiently smooth and divided into two disjoint parts:
γ = γC ∪ γN ,

◦

γC ∩
◦

γN = ∅. The coordinates system Ox1x2 will be a principal system of inertia associated with the section ω,
which means that

ω

x1dω =


ω

x2dω =


ω

x1x2dω = 0.

Given L > 0, we denote by Ω the reference rod Ω = ω × (0, L). A generic point of Ω is denoted by x = (x1, x2, x3). The
boundary ∂Ω contains the following parts:

Γ = γ × (0, L) = ΓN ∪ ΓC , ΓN = γN × (0, L), ΓC = γC × (0, L)
Γ0 = ω × {0}, ΓL = ω × {L}, ΓD = Γ0 ∪ ΓL.

Also, n stands for the unitary outer normal vector on Γ . Note that n3 = 0. For v ∈ [H1(Ω)]3 we write v for the trace of v on
∂Ω and denote by vn = v · n and vτ = v − vnn the normal and the tangential components of v on ∂Ω . When σ : Ω → Sd
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is a sufficiently smooth function (say C1), then σn and στ denote its normal and the tangential traces, i.e. σn = (σn) · n,
στ = σn − σnn.

2.1. Three-dimensional contact problem

We now describe the physical setting of the contact problem. Given a real parameter ε such that 0 < ε ≤ 1, we define

ωε
= εω, γ ε

= εγ = ∂ωε, γ ε
N = εγN , γ ε

C = εγC ,

and we denote by Ωε
= ωε

× (0, L) the prismatic set that we will identify as the reference configuration of the beam, with
area Aε

= ε2. A generic point of Ωε is denoted by xε
= (xε

1, x
ε
2, x

ε
3). The boundary ∂Ωε contains the following parts:

Γ ε
= γ ε

× (0, L) = Γ ε
N ∪ Γ ε

C , Γ ε
N = γ ε

N × (0, L), Γ ε
C = γ ε

C × (0, L),
Γ ε
0 = ωε

× {0}, Γ ε
L = ωε

× {L}, Γ ε
D = Γ ε

0 ∪ Γ ε
L .

Also, nε stands for the unitary outer normal vector on Γ ε . Note that nε
3 = 0. We remark that writing superscript 1 is

equivalent to dropping it (for example Ω1
= Ω).

We suppose that the rod Ωε is submitted to the action of body forces of volume density f ε
= (f ε

i ) and surface forces
acting on Γ ε

N of density gε
= (gε

i ). Also, the rod is clamped on both ends Γ ε
0 and Γ ε

L andmay arrive in contact on Γ ε
C with an

obstacle, the so-called foundation. The foundation is slidingwith a constant velocity v⋆ε
: Γ ε

C → R3. We denoteα⋆ε
= ∥v⋆ε

∥

and we assume that α⋆ε > 0 in Γ ε
C . We introduce the unitary vector δε

= (δε
i ) : Γ ε

C → R3 defined by δε
= v⋆ε/∥v⋆ε

∥. In
the reference configuration there is a gap between Γ ε

C and the foundation, measured along the direction of nε , denoted sε .
When the contact arises, some material of the contact surface is worn out and immediately removed from the system. This
process is measured by the wear function wε .

We are interested in the evolution of the displacement field uε
= (uε

i ), the stress field σε
= (σ ε

ij ) and the wear function
wε in the time interval of interest (0, T ) with T > 0. Therefore, the classical formulation of the contact problem is the
following.

Problem 2.1. Find a displacement field uε
: Ωε

× [0, T ] → R3, a stress field σε
: Ωε

× [0, T ] → S3 and a wear function
wε

: Ωε
× [0, T ] → R such that

σε
= λεtr(eε(uε))I + 2µεeε(uε) in Ωε

× (0, T ), (2.1)

Div σε
+ f ε

= 0 in Ωε
× (0, T ), (2.2)

uε
= 0 on Γ ε

D × (0, T ), (2.3)

σεnε
= gε on Γ ε

N × (0, T ), (2.4)

σ ε
n = −pε

n(u
ε
n − wε

− sε) on Γ ε
C × (0, T ), (2.5)

σε
τ = −pε

τ (u
ε
n − wε

− sε)
v⋆ε

∥v⋆ε∥
on Γ ε

C × (0, T ), (2.6)

ẇε
= −kε

wα⋆εσ ε
n = kε

wα⋆εpε
n(u

ε
n − wε

− sε) on Γ ε
C × (0, T ), (2.7)

wε(0) = wε
0 on Γ ε

C . (2.8)

Here and below, in order to simplify the notation, we voluntary omit the dependence of the various functions on xε
∈ Ωε

and t ∈ (0, T ). We now proceed to describe the equations and the boundary conditions (2.1)–(2.8).
First, we assume that the rod is made from an elastic material which is homogeneous and isotropic, i.e., it follows a

constitutive law of the form (2.1) where eε(uε) = (eε
ij(u

ε)) = ( 1
2 (

∂uε
j

∂xεi
+

∂uε
i

∂xεj
)) denotes the linearized strain tensor and λε and

µε denote the Lamé coefficients. The process is assumed to be quasistatic and, therefore, we use the equilibrium equation
(2.2), in which the effects of inertia have been neglected. Eqs. (2.3) and (2.4) are the displacement and traction boundary
conditions, respectively. The contact in the normal direction is assumed to satisfy the normal compliance condition (2.5),
so the contact pressure −σ ε

n is related to the interpenetration of surface asperities. The gap at the point xε is given by
sε(xε) + wε(xε) − uε

n(x
ε), when it is nonnegative. The function pn has to vanish when its argument is negative, since then

there is no contact and, therefore, the normal stress vanishes. A power lawwas used in [15,18] andmore general expressions
can be found in [1,14]. In this work we consider the following two choices:

pε
n(r) = cε

nr+, pε
n(r) =


cε
nr+, if r ≤ αε,
cε
nα

ε, if r > αε,
αε > 0, (2.9)

where r+ = max{r, 0}. The tangential stress σε
τ is assumed to satisfy condition (2.6) in which pε

τ is a given positive function.
This means that the shear is opposite to the direction of the velocity of the foundation v⋆ε and depends on the normal
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pressure. A usual choice for pε
τ is

pε
τ (r) = µε

τp
ε
n(r). (2.10)

The evolution of the wear of the contacting surface depends on the normal pressure and therefore it is governed by the
Archard’s law (2.7), where kε

w > 0 is the wear coefficient. For the sake of simplicity we assume that v⋆ε
= (0, 0, v⋆ε

3 ), which
implies α∗ε

= |v∗ε
3 | and δε

= δ = (0, 0, ±1). This means that the foundation is sliding in the axial direction of the rod.
Finally, condition (2.8) represents the initial condition for the wear function in which wε

0 is the given initial wear.

2.2. Variational formulation

Given a set Oε in Rn we denote by | · |0,Oε both the usual norm in the Hilbert space L2(Oε) and the usual product norm
in [L2(Oε)]m, m = 1, 2, . . .. In particular, in the next sections we use the norms | · |0,Ωε and | · |0,Γ ε

C
. For the stress field we

define the space

Σ(Ωε) = {τε
= (τ ε

ij ) | τ ε
ij = τ ε

ji ∈ L2(Ωε)}, (2.11)

which is a Hilbert space with the inner product

(σε, τε) =


Ωε

σε
· τε dxε

=


Ωε

σ ε
ij τ

ε
ij dx

ε
∀σε, τε

∈ Σ(Ωε).

Remark that Σ(Ωε) = [L2(Ωε)]9s where s stands for symmetry, and the associated norm is ∥ · ∥Σ(Ωε) := (·, ·)1/2 = | · |0,Ωε .
Also, for any element τε

∈ Σ(Ωε) we use the notation |τ ε
3β |0,Ωε for the norm of (τ ε

3β) in [L2(Ωε)]2 and |τ ε
αβ |0,Ωε for the

norm of (τ ε
αβ) in [L2(Ωε)]4s .

We denote H1(Ωε) the usual Sobolev space endowed with the classical norm ∥ · ∥1,Ωε . We use the same notation for the
product norm in [H1(Ωε)]m,m = 1, 2, . . .. The space of admissible displacements is defined by

V (Ωε) = {vε
∈ [H1(Ωε)]3 | vε

= 0 on Γ ε
D }. (2.12)

The space V (Ωε) endowed with the inner product

(uε, vε) =


Ωε

eε(uε) · eε(vε) dxε
=


Ωε

eε
ij(u

ε)eε
ij(v

ε) dxε
∀uε, vε

∈ V (Ωε),

is a real Hilbert space. Since meas (Γ ε
D ) > 0, it follows from Korn’s inequality (see, for instance, [19]) that the associated

norm ∥·∥V (Ωε) = (·, ·)1/2 is equivalent to the usual norm ∥·∥1,Ωε . Althoughwe use the same notation for the inner products
in V (Ωε) and Σ(Ωε), no confusion will arise in the following sections. From the Sobolev trace theorem we have

|vε
|0,Γ ε

C
≤ cε

0 ∥vε
∥1,Ωε ∀vε

∈ V (Ωε). (2.13)

Here and below, cε
k (k = 0, 1, 2, . . .) represent various positive constants which are independent on the time variable.

We turn to the variational formulation of Problem 2.1. First, we assume that the normal and tangential compliance
functions pε

e (e = n, τ ) satisfy
(a) pε

e : Γ ε
C × R → R+.

(b) There exists Lε
e > 0 such that |pε

e(x
ε, r1) − pε

e(x
ε, r2)| ≤ Lε

e |r1 − r2|, ∀r1, r2 ∈ R, a.e. xε
∈ Γ ε

C .
(c) The mapping pε

e(·, r) : xε
→ pe(xε, r) is measurable on ΓC , for all r ∈ R.

(d) The mapping pε
e(·, r) : xε

→ pε
e(x

ε, r) vanishes for all r ≤ 0.

(2.14)

We note that the assumptions on the functions pε
n and pε

τ are quite general, with the exception of (2.14)(b) which requires
the functions to grow asymptotically at most linearly. From the practical point of view this assumption is not restrictive,
since the interpenetration is likely to be very small. It is easily seen that the functions defined in (2.9) satisfy the condition
(2.14)(b). Also, to conform to the usual practice, we may write pε

τ = µε
τp

ε
n, and we notice that if pε

n satisfies the condition
(2.14)(b), then pε

τ also satisfies the condition (2.14)(b) with Lε
τ = µε

τ Lε
n. So the results below are valid for the boundary

value problems associated with these choices of the normal compliance functions.
We assume that the force and traction densities satisfy

f ε
∈ C([0, T ]; L2(Ωε)3), gε

∈ C([0, T ]; L2(Γ ε
N )). (2.15)

Also, we assume the following regularity for the initial wear function, the gap and the normal and tangential compliance
functions:

wε
0 ∈ L2(Γ ε

C ), sε ∈ L2(Γ ε
C ), sε ≥ 0 a.e. on Γ ε

C , pε
e(·, r) ∈ L2(Γ ε

C ), ∀r ∈ R. (2.16)

We use the Riesz representation theorem to define the function F ε
: [0, T ] → V (Ωε) by

(F ε(t), vε) =


Ωε

f ε(t) · vε dxε
+


Γ ε
N

gε(t) · vε daε,
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andwe note that (2.15) implies that F ε
∈ C([0, T ]; V (Ωε)). We also consider the functional jε : V (Ωε)×L2(Γ ε

C )×V (Ωε) →

R given by

jε(uε, wε, vε) =


Γ ε
C

pε
n(u

ε
n − wε

− sε)vε
n da

ε
+


Γ ε
C

pε
τ (u

ε
n − wε

− sε)δε
· vε

τ daε, (2.17)

and we note that assumption (2.14) and inequality (2.13) yield

|jε(uε
1, w

ε
1, v

ε) − jε(uε
2, w

ε
2, v

ε)| ≤ cε
0(L

ε
n + Lε

τ )(c
ε
0∥u

ε
1 − uε

2∥1,Ωε + |wε
1 − wε

2|0,Γ ε
C
)∥vε

∥1,Ωε , (2.18)

for all uε
1, u

ε
2, v

ε
∈ V (Ωε), wε

1, w
ε
2, ∈ L2(Γ ε

C ).
Next, we use standard arguments based on Green’s formula to obtain the following variational formulation of

Problem 2.1.

Problem 2.2. Find a displacement field uε
: [0, T ] → V (Ωε), a stress field σε

: [0, T ] → Σ(Ωε), verifying (2.1), and a wear
function wε

: [0, T ] → L2(Γ ε
C ) such that

(σε, eε(vε)) + jε(uε, wε, vε) = (F ε(t), vε) ∀vε
∈ V (Ωε), (2.19)

ẇε
= α⋆εkε

wp
ε
n(u

ε
n − wε

− sε) on Γ ε
C × (0, T ), wε(0) = wε

0. (2.20)

The unique solvability of the Problem 2.2 will be stated and proved in the next section.

3. An existence and uniqueness result

Consider the bilinear form aε
: V (Ωε) × V (Ωε) → R defined by

aε(uε, vε) =


Ωε

λεeε
kk(u

ε)eε
ll(v

ε) dxε
+ 2µε


Ωε

eε
ij(u

ε)eε
ij(v

ε) dxε (3.1)

for all uε, vε
∈ V (Ωε). Since λε and µε are positive, we note that there exist cε

1 > 0 and cε
2 > 0 such that

|aε(uε, vε)| ≤ cε
1 ∥uε

∥1,Ωε∥vε
∥1,Ωε , aε(uε, uε) ≥ cε

2 ∥uε
∥
2
1,Ωε ,

for all uε, vε
∈ V (Ωϵ). We have the following result.

Theorem 3.1. Assume that (2.14)–(2.16) hold and, in addition the smallness assumption

Lε
n + Lε

τ < Lε
0, (3.2)

where Lε
0 = cε

2/(c
ε
0)

2. Then Problem 2.2 has a unique solution, with regularity

uε
∈ C([0, T ]; V (Ωε)), σε

∈ C([0, T ]; Σ(Ωε)), wε
∈ C([0, T ]; L2(Γ ε

C )). (3.3)

The proof of the theorem is based on arguments similar to those used in [8,21,22,27] and, therefore, we skip the details.
The first step consists in the following existence and uniqueness result.

Lemma 3.2. Given ηε
∈ C([0, T ]; L2(Γ ε

C )) there exists a unique function uε
η ∈ C([0, T ]; V (Ωε)) which satisfies

aε(uε
η(t), v) + jε(uε(t), ηε(t), vε) = (F ε(t), vε) ∀vε

∈ V (Ωε), ∀t ∈ [0, T ]. (3.4)

We use the function uε
η obtained in Lemma 3.2 to obtain the following result.

Lemma 3.3. For each ηε
∈ C([0, T ]; L2(Γ ε

C )) there exists a unique wear function wε
η ∈ C([0, T ]; L2(Γ ε

C )) such that

ẇε
η(t) = α⋆εkε

wp
ε
n(u

ε
ηn(t) − wε

η(t) − sε) ∀t ∈ [0, T ], wε
η(0) = wε

0. (3.5)

Next, we define the operator Λε
: C([0, T ]; L2(Γ ε

C )) → C([0, T ]; L2(Γ ε
C )) by the equality Λεηε(t) = wε

η . We have the
following fixed point result.

Lemma 3.4. The operator Λε has a unique fixed point ηε
∗

∈ C([0, T ]; L2(Γ ε
C )).

We have now all the ingredients to provide the proof of Theorem 3.1.
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Proof of Theorem 3.1. Existence. Let ηε
∗

∈ C([0, T ]; L2(Γ ε
C )) be the fixed point of Λε and let uε be the solution of Eq. (3.4)

for ηε
= ηε

∗
, i.e., uε

= uε
η∗ . We denote by σε the function given by (2.1) and, finally, let wε denote the solution of the Cauchy

problem (3.5) for ηε
= ηε

∗
, i.e., wε

= wε
ηε
∗
. Clearly, equalities (2.1) and (2.20) hold. Moreover, since ηε

∗
= Λεηε

∗
= wε

ηε
∗

= wε ,
equalities (3.1) and (3.4) imply that (2.19) holds, too. Also, it follows from Lemma 3.2 that uε

∈ C([0, T ]; V (Ωε)) and,
therefore, σε

∈ C([0, T ]; Σ(Ωε)). In addition, Lemma 3.3 shows that wε
∈ C([0, T ]; L2(Γ ε

C )). We conclude from above that
(uε, σε, wε) is a solution of Problem 2.2 which satisfies (3.3).

Uniqueness. The uniqueness of the solution is a consequence of the uniqueness of the fixed point of operatorΛε combined
with the unique solvability of problems considered in Lemmas 3.2 and 3.3. �

4. Asymptotic analysis

In order to transport the problem in the reference domain Ω , we associate to the unknowns (uε, σε) ∈ V (Ωε) × Σ(Ωε)
the scaled unknowns (u(ε), σ(ε)) ∈ V (Ω) × Σ(Ω), defined below, where V (Ω) and Σ(Ω) are defined as in (2.11) and
(2.12) for ε = 1. Following [30] we introduce the space of Bernoulli–Navier displacement fields defined by

VBN(Ω) = {v = (vi) ∈ V (Ω) | eαβ(v) = e3β(v) = 0}.

It was proved in [30] that VBN(Ω) coincides with the space

VBN(Ω) = {v = (vi) ∈ [H1(Ω)]3 | vα(x) = χα(x3), v3(x) = χ3(x3) − xαχ ′

α(x3), χα ∈ H2
0 (0, L), χ3 ∈ H1

0 (0, L)}.

We introduce the operator Π ε
: Ω̄ → Ω̄ε defined by Π ε(x) = xε , where x = (x1, x2, x3) ∈ Ω̄ and xε

= (xε
1, x

ε
2, x

ε
3) =

(εx1, εx2, x3) ∈ Ω̄ε . Moreover, for all vε
∈ V (Ωε) we define the function v(ε) ∈ V (Ω) by equalities vα(ε)(x) = εvε

α(xε)

and v3(ε)(x) = vε
3(x

ε), where xε
= Π ε(x), x ∈ Ω̄ . Particularly, for the displacement field uε the corresponding function

u(ε) ∈ V (Ω) is given by

uα(ε)(x) = εuε
α(xε), u3(ε)(x) = uε

3(x
ε). (4.1)

Wemake the following hypotheses on the data. We assume that the various coefficients and parameters of thematerial and
laws involved in Problem 2.1 have the following orders of magnitude with respect to ε,

λε
= λ, µε

= µ, cε
n = ε3cn, αε

= ε−1α, µε
τ = ε−1µτ , kε

w = ε−3kw,

v∗ε
= v∗

= (0, 0, v∗

3), α⋆ε
= α⋆

= |v∗

3 |,
(4.2)

where λ, µ, cn, α, µτ , kw, v∗

3 and α⋆ are independent of ε. Also, we define

pn(r) = ε−2pε
n(ε

−1r), pτ (r) = ε−1pε
τ (ε

−1r). (4.3)

Note that if pε
n is given by (2.9) then, taking into account (4.2), we find that pn is also of the form (2.9). Moreover, it is easy

to check that if pε
τ is given by (2.10) then

pτ (r) = ε−1pε
τ (ε

−1r) = ε−1µε
τp

ε
n(ε

−1r) = εµε
τpn(r) = µτpn(r),

which means that pτ is also of the form (2.10). Next, we assume that there exist functions fi and gi independent of ε, such
that

f ε
α (xε) = εfα(x), f ε

3 (xε) = f3(x), gε
α(xε) = ε2gα(x), gε

3 (x
ε) = εg3(x), (4.4)

for all xε
= Π ε(x) with x ∈ Ω̄ . We also define functions w(ε), w0(ε) and s(ε) ∈ L2(ΓC ) by

w(ε)(x) = εwε(xε), w0(ε)(x) = εwε
0(x

ε), s(ε)(x) = εsε(xε). (4.5)

Finally, we define the functional j : V (Ω) × L2(ΓC ) × V (Ω) → R as in (2.17) for ε = 1.
By following a similar procedure as those described for other problems in [10–12,30] we obtain the following problem.

Problem 4.1. Find a displacement field u(ε) : [0, T ] → V (Ω) and a wear function w(ε) : [0, T ] → L2(ΓC ) such that

a(ε)(u(ε), v) + ε4j(u(ε), w(ε), v) = ε4(F(t), v), ∀v ∈ V (Ω), (4.6)

ẇ(ε) = α⋆kwpn (un(ε) − w(ε) − s(ε)) a.e. in (0, T ), w(ε)(0) = w0(ε). (4.7)
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Here and below we use the bilinear forms on the space [H1(Ω)]3 defined by

a(ε)(v,w) = a0(v,w) + ε2a2(v,w) + ε4a4(v,w),

a0(u, v) =


Ω


λeρρ(u)eββ(v) + 2µeαβ(u)eαβ(v)


dx,

a2(u, v) =


Ω


λe33(u)eββ(v) + 2µe3β(u)e3β(v) + λeρρ(u)e33(v)


dx,

a4(u, v) =


Ω

(λ + 2µ)e33(u)e33(v) dx,

for all u, v ∈ [H1(Ω)]3. Using Theorem 3.1, we deduce the following result.

Theorem 4.2. Assume the hypotheses of Theorem 3.1 and, in addition, assume that (4.2)–(4.5) hold. Let u(ε) be the displacement
field associated to uε by using (4.1) and let w(ε) be the wear function associated towε by using (4.5). Then the pair {u(ε), w(ε)}
is the unique solution of Problem 4.1 and, moreover, u(ε) ∈ C([0, T ]; V (Ω)) and w(ε) ∈ C([0, T ]; L2(ΓC )).

Next, we assume that the displacements u(ε) have an asymptotic expansion of the form

u(ε) = u0
+ ε2u2

+ ε4u4
+ U(ε), lim

ε→0
ε−4U(ε) = 0, (4.8)

and the scaled wear w(ε) has an asymptotic expansion of the form

w(ε) = w0
+ W(ε), w0(ε) = w0

0 + W0(ε), lim
ε→0

W(ε) = lim
ε→0

W0(ε) = 0, (4.9)

with the compatibility condition w0(0) = w0
0, W(ε)(0) = W0(ε). We also assume that there exists a function s : ΓC → R

such that limε→0 s(ε) = s. Using (4.8) and (4.9) in Problem 4.1, we find that

a0(u0, v) + ε2 a0(u2, v) + a2(u0, v)

+ ε4 a0(u4, v) + a2(u2, v) + a4(u0, v)


+ a0(U(ε), v) + ε2a2(U(ε), v)

+ ε4a4(U(ε), v) + ε4j(u0
+ ε2u2

+ ε4u4
+ U(ε), w0

+ W(ε), v) = ε4(F(t), v), ∀v ∈ V (Ω),

ẇ0
+ Ẇ(ε) = α⋆kwpn


u0
n + ε2u2

n + ε4u4
n + Un(ε) − w0

− W(ε) − s(ε)


a.e. in (0, T ),

w0(0) + W(ε)(0) = w0
0 + W0(ε).

Multiplying the previous equalities by ε0, ε−2, ε−4, respectively, and taking the limit as ε → 0, we find that

a0(u0, v) = 0, ∀v ∈ V (Ω), (4.10)

a0(u2, v) + a2(u0, v) = 0, ∀v ∈ V (Ω), (4.11)

a0(u4, v) + a2(u2, v) + a4(u0, v) + j(u0, w0, v) = (F(t), v), ∀v ∈ V (Ω), (4.12)

ẇ0
= α⋆kwpn


u0
n − w0

− s


a.e. in (0, T ), w0(0) = w0
0. (4.13)

Moreover, taking v = u0 in (4.10)–(4.11) we obtain eαβ(u0) = e3β(u0) = 0, which shows that u0
∈ VBN(Ω). This implies

that

u0
α(x1, x2, x3) = ξα(x3), ξα ∈ H2

0 (0, L), u0
3(x1, x2, x3) = ξ3(x3) − xαξ ′

α(x3), ξ3 ∈ H1
0 (0, L).

Next, from (4.12) we deduce that
Ω


(λ + 2µ)e33(u0) + λeρρ(u2)


e33(v) dx + j(u0, w0, v) = (F , v), ∀v ∈ VBN(Ω). (4.14)

Using (4.11) and arguments similar to those used in [10] we obtain that
Ω

eρρ(u2)e33(v) dx = −
λ

λ + µ


Ω

e33(u0)e33(v) dx, ∀v ∈ VBN(Ω),

and, therefore, from (4.14) we find that
Ω

Ee33(u0)e33(v) dx + j(u0, w0, v) = (F , v), ∀v ∈ VBN(Ω). (4.15)

Moreover, since v ∈ VBN(Ω) we deduce that

vα(x1, x2, x3) = ζα(x3), ζα ∈ H2
0 (0, L), v3(x1, x2, x3) = ζ3(x3) − xαζ ′

α(x3), ζ3 ∈ H1
0 (0, L),
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which implies that
Ω

e33(u0)e33(v) dx =

 L

0
A(ω)ξ ′

3ζ
′

3 dx3 +

 L

0
Iαξ ′′

α ζ ′′

α dx3, (4.16)

where Iα denote the moments of inertia. Note that since n = (n1(x1, x2), n2(x1, x2), 0), then
vn = ζαnα, vτ = v − vnn, (vτ )3 = v3 = ζ3 − xρζ ′

ρ, (vτ )β = ζβ − ζρnρnβ .

Therefore,

j(u0, w0, v) =

 L

0


γC

pn(ξρnρ − w0
− s)ζβnβ dγC dx3 +

 L

0


γC

pτ (ξρnρ − w0
− s)


δ3ζ3 − δ3xρζ ′

ρ


dγC dx3. (4.17)

Also,

(F , v) =

 L

0
Fαζα dx3 +

 L

0
F3ζ3 dx3 −

 L

0
Mαζ ′

α dx3, (4.18)

where

Fα =


ω

fα dω +


γN

gα dγN , F3 =


ω

f3 dω +


γN

g3 dγN , Mα =


ω

xα f3 dω +


γN

xαg3 dγN .

On the other hand, using (4.16)–(4.18) we find that (4.15) is equivalent to

E
 L

0
A(ω)ξ ′

3ζ
′

3 dx3 +

 L

0
Iαξ ′′

α ζ ′′

α dx3


+

 L

0


γC

pn(ξρnρ − w0
− s)ζβnβ dγC dx3

+

 L

0


γC

pτ (ξρnρ − w0
− s)


δ3ζ3 − δ3xρζ ′

ρ


dγC dx3

=

 L

0
Fαζα dx3 +

 L

0
F3ζ3 dx3 −

 L

0
Mαζ ′

α dx3. (4.19)

We test in (4.19) with particular functions v ∈ VBN(Ω) to deduce the following equations, in which no summation on α is
involved:

E
 L

0
Iαξ ′′

α ζ ′′

α dx3 +

 L

0


γC

pn(ξρnρ − w0
− s)ζαnα dγC dx3

−

 L

0


γC

pτ (ξρnρ − w0
− s)


δ3xαζ ′

α


dγC dx3 =

 L

0
Fαζα dx3 −

 L

0
Mαζ ′

α dx3, (4.20)

E
 L

0
A(ω)ξ ′

3ζ
′

3 dx3 +

 L

0


γC

pτ (ξρnρ − w0
− s)δ3ζ3 dγC dx3 =

 L

0
F3ζ3 dx3. (4.21)

5. Strong convergence

We start with the following result.

Lemma 5.1. There exists a constant c2 > 0 which does not depend on ε such that

a(ε)(v, v) ≥ c2

|eαβ(v)|20,Ω + ε2

|e3β(v)|20,Ω + ε4
|e33(v)|20,Ω


∀v ∈ [H1(Ω)]3.

Moreover, if (3.2) holds, then there exists a constant c > 0 independent of ε such that

a(ε)(v − w, v − w) + ε4 [j(v, ϕ, v − w) − j(w, ϕ, v − w)]

≥ c

|eαβ(v − w)|20,Ω + ε2

|e3β(v − w)|20,Ω + ε4
|e33(v − w)|20,Ω


∀v,w ∈ V (Ω), ϕ ∈ L2(ΓC ). (5.1)

Proof. The proof of the first inequality is straightforward. For the second one we use

|j(v, ϕ, v − w) − j(w, ϕ, v − w)| ≤ c20 (Ln + Lτ )∥v − w∥
2
1,Ω

combined with the smallness assumption (3.2). �

Next, we define the second order approximation of u(ε) as u2(ε) = u0
+ ε2u2. From (4.10)–(4.12) we obtain that

a(ε)(u2(ε), v) + ε4j(u2(ε), w(ε), v) = ε6a4(u2, v) − ε4a0(u4, v) + ε4 j(u2(ε), w(ε), v) − j(u0, w0, v)


+ ε4(F(t), v) ∀v ∈ V (Ω). (5.2)
Two possibilities arise: u2

∈ V (Ω) and u2
∉ V (Ω). We shall consider them separately.
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5.1. No boundary layer case

Assume that u2
∈ V (Ω) and, therefore, u2(ε) ∈ V (Ω). Denote r(ε) = u(ε) − u2(ε) ∈ V (Ω). We subtract (5.2) from

(4.6), take v = r(ε) and, after some algebra, we find that

a(ε)(r(ε), r(ε)) + ε4 j(u(ε), w(ε), r(ε)) − j(u2(ε), w(ε), r(ε))


= ε4a0(u4, r(ε)) − ε6a4(u2, r(ε)) − ε4 j(u2(ε), w(ε), r(ε)) ± j(u2(ε), w0, r(ε)) − j(u0, w0, r(ε))

. (5.3)

Also, arguments similar to those used in the proof of (2.18) yieldj(u2(ε), w(ε), r(ε)) − j(u2(ε), w0, r(ε))
 ≤ c|w(ε) − w0

|0,ΓC ∥r(ε)∥1,Ω , (5.4)j(u2(ε), w0, r(ε)) − j(u0, w0, r(ε))
 ≤ cε2

∥u2
∥1,Ω∥r(ε)∥1,Ω . (5.5)

Next, from (4.7) and (4.13) we obtain that

ẇ(ε) − ẇ0
= α⋆kw


pn (un(ε) − w(ε) − s(ε)) − pn


u0
n − w0

− s


a.e. in (0, T ).

Taking into account (2.14), Fatou’s lemma and Cauchy–Schwartz inequality, we find that

|w(ε)(t) − w0(t)|0,ΓC ≤ |w0(ε) − w0
0|0,ΓC + c


t|s(ε) − s|0,ΓC

+

 t

0


|un(ε)(s) − u0

n(s)|0,ΓC + |w(ε)(s) − w0(s)|0,ΓC


ds


a.e. in (0, T ).

Using Gronwall’s lemma and adding and subtracting conveniently u2(ε) we deduce that

|w(ε)(t) − w0(t)|0,ΓC ≤ c


|w0(ε) − w0
0|0,ΓC + |s(ε) − s|0,ΓC + ε2

 t

0
∥u2(s)∥1,Ω ds

+

 t

0
∥r(ε)(s)∥1,Ω ds


a.e. in (0, T ). (5.6)

Here c is a positive constant which depends on T but is independent of ε.

Theorem 5.2 (Error Estimate Under No Boundary Layer Phenomenon). Assume the hypotheses of Theorem 3.1, and let u0 and
u2 be the functions introduced in (4.8). Moreover, assume that the second order term u2 satisfies the boundary condition u2

= 0
on Γ0 ∪ ΓL and, in addition, the initial gap and wear have second order asymptotic expansions, i.e.,

|w0(ε) − w0
0|0,ΓC ≤ cε2, |s(ε) − s|0,ΓC ≤ cε2. (5.7)

Then the second order approximation of the scaled displacements u2(ε) = u0
+ ε2u2

∈ V (Ω) is such that

∥u(ε) − u2(ε)∥1,Ω ≤ Cε2, ∥u(ε) − u0
∥1,Ω ≤ Cε2 a.e. in (0, T ), (5.8)

where C is a positive constant which does not depend on ε. Furthermore, the first order approximation of the scaled wear w0

satisfies

|w(ε) − w0
|0,ΓC ≤ Cε2 a.e. in (0, T ). (5.9)

Proof. We use (5.1) and (5.3) with v = u(ε),w = u2(ε) and ϕ = w(ε), the definitions of a0 and a4, (5.4)–(5.6) to find that

c

|eαβ(r(ε))|20,Ω + ε2

|e3β(r(ε))|20,Ω + ε4
|e33(r(ε))|20,Ω


≤ ε4

|eαβ(r(ε))|0,Ω

+ ε6
|e33(r(ε))|0,Ω + ε6

∥r(ε)∥1,Ω + ε4
 t

0
∥r(ε)(s)∥1,Ω ds∥r(ε)(t)∥1,Ω

+ ε4

|w0(ε) − w0

0|0,ΓC + |s(ε) − s|0,ΓC + ε2
 t

0
∥u2

∥1,Ω ds


∥r(ε)∥1,Ω , (5.10)

where the constant c depends on u2, u4 and the material coefficients. We define

r(ε) = ∥r(ε)(t)∥1,Ω =

|eαβ(r(ε))|20,Ω + |e3β(r(ε))|20,Ω + |e33(r(ε))|20,Ω

 1
2 ,

r̄(ε) =

|eαβ(r(ε))|20,Ω + ε2

|e3β(r(ε))|20,Ω + ε4
|e33(r(ε))|20,Ω

 1
2 .
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Then, it is easy to see that ε2r(ε) ≤ r̄(ε) ≤ r(ε). Using these inequalities and (5.10) we find

c (r̄(ε)(t))2 ≤ ε4 r̄(ε)(t) +

 t

0
r̄(ε)(s) ds r̄(ε)(t)

+ ε2

|w0(ε) − w0

0|0,ΓC + |s(ε) − s|0,ΓC + ε2
 t

0
∥u2

∥1,Ω ds

r̄(ε)(t).

Therefore, by using Gronwall’s lemma, we deduce that

r̄(ε)(t) ≤ cε4
+ cε2

|w0(ε) − w0
0|0,ΓC + |s(ε) − s|0,ΓC


,

which combined with (5.7) implies (5.8). Finally, (5.9) is a consequence of (5.6). �

5.2. Boundary layer case

We turn now to the general case, in which u2 does not belong to V (Ω). In this case we need to define a corrector function
Ψ u2(ε) with the property that u∗

= u2(ε) + Ψ u2(ε) belongs to V (Ω). More precisely, given an arbitrary displacement
v ∈ [H1(0, L;H1(ω))]3, we define the corrector function Ψ v(ε) as in [12] by equality

Ψ v(ε)(x1, x2, x3) = −ε2 [v(x1, x2, 0)η1(ε)(x3) + v(x1, x2, L)η2(ε)(x3)] ,

where

η1(ε) =

1
ε
(ε − x3), if 0 ≤ x3 ≤ ε,

0, if ε ≤ x3 ≤ L,
η2(ε) =


0, if 0 ≤ x3 ≤ L − ε,

−
1
ε
(L − ε − x3), if L − ε ≤ x3 ≤ L.

It is obvious that the corrected functions v + ε−2Ψ v(ε) and ε2v + Ψ v(ε) belong to V (Ω) for all 0 < ε ≤ 1. Moreover, it is
easy to obtain the following estimates (see [12]):

Proposition 5.3. For each v ∈ [H1(0, L;H1(ω))]3, there exists a constant Cv which depends on v but is independent of ε such
that for all 0 < ε ≤ 1,

∥Ψ v(ε)∥1,Ω ≤ Cvε
3/2, |Ψ v(ε)|0,Ω ≤ Cvε

3, |(eαβ(Ψ v(ε)))|0,Ω ≤ Cvε
5/2,

|(e3α(Ψ v(ε)))|0,Ω ≤ Cvε
3/2, |e33(Ψ v(ε))|0,Ω ≤ Cvε

3/2.

Next, define r(ε) = u(ε) − u∗
∈ V (Ω). Then, using (5.2) we find that

a(ε)(u∗, v) + ε4j(u∗, w(ε), v) = ε6a4(u2, v) − ε4a0(u4, v) + ε4 j(u∗, w(ε), v) − j(u0, w0, v)


+ ε4(F(t), v) + a(ε)(Ψ u2(ε), v) ∀v ∈ V (Ω). (5.11)

Subtracting (5.11) from (4.6) and taking v = r(ε) in the resulting equality we find that

a(ε)(r(ε), r(ε)) + ε4 j(u(ε), w(ε), r(ε)) − j(u∗, w(ε), r(ε))


= ε4a0(u4, r(ε)) − ε6a4(u2, r(ε))

− a(ε)(Ψ u2(ε), r(ε)) − ε4 j(u∗, w(ε), r(ε)) ± j(u∗, w0, r(ε)) − j(u0, w0, r(ε))

. (5.12)

By proceeding as in [12] we can proof that u2
∈ [H1(0, L;H1(ω))]3. Therefore, it is easy to see that the following inequalities

hold:

a(ε)(Ψ u2(ε), r(ε)) ≤ c

ε

5
2 |eαβ(r(ε))|0,Ω + ε

9
2 |e33(r(ε))|0,Ω + ε

7
2 |e3β(r(ε))|0,Ω


, (5.13)j(u∗, w(ε), r(ε)) − j(u∗, w0, r(ε))

 ≤ c|w(ε) − w0
|0,ΓC ∥r(ε)∥1,Ω , (5.14)j(u∗, w0, r(ε)) − j(u0, w0, r(ε))

 ≤ c

ε2

∥u2
∥1,Ω + ∥Ψ u2(ε)∥1,Ω


∥r(ε)∥1,Ω . (5.15)

We have the following error estimate result.

Theorem 5.4 (General Error Estimate). Assume the hypotheses of Theorem 3.1, and let u0 and u2 be the functions introduced
in (4.8). Moreover, assume that the initial gap and the initial wear have one half order asymptotic expansions, i.e.,

|w0(ε) − w0
0|0,ΓC ≤ cε1/2, |s(ε) − s|0,ΓC ≤ cε1/2. (5.16)

Then the corrected second order approximation of the scaled displacements u∗
= u0

+ ε2u2
+ Ψ u(2)(ε) ∈ V (Ω) is such that

∥u(ε) − u∗
∥1,Ω ≤ Cε1/2, ∥u(ε) − u0

∥1,Ω ≤ Cε1/2 a.e. in (0, T ), (5.17)

where C is a positive real constant independent of ε. Furthermore, the first order approximation of the scaled wear w0 satisfies

|w(ε) − w0
|0,ΓC ≤ Cε1/2 a.e. in (0, T ). (5.18)
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Proof. We use (5.1) and (5.12) with v = u∗, w = u(ε) and ϕ = w(ε), the definitions of a0 and a4, (5.13)–(5.15) and an
inequality similar to (5.6) to find that

c

|eαβ(r(ε))|20,Ω + ε2

|e3β(r(ε))|20,Ω + ε4
|e33(r(ε))|20,Ω


≤ ε

5
2 |eαβ(r(ε))|0,Ω + ε

9
2 |e33(r(ε))|0,Ω + ε

7
2 |e3β(r(ε))|0,Ω + ε

11
2 ∥r(ε)∥1,Ω

+ ε4

|w0(ε) − w0

0|0,ΓC + |s(ε) − s|0,ΓC +

 t

0
(ε2

∥u2
∥1,Ω + ∥Ψ u2(ε)∥1,Ω) ds


∥r(ε)∥1,Ω

+ ε4
 t

0
∥r(ε)(s)∥1,Ω ds∥r(ε)(t)∥1,Ω .

Then, using the notation introduced in the proof of Theorem 5.2, we see that

c (r̄(ε)(t))2 ≤ ε
5
2 r̄(ε)(t) +

 t

0
r̄(ε)(s) ds r̄(ε)(t)

+ ε2

|w0(ε) − w0

0|0,ΓC + |s(ε) − s|0,ΓC +

 t

0
(ε2

∥u2
∥1,Ω + ∥Ψ u2(ε)∥1,Ω) ds


r̄(ε)(t).

Therefore, by using Gronwall’s lemma, we deduce that

r̄(ε)(t) ≤ cε
5
2 + cε2 

|w0(ε) − w0
0|0,ΓC + |s(ε) − s|0,ΓC


,

and, using (5.16) we obtain (5.17). Finally, (5.18) is a consequence of (5.6). �

6. Conclusion

In the previous sections we showed that, if the cross sectional area is small, then the scaled displacement u(ε) is
approximated in Ω by the first term of the asymptotic expansion (4.8). Consequently, the ‘‘descaling’’ of the unknowns
and data through (4.1) and (4.4) leads to successive approximations of the true displacement uε in Ωε (see [30]). Let us
denote

F ε
3 =


ωε

f ε
3 dω

ε
+


γ ε

gε
3dγ

ε, F ε
α =


ωε

f ε
α dω

ε
+


γ ε

gε
αdγ

ε, Mε
α =


ωε

xε
α f

ε
3 dω

ε
+


γ ε

xε
αg

ε
3dγ

ε.

Also, for each positive integer n we define components unε
∈ C([0, T ]; V (Ωε)) of the asymptotic expansion of uε by

equalities

unε
α (xε) = ε−1+nun

α(x), unε
3 (xε) = εnun

3(x) ∀xε
= Π ε(x) ∈ Ω̄ε. (6.1)

We characterize the zeroth order terms of displacements u0ε and wear w0ε as follows.

Theorem 6.1. The first order displacement field u0ε defined by (6.1) is a Bernoulli–Navier displacement given by

u0ε
α (xε

1, x
ε
2, x3) = ξ ε

α(x3), u0ε
3 (xε

1, x
ε
2, x3) = ξ ε

3 (x3) − xε
α(ξ ε)′α(x3),

where the flexions (ξ ε
1 , ξ ε

2 ) and the stretching ξ ε
3 represent the unique solution of the system

ξ ε
α ∈ H2

0 (0, L), E
 L

0
Iεαξ ε

α
′′
ζ ε
α

′′ dx3 +

 L

0


γ ε
C

pε
n(ξ

ε
ρnρ − w0ε

− sε)ζ ε
αnα dγ ε

C dx3

−

 L

0


γ ε
C

pε
τ (ξ

ε
ρnρ − w0ε

− sε)

δε
3x

ε
αζ ε

α
′

dγ ε

C dx3

=

 L

0
F ε
αζ ε

α dx3 −

 L

0
Mε

αζ ε
α

′ dx3, ∀ζ ε
α ∈ H1

0 (0, L), α = 1, 2, (6.2)

(no summation on α),

ξ ε
3 ∈ H1

0 (0, L), E
 L

0
A(ωε)ξ ε

3
′
ζ ε
3

′ dx3 +

 L

0


γ ε
C

pε
τ (ξ

ε
ρnρ − w0ε

− sε)δε
3ζ

ε
3 dγ ε

C dx3

=

 L

0
F ε
3 ζ ε

3 dx3 ∀ζ ε
3 ∈ H1

0 (0, L), (6.3)

ẇ0ε
= α⋆εkε

wp
ε
n


ξ ε
i ni − xε

αξ ε
α

′
− w0ε

− sε


a.e. in (0, T ), w0ε(0) = w0ε
0 . (6.4)
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The proof of Theorem 6.1 is a direct consequence of equalities (4.20)–(4.21). Note that the model (6.2)–(6.4) obtained
above couples Eq. (6.2) (which represents a general Bernoulli–Navier bending model in contact with an elastic foundation)
with the Cauchy problem (6.4) (which describes the evolution of the wear of the contact surfaces). We now consider the
particular case of a planar contact boundary Γ ε

C . Without any additional loss of generality, we take n = (−1, 0, 0). Assume
that sε(xε

1, x
ε
2, x3) ≡ sε(x3), which implies that the wear function w0ε depends only on x3. Therefore, the strong formulation

of the characterization of u0ε and w0ε above is given by the following system:
E

Iε1ξ

ε
1

′′
′′

− |γ ε
C |pε

n(−ξ ε
1 − w0ε

− sε) +


γ ε
C

xε
1 dγ

ε
C


δε
3p

ε
τ (−ξ ε

1 − w0ε
− sε)′ = F ε

1 + Mε
1
′
,

ẇ0ε
= α⋆εkε

wp
ε
n


−ξ ε

1 − w0ε
− sε


a.e. in (0, T ), w0ε(0) = w0ε

0
ξ ε
1 (0) = ξ ε

1
′
(0) = ξ ε

1 (L) = ξ ε
1

′
(L) = 0.

(6.5)

E

Iε2ξ

ε
2

′′
′′

+


γ ε
C

xε
2 dγ

ε
C


δε
3p

ε
τ (−ξ ε

1 − w0ε
− sε)′ = F ε

2 + Mε
2
′
,

ξ ε
2 (0) = ξ ε

2
′
(0) = ξ ε

2 (L) = ξ ε
2

′
(L) = 0.

(6.6)


−E


A(ωε)ξ ε

3
′
′

+ |γ ε
C |δε

3p
ε
τ (−ξ ε

1 − w0ε
− sε) = F ε

3 ,
ξ ε
3 (0) = ξ ε

3 (L) = 0.
(6.7)

Consider now the particular case γ ε
C = {c} × (a1, a2), with c ∈ R and a1 < 0 < a2. Then,

|γ ε
C | = |a2 − a1|,


γ ε
C

xε
1 dγC = c|a2 − a1|,


γ ε
C

xε
2 dγ

ε
C =

1
2
(a22 − a21).

In addition, take a1 = −
1
2 , a2 =

1
2 and c = 0. Then, the system (6.5) becomesE


Iε1ξ

ε
1

′′
′′

= F ε
1 + Mε

1
′
+ pε

n(−ξ ε
1 − w0ε

− sε),
ẇ0ε

= α⋆εkε
wp

ε
n


−ξ ε

1 − w0ε
− sε


a.e. in (0, T ), w0ε(0) = w0ε

0 ,

ξ ε
1 (0) = ξ ε

1
′
(0) = ξ ε

1 (L) = ξ ε
1

′
(L) = 0.

(6.8)

Note that, neglecting the derivative of the moment (i.e., assuming thatMε
1
′
= 0), the model (6.8) represents, with a slightly

different notation, the model (1.1)–(1.2) described in the Introduction. Moreover, (6.6)–(6.7) yields
E

Iε2ξ

ε
2

′′
′′

= F ε
2 + Mε

2
′
,

ξ ε
2 (0) = ξ ε

2
′
(0) = ξ ε

2 (L) = ξ ε
2

′
(L) = 0.

(6.9)
−E


A(ωε)ξ ε

3
′
′

= F ε
3 − δε

3p
ε
τ (−ξ ε

1 − w0ε
− sε),

ξ ε
3 (0) = ξ ε

3 (L) = 0.
(6.10)

To conclude, the main result of this paper consists in obtaining the system of Eqs. (6.5)–(6.7), together with its particular
version (6.8)–(6.10). They provide models for the one-dimensional quasistatic problem of frictional contact with wear
between an elastic rod and a foundation, when the contact is modeled with normal compliance and the wear is described
by the Archard’s law. And, at the best of our knowledge, this is the first time that such mathematical models have been
provided by using arguments of asymptotic analysis.
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