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In the present paper the author investigates the global structure stability of Riemann
solutions for general quasilinear hyperbolic systems of conservation laws under small BV
perturbations of the initial data, where the Riemann solution contains rarefaction waves,
while the perturbations are in BV but they are assumed to be C1-smooth, with bounded
and possibly large C1-norms. Combining the techniques employed by Li–Kong with the
modified Glimm’s functional, the author obtains a lower bound of the lifespan of the
piecewise C1 solution to a class of generalized Riemann problems,which can be regarded as
a small BV perturbation of the corresponding Riemann problem. This result is also applied
to the system of traffic flow on a road network using the Aw–Rascle model.
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1. Introduction and the main result

Consider the following quasilinear hyperbolic system of conservation laws:

∂tu + ∂xf (u) = 0, x ∈ R, t > 0, (1.1)

where u = (u1, . . . , un)
T is the unknown vector-valued function of (t, x), f : Rn

→ Rn is a given C3 vector function of u.
It is assumed that system (1.1) is strictly hyperbolic, i.e., for any given u on the domain under consideration, the Jacobian

A(u) = ∇f (u) has n real distinct eigenvalues

λ1(u) < λ2(u) < · · · < λn(u). (1.2)

Let li(u) = (li1(u), . . . , lin(u)) (resp. ri(u) = (ri1(u), . . . , rin(u))T ) be a left (resp. right) eigenvector corresponding to
λi(u) (i = 1, . . . , n):

li(u)A(u) = λi(u)li(u) (resp. A(u)ri(u) = λi(u)ri(u)).

We have

det|lij(u)| ≠ 0 (equivalently, det|rij(u)| ≠ 0).

Without loss of generality, we may assume that on the domain under consideration

li(u)rj(u) ≡ δij (i, j = 1, . . . , n) (1.3)
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and

rTi (u)ri(u) ≡ 1 (i = 1, . . . , n),

where δij stands for Kronecker’s symbol.
Clearly, all λi(u), lij(u) and rij(u) (i, j = 1, . . . , n) have the same regularity as A(u), i.e., C2 regularity.
We also assume that on the domain under consideration, each characteristic field is either genuinely nonlinear in the

sense of Lax (cf. [14]):

∇λi(u)ri(u) ≠ 0 (1.4)

or linearly degenerate in the sense of Lax:

∇λi(u)ri(u) ≡ 0. (1.5)

We are interested in the generalized Riemann problem for the system (1.1) with the following piecewise C1 initial data:

t = 0 : u =

u− + εu−(x), x ≤ 0,u+ + εu+(x), x ≥ 0, (1.6)

whereu± are two constant vectors satisfyingu− ≠u+,

while ε (0 < ε ≪|u+ −u− |) is a small parameter, u−(x) and u+(x) are C1 vector functions defined on x ≤ 0 and x ≥ 0
respectively, which satisfy

∥u−(x)∥C1 , ∥u+(x)∥C1 ≤ K1 (1.7)

and 
+∞

0
|u′

+
(x)|dx,

 0

−∞

|u′

−
(x)|dx ≤ K2, (1.8)

where K1 and K2 are positive constants independent of ε.
Problem (1.1) and (1.6) can be regarded as a small BV perturbation of the corresponding Riemann problem (1.1) and

t = 0 : u =

u−, x ≤ 0,u+, x ≥ 0. (1.9)

Let

θ = |u− −u+|.

When θ > 0 is suitably small, by Lax [14], the Riemann problem (1.1) and (1.9) admits a unique self-similar solution
u = U( x

t ) composed of n+1 constant statesu(0)
=u−,u(1), . . . ,u(n−1),u(n)

=u+ separated by shocks, centered rarefaction
waves (corresponding characteristics are genuinely nonlinear) or contact discontinuities (corresponding characteristics are
linearly degenerate). As in Kong [11], this kind of solution is simply called Lax’s Riemann solution of the system (1.1).

For the self-similar solution of the Riemann problem of general quasilinear hyperbolic systems of conservation laws, the
local nonlinear structure stability has been proved by Li and Yu [16] for the one-dimensional case, and by Majda [18] for
the multidimensional case. If system (1.1) is strictly hyperbolic and linearly degenerate, Li and Kong [15] proved the global
structure stability of the self-similar solution with small amplitude under perturbation (1.6) satisfying certain reasonable
hypotheses. In this case the self-similar solution contains only n contact discontinuities. If system (1.1) is strictly hyperbolic
and genuinely nonlinear, Li and Zhao [17] proved the global structure stability of the self-similar solution containing only
n shocks under perturbation (1.6) satisfying certain reasonable hypotheses. In their work they do not require that the
amplitude of the self-similar solution is small, although the existence of the self-similar solution with non small amplitude
still remains open. Since many physical systems (for example, the one-dimensional compressible Euler equations of gas
dynamics, the system of traffic flow on a road network using the Aw–Rascle model, etc.) do not belong to these two cases, a
general consideration is needed for general hyperbolic systems of conservation laws whose characteristic families might be
either genuinely nonlinear or linearly degenerate. Recently, for the case that the perturbation (1.6) satisfying the following
decay property: there exists a constant µ > 0 such that

ϱ
△
= sup

x≤0
{(1 + |x|)1+µ(|εu−(x)| + |εu′

−
(x)|)} + sup

x≥0
{(1 + |x|)1+µ(|εu+(x)| + |εu′

+
(x)|)} < +∞

is small enough, Kong [11,12] proved that Lax’s Riemann solution of general n × n quasilinear hyperbolic system
of conservation laws is globally structurally stable if and only if it contains only non-degenerate shocks and contact
discontinuities, but no rarefaction waves and other weak discontinuities.
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However, it is well known that the BV space is a suitable framework for the one-dimensional Cauchy problem for the
hyperbolic systems of conservation laws (see Bressan [2], Glimm [9]), the result in Bressan [3] suggests that onemay achieve
global smoothness even if the C1 norm of the initial data is large. So the following question arises naturally: can we obtain
the global structure stability of Riemann solutions for general quasilinear hyperbolic systems of conservation laws under
small BV perturbations of the initial data (the perturbations are in BV but they are assumed to be C1-smooth, with bounded
and possibly large C1-norms), where the Riemann solution contains rarefaction waves. Here, it is important to mention that
the global existence of weak solutions to a strictly hyperbolic system of conservation laws in one space dimension when
the initial data is a small BV perturbation of a solvable Riemann problem has been proved by Schochet [21], unfortunately
his method is not useful to show that the solutions are still either contact discontinuities or shocks or rarefaction waves. An
analogous result on stability of a strong shock wave under perturbations of small bounded variation is stated by Corli and
Sable-Tougeron [7]. In this paperwe exploit to some extent the ideas of Bressan [3], andwewill develop themethod of using
continuous Glimm’s functional to provide a new, nontrivial proof of an estimate on the lifespan of the piecewise C1 solution
to the generalized Riemann problem under consideration mentioned above. The basic idea we will use here is to combine
the techniques employed by Li–Kong [15], especially both the decomposition of waves and the global behavior of waves
on the discontinuity curves, with the method of using continuous Glimm’s functional. However, we must modify Glimm’s
functional in order to take care of the presence of rarefaction waves. This makes our new analysis more complicated than
those for the C1 solutions of the Cauchy problem for linearly degenerate quasilinear hyperbolic systems in Bressan [3], Dai
and Kong [8] and Zhou [24].

As in [22], the aim of this paper is to study the global structure stability of Lax’s Riemann solution containing shocks,
contact discontinuities, particularly centered rarefactionwaves. In this case,we shall first get a lower bound of the lifespan of
the piecewise C1 solution containing at least a rarefactionwave to the generalized Riemann problem. To do so, we introduce

JR
△
=


j | j ∈ {1, . . . , n}, j-wave in u = U

x
t


is a centered rarefaction wave


,

JS
△
=


j | j ∈ {1, . . . , n}, j-wave in u = U

x
t


is a shock wave


,

J
△
= {j| j ∈ {1, . . . , n}, λj(u)is genuinely nonlinear}

and

I
△
= {i| i ∈ {1, . . . , n}, λi(u) is linearly degenerate}.

Then, the assumption that each characteristic field is either genuinely nonlinear or linearly degenerate gives

I ∪ J = {1, . . . , n}.

To state our result precisely, we now introduce the concept of the lifespan of the piecewise C1 solution to the generalized
Riemann problem (1.1) and (1.6) as follows.

Definition 1.1. The existence of piecewise C1 local solutions to the generalized Riemann problem (1.1) and (1.6) is
guaranteed by the monograph Li–Yu [16]. The life span is defined to be the supremum of the time T such that a Li–Yu
solution exists for 0 < t ≤ T . This definition will coincide with the usual definition of the life span of the C1 solution
(without shocks).

Our main results can be summarized as follows.

Theorem 1.1. Suppose that system (1.1) is strictly hyperbolic and each characteristic field is either genuinely nonlinear or linearly
degenerate. Suppose furthermore that u−(x) and u+(x) are all C1 vector functions on x ≤ 0 and on x ≥ 0 respectively
satisfying (1.7) and (1.8) as well as

u−(0) = u+(0) = 0, (1.10)

and

θ = |u+ −u−| = |u+

0 (0) − u−

0 (0)| > 0

is suitably small. Suppose finally that the self-similar solution u = U( x
t ) of the Riemann problem (1.1) and (1.9) contains at least

either centered rarefaction waves or shocks, i.e., JR ∪ JS ≠ ∅. Then for small θ > 0, there exists a constant ε0 > 0 so small that for
any fixed ε ∈ (0, ε0], the lifespanT (ε) of the piecewise C1 solution to the generalized Riemann problem (1.1) and (1.6) satisfiesT (ε) ≥ K3ε

−1,

where K3 is a positive constant independent of ε. Moreover, when u = u(t, x) blows up in a finite time, u = u(t, x) itself is
bounded on the domain [0,T (ε)) × R, while the first-order derivatives of u = u(t, x) tend to be unbounded as t ↗T (ε).

Remark 1.1. In Theorem 1.1, we say the solution blows up, if the piecewise C1 solution in the sense of Li–Yu u = u(t, x) to
the generalized Riemann problem (1.1) and (1.6) ceases to exist for some x ∈ R, t > 0. After this blow-up time, new waves
(particularly, new shocks) will appear (cf. [6,13]).
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Remark 1.2. Suppose that (1.1) is a non-strictly hyperbolic system with characteristics with constant multiplicity, say, on
the domain under consideration,

λ1(u) ≡ · · · ≡ λp(u) < λp+1(u) < · · · < λn(u) (1 ≤ p ≤ n).

Then the conclusion of Theorem 1.1 still holds (cf. [8]).

Remark 1.3. Our result implies that classical discontinuous solutions to the generalized Riemann problem under
consideration exists almost globally in time, i.e., we prove almost globalwell-posedness of the generalized Riemannproblem
for hyperbolic systems of conservation laws.

The rest of this paper is organized as follows. For the sake of completeness, in Section 2, we briefly recall John’s formula
on the decomposition of waves with some supplements and give a generalized Hörmander Lemma. In Section 3, we first
review the definitions of shock, contact discontinuity and centered rarefaction wave, and then analyze some properties of
waves on discontinuous curves, which will play an important role in our proof. The main result, Theorem 1.1 is proved in
Section 4. Some applications with physical interest will be given in Section 5.

2. John’s formula, generalized Hörmander Lemma

For the sake of completeness, in this section we briefly recall John’s formula on the decomposition of waves with some
supplements, which will play an important role in our proof.

Let

vi = li(u)u (i = 1, . . . , n) (2.1)

and

wi = li(u)ux (i = 1, . . . , n), (2.2)

where li(u) = (li1(u), . . . , lin(u)) denotes the ith left eigenvector.
By (1.3), it is easy to see that

u =

n
k=1

vkrk(u) (2.3)

and

ux =

n
k=1

wkrk(u). (2.4)

Let

d
dit

=
∂

∂t
+ λi(u)

∂

∂x
(2.5)

be the directional derivative along the ith characteristic. We have (cf. [10,11,15])

dvi

dit
=

n
j,k=1

βijk(u)vjwk (i = 1, . . . , n), (2.6)

where

βijk(u) = (λk(u) − λi(u))li(u)∇rj(u)rk(u). (2.7)

Hence, we have

βiji(u) ≡ 0, ∀i, j. (2.8)

On the other hand, we have (cf. [10,11,15])

dwi

dit
=

n
j,k=1

γijk(u)wjwk (i = 1, . . . , n), (2.9)

where

γijk(u) =
1
2
{(λj(u) − λk(u))li(u)∇rk(u)rj(u) − ∇λi(u)rj(u)δik + (j|k)}, (2.10)
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in which (j|k) denotes all the terms obtained by changing j and k in the previous terms. We have

γijj(u) ≡ 0, ∀j ≠ i (i, j = 1, . . . , n) (2.11)

and

γiii(u) ≡ −∇λi(u)ri(u) (i = 1, . . . , n). (2.12)

Noting (2.4), by (2.9) we have (cf. [8])

∂wi

∂t
+

∂(λi(u)wi)

∂x
=

n
j,k=1

Γijk(u)wjwk
def
= Gi(t, x), (2.13)

equivalently,

d[wi(dx − λi(u)dt)] =

n
j,k=1

Γijk(u)wjwkdt ∧ dx = Gi(t, x)dt ∧ dx, (2.14)

where

Γijk(u) =
1
2
(λj(u) − λk(u))li(u)[∇rk(u)rj(u) − ∇rj(u)rk(u)]. (2.15)

Hence, we have

Γijj(u) ≡ 0, ∀i, j. (2.16)

Lemma 2.1 (Generalized Hörmander Lemma). Suppose that u = u(t, x) is a piecewise C1 solution to system (1.1), τ1 and τ2
are two C1 arcs which are never tangent to the ith characteristic direction, and D is the domain bounded by τ1, τ2 and two ith
characteristic curves L−

i and L+

i . Suppose furthermore that the domain D contains mC1 curves of discontinuity of u, denoted byCj : x = xj(t) (j = 1, . . . ,m), which are never tangent to the ith characteristic direction. Then we have
τ1

|wi(dx − λi(u)dt)| ≤


τ2

|wi(dx − λi(u)dt)| +

m
j=1


Cj |[wi]dx − [wiλi(u)]dt|

+

 
D

 n
j,k=1

Γijk(u)wjwk

 dtdx, (2.17)

where Γijk(u) is given by (2.15) and [wi] = w+

i − w−

i denotes the jump of wi over the curve of discontinuityCj (j = 1, . . . ,m),
etc.

The proof can be found in Li and Kong [15].

3. Shock, contact discontinuity and centered rarefaction wave

In this section, we first review the definitions of shock, contact discontinuity and centered rarefaction wave, and then
analyze some properties of waves on the discontinuous curves, which will play an important role in our proof.

Definition 3.1. A piecewise C1 vector function u = u(t, x) is called a piecewise C1 solution containing a kth shock
x = xk(t)(xk(0) = 0) for system (1.1), if u = u(t, x) satisfies system (1.1) away from x = xk(t) in the classical sense
and satisfies on x = xk(t) the following Rankine–Hugoniot condition:

f (u+) − f (u−) = s(u+
− u−) (3.1)

and the Lax entropy condition:

λk(u+) < s < λk(u−), λk+1(u+) > s > λk−1(u−), (3.2)

where u±
= u±(t, xk(t))

△
= u(t, xk(t) ± 0) and s =

dxk(t)
dt (when k = 1 (resp. k = n), the term λk−1(u−) (resp. λk+1(u+))

disappears in (3.2)).

Definition 3.2. A piecewise C1 vector function u = u(t, x) is called a piecewise C1 solution containing a kth contact
discontinuity x = xk(t) (xk(0) = 0) for system (1.1), if u = u(t, x) satisfies system (1.1) away from x = xk(t) in the
classical sense and satisfies on x = xk(t) the Rankine–Hugoniot condition (3.1) and

s = λk(u+) = λk(u−), (3.3)

where u±
= u±(t, xk(t))

△
= u(t, xk(t) ± 0) and s =

dxk(t)
dt .
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Definition 3.3. Let

∇ = {(t, x) | t ≥ 0, ξLt ≤ x ≤ ξRt}

be an angular domain, where ξL, ξR are two constants with ξL < ξR. If u0(ξ) is a C1 function of ξ ∈ [ξL, ξR]with the following
properties:

λk(u0(ξ)) = ξ and
du0(ξ)

dξ
//rk(u0(ξ)),

then u = u0(
x
t ) defined on ∇ is called a kth standard centered rarefaction wave with the center point (0, 0).

Definition 3.4. Let∇ = {(t, x) | t ≥ 0, xL(t) ≤ x ≤ xR(t)}

be an angular domain, where xL(t), xR(t) are two C1 functions of t with the following properties:

xL(0) = xR(0) = 0 and ξL
△
=

dxL
dt

(0) <
dxR
dt

(0)
△
= ξR.

A vector function u = u(t, x) defined on ∇ is called a kth centered rarefaction wave for system (1.1) with the center point
(0, 0), if the following conditions are satisfied:

(i) let ξ =
x
t and

v(t, ξ) =


u(t, tξ), in t > 0,
lim

τ→0+
u(τ , τξ), on t = 0,

we have

v(t, ξ) ∈ C1
[
∇] and

∂v

∂ξ
(0, ξ) ≠ 0, ∀ξ ∈ [ξL, ξR],

where

∇ =


(t, ξ)

t ≥ 0,
xL(t)
t

≤ ξ ≤
xR(t)
t

, in t > 0
ξL ≤ ξ ≤ ξR, on t = 0


;

(ii) u(t, x), i.e., v(t, x
t ) satisfies system (1.1) on ∇ \ {(0, 0)} in the classical sense;

(iii) both boundaries x = xH(t)(H = L, R) of ∇ are the kth characteristic curves passing through (0, 0), i.e.,

dxH(t)
dt

= λk(u(t, xH(t)))(H = L, R), ∀t > 0. (3.4)

A continuous vector function u = u(t, x) defined on R+
×R\{(0, 0)} is called a piecewise C1 solutionwith a kth centered

rarefaction wave on ∇ for system (1.1), if u = u(t, x) is a kth centered rarefaction wave on ∇ and satisfies system (1.1) out
of ∇ in the classical sense.

Definitions 3.1–3.4 can be found in [14,16].

Definition 3.5. We call the piecewise C1 solution containing a finite number of shocks, contact discontinuities or centered
rarefaction waves as a classical discontinuous solution.

The following lemmas give some properties of waves on shock, contact discontinuity or centered rarefaction wave.

Lemma 3.1. Let u = u(t, x) be a piecewise C1 solution with a kth centered rarefaction wave on ∇ for system (1.1). Then on
x = xH(t)(H = L, R) it holds that

v+

i = v−

i (i = 1, . . . , n) (3.5)

and

w+

i = w−

i (i = 1, . . . , k − 1, k + 1, . . . , n), (3.6)

provided that |u±
| is suitably small, where vi, wi are defined by (2.1) and (2.2), respectively, v±

i = v±

i (t, xH(t))
△
= vi(t, xH(t)

± 0), etc.

Lemma 3.2. On the kth shock or contact discontinuity x = xk(t), it holds that

v+

i = v−

i + O(|v±
|
2) (i = 1, . . . , k − 1, k + 1, . . . , n), (3.7)

provided that |u±
| is suitably small, where vi is defined by (2.1) and v±

i
△
= vi(t, xk(t) ± 0).
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Lemma 3.3. On the kth contact discontinuity x = xk(t), it holds that

w−

i = w+

i + O


|u+

− u−
| ·


j≠k

|w±

j |


(i = 1, . . . , k − 1, k + 1, . . . , n), (3.8)

provided that |u±
| is suitably small, where wi are defined by (2.2) and w±

i
△
= wi(t, xk(t) ± 0).

Lemma 3.4. On the kth shock x = xk(t), it holds that

w−

i = w+

i + O


|u+

− u−
| ·


j≠k

|w±

j |


+ O


|u+

− u−
| · |(λk(u−, u+) − λk(u+))w+

k |


+O


|u+

− u−
| · |(λk(u−, u+) − λk(u−))w−

k |


(i = 1, . . . , k − 1, k + 1, . . . , n), (3.9)

provided that |u±
| is suitably small, where λk(u−, u+) is the kth eigenvalue of the matrix

A(u−, u+)
△
=

 1

0
∇f (u−

+ ς(u+
− u−))dς.

Remark 3.1. By (1.2), if |u+
− u−

| is suitably small, then the matrix A(u−, u+) has n distinct real eigenvalues:

λ1(u−, u+) < λ2(u−, u+) < · · · < λn(u−, u+).

The proofs of Lemmas 3.1–3.4 can be found in Kong [11,12].

Corollary 3.1. On the kth contact discontinuity x = xk(t), it holds that

(wiλi(u))+ = (wiλi(u))− + O


|u+

− u−
| ·


j≠k

|w±

j |


(i = 1, . . . , k − 1, k + 1, . . . , n), (3.10)

provided that |u±
| is small.

Proof. Noting

(wiλi(u))+ − (wiλi(u))− = [w+

i − w−

i ](λi(u))+ + w−

i [(λi(u))+ − (λi(u))−],

from (3.8), we immediately get (3.10). �

4. Proof of Theorem 1.1

For the sake of simplicity and without loss of generality, we may suppose that

0 < λ1(0) < λ2(0) < · · · < λn(0) (4.1)

and

|u±| ≤ θ. (4.2)

By the existence and uniqueness of local classical discontinuous solutions of quasilinear hyperbolic systems of
conservation laws (see [16]), when θ > 0 is suitably small, the generalized Riemann problem (1.1) and (1.6) admits a unique
piecewise C1 solution u = u(t, x) containing only n shocks, centered rarefaction waves (corresponding characteristics are
genuinely nonlinear) or contact discontinuities (corresponding characteristics are linearly degenerate) x = xk(t) (xk(0) =

0) (k = 1, . . . , n) on the strip [0, h] × R, where h > 0 is a small number; moreover, this solution has a local structure
similar to the one of the self-similar solution to the corresponding Riemann problem. In order to prove Theorem 1.1, we first
establish some uniform a priori estimates on u and ux on the domain of existence of the piecewise C1 solution u = u(t, x).

By (4.1), there exist sufficiently small positive constants δ and δ0 such that

λi+1(u) − λi(v) ≥ δ0, ∀|u|, |v| ≤ δ (i = 1, . . . , n − 1). (4.3)

For the time being it is supposed that on the domain of existence of the piecewise C1 solution u = u(t, x) to the
generalized Riemann problem (1.1) and (1.6), we have

|u(t, x)| ≤ δ. (4.4)

At the end of the proof of Lemma 4.3, we will explain that this hypothesis is reasonable.
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For any fixed T > 0, let

U∞(T ) = sup
0≤t≤T

sup
x∈R

|u(t, x)|, (4.5)

V∞(T ) = sup
0≤t≤T

sup
x∈R

|v(t, x)|, (4.6)

W∞(T ) = sup
0≤t≤T

sup
x∈R

|w(t, x)|, (4.7)

W1(T ) = max
i=1,...,n

max
j≠i

supCj

Cj |wi(t, x)|dt, (4.8)

W1(T ) = max
j∈JS

 T

0
|(x′

j(t) − λj(u(t, xj(t) ± 0)))wj(t, xj(t) ± 0)|dt, (4.9)

where | · | stands for the Euclidean norm in Rn, v = (v1, . . . , vn)
T and w = (w1, . . . , wn)

T in which vi and wi are defined by
(2.1) and (2.2) respectively, whileCj stands for any given jth characteristic on the domain [0, T ] × R. In (4.4)–(4.7), on any
contact discontinuity or shock x = xk(t) the values of u(t, x), v(t, x) and w(t, x) are taken to be u±(t, x) = u(t, xk(t) ± 0),
v±(t, x) = v(t, xk(t) ± 0) and w±(t, x) = w(t, xk(t) ± 0). Clearly, V∞(T ) is equivalent to U∞(T ).

In the present situation, similar to some basic L1 estimates that are essentially due to Schatzman [19,20] and Zhou [24],
we have the following careful L1 estimates of the piecewise C1 solution.

Lemma 4.1. Under the assumptions of Theorem 1.1, on any given domain of existence [0, T ] × R of the piecewise C1 solution
u = u(t, x) to the generalized Riemann problem (1.1) and (1.6), there exists a positive constant k1 independent of θ , ε and T
such that

+∞

−∞

|wi(t, x)|dx ≤ k1


ε + W1(T ) + V∞(T )(W1(T ) + W1(T ))

+

 T

0


+∞

−∞

|Gi(t, x)|dxdt


(i = 1, . . . , n), ∀t ≤ T , (4.10)

provided that the right-hand side of the inequality is bounded.

Proof. To estimate


+∞

−∞
|wi(t, x)|dx, we need only to estimate a

−a
|wi(t, x)|dx

for any given a > 0 and then let a → +∞.
For i = 1, . . . , n, for any given t with 0 ≤ t ≤ T , passing through point A(t, a) (a > xn(t)) (resp. B(t, −a)), we draw the

ith backward characteristic which intersects the x-axis at a point D(0, xD) (resp. C(0, xC )). In what follows, we assume that
the ith wave (shock or contact discontinuity or rarefaction wave) passing through O(0, 0) is a centered rarefaction wave,
while other cases can be dealt with in a manner similar to [23]. Let E(t, xE)(resp. F(t, xF )) be the intersection point of the
straight line t = t with the left (resp. right) boundary x = xL(t)(resp. x = xR(t)) of the rarefaction wave. Then, applying
(2.17) on the domain BCOE bounded by the left boundary of the rarefactionwave, the straight line t = t , the ith characteristic
passing through B and the x-axis, we get E

B
|wi(t, x)|dx ≤

 0

xC
|wi(0, x)|dx +


k∈S1


Ck |([wi]x′

k(t) − [wiλi(u)])dt| +

 
BCOE

|Gi|dxdt, (4.11)

where S1 stands for the set of all indices k such that the kth discontinuous curve (shock or contact discontinuity)Ck : x =

xk(t) is partly contained in the region BCOE, and

x′

k(t) =
dxk(t)
dt

=


λk(u±), as k ∈ I,
λk(u−, u+), as k ∈ JS .

(4.12)

Noting (3.6), in (4.11) we need not consider the case that the kth wave is a rarefaction wave. Using (1.8), (3.8)–(3.10), (4.4)
and (4.12), and noting the fact that i ∉ S1, we have xE

−a
|wi(t, x)|dx ≤

 0

−∞

|wi(0, x)|dx + c1V∞(T )(W1(T ) + W1(T )) +

 T

0


+∞

−∞

|Gi|dxdt

≤ c2


ε + V∞(T )(W1(T ) + W1(T )) +

 T

0


+∞

−∞

|Gi|dxdt

, (4.13)
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where here and henceforth, ci (i = 1, 2, . . .) will denote positive constants independent of θ , ε and T . Similarly, we have a

xF
|wi(t, x)|dx ≤ c3


ε + V∞(T )(W1(T ) + W1(T )) +

 T

0


+∞

−∞

|Gi|dxdt

. (4.14) xF

xE
|wi(t, x)|dx ≤

 T

0


+∞

−∞

|Gi|dxdt. (4.15)

Combining (4.17) in [23] and (4.13)–(4.15) all together, we finally get a

−a
|wi(t, x)|dx ≤ c4


ε + W1(T ) + V∞(T )(W1(T ) + W1(T )) +

 T

0


+∞

−∞

|Gi|dxdt

.

Letting a → +∞, we immediately get the assertion in (4.10). The proof of Lemma 4.1 is finished. �

Lemma 4.2. Under the assumptions of Theorem 1.1, on any given domain of existence [0, T ] × R of the piecewise C1 solution
u = u(t, x) to the generalized Riemann problem (1.1) and (1.6), there exists a positive constant k2 independent of θ , ε and T
such that T

0


+∞

−∞

|wi(t, x)||wj(t, x)|dxdt ≤ k2


ε + W1(T ) + V∞(T )(W1(T ) + W1(T )) +

 T

0


+∞

−∞

|Gi(t, x)|dxdt


×


ε + W1(T ) + V∞(T )(W1(T ) + W1(T )) +

 T

0


+∞

−∞

|Gj(t, x)|dxdt


, ∀i ≠ j (i, j = 1, . . . , n), (4.16)

provided that the right-hand side of the inequality is bounded.

Proof. The proof of Lemma 4.2 is essentially similar to Lemma 3.2 proved by Yi Zhou in [24]. The author points out that here
the line of discontinuity (center rarefaction wave) is considered; and some differences will emerge. Such points are similar
to the cases considered by the author in [23,25]. As in [24], to estimate T

0


+∞

−∞

|wi(t, x)||wj(t, x)|dxdt,

it is enough to estimate T

0

 L

−L
|wi(t, x)||wj(t, x)|dxdt

for any given L > 0 and then let L → +∞.
For i, j ∈ {1, . . . , n} and i ≠ j, without loss of generality, we suppose that i < j. Let x = xi(t, L) (0 ≤ t ≤ T ) be

the ith forward characteristic passing through point (0, L) (L > xn(T )). Then, we draw the ith backward characteristic
x = si(t) (0 ≤ t ≤ T ) passing through point (T , a) (a > xi(T , L)). In the meantime, passing through the point (T , −L),
we draw the jth backward characteristic x = sj(t) (0 ≤ t ≤ T ) which intersects the x-axis at a point.

We introduce the ‘‘continuous Glimm’s functional’’ (cf. [3,4,24])

Q (t) =

 
sj(t)<x<y<si(t)

|wj(t, x)||wi(t, y)|dxdy.

Because of the piecewise C1 solution u = u(t, x) containing only n shocks, centered rarefaction waves or contact
discontinuities x = xk(t) (xk(0) = 0) (k = 1, . . . , n), without loss of generality, wemay suppose that u = u(t, x) containing
only a centered rarefaction wave, while other cases can be dealt with in a manner similar to [23]. Without loss of generality,
we may suppose that the 1st wave is a centered rarefaction wave. Let x = xL(t)(resp. x = xR(t)) be the left (resp. right)
boundary of the rarefaction wave, we divide the bounded domain Ω △

= {(x, y)|sj(t) < x < y < si(t)} by the straight lines
y = xH(t) (H = L, R) and y = xk(t) (k = 2, . . . , n) into some parts. Then, the straightforward calculations on all parts of
the domain Ω reveal that

dQ (t)
dt

= s′i(t)|wi(t, si(t))|
 si(t)

sj(t)
|wj(t, x)|dx − s′j(t)|wj(t, sj(t))|

 si(t)

sj(t)
|wi(t, x)|dx

+ x′

L(t){|wi(t, xL(t) − 0)| − |wi(t, xL(t) + 0)|}
 xL(t)

sj(t)
|wj(t, x)|dx + x′

R(t){|wi(t, xR(t) − 0)|

− |wi(t, xR(t) + 0)|}
 xR(t)

sj(t)
|wj(t, x)|dx +

n
k=2

x′

k(t){|wi(t, xk(t) − 0)|
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− |wi(t, xk(t) + 0)|}
 xk(t)

sj(t)
|wj(t, x)|dx +

 
sj(t)<x<y<si(t)

∂

∂t
(|wj(t, x)|)|wi(t, y)|dxdy

+

 
sj(t)<x<y<si(t)

|wj(t, x)|
∂

∂t
(|wi(t, y)|)dxdy

= s′i(t)|wi(t, si(t))|
 si(t)

sj(t)
|wj(t, x)|dx − s′j(t)|wj(t, sj(t))|

 si(t)

sj(t)
|wi(t, x)|dx

+ x′

L(t){|wi(t, xL(t) − 0)| − |wi(t, xL(t) + 0)|}
 xL(t)

sj(t)
|wj(t, x)|dx + x′

R(t)

× {|wi(t, xR(t) − 0)| − |wi(t, xR(t) + 0)|}
 xR(t)

sj(t)
|wj(t, x)|dx +

n
k=2

x′

k(t){|wi(t, xk(t) − 0)|

− |wi(t, xk(t) + 0)|}
 xk(t)

sj(t)
|wj(t, x)|dx −

 
sj(t)<x<y<si(t)

∂

∂x
(λj(u)|wj(t, x)|)|wi(t, y)|dxdy

−

 
sj(t)<x<y<si(t)

|wj(t, x)|
∂

∂y
(λi(u)|wi(t, y)|)dxdy +

 
sj(t)<x<y<si(t)

sgn(wj)

×Gj(t, x)|wi(t, y)|dxdy +

 
sj(t)<x<y<si(t)

|wj(t, x)|sgn(wi)Gi(t, y)dxdy

= −

 si(t)

sj(t)
(λj(u(t, x)) − λi(u(t, x)))|wi(t, x)||wj(t, x)|dx + (s′i(t) − λi(u(t, si(t))))|wi(t, si(t))|

×

 si(t)

sj(t)
|wj(t, x)|dx + (λj(u(t, sj(t))) − s′j(t))|wj(t, sj(t))|

×

 si(t)

sj(t)
|wi(t, x)|dx + x′

L(t){|wi(t, xL(t) − 0)| − |wi(t, xL(t) + 0)|}

×

 xL(t)

sj(t)
|wj(t, x)|dx + x′

R(t){|wi(t, xR(t) − 0)| − |wi(t, xR(t) + 0)|}

×

 xR(t)

sj(t)
|wj(t, x)|dx +

n
k=2

x′

k(t){|wi(t, xk(t) − 0)| − |wi(t, xk(t) + 0)|}
 xk(t)

sj(t)
|wj(t, x)|dx

+ {λi(u(t, xL(t)))|wi(t, xL(t) + 0)| − λi(u(t, xL(t)))|wi(t, xL(t) − 0)|}

×

 xL(t)

sj(t)
|wj(t, x)|dx + {λi(u(t, xR(t)))|wi(t, xR(t) + 0)| − λi(u(t, xR(t)))|wi(t, xR(t) − 0)|}

×

 xR(t)

sj(t)
|wj(t, x)|dx +

n
k=2

{λi(u(t, xk(t) + 0))|wi(t, xk(t) + 0)| − λi(u(t, xk(t) − 0))

× |wi(t, xk(t) − 0)|}
 xk(t)

sj(t)
|wj(t, x)|dx +

 
sj(t)<x<y<si(t)

sgn(wj)Gj(t, x)|wi(t, y)|dxdy

+

 
sj(t)<x<y<si(t)

|wj(t, x)|sgn(wi)Gi(t, y)dxdy. (4.17)

(i) For i = 2, . . . , n − 1, noting (3.6), we get from (4.17) that

dQ (t)
dt

= −

 si(t)

sj(t)
(λj(u(t, x)) − λi(u(t, x)))|wi(t, x)||wj(t, x)|dx + (s′i(t) − λi(u(t, si(t))))|wi(t, si(t))|

×

 si(t)

sj(t)
|wj(t, x)|dx + (λj(u(t, sj(t))) − s′j(t))|wj(t, sj(t))|

×

 si(t)

sj(t)
|wi(t, x)|dx + (x′

i(t) − λi(u(t, xi(t) − 0)))|wi(t, xi(t) − 0)|
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×

 xi(t)

sj(t)
|wj(t, x)|dx + (λi(u(t, xi(t) + 0)) − x′

i(t))|wi(t, xi(t) + 0)|
 xi(t)

sj(t)
|wj(t, x)|dx

+

n
k=2,k≠i

x′

k(t){|wi(t, xk(t) − 0)| − |wi(t, xk(t) + 0)|}
 xk(t)

sj(t)
|wj(t, x)|dx +

n
k=2,k≠i

{λi(u(t, xk(t) + 0))

× |wi(t, xk(t) + 0)| − λi(u(t, xk(t) − 0))|wi(t, xk(t) − 0)|}
 xk(t)

sj(t)
|wj(t, x)|dx

+

 
sj(t)<x<y<si(t)

sgn(wj)Gj(t, x)|wi(t, y)|dxdy +

 
sj(t)<x<y<si(t)

|wj(t, x)|sgn(wi)Gi(t, y)dxdy. (4.18)

Using (3.2), (3.3) and (4.3), we get

dQ (t)
dt

≤ −δ0

 si(t)

sj(t)
|wi(t, x)||wj(t, x)|dx + |(x′

i(t) − λi(u(t, xi(t) ± 0)))wi(t, xi(t) ± 0)|

×

 xi(t)

sj(t)
|wj(t, x)|dx +

n
k=2,k≠i

x′

k(t){|wi(t, xk(t) − 0) − wi(t, xk(t) + 0)|}
 xk(t)

sj(t)
|wj(t, x)|dx

+

n
k=2,k≠i

{|λi(u(t, xk(t) + 0))wi(t, xk(t) + 0) − λi(u(t, xk(t) − 0))wi(t, xk(t) − 0)|}

×

 xk(t)

sj(t)
|wj(t, x)|dx +

 si(t)

sj(t)
|Gj(t, x)|dx

 si(t)

sj(t)
|wi(t, x)|dx +

 si(t)

sj(t)
|Gi(t, x)|dx

 si(t)

sj(t)
|wj(t, x)|dx

≤ −δ0

 si(t)

sj(t)
|wi(t, x)||wj(t, x)|dx + |(x′

i(t) − λi(u(t, xi(t) ± 0)))wi(t, xi(t) ± 0)|


+∞

−∞

|wj(t, x)|dx

+

n
k=2,k≠i

x′

k(t){|wi(t, xk(t) − 0) − wi(t, xk(t) + 0)|}


+∞

−∞

|wj(t, x)|dx +

n
k=2,k≠i

{|λi(u(t, xk(t) + 0))

× wi(t, xk(t) + 0) − λi(u(t, xk(t) − 0))wi(t, xk(t) − 0)|}


+∞

−∞

|wj(t, x)|dx

+


+∞

−∞

|Gj(t, x)|dx


+∞

−∞

|wi(t, x)|dx +


+∞

−∞

|Gi(t, x)|dx


+∞

−∞

|wj(t, x)|dx.

It then follows from Lemma 4.1 that

dQ (t)
dt

+ δ0

 si(t)

sj(t)
|wi(t, x)||wj(t, x)|dx

≤ k1


+∞

−∞

|Gj(t, x)|dx


ε + W1(T ) + V∞(T )(W1(T ) + W1(T )) +

 T

0


+∞

−∞

|Gi(t, x)|dxdt


+ k1


|(x′

i(t) − λi(u(t, xi(t) ± 0)))wi(t, xi(t) ± 0)| +

n
k=2,k≠i

x′

k(t){|wi(t, xk(t) − 0) − wi(t, xk(t) + 0)|}

+

n
k=2,k≠i

{|λi(u(t, xk(t) + 0))wi(t, xk(t) + 0) − λi(u(t, xk(t) − 0))wi(t, xk(t) − 0)|} +


+∞

−∞

|Gi(t, x)|dx


×


ε + W1(T ) + V∞(T )(W1(T ) + W1(T )) +

 T

0


+∞

−∞

|Gj(t, x)|dxdt


.

Therefore

δ0

 T

0

 si(t)

sj(t)
|wi(t, x)||wj(t, x)|dxdt ≤ Q (0) + k1

 T

0


+∞

−∞

|Gj(t, x)|dxdt


ε + W1(T ) + V∞(T )(W1(T ) + W1(T ))

+

 T

0


+∞

−∞

|Gi(t, x)|dxdt


+ k1

 T

0
|(x′

i(t) − λi(u(t, xi(t) ± 0)))
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× wi(t, xi(t) ± 0)|dt +

n
k=2,k≠i


Ck |[wi]|λk(u±)dt

+

n
k=2,k≠i


Ck |[wiλi(u)]|dt +

 T

0


+∞

−∞

|Gi(t, x)|dxdt


×


ε + W1(T ) + V∞(T )(W1(T ) + W1(T )) +

 T

0


+∞

−∞

|Gj(t, x)|dxdt


.

Using (3.8)–(3.10) and noting (4.4), we obtain

δ0

 T

0

 si(t)

sj(t)
|wi(t, x)||wj(t, x)|dxdt ≤ Q (0) + c5


ε + W1(T ) + V∞(T )(W1(T ) + W1(T ))

+

 T

0


+∞

−∞

|Gi(t, x)|dxdt


ε + W1(T ) + V∞(T )(W1(T ) + W1(T )) +

 T

0


+∞

−∞

|Gj(t, x)|dxdt


.

Noting

Q (0) ≤


+∞

−∞

|wi(0, x)|dx


+∞

−∞

|wj(0, x)|dx,

we get

δ0

 T

0

 si(t)

sj(t)
|wi(t, x)||wj(t, x)|dxdt ≤ c6


ε + W1(T ) + V∞(T )(W1(T ) + W1(T )) +

 T

0


+∞

−∞

|Gi(t, x)|dxdt


×


ε + W1(T ) + V∞(T )(W1(T ) + W1(T )) +

 T

0


+∞

−∞

|Gj(t, x)|dxdt


.

It then follows T

0

 si(t)

sj(t)
|wi(t, x)||wj(t, x)|dxdt ≤

c6
δ0


ε + W1(T ) + V∞(T )(W1(T ) + W1(T )) +

 T

0


+∞

−∞

|Gi(t, x)|dxdt


×


ε + W1(T ) + V∞(T )(W1(T ) + W1(T )) +

 T

0


+∞

−∞

|Gj(t, x)|dxdt


.

Therefore T

0

 L

−L
|wi(t, x)||wj(t, x)|dxdt ≤ c7


ε + W1(T ) + V∞(T )(W1(T ) + W1(T )) +

 T

0


+∞

−∞

|Gi(t, x)|dxdt


×


ε + W1(T ) + V∞(T )(W1(T ) + W1(T )) +

 T

0


+∞

−∞

|Gj(t, x)|dxdt


and the desired conclusion follows by taking L → +∞.
(ii) For i = 1, the argument in step (ii) is similar to the one in step (i), so instead of giving all the details one can just refer

to (i) and briefly describe the changes one needs to introduce. Instead of formula (4.18) we have

dQ (t)
dt

= −

 si(t)

sj(t)
(λj(u(t, x)) − λi(u(t, x)))|wi(t, x)||wj(t, x)|dx + (s′i(t) − λi(u(t, si(t))))|wi(t, si(t))|

×

 si(t)

sj(t)
|wj(t, x)|dx + (λj(u(t, sj(t))) − s′j(t))|wj(t, sj(t))|

 si(t)

sj(t)
|wi(t, x)|dx

+ (x′

L(t) − λi(u(t, xL(t))))|wi(t, xL(t) − 0)|
 xL(t)

sj(t)
|wj(t, x)|dx + (λi(u(t, xL(t))) − x′

L(t))

× |wi(t, xL(t) + 0)|
 xL(t)

sj(t)
|wj(t, x)|dx + (x′

R(t) − λi(u(t, xR(t))))|wi(t, xR(t) − 0)|

×

 xR(t)

sj(t)
|wj(t, x)|dx + (λi(u(t, xR(t))) − x′

R(t))|wi(t, xR(t) + 0)|
 xR(t)

sj(t)
|wj(t, x)|dx

+

n
k=2

x′

k(t){|wi(t, xk(t) − 0)| − |wi(t, xk(t) + 0)|}
 xk(t)

sj(t)
|wj(t, x)|dx +

n
k=2

{λi(u(t, xk(t) + 0))
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× |wi(t, xk(t) + 0)| − λi(u(t, xk(t) − 0))|wi(t, xk(t) − 0)|}
 xk(t)

sj(t)
|wj(t, x)|dx

+

 
sj(t)<x<y<si(t)

sgn(wj)Gj(t, x)|wi(t, y)|dxdy +

 
sj(t)<x<y<si(t)

|wj(t, x)|sgn(wi)Gi(t, y)dxdy.

Using (3.4) and (4.3), we get

dQ (t)
dt

≤ −δ0

 si(t)

sj(t)
|wi(t, x)||wj(t, x)|dx +

n
k=2

x′

k(t){|wi(t, xk(t) − 0) − wi(t, xk(t) + 0)|}

×

 xk(t)

sj(t)
|wj(t, x)|dx +

n
k=2

{|λi(u(t, xk(t) + 0))wi(t, xk(t) + 0) − λi(u(t, xk(t) − 0))wi(t, xk(t) − 0)|}

×

 xk(t)

sj(t)
|wj(t, x)|dx +

 si(t)

sj(t)
|Gj(t, x)|dx

 si(t)

sj(t)
|wi(t, x)|dx +

 si(t)

sj(t)
|Gi(t, x)|dx

 si(t)

sj(t)
|wj(t, x)|dx

≤ −δ0

 si(t)

sj(t)
|wi(t, x)||wj(t, x)|dx +

n
k=2

x′

k(t){|wi(t, xk(t) − 0) − wi(t, xk(t) + 0)|}

×


+∞

−∞

|wj(t, x)|dx +

n
k=2

{|λi(u(t, xk(t) + 0))wi(t, xk(t) + 0)

− λi(u(t, xk(t) − 0))wi(t, xk(t) − 0)|}


+∞

−∞

|wj(t, x)|dx

+


+∞

−∞

|Gj(t, x)|dx


+∞

−∞

|wi(t, x)|dx +


+∞

−∞

|Gi(t, x)|dx


+∞

−∞

|wj(t, x)|dx. (4.19)

By exploiting the same arguments as in (i), and noting (3.8)–(3.10), we can deduce from (4.19), formula (4.16). The proof
of Lemma 4.2 is finished. �

Lemma 4.3. Under the assumptions of Theorem 1.1, for small θ > 0 there exists a constant ε > 0 so small that on any given
domain of existence [0, T ]×R of the piecewise C1 solution u = u(t, x) to the generalized Riemann problem (1.1) and (1.6), there
exist positive constants ki (i = 3, . . . , 7) independent of θ , ε and T , such that the following uniform a priori estimates hold:

W1(T ) ≤ k3ε, (4.20)W1(T ) ≤ k4ε, (4.21)
U∞(T ), V∞(T ) ≤ k5θ (4.22)

and

W∞(T ) ≤ k6ε, (4.23)

where T satisfies

Tε ≤ k7. (4.24)

Proof. The proof of Lemma 4.3 is similar to that in Yi Zhou’s paper [24]. The only differences between them are emerged
in Lemma 4.2 caused by the line of discontinuity (center rarefaction wave). We sketch the proof and details for the readers’
convenience. We introduce

QW (T ) =

n
j=1


i≠j

 T

0


+∞

−∞

|wi(t, x)||wj(t, x)|dxdt.

By (2.13), it follows from Lemma 4.2 that

QW (T ) ≤ c8


ε + W1(T ) + V∞(T )(W1(T ) + W1(T )) +

 T

0


+∞

−∞

|G(t, x)|dxdt
2

, (4.25)

where G = (G1,G2, . . . ,Gn).
Noting (2.16), we have T

0


+∞

−∞

|G(t, x)|dxdt ≤ c9QW (T ). (4.26)
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Substituting (4.26) into (4.25), we obtain

QW (T ) ≤ c10


ε + W1(T ) + V∞(T )(W1(T ) + W1(T )) + QW (T )

2

. (4.27)

We next estimate W1(T ).
LetCj : x = xj(t) (0 ≤ t1 ≤ t ≤ t2 ≤ T )

be any given jth characteristic on the domain [0, T ] × R. Then, passing through the point P1(t1, xj(t1)) (resp. P2(t2, xj(t2)))
we draw the ith characteristic which intersects the x-axis at a point A1(0, y1) (resp. A2(0, y2)). Without loss of generality, we
assume that the whole ith wave (shock or contact discontinuity or rarefaction wave) passing through O(0, 0) is contained
in the domain P1A1A2P2. In what follows, we only consider the case of rarefaction wave, while other cases can be dealt with
in a manner similar to [23]. Let x = xL(t)(resp. x = xR(t)) be the left (resp. right) boundary of the rarefaction wave. Then,
applying (2.17) on the domain P1A1A2P2 and noting (2.16), it is easy to see that t2

t1
|wi(t, xj(t))||λj(u(t, xj(t))) − λi(u(t, xj(t)))|dt

≤

 y2

y1
|wi(0, x)|dx +

 T

0
|(x′

L(t) − λi(u(t, xL(t))))wi(t, xL(t) ± 0)|dt

+

 T

0
|(x′

R(t) − λi(u(t, xR(t))))wi(t, xR(t) ± 0)|dt +


k∈S2


Ck |([wi]x′

k(t) − [wiλi(u)])dt|

+

 
P1A1A2P2


j≠k

|Γijk(u)wjwk|dtdx, (4.28)

where S2 stands for the set of all indices k such that the kth discontinuous curve (shock or contact discontinuity)Ck : x =

xk(t) is partly contained in the domain P1A1A2P2, and

x′

k(t) =
dxk(t)
dt

=


λk(u±), as k ∈ I,
λk(u−, u+), as k ∈ JS .

(4.29)

Noting (3.6), in (4.28) we need not consider the case that the kth wave is a rarefaction wave. Using (1.8), (3.4), (3.8)–(3.10),
(4.3), (4.4) and (4.29), we have t2

t1
|wi(t, xj(t))|dt ≤ c11


ε + V∞(T )(W1(T ) + W1(T )) + QW (T )


.

Thus, noting (4.42) in [23], we get immediately

W1(T ) ≤ c12

ε + W1(T ) + V∞(T )(W1(T ) + W1(T )) + QW (T )


. (4.30)

We next estimateW1(T ).
(i) For i = n, passing through any fixed point A(T , a) (a > xn(T )), we draw the nth backward characteristic which

intersects the x-axis at a point B(0, xB).
We rewrite (2.14) as

d(|wi(t, x)|(dx − λi(u)dt)) = sgn(wi)Gidxdt. (4.31)

Without loss of generality, we assume that the nth wave (shock or contact discontinuity or rarefaction wave) x = xn(t)
passing through O(0, 0) is the shock curve. Let D denotes the point (T , xn(T )). Then, integrating (4.31) (in which we take
i = n) on the domain ABOD gives T

0
(x′

n(t) − λn(u(t, xn(t) + 0)))|wn(t, xn(t) + 0)|dt +

 A

D
|wn(T , x)|dx ≤

 xB

0
|wn(0, x)|dx +

 
ABOD

|Gn|dxdt.

Hence, noting (1.8) and (4.26), we get T

0
(x′

n(t) − λn(u(t, xn(t) + 0)))|wn(t, xn(t) + 0)|dt ≤ c13

ε + QW (T )


.



1080 Z.-Q. Shao / J. Math. Anal. Appl. 409 (2014) 1066–1083

In view of (3.2), this implies T

0
|(x′

n(t) − λn(u(t, xn(t) + 0)))wn(t, xn(t) + 0)|dt ≤ c13

ε + QW (T )


. (4.32)

(ii) For i = 1, . . . , n − 1, passing through point A(T , a) (a > xn(T )), we draw the ith backward characteristic which
intersects the x-axis at a point B(0, xB). Without loss of generality, we assume that the ith discontinuous curve x = xi(t)
passing through the origin is the shock curve.

Let D denotes the point (T , xi(T )). Thanks to the piecewise C1 solution u = u(t, x) containing only n shocks, centered
rarefaction waves or contact discontinuities x = xk(t)(xk(0) = 0) (k = 1, . . . , n), without loss of generality, we may
suppose that u = u(t, x) containing only a centered rarefaction wave, while other cases can be dealt with in a manner
similar to [23]. Without loss of generality, we may suppose that the i + 1th wave is a centered rarefaction wave. Let
x = xL(t)(resp. x = xR(t)) be the left (resp. right) boundary of the rarefaction wave, we divide the bounded domain
ABOD by both boundaries of the rarefaction wave x = xH(t) (H = L, R) and the discontinuous curves (shocks or contact
discontinuities) x = xk(t) (xk(0) = 0) (k = i+ 2, . . . , n) into some parts. Then, integrating (4.31) on all parts of the domain
ABOD gives T

0
(x′

i(t) − λi(u(t, xi(t) + 0)))|wi(t, xi(t) + 0)|dt +

 A

D
|wi(T , x)|dx

≤

 xB

0
|wi(0, x)|dx +

 T

0
x′

L(t)(|wi(t, xL(t) − 0)| − |wi(t, xL(t) + 0)|)dt

+

 T

0
λi(u(t, xL(t)))(|wi(t, xL(t) + 0)| − |wi(t, xL(t) − 0)|)dt

+

 T

0
x′

R(t)(|wi(t, xR(t) − 0)| − |wi(t, xR(t) + 0)|)dt

+

 T

0
λi(u(t, xR(t)))(|wi(t, xR(t) + 0)| − |wi(t, xR(t) − 0)|)dt

+

n
k=i+2


Ck |[wi]x′

k(t) − [wiλi(u)]|dt +

 
ABOD

|Gi|dxdt,

whereCk : x = xk(t) stands for the kth discontinuous curve (shock or contact discontinuity) passing through the origin,
which is contained in the domain ABOD. Thus, using (1.8), (3.6), (3.8)–(3.10), (4.4) and (4.29), we obtain T

0
(x′

i(t) − λi(u(t, xi(t) + 0)))|wi(t, xi(t) + 0)|dt ≤ c14

ε + V∞(T )(W1(T ) + W1(T )) + QW (T )


.

In view of (3.2), this implies T

0
|(x′

i(t) − λi(u(t, xi(t) + 0)))wi(t, xi(t) + 0)|dt ≤ c14

ε + V∞(T )(W1(T ) + W1(T )) + QW (T )


. (4.33)

(iii) For i = 1, passing through any fixed point A(T , a) (a < x1(T )), we draw the 1st backward characteristic which
intersects the x-axis at a point B(0, xB). Without loss of generality, we assume that the 1st discontinuous curve x = x1(t)
passing through the origin is the shock curve.

Let D denotes the point (T , x1(T )). Then, integrating (4.31) (in which we take i = 1) on the domain ABOD gives D

A
|w1(T , x)|dx +

 0

T
(x′

1(t) − λ1(u(t, x1(t) − 0)))|w1(t, x1(t) − 0)|dt ≤

 0

xB
|w1(0, x)|dx +

 
ABOD

|G1|dxdt.

Hence, noting (1.8) and (4.26), we get T

0
(λ1(u(t, x1(t) − 0)) − x′

1(t))|w1(t, x1(t) − 0)|dt ≤ c15

ε + QW (T )


.

In view of (3.2), this implies T

0
|(x′

1(t) − λ1(u(t, x1(t) − 0)))w1(t, x1(t) − 0)|dt ≤ c15

ε + QW (T )


. (4.34)

(iv) For i = 2, . . . , n, passing through point A(T , a) (a < x1(T )), we draw the ith backward characteristic which
intersects the x-axis at a point B(0, xB). Without loss of generality, we assume that the ith discontinuous curve x = xi(t)
passing through the origin is the shock curve.
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Let D denotes the point (T , xi(T )), without loss of generality, we may suppose that the piecewise C1 solution u = u(t, x)
containing only a centered rarefaction wave, while other cases can be dealt with in a manner similar to [23]. Without loss
of generality, we may suppose that the 1st wave is a centered rarefaction wave. Let x = xL(t)(resp. x = xR(t)) be the left
(resp. right) boundary of the rarefaction wave, we divide the bounded domain ABOD by both boundaries of the rarefaction
wave x = xH(t) (H = L, R) and the discontinuous curves (shocks or contact discontinuities) x = xk(t) (xk(0) = 0) (k =

2, . . . , i − 1) into some parts. Thus, integrating (4.31) on all parts of the domain ABOD gives T

0
(λi(u(t, xi(t) − 0)) − x′

i(t))|wi(t, xi(t) − 0)|dt +

 D

A
|wi(T , x)|dx

≤

 0

xB
|wi(0, x)|dx +

 T

0
x′

L(t)(|wi(t, xL(t) − 0)| − |wi(t, xL(t) + 0)|)dt

+

 T

0
λi(u(t, xL(t)))(|wi(t, xL(t) + 0)| − |wi(t, xL(t) − 0)|)dt

+

 T

0
x′

R(t)(|wi(t, xR(t) − 0)| − |wi(t, xR(t) + 0)|)dt

+

 T

0
λi(u(t, xR(t)))(|wi(t, xR(t) + 0)| − |wi(t, xR(t) − 0)|)dt

+

i−1
k=2


Ck |[wi]x′

k(t) − [wiλi(u)]|dt +

 
ABOD

|Gi|dxdt

whereCk : x = xk(t) stands for the kth discontinuous curve (shock or contact discontinuity) passing through the origin,
which is contained in the domain ABOD. Then, using (1.8), (3.6), (3.8)–(3.10), (4.4) and (4.29), we obtain T

0
(λi(u(t, xi(t) − 0)) − x′

i(t))|wi(t, xi(t) − 0)|dt ≤ c16

ε + V∞(T )(W1(T ) + W1(T )) + QW (T )


.

In view of (3.2), this implies T

0
|(x′

i(t) − λi(u(t, xi(t) − 0)))wi(t, xi(t) − 0)|dt ≤ c16

ε + V∞(T )(W1(T ) + W1(T )) + QW (T )


. (4.35)

Combining (4.32)–(4.34) and (4.35) all together, we have

W1(T ) ≤ c17

ε + V∞(T )(W1(T ) + W1(T )) + QW (T )


. (4.36)

We next estimate U∞(T ) and V∞(T ).
Passing through any fixed point (t, x) ∈ [0, T ]×R, we draw the ith backward characteristic Ci which intersects the x-axis

at a point (0, y). Integrating (2.6) along this characteristic Ci and noting (2.8) yield

vi(t, x) = vi(0, y) +


k∈S3

[vi]k +


Ci

n
j,k=1,k≠i

βijk(u)vjwkdt, (4.37)

where S3 denotes the set of all indices k such that this characteristic Ci intersects the kth discontinuous curve (shock or
contact discontinuity) x = xk(t) at a point (tk, xk(tk)), and [vi]k = vi(tk, xk(tk) + 0) − vi(tk, xk(tk) − 0). Noting (1.8) and
using (1.10), we have

|u+(x)| ≤


+∞

0
|u′

+
(x)|dx ≤ K2, ∀x ∈ R+ (4.38)

and

|u−(x)| ≤

 0

−∞

|u′

−
(x)|dx ≤ K2, ∀x ∈ R−. (4.39)

Therefore, noting the fact that i ∉ S3, and using (1.6), (2.1), (3.7), (4.2) and (4.4), we get from (4.37)–(4.39) that

V∞(T ) ≤ c18{θ + ε + V∞(T )(V∞(T ) + W1(T ))}. (4.40)

Combining (4.27), (4.30), (4.36) and (4.40) all together, and noting (4.2), (4.38) and (4.39), we can prove (4.20)–(4.22)
and

QW (T ) ≤ c19ε2.
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We finally estimateW∞(T ).
For any fixed point (t, x) ∈ [0, T ]×R, we draw the ith backward characteristic Ci passing through the point (t, x), which

intersects the x-axis at a point (0, y). Integrating (2.9) along this characteristic Ci and noting (2.11) yield

wi(t, x) = wi(0, y) +


k∈S4

[wi]k +


Ci


n

j,k=1,j≠k

γijk(u)wjwk + γiii(u)w2
i


dt,

where S4 denotes the set of all indices k such that this characteristic Ci intersects the kth discontinuous curve x = xk(t) at
a point (tk, xk(tk)), and [wi]k = wi(tk, xk(tk) + 0) − wi(tk, xk(tk) − 0). Using (3.6), (3.8), (3.9) and (4.4) and noting the fact
that i ∉ S4, we have

W∞(T ) ≤ c20{ε + V∞(T )W∞(T ) + W∞(T )W1(T ) + T (W∞(T ))2}. (4.41)

Noting (1.7), by continuity there exists a positive constant k6 independent of θ, ε and T such that (4.23) holds at least
for T > 0 suitably small. Thus, in order to prove (4.23) it suffices to show that we can choose k6 and k7 in such a way that
for any fixed T0 (0 < T0 ≤ T ) with T0ε ≤ k7 such that

W∞(T0) ≤ 2k6ε, (4.42)

we have

W∞(T0) ≤ k6ε. (4.43)

Substituting (4.42) into the right-hand side of (4.41) (in which we take T = T0), and noting (4.21)–(4.22) and (4.24), it is
easy to see that, when θ > 0 is suitably small, we have

W∞(T0) ≤ 2c20(1 + 2k26k7)ε.

Hence, if k6 ≥ 6c20 and k26k7 = 1, then we have (4.43), provided that θ is suitably small. Therefore (4.23) is proved.
Finally, we observe that when θ > 0 is suitably small, by (4.22) we have

U∞(T ) ≤ k5θ ≤
1
2
δ.

This implies the validity of hypothesis (4.4). The proof of Lemma 4.3 is finished. �

Proof of Theorem 1.1. By (4.22)–(4.23), we know that for small θ > 0 there exists ε > 0 suitably small such that the
generalized Riemann problem (1.1) and (1.6) admits a unique piecewise C1 solution u = u(t, x) containing shocks, contact
discontinuities and rarefaction waves on the strip [0, T ] × R, where T satisfies (4.24). Therefore, the lifespanT (ε) of the
piecewise C1 solution satisfiesT (ε) ≥ K3ε

−1,

whereK3(= k7) is a positive constant independent of ε. Moreover, by Lemma4.3,when the piecewise C1 solution u = u(t, x)
blows up in a finite time, u = u(t, x) itself must be bounded on the domain [0,T (ε)) × R. Hence, the first-order derivative
ux of u = u(t, x) should tend to be unbounded as t ↗T (ε). The proof of Theorem 1.1 is finished. �

Remark 4.1. In this paper, the author considered the below bound of the life span of the classical piecewise C1 solution.
However, how to search the above bound of the life span is a more important and more interesting problem, this problem
is worth studying in the future.

5. Applications

In this section, two concrete examples are given to show some applications of our main results, they are both the one-
dimensional compressible Euler equations in Eulerian coordinates and the system of traffic flow on a road network using
the Aw–Rascle model. Here, we only give the latter for which our work is of importance, for the basic model on the former
we refer the reader to Chen and Frid [5] and the references therein. The system of traffic flow on a road network using the
Aw–Rascle model reads (cf. [1]):

∂tρ + ∂x(ρv) = 0,
∂t(ρ(v + p(ρ))) + ∂x(ρv(v + p(ρ))) = 0, (5.1)

where ρ > 0 and v are, respectively, the density and the velocity of the cars at point x and time t , y = ρv + ρp(ρ) is the
momentum, the ‘‘pressure’’ p = p(ρ) is a suitably smooth function of ρ and satisfies

p′(ρ) > 0 and p′′(ρ) > 0, ∀ρ > 0.
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Set

u =


ρ
v


.

Then, we rewrite system (5.1) as

ut + A(u)ux = 0,

where the Jacobian matrix is

A(u) =


v ρ
0 v − ρp′(ρ)


.

It is known that (5.1) is strictly hyperbolic for ρ > 0, the first characteristic field is genuinely nonlinear, while the second
characteristic field is linearly degenerate. Therefore, Theorem 1.1 is obviously applicable to the system of traffic flow on a
road network using the Aw–Rascle model.
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