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In this paper, we study the optimal investment and consumption strategies for a
retired individual who has the opportunity of choosing a discretionary stopping
time to purchase an annuity. We assume that the individual receives a fixed annuity
income and changes his/her preference after paying a fixed cost for annuitization.
By using the martingale method and the variational inequality method, we tackle
this problem and obtain the optimal strategies and the value function explicitly for
the case of constant force of mortality and constant relative risk aversion (CRRA)
utility function.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Since the seminal paper of Yaari [27], there have been a number of papers about the optimal annuitization
and portfolio selection in the literature, see, for example, [9,22,24–26] and the references therein. Yaari [27]
first demonstrated that under some specific assumptions rational individuals with no bequest motives should
annuitize all their wealth at retirement. However, the volume of voluntary purchases by retirees is much
smaller than predicted by theoretical models, which is the so-called “annuity puzzle”.

Bequest motives play a central role in limiting the demand for annuities. Davidoff et al. [6] showed that
if annuities are priced fairly, then people annuitize all of their wealth except what they wish to bequeath.
Lockwood [21] argued that bequest motives are strong enough to reduce or eliminate purchases of available
annuities. There are other explanations for the annuity puzzle. Inkmann et al. [11] found that the annuity
market participation increases with financial wealth, life expectancy and education, while decreases with
other pension income and a possible bequest motive for surviving spouses. Benartzi et al. [2] exploited that
behavioral and institutional factors are important in explaining why there seems to be so little demand to
annuitize wealth at retirement. Wang and Young [25,26] proposed that if life annuities were commutable,
namely the individuals can surrender their early purchased life annuities, then retirees would purchase more
annuities.
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Milevsky and Young [22] claimed that, as a result of adverse selection, the annuity purchase is an ir-
reversible investment that creates an incentive to delay. Therefore, we consider a model which allows the
retirees to prearrange their annuitization using part of their wealth in the future, the amount is fixed as a
constant F . In view of significant medical spending, emergent events or bequest motives, full annuitization
may not be optimal for the individual. Hence, we suppose that there is a nonnegative constant d as the
lowest wealth level around the annuitization time τ , that is, Xτ � F + d, where X· is the wealth process of
the individual.

In this paper, we investigate the optimal investment, consumption strategies and the optimal annuiti-
zation time for a retired individual subject to a constant force of mortality. The individual can determine
a discretionary stopping time as the annuitization time, at that point, after paying a fixed cost for annu-
itization, the individual will receive a long-life annuity income. Moreover, we do not allow the individual
to borrow his or her future annuity income because this income is contingent on his or her being alive. In
contrast to the restrictive all-or-nothing arrangement, explored by [9,22,24], we assume that the individual
continues investing and consuming and changes his or her preference after annuitization. Finally, four types
of solutions are obtained depending on the free parameters of the problem. We find the optimal annuitiza-
tion region is a band form. In some special cases, the two annuitization thresholds coincide or degenerate
to +∞.

The problem of utility maximization with discretionary stopping was first studied by Karatzas and
Wang [16] via the martingale method. They introduced a family of stopping time problems to reduce
the original problem into an easy form. Farhi and Panageas [8] applied these techniques to explore an
optimal consumption and portfolio choice problem with flexible retirement option. See also [1,3–5,7,17,19,
20] for other extensions. In this paper, we use both the martingale method and the variational inequality
method to analyze an optimal consumption-portfolio selection problem with discretionary stopping. The
wealth process in our model is assumed discontinuous. Another mixed optimal stopping/control problem
has been studied by Jeanblanc et al. [12], in which the dynamic programming approach was employed and
risk-preference change was not allowed.

The rest of our paper is organized as follows. In Section 2, we present our model and formulate the
objective. An auxiliary value function U(x) is introduced to transform the problem into an easily solved
form. In Section 3, by using both the martingale method and the variational inequality method, we derive
the closed-form solution for the auxiliary problem. In Section 4, the original value function and optimal
strategies are provided by employing the same methods. Finally, we give numerical examples to illustrate
our results in Section 5. Some of the detailed proofs are deferred to Appendices A and B.

2. Model formulation

2.1. The financial and pension annuity markets

We consider an optimization problem for an individual from the retirement time till the stochastic death
time τd > 0 in the financial and pension annuity markets. In the financial market, there are one risk-free
asset and one risky asset, whose prices evolve according to the following equations:

dRt = rRt dt and dSt = μSt dt + σSt dWt,

where μ, σ and r are positive constants. Wt is a standard Brownian motion on a complete probability space
(Ω,F ,P), and {Ft} is the P-augmentation of the natural filtration generated by Wt. Suppose the death time
τd is an exponential random variable with parameter h defined on the probability space and is independent
of Wt.

Let ct be the consumption rate process which is nonnegative, progressively measurable with respect to Ft

satisfying
∫ t

cs ds < ∞ a.s. for all t � 0, and πt be the amount invested in the risky asset at time t, which
0
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is Ft-progressively measurable satisfying
∫ t

0 π2
s ds < ∞ a.s. for all t � 0. We assume that the individual

annuitizes a lump sum F at some discretionary stopping time τ , and after that receives a fixed rate F
āO
τ

of
annuity income. Here, āOτ is the market price of per dollar of annuity income purchased at time τ , which is
given by

āOτ := E

[ τd∫
τ

e−r(t−τ) dt
∣∣∣ τd > τ

]
=

∞∫
0

e−rte−ψt dt = 1
r + ψ

, (2.1)

where ψ > 0 is the constant objective hazard rate that is used to price annuities. Then the individual’s
controlled wealth process Xx,π,c

· with X0 = x � 0 satisfies SDE:

dXx,π,c
t =

[
(μ− r)πt + rXx,π,c

t − ct
]
dt + σπt dWt, t � τ, (2.2)

and

dXx,π,c
t =

[
(μ− r)πt + rXx,π,c

t − ct + F (ψ + r)
]
dt + σπt dWt, t > τ, (2.3)

with Xx,π,c
τ+ = Xx,π,c

τ − F .
Define the market-price-of-risk, the discount process, the exponential martingale process, and the state-

price-density process, respectively, by

θ � μ− r

σ
, ζt � e−rt, Zt � exp

{
−θWt −

1
2θ

2t

}
, and Ht � ζtZt.

We also define an equivalent martingale measure as

P̃
T (A) � E[ZT1A],

for any fixed T ∈ [0,∞) and any A ∈ FT . Then the Girsanov theorem implies that W̃T
t � Wt + θt, for

0 � t � T , is a standard Brownian motion under the new measure P̃
T . There exists a unique probability

measure P̃ on F∞ that agrees with P̃
T on FT , for any T ∈ [0,∞). Furthermore, W̃t, 0 � t < ∞, is a

Brownian motion under P̃ (see Proposition 7.4 in Section 1.7 of Karatzas and Shreve [15]). So the wealth
process before time τ can be rewritten as

ζtX
x,π,c
t +

t∫
0

ζscs ds = x +
t∫

0

ζsσπs dW̃s, t � τ. (2.4)

We call a policy (τ, {(πt, ct), t < ∞}) admissible if Xx,π,c
t � 0 and Xx,π,c

τ � F + d, for all 0 � t < ∞,
where d � 0 is a constant, denoting the lowest wealth level after paying a lump annuitization cost F . Here
we don’t allow the individual to borrow the future annuity income, and we use A(x) to denote the class of
all admissible policies with initial wealth x.

For any triple (τ, {(πt, ct), t < ∞}) ∈ A(x), the second term on the right-hand side of Eq. (2.4) is a
continuous P̃-local martingale bounded below and thus a super-martingale by Fatou’s lemma. Then the
optional sampling theorem and the Bayes rule lead to

E

[
HτX

x,π,c
τ +

τ∫
0

Hscs ds

]
� x, (2.5)

for every τ ∈ S, where S denotes the set of all F-stopping times.
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2.2. The objective

For an admissible policy (τ, {(πt, ct), t < ∞}), the individual’s expected utility function J(c, π, τ ;x) with
initial wealth x is given by

J(c, π, τ ;x) = E

[ τ∧τd∫
0

e−δs c1−γ1
s

1 − γ1
ds +

τd∫
τ

e−δs c1−γ2
s

1 − γ2
ds1{τ<τd}

]
, (2.6)

where γ1 is the individual’s coefficient of relative risk aversion before annuitization, and γ2 is the individual’s
coefficient of relative risk aversion during the annuity assessment phase. We assume that 0 < γ1 � γ2 < 1.
The optimal results for the case γ1 = γ2 can be easily obtained by taking γ1 → γ2. Hence, we mainly focus
on 0 < γ1 < γ2 < 1. δ > 0 is the constant subjective discount rate.

Under the assumption of the distribution of the death time τd, the individual’s expected utility function
J(c, π, τ ;x) can be rewritten as

J(c, π, τ ;x) = E

[ τ∫
0

e−βs c1−γ1
s

1 − γ1
ds +

∞∫
τ

e−βs c1−γ2
s

1 − γ2
ds

]
, (2.7)

where β � δ + h.
The value function is given by

V (x) = sup
(c,π,τ)∈A(x)

J(c, π, τ ;x). (2.8)

Define

Ki � r + β − r

γi
+ γi − 1

2γ2
i

θ2, i = 1, 2.

We make the following assumption that guarantees the finiteness of the value function (see, Karatzas et al.
[13, Corollary 14.2]).

Assumption 2.1. Ki > 0, i = 1, 2.

Definition 2.1. We denote by A1(x) ⊂ A(x) the class of admissible controls such that

E

[ ∞∫
τ

e−βt c
1−γ2
t

1 − γ2
dt

]
= E

[
e−βτU

(
Xx,π,c

τ − F
)
1{τ<∞}

]
,

where U(·) is given by

U(x) = sup
(c,π)∈A2(x)

E

[ ∞∫
0

e−βt c
1−γ2
t

1 − γ2
dt

]
(2.9)

with

dXx,π,c
t =

[
(μ− r)πt + rXx,π,c

t − ct
]
dt + σπt dWt + F (ψ + r) dt, t > 0, (2.10)

and A2(x) denotes the set of policies (c, π) such that Xx,π,c
t � 0, for all t > 0.
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According to Proposition 2.4 of Jeanblanc et al. [12], we have the following lemma.

Lemma 2.1. If (τ, {(πt, ct), t < ∞}) ∈ A(x) is an admissible policy and {(πt, ct), τ < t < ∞} ≡
{(π̃∗(Xt), c̃∗(Xt)), τ < t < ∞} (here, (π̃∗(Xt), c̃∗(Xt)) are the corresponding optimal investment/con-
sumption strategies for U(x)), then (τ, {(πt, ct), t < ∞}) ∈ A1(x). Additionally, for every x ∈ [0,∞),

V (x) = sup
(τ,{(πt,ct), t<∞})∈A1(x)

E

[ τ∫
0

e−βt c
1−γ1
t

1 − γ1
dt + e−βτU

(
Xx,π,c

τ − F
)
1{τ<∞}

]
. (2.11)

3. The auxiliary problem

In this section we derive the value function U(x) and the corresponding optimal strategies through a
duality approach, which is closely related to He and Pagés [10].

With the help of notations defined in Section 2, the wealth process (2.10) can be rewritten as

ζtX
x,π,c
t +

t∫
0

ζscs ds = x +
t∫

0

(ψ + r)Fζs ds +
t∫

0

ζsσπs dW̃s. (3.1)

Then by Fatou’s lemma and the Bayes rule, for sufficiently large T , we obtain

E

[
HTX

x,π,c
T +

T∫
0

Hscs ds

]
� x + E

[ T∫
0

Hs(ψ + r)F ds

]
,

and also

E

[ T∫
0

Hscs ds

]
� x + E

[ T∫
0

Hs(ψ + r)F ds

]
.

Let T → ∞. The monotone convergence theorem implies

E

[ ∞∫
0

Hscs ds−
∞∫
0

Hs(ψ + r)F ds

]
� x. (3.2)

To guarantee the existence of an optimal portfolio process, the wealth process Xx,π,c
t should have the

form

Xx,π,c
t = 1

Ht
E

[ ∞∫
t

Hscs ds−
∞∫
t

Hs(ψ + r)F ds

∣∣∣∣∣Ft

]
.

(See Theorem 9.4 in Section 3.9 of Karatzas and Shreve [15].)
Therefore, the nonnegative wealth constraint implies

E

[ ∞∫
Hscs ds−

∞∫
Hs(ψ + r)F ds

∣∣∣∣∣Ft

]
� 0. (3.3)
t t
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According to He and Pagés [10], the solutions for the following program (P ) are the solutions for the
problem (2.9) with constraints (3.2) and (3.3). The program (P ) is described as follows: minimizing the
maximum attainable utility below with any D ∈ D,

U1(x) = sup
(c,π)∈A2(x)

E

[ ∞∫
0

e−βt c
1−γ2
t

1 − γ2
dt

]
,

with constraint

E

[ ∞∫
0

HsDscs ds−
∞∫
0

HsDs(ψ + r)F ds

]
� x, (3.4)

where Dt is a positive, decreasing process with D0 = 1, and we use D to denote the set of all such processes.
For a Lagrange multiplier λ > 0, let us define a dual value function

J̃(λ,D; c, π) � sup
(c,π)∈A2(x)

{
E

[ ∞∫
0

e−βt c
1−γ2
t

1 − γ2
dt

]
− λE

[ ∞∫
0

HtDtct dt−
∞∫
0

HtDt(ψ + r)F dt

]}

= E

[ ∞∫
0

e−βt
{
ũ2(Yt) + (ψ + r)FYt

}
dt

]
,

where Yt � λeβtDtHt, Y0 = λ,

ũ2(y) � sup
c>0

{
c1−γ2

1 − γ2
− cy

}
= γ2

1 − γ2
y−

1−γ2
γ2 ,

and the corresponding optimal consumption is

c̃∗t = (Yt)−
1
γ2 .

We can obtain U(x) from J̃(λ,D; c, π) by Legendre transform inverse formula

U(x) = inf
{λ>0, D>0}

{
J̃(λ,D; c, π) + λx

}
= inf

λ>0

{
Ũ(λ) + λx

}
, (3.5)

where

Ũ(λ) � inf
D>0

J̃(λ,D; c, π).

In order to obtain Ũ(λ), we define

φ(t, y) � inf
D>0

E
Yt=y

[ ∞∫
t

e−βs
{
ũ2(Ys) + (ψ + r)FYs

}
ds

]
, (3.6)

with

dYt

Yt
= (β − r) dt− θ dWt + dDt

Dt
. (3.7)

It is easily checked that φ is strictly convex and decreasing in y, since ũ2 is strictly convex.
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Consider the partial differential operator

L � ∂

∂t
+ (β − r)y ∂

∂y
+ 1

2θ
2y2 ∂2

∂y2 ,

then a solution to the following free boundary value problem will be a solution to the optimal problem (3.6).

Variational Inequality 3.1. Find a positive number ŷ > 0 that makes a zero wealth level, and a function
φ̃(·,·) ∈ C2((0,∞) × R

+) satisfying

(1) Lφ̃ + e−βt{ũ2(y) + (ψ + r)Fy} = 0, 0 < y < ŷ,
(2) Lφ̃ + e−βt{ũ2(y) + (ψ + r)Fy} � 0, y � ŷ,
(3) ∂φ̃

∂y = 0, y � ŷ,
(4) ∂φ̃

∂y < 0, 0 < y < ŷ,

for all t > 0.

Let λ1, λ2(λ1 > λ2) be the two roots of the quadratic equation

1
2θ

2λ2 +
(
β − r − 1

2θ
2
)
λ− β = 0.

It is easy to check that λ1 > 1 and λ2 < min(γ2−1
γ2

, γ1−1
γ1

). The proposition below provides a solution for
Variational Inequality 3.1.

Proposition 3.1. Consider the function

v(y) =

⎧⎨⎩C1y
λ1 + γ2

K2(1−γ2)y
− 1−γ2

γ2 + (ψ+r)F
r y, 0 < y < ŷ,

C1ŷ
λ1 + γ2

K2(1−γ2) ŷ
− 1−γ2

γ2 + (ψ+r)F
r ŷ, y � ŷ,

with

ŷ =
(

(ψ + r)FK2γ2(λ1 − 1)
r((λ1 − 1)γ2 + 1)

)−γ2

> 0,

and

C1 = − 1
γ2K2λ1(λ1 − 1) ŷ

− (λ1−1)γ2+1
γ2 < 0.

Then, φ̃(t, y) = e−βtv(y) is a solution to Variational Inequality 3.1.

Theorem 3.1. If the pair (ŷ, φ̃(t, y)) solves Variational Inequality 3.1, and Dt has a continuous sample path
such that ∂φ(t,y)

∂y dDt = 0, then φ̃(t, y) coincides with φ(t, y) of (3.6) and the optimal process D∗
t is provided

by

D∗
t = min

{
1, inf

0�s�t

{
ŷ

λHseβs

}}
.
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Proof. The proof is straightforward by applying Theorem 4 of He and Pagés [10]. �
From the results of Theorem 3.1 and Proposition 3.1, we can derive the value function U(x). Note that

Ũ(λ) = φ(0, λ) = C1λ
λ1 + γ2

K2(1 − γ2)
λ− 1−γ2

γ2 + (ψ + r)F
r

λ, 0 < λ < ŷ.

U(x) is obtained at λ∗ > 0 such that Ũ ′(λ) = −x.

Theorem 3.2. The value function U(x) is given by

U(x) = C1
(
λ∗)λ1 + γ2

K2(1 − γ2)
(
λ∗)− 1−γ2

γ2 + (ψ + r)F
r

λ∗ + λ∗x, x � 0, (3.8)

and λ∗ is the solution to the following algebraic equation

C1λ1
(
λ∗)λ1−1 − 1

K2

(
λ∗)− 1

γ2 + (ψ + r)F
r

= −x. (3.9)

Remark 3.1. It is easy to check the one-to-one correspondence between λ∗ ∈ (0, ŷ) and x ∈ (0,∞) in (3.9)
using the fact that Ũ(λ) is strictly convex.

Now we derive the optimal strategies. Let Y ∗
t be the solution of SDE (3.7) with an initial value Y ∗

0 = λ∗

and Dt = D∗
t . We obtain the optimal wealth process X∗

t by substituting Y ∗
t for λ∗ into (3.9) as follows:

X∗
t = −C1λ1

(
Y ∗
t

)λ1−1 + 1
K2

(
Y ∗
t

)− 1
γ2 − (ψ + r)F

r
.

Theorem 3.3. The optimal strategies (c̃∗, π̃∗) are provided by

c̃∗t =
(
Y ∗
t

)− 1
γ2 ,

and

π̃∗
t = θ

σ

[
C1λ1(λ1 − 1)

(
Y ∗
t

)λ1−1 + 1
K2γ2

(
Y ∗
t

)− 1
γ2

]
.

Since ŷ makes the zero wealth level, we observe that as the wealth process goes to zero, the individ-
ual does not invest in the risky asset, instead, she reduces her consumption to a rate lower than her
annuity income in order to accumulate wealth. This can also be seen from the numerical illustrations in
Section 5.

4. The main result

In this section we solve the original optimal problem V (x) using the similar method proposed in Section 3,
since there is no annuity income before time τ , we need not consider the borrowing constraints.

For any fixed stopping time τ ∈ S, let Πτ (x) be the class of consumption-portfolio plan (c, π) such that
(c, π, τ) ∈ A1(x).
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For a Lagrange multiplier ν > 0, we define a dual value function

J̃1(ν; c, π, τ) � sup
(c,π)∈Πτ (x)

{
E

[ τ∫
0

e−βt c
1−γ1
t

1 − γ1
dt + e−βτU

(
Xx,π,c

τ − F
)]

− νE

[ τ∫
0

Htct dt + Hτ

(
Xx,π,c

τ − F
)

+ HτF

]}

= E

[ τ∫
0

e−βtū1
(
Zν
t

)
dt + e−βτ

(
U
(
Zν
τ

)
− Zν

τ F
)]

,

where Zν
t � νeβtHt, Zν

0 = ν,

ū1(z) � sup
c>0

{
c1−γ1

1 − γ1
− cz

}
= γ1

1 − γ1
z−

1−γ1
γ1 ,

and

U(z) � sup
Xx,π,c

τ −F�d

{
U
(
Xx,π,c

τ − F
)
− z

(
Xx,π,c

τ − F
)}

.

From the derivation of Section 3, we know

U
(
Xx,π,c

τ − F
)

= C1(1 − λ1)
(
Y ∗
τ

)λ1 + 1
K2(1 − γ2)

(
Y ∗
τ

)− 1−γ2
γ2 ,

with

Xx,π,c
τ − F = −C1λ1

(
Y ∗
τ

)λ1−1 + 1
K2

(
Y ∗
τ

)− 1
γ2 − (ψ + r)F

r
.

By direct calculation, we get

U ′(Xx,π,c
τ − F

)
= Y ∗

τ .

So in order to obtain the maximization, we should have

Y ∗
τ =

{
Zν
τ , if 0 < Zν

τ � ÿ,

ÿ, if Zν
τ > ÿ,

where ÿ satisfies the equation

−C1λ1ÿ
λ1−1 + 1

K2
ÿ−

1
γ2 − (ψ + r)F

r
= d,

and it is easy to verify that ÿ � ŷ.
Hence,

U
(
Zν
τ

)
=

{
C1(Zν

τ )λ1 + γ2
K2(1−γ2) (Z

ν
τ )−

1−γ2
γ2 + (ψ+r)F

r Zν
τ , if 0 < Zν

τ � ÿ,
ν ν
U(d) − Zτ d, if Zτ > ÿ,
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and the corresponding optimal strategies are given by

c∗t =
(
Zν
t

)− 1
γ1 , (4.1)

and

X∗
τ =

{
−C1λ1(Zν

τ )λ1−1 + 1
K2

(Zν
τ )−

1
γ2 − ψ

r F, if 0 < Zν
τ � ÿ,

F + d if Zν
τ > ÿ.

(4.2)

Therefore, we obtain

J̃1(ν; c, π, τ) = E

{ τ∫
0

e−βt γ1

1 − γ1

(
Zν
t

)− 1−γ1
γ1 dt + e−βτ

[
U(d) − Zν

τ (F + d)
]
1(Zν

τ>ÿ)

+ e−βτ

(
C1

(
Zν
τ

)λ1 + γ2

K2(1 − γ2)
(
Zν
τ

)− 1−γ2
γ2 + ψ

r
FZν

τ

)
1(0<Zν

τ �ÿ)

}
,

with

dZν
t = Zν

t

{
(β − r) dt− θ dWt

}
. (4.3)

Now we define

Ṽ (ν) � sup
τ∈S

J̃1(ν; c, π, τ), ν > 0,

then the next proposition gives the value function V (x).

Proposition 4.1. If Ṽ (ν) exists and is differentiable for ν > 0, then

V (x) = inf
ν>0

[
Ṽ (ν) + νx

]
holds for every x ∈ (0,∞).

Proof. See Theorem 8.5 and Corollary 8.7 of Karatzas and Wang [16]. �
Hence, we first calculate the value of Ṽ (ν). This is a standard optimal stopping problem and can be

solved by HJB variational inequality method, see Øksendal and Sulem [23]. However, the terminal function
here is a piecewise function, which will be a little more complex to deal with. For mathematical simplicity,
throughout the remainder of the paper we assume d is 0, and consequently ÿ is equal to ŷ. For the general
case, the value function and optimal strategies can be derived similarly.

Consider the partial differential operator

L1φ(z) � (β − r)zφ′(z) + 1
2θ

2z2φ′′(z) − βφ(z).

Then Propositions 4.2–4.5 provide the value of the dual function Ṽ (ν), the proofs are deferred to
Appendix B.
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Proposition 4.2.1 If z̄ < ŷ � z̃2, and F 1−γ1

K
γ1
1 (1−γ1)

< U(0), then

φ(z) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

C0z
λ1 + γ1

K1(1−γ1)z
− 1−γ1

γ1 , 0 < z < z̄,

C1z
λ1 + γ2

K2(1−γ2)z
− 1−γ2

γ2 + ψ
r Fz, z̄ � z � ŷ,

U(0) − zF, ŷ < z � z̃2,

C̃2z
λ2 + γ1

K1(1−γ1)z
− 1−γ1

γ1 , z > z̃2,

satisfies:

(1) L1φ + γ1
1−γ1

z−
1−γ1
γ1 = 0, 0 < z < z̄, z > z̃2,

(2) L1φ + γ1
1−γ1

z−
1−γ1
γ1 � 0, z̄ � z � z̃2,

(3) φ(z) = C1z
λ1 + γ2

K2(1−γ2)z
− 1−γ2

γ2 + ψ
r Fz, z̄ � z � ŷ,

(4) φ(z) = U(0) − zF , ŷ < z � z̃2,
(5) φ(z) > C1z

λ1 + γ2
K2(1−γ2)z

− 1−γ2
γ2 + ψ

r Fz, 0 < z < z̄,
(6) φ(z) > U(0) − zF , z > z̃2.

Moreover Ṽ (ν) = φ(ν), and the optimal stopping time is provided by

τν = inf
{
t > 0

∣∣ z̄ � Zν
t � z̃2

}
.

Remark 4.1. Under the assumption of Proposition 4.2, we can derive C0 > 0, see Lemma B.4.

Proposition 4.3.2 If z̄ � ŷ, and F 1−γ1

K
γ1
1 (1−γ1)

< U(0), then

φ(z) =

⎧⎪⎪⎨⎪⎪⎩
C2z

λ1 + γ1
K1(1−γ1)z

− 1−γ1
γ1 , 0 < z < z̃1,

U(0) − zF, z̃1 � z � z̃2,

C̃2z
λ2 + γ1

K1(1−γ1)z
− 1−γ1

γ1 , z > z̃2,

satisfies:

(1) L1φ + γ1
1−γ1

z−
1−γ1
γ1 = 0, 0 < z < z̃1, z > z̃2,

(2) L1φ + γ1
1−γ1

z−
1−γ1
γ1 � 0, z̃1 � z � z̃2,

(3) φ(z) = U(0) − zF , z̃1 � z � z̃2,
(4) φ(z) > C1z

λ1 + γ2
K2(1−γ2)z

− 1−γ2
γ2 + ψ

r Fz, 0 < z � ŷ,
(5) φ(z) > U(0) − zF , ŷ < z < z̃1, z > z̃2.

Moreover Ṽ (ν) = φ(ν), and the optimal stopping time is provided by

τν = inf
{
t > 0

∣∣ z̃1 � Zν
t � z̃2

}
.

Proposition 4.4. If (1) z̄ < ŷ, C0 > 0 and F 1−γ1

K
γ1
1 (1−γ1)

� U(0), or (2) z̄ < ŷ, F 1−γ1

K
γ1
1 (1−γ1)

< U(0), and z̃2 < ŷ,
then

1 The values of z̄, z̃2, C0, and C̃2 are presented in Proposition B.1 and Proposition B.2.
2 The values of z̃1, C2 are presented in Proposition B.2.



916 X. Liang et al. / J. Math. Anal. Appl. 413 (2014) 905–938
φ(z) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
C0z

λ1 + γ1
K1(1−γ1)z

− 1−γ1
γ1 , 0 < z < z̄,

C1z
λ1 + γ2

K2(1−γ2)z
− 1−γ2

γ2 + ψ
r Fz, z̄ � z � y̌,

Ĉ2z
λ2 + γ1

K1(1−γ1)z
− 1−γ1

γ1 , z > y̌,

(4.4)

satisfies:

(1) L1φ + γ1
1−γ1

z−
1−γ1
γ1 = 0, 0 < z < z̄, z > y̌,

(2) L1φ + γ1
1−γ1

z−
1−γ1
γ1 � 0, z̄ � z � y̌,

(3) φ(z) = C1z
λ1 + γ2

K2(1−γ2)z
− 1−γ2

γ2 + ψ
r Fz, z̄ � z � y̌,

(4) φ(z) > C1z
λ1 + γ2

K2(1−γ2)z
− 1−γ2

γ2 + ψ
r Fz, 0 < z < z̄, y̌ < z � ŷ,

(5) φ(z) > U(0) − zF , z > ŷ,

where y̌ is the largest solution of the following equation on z ∈ (z̄, ŷ):

(λ2 − λ1)C1z
λ1−1 + (λ2 − 1)γ2 + 1

K2(1 − γ2)
z−

1
γ2 − (λ2 − 1)γ1 + 1

K1(1 − γ1)
z−

1
γ1 + (λ2 − 1)ψ

r
F = 0, (4.5)

and

Ĉ2 = C1y̌
λ1−λ2 + γ2

K2(1 − γ2)
y̌−

(λ2−1)γ2+1
γ2 − γ1

K1(1 − γ1)
y̌−

(λ2−1)γ1+1
γ1 + ψ

r
F y̌1−λ2 > 0.

Moreover Ṽ (ν) = φ(ν), and the optimal stopping time is provided by

τν = inf
{
t > 0

∣∣ z̄ � Zν
t � y̌

}
.

Proposition 4.5. If (1) z̄ � ŷ, F 1−γ1

K
γ1
1 (1−γ1)

� U(0), or (2) z̄ < ŷ, C0 � 0, and F 1−γ1

K
γ1
1 (1−γ1)

� U(0), then τν = ∞,

and Ṽ (ν) = γ1
K1(1−γ1)ν

− 1−γ1
γ1 .

V (x) is obtained at ν∗ > 0 such that Ṽ ′(ν) = −x. Thus, we get the main results of our paper.

Theorem 4.1. The value function V (x) is given by:

1. If z̄ < ŷ � z̃2, and F 1−γ1

K
γ1
1 (1−γ1)

< U(0), then

V (x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
C0(ν∗)λ1 + γ1

K1(1−γ1) (ν
∗)−

1−γ1
γ1 + ν∗x, x > x̄,

C1(ν∗)λ1 + γ2
K2(1−γ2) (ν

∗)−
1−γ2
γ2 + ψ

r Fν∗ + ν∗x, F � x � x̄,

C̃2(ν∗)λ2 + γ1
K1(1−γ1) (ν

∗)−
1−γ1
γ1 + ν∗x, 0 < x < F,

(4.6)

with

x̄ = −C0λ1z̄
λ1−1 + 1

K1
z̄−

1
γ1 = −C1λ1z̄

λ1−1 + 1
K2

z̄−
1
γ2 − ψ

r
F,

and ν∗ satisfies the following algebraic equations
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−C0λ1
(
ν∗

)λ1−1 + 1
K1

(
ν∗

)− 1
γ1 = x, x > x̄, (4.7)

−C1λ1
(
ν∗

)λ1−1 + 1
K2

(
ν∗

)− 1
γ2 − ψ

r
F = x, F � x � x̄, (4.8)

and

−C̃2λ2
(
ν∗

)λ2−1 + 1
K1

(
ν∗

)− 1
γ1 = x, 0 < x < F. (4.9)

2. If z̄ � ŷ, and F 1−γ1

K
γ1
1 (1−γ1)

< U(0), then

V (x) =

⎧⎪⎪⎨⎪⎪⎩
C2(ν∗)λ1 + γ1

K1(1−γ1) (ν
∗)−

1−γ1
γ1 + ν∗x, x > F,

U(0), x = F,

C̃2(ν∗)λ2 + γ1
K1(1−γ1) (ν

∗)−
1−γ1
γ1 + ν∗x, 0 < x < F,

(4.10)

and ν∗ satisfies the following algebraic equations

−C2λ1
(
ν∗

)λ1−1 + 1
K1

(
ν∗

)− 1
γ1 = x, x � F, (4.11)

and

−C̃2λ2
(
ν∗

)λ2−1 + 1
K1

(
ν∗

)− 1
γ1 = x, 0 < x < F. (4.12)

3. If (1) z̄ < ŷ, C0 > 0 and F 1−γ1

K
γ1
1 (1−γ1)

� U(0), or (2) z̄ < ŷ, F 1−γ1

K
γ1
1 (1−γ1)

< U(0), and z̃2 < ŷ, then

V (x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
C0(ν∗)λ1 + γ1

K1(1−γ1) (ν
∗)−

1−γ1
γ1 + ν∗x, x > x̄,

C1(ν∗)λ1 + γ2
K2(1−γ2) (ν

∗)−
1−γ2
γ2 + ψ

r Fν∗ + ν∗x, x̌ � x � x̄,

Ĉ2(ν∗)λ2 + γ1
K1(1−γ1) (ν

∗)−
1−γ1
γ1 + ν∗x, 0 < x < x̌,

(4.13)

with

x̌ = −Ĉ2λ2y̌
λ2−1 + 1

K1
y̌−

1
γ1 = −C1λ1y̌

λ1−1 + 1
K2

y̌−
1
γ2 − ψ

r
F,

and ν∗ satisfies the following algebraic equations

−C0λ1
(
ν∗

)λ1−1 + 1
K1

(
ν∗

)− 1
γ1 = x, x > x̄, (4.14)

−C1λ1
(
ν∗

)λ1−1 + 1
K2

(
ν∗

)− 1
γ2 − ψ

r
F = x, x̌ � x � x̄, (4.15)

and

−Ĉ2λ2
(
ν∗

)λ2−1 + 1
K1

(
ν∗

)− 1
γ1 = x, 0 < x < x̌. (4.16)

4. If (1) z̄ � ŷ, F 1−γ1

K
γ1
1 (1−γ1)

� U(0), or (2) z̄ < ŷ, C0 � 0, and F 1−γ1

K
γ1
1 (1−γ1)

� U(0), then V (x) = x1−γ1

K
γ1
1 (1−γ1)

.
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Proof. For case 1, it is easy to check the one-to-one correspondence between ν∗ ∈ (0, ŷ] ∪ (z̃2,∞) and
x ∈ [F,∞) ∪ (0, F ) using the fact that Ṽ (ν) is strictly convex on (0, ŷ] ∪ (z̃2,∞). By similar arguments, we
obtain the results in cases 2, 3 and 4. �

Now we derive the optimal strategies. Let Z∗
t be the solution of SDE (4.3) with an initial value Z∗

0 = ν∗.
We obtain the optimal wealth process X∗

t by substituting Z∗
t for ν∗ into (4.7), (4.9), (4.11), (4.12), (4.14)

and (4.16) as follows:

1. If z̄ < ŷ � z̃2, and F 1−γ1

K
γ1
1 (1−γ1)

< U(0),

X∗
t = −C0λ1

(
Z∗
t

)λ1−1 + 1
K1

(
Z∗
t

)− 1
γ1 , X∗

t � x̄, (4.17)

and

X∗
t = −C̃2λ2

(
Z∗
t

)λ2−1 + 1
K1

(
Z∗
t

)− 1
γ1 , 0 < X∗

t � F. (4.18)

2. If z̄ � ŷ, and F 1−γ1

K
γ1
1 (1−γ1)

< U(0),

X∗
t = −C2λ1

(
Z∗
t

)λ1−1 + 1
K1

(
Z∗
t

)− 1
γ1 , X∗

t � F, (4.19)

and

X∗
t = −C̃2λ2

(
Z∗
t

)λ2−1 + 1
K1

(
Z∗
t

)− 1
γ1 , 0 < X∗

t < F. (4.20)

3. If (1) z̄ < ŷ, C0 > 0 and F 1−γ1

K
γ1
1 (1−γ1)

� U(0), or (2) z̄ < ŷ, F 1−γ1

K
γ1
1 (1−γ1)

< U(0), and z̃2 < ŷ,

X∗
t = −C0λ1

(
Z∗
t

)λ1−1 + 1
K1

(
Z∗
t

)− 1
γ1 , X∗

t � x̄, (4.21)

and

X∗
t = −Ĉ2λ2

(
Z∗
t

)λ2−1 + 1
K1

(
Z∗
t

)− 1
γ1 , 0 < X∗

t � x̌. (4.22)

Theorem 4.2. The optimal strategies (c∗, π∗, τ∗) are provided by:

1. If z̄ < ŷ � z̃2, and F 1−γ1

K
γ1
1 (1−γ1)

< U(0), then

c∗t =
{

(Z∗
t )−

1
γ1 , if 0 � t � τ∗,

(Y ∗
t )−

1
γ2 , if t > τ∗,

and

π∗
t =

⎧⎪⎪⎨⎪⎪⎩
θ
σ [C0λ1(λ1 − 1)(Z∗

t )λ1−1 + 1
K1γ1

(Z∗
t )−

1
γ1 ], if 0 � t � τ∗, X∗

t � x̄,

θ
σ [C1λ1(λ1 − 1)(Y ∗

t )λ1−1 + 1
K2γ2

(Y ∗
t )−

1
γ2 ], if t > τ∗,

θ [C̃ λ (λ − 1)(Z∗)λ2−1 + 1 (Z∗)−
1
γ1 ], if 0 � t � τ∗, 0 < X∗ � F,
σ 2 2 2 t K1γ1 t t
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with

τ∗ = inf
{
t > 0

∣∣ F � X∗
t � x̄

}
,

and

X∗
t = −C1λ1

(
Y ∗
t

)λ1−1 + 1
K2

(
Y ∗
t

)− 1
γ2 − ψ + r

r
F, t > τ∗.

2. If z̄ � ŷ, and F 1−γ1

K
γ1
1 (1−γ1)

< U(0), then

c∗t =
{

(Z∗
t )−

1
γ1 , if 0 � t � τ∗,

(Y ∗
t )−

1
γ2 , if t > τ∗,

and

π∗
t =

⎧⎪⎪⎨⎪⎪⎩
θ
σ [C2λ1(λ1 − 1)(Z∗

t )λ1−1 + 1
K1γ1

(Z∗
t )−

1
γ1 ], if 0 � t � τ∗, X∗

t � F,

θ
σ [C1λ1(λ1 − 1)(Y ∗

t )λ1−1 + 1
K2γ2

(Y ∗
t )−

1
γ2 ], if t > τ∗,

θ
σ [C̃2λ2(λ2 − 1)(Z∗

t )λ2−1 + 1
K1γ1

(Z∗
t )−

1
γ1 ], if 0 � t � τ∗, 0 < X∗

t � F,

with

τ∗ = inf
{
t > 0

∣∣ X∗
t = F

}
,

and

X∗
t = −C1λ1

(
Y ∗
t

)λ1−1 + 1
K2

(
Y ∗
t

)− 1
γ2 − ψ + r

r
F, t > τ∗.

3. If (1) z̄ < ŷ, C0 > 0 and F 1−γ1

K
γ1
1 (1−γ1)

� U(0), or (2) z̄ < ŷ, F 1−γ1

K
γ1
1 (1−γ1)

< U(0), and z̃2 < ŷ, then

c∗t =
{

(Z∗
t )−

1
γ1 , if 0 � t � τ∗,

(Y ∗
t )−

1
γ2 , if t > τ∗,

and

π∗
t =

⎧⎪⎪⎨⎪⎪⎩
θ
σ [C0λ1(λ1 − 1)(Z∗

t )λ1−1 + 1
K1γ1

(Z∗
t )−

1
γ1 ], if 0 � t � τ∗, X∗

t � x̄,

θ
σ [C1λ1(λ1 − 1)(Y ∗

t )λ1−1 + 1
K2γ2

(Y ∗
t )−

1
γ2 ], if t > τ∗,

θ
σ [Ĉ2λ2(λ2 − 1)(Z∗

t )λ2−1 + 1
K1γ1

(Z∗
t )−

1
γ1 ], if 0 � t � τ∗, 0 < X∗

t � x̌,

with

τ∗ = inf
{
t > 0

∣∣ x̌ � X∗
t � x̄

}
,

and

X∗
t = −C1λ1

(
Y ∗
t

)λ1−1 + 1
K2

(
Y ∗
t

)− 1
γ2 − ψ + r

r
F, t > τ∗.
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Fig. 1. Case 1: If z̄ < ŷ � z̃2, and F 1−γ1

K
γ1
1 (1−γ1)

< U(0), then it is optimal to buy an annuity when the wealth level lies between F

and x̄. Case 2: If z̄ � ŷ, and F 1−γ1

K
γ1
1 (1−γ1)

< U(0), then it is optimal to buy an annuity when the wealth level reaches F .

Fig. 2. Case 3: If (1) z̄ < ŷ, C0 > 0 and F 1−γ1

K
γ1
1 (1−γ1)

� U(0), or (2) z̄ < ŷ, F 1−γ1

K
γ1
1 (1−γ1)

< U(0), and z̃2 < ŷ, then it is optimal to

buy an annuity when the wealth level lies between x̌ and x̄. Case 4: If (1) z̄ � ŷ, F 1−γ1

K
γ1
1 (1−γ1)

� U(0), or (2) z̄ < ŷ, C0 � 0, and
F 1−γ1

K
γ1
1 (1−γ1)

� U(0), then it is optimal never to buy an annuity.

4. If (1) z̄ � ŷ, F 1−γ1

K
γ1
1 (1−γ1)

� U(0), or (2) z̄ < ŷ, C0 � 0, and F 1−γ1

K
γ1
1 (1−γ1)

� U(0), then τ∗ = ∞,

c∗t = (Z∗
t )−

1
γ1 , π∗

t = θ
σ

1
K1γ1

(Z∗
t )−

1
γ1 , and X∗

t = 1
K1

(Z∗
t )−

1
γ1 , which is obviously the classical Merton

solution.

Proof. The optimal strategies are derived by applying Itô’s formula to the wealth process and combining
the results of Theorem 3.3. �
Remark 4.2. 1. From case 1 and case 2 in Theorem 4.1, we see that, due to the borrowing constraints the value
function is not differentiable at the wealth level F : for case 1 limx↑F V ′(x−) = z̃2 and limx↓F V ′(x+) = ŷ;
for case 2 limx↑F V ′(x−) = z̃2 and limx↓F V ′(x+) = z̃1.

2. In case 3 of Theorem 4.1, the threshold x̌ is greater than the fixed annuity amount F , because
C1λ1y

λ1−1 − 1
K2

y−
1
γ2 is increasing with y for y < ŷ.

3. Theorem 4.2 shows that the optimal strategies can be divided into four categories according to the
free parameters, see Figs. 1 and 2.

5. Numerical examples

In this section, we provide numerical examples to illustrate the analytical results of Section 4. We focus
our attention on the effects of the fixed annuitization cost F , the risk aversion γ, the investment volatility
σ and the mortality rate ψ on the optimal strategies.

Figs. 3–6 show the graphical results of the optimal strategies in Theorem 4.2. The dash dot line denotes
the classical Merton solution. We observe that when the wealth possessed by the agent is less than 1000
initially, she consumes less and takes risk more before the wealth reaches the level 1000, because she has an
incentive to reach the level and annuitize in order to obtain a lifelong annuity income. Figs. 3 and 4 illustrate
the optimal consumption and investment strategies with γ1 = 0.8 and γ2 = 0.9. In this case, the optimal
annuitization time is τ∗ = inf{t > 0, 1000 � X∗

t � 5217.3}. Fig. 3 represents the optimal consumption
process, which is discontinuous at the annuitization thresholds 1000 and 5217.3. At the wealth level 1000,
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Fig. 3. The optimal consumption rate with γ1 = 0.8, γ2 = 0.9 (β = 0.06, r = 0.04, μ = 0.08, σ = 0.21, γ1 = 0.8, γ2 = 0.9, F = 1000
and ψ = 0.05).

Fig. 4. The optimal investment with γ1 = 0.8, γ2 = 0.9 (β = 0.06, r = 0.04, μ = 0.08, σ = 0.21, γ1 = 0.8, γ2 = 0.9, F = 1000 and
ψ = 0.05).

the agent purchases the annuity immediately then the wealth decreases to zero. The corresponding optimal
investment after the annuitization is zero as we see in Fig. 4. While, the corresponding optimal consumption
after annuitization is still positive as shown in Fig. 3, since the agent will obtain a continuous annuity income
after the annuitization. In Figs. 5 and 6, we assume γ1 = 0.7 and γ2 = 0.8. In this case it is optimal to
annuitize at the wealth level 1000.

In Table 1, for various fixed annuitization cost F and the mortality rate ψ, we give the optimal annuitiza-
tion region in which the individual will annuitize immediately. Notice that the optimal annuitization region
diminishes for a given level of annuitization cost as the individual’s expected future lifetime decreases from
33.3 years to 16.7 years. Also, for a given level of mortality rate, the optimal annuitization region becomes
smaller as the annuitization cost increases. For the case F = 30 000, the individual will never annuitize,
since the annuitization cost is too high for her to afford.
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Fig. 5. The optimal consumption rate with γ1 = 0.7, γ2 = 0.8 (β = 0.06, r = 0.04, μ = 0.08, σ = 0.21, γ1 = 0.7, γ2 = 0.8, F = 1000
and ψ = 0.05).

Fig. 6. The optimal investment with γ1 = 0.7, γ2 = 0.8 (β = 0.06, r = 0.04, μ = 0.08, σ = 0.21, γ1 = 0.7, γ2 = 0.8, F = 1000 and
ψ = 0.05).

In Table 2, we investigate the impacts of the investment volatility σ and the risk aversion γ on the
annuitization. In Table 2(a), we fix the risk aversion during annuity assessment phase γ2 = 0.9 and observe
that as the investment volatility σ increases from 0.15 to 0.35, the optimal annuitization region enlarges.
This can be seen obviously when γ1 = 0.7 and γ1 = 0.8. At the same time, as the risk aversion before
annuitization goes up, the optimal annuitization region also becomes larger. The economic intuition for
these results is quite clear. As the relative risk of investing in the high-return alternative increases or the
individual feels more risk averse, it becomes more appealing to annuitize one’s wealth. In Table 2(b), we
fix the risk aversion γ1 = 0.55 and change the value of the investment volatility σ from 0.15 to 0.35 as well
as that of the risk aversion γ2 from 0.55 to 0.90. We find that the higher the investment volatility σ is, the
larger the optimal annuitization region becomes as considered in case (a). However, for a fixed volatility
rate, as the risk aversion γ2 increases from 0.55 to 0.70, the optimal annuitization region diminishes; as the
risk aversion γ2 approaches 0.90, the optimal annuitization region seems to be larger. Hence there is no
explicit monotonic relationship between the optimal annuitization region and the risk aversion γ2.
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Table 1
How do the fixed cost F and the mortality rate ψ affect annuitization?

Cost F The optimal annuitization region
ψ = 0.03 ψ = 0.04 ψ = 0.05 ψ = 0.06

1000 (1000, 5427.4) (1000, 5320.8) (1000, 5217.3) (1000, 5116.6)
2000 (2000, 5442.7) (2000, 5279.5) (2000, 5123.3) (2000, 4973.7)
5000 (5000, 6431.3) (5000, 6233.2) (5000, 6052.4) (5000, 5888.2)

10 000 (10 000, 10 066.4) (10 000, 10 015.7) 10 000 10 000
15 000 15 000 15 000 15 000 15 000
30 000 ∅ ∅ ∅ ∅

Other parameters β = 0.06, r = 0.04, μ = 0.08, σ = 0.21, γ1 = 0.8, γ2 = 0.9.

Table 2
How do the investment volatility σ and the risk aversion γ affect annuitization?

(a) Fix γ2 = 0.9, and consider the changes of γ1 and σ

Volatility σ The optimal annuitization region
γ1 = 0.5 γ1 = 0.6 γ1 = 0.7 γ1 = 0.8 γ1 = 0.9

0.15 ∅ ∅ 1000 (1000, 3163.3) (1000,+∞)
0.20 ∅ 1000 (1000, 1020.1) (1000, 4937.6) (1000,+∞)
0.25 ∅ 1000 (1000, 1066.1) (1000, 6140.4) (1000,+∞)
0.30 1000 1000 (1000, 1104.3) (1000, 6968.6) (1000,+∞)
0.35 1000 1000 (1000, 1133.0) (1000, 7560.3) (1000,+∞)

(b) Fix γ1 = 0.55, and consider the changes of γ2 and σ

Volatility σ The optimal annuitization region
γ2 = 0.55 γ2 = 0.60 γ2 = 0.65 γ2 = 0.70 γ2 = 0.90

0.15 (1069.3,+∞) ∅ ∅ ∅ ∅
0.20 (1000,+∞) (1000, 1007.7) ∅ ∅ ∅
0.25 (1000,+∞) (1000, 1037.7) ∅ ∅ 1000
0.30 (1000,+∞) (1000, 1060.9) 1000 ∅ 1000
0.35 (1000,+∞) (1000, 1077.6) 1000 ∅ 1000

Other parameters β = 0.06, r = 0.04, μ = 0.08, F = 1000, ψ = 0.05.
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Appendix A. Supplementary proofs for Section 3

Proof of Proposition 3.1. First, we consider the partial differential equation (PDE) (1) of Variational In-
equality 3.1:

∂φ̃

∂t
+ (β − r)y ∂φ̃

∂y
+ 1

2θ
2y2 ∂

2φ̃

∂y2 + e−βt

(
γ2

1 − γ2
y−

1−γ2
γ2 + (ψ + r)Fy

)
= 0, for 0 < y < ŷ,

with a boundary condition ∂φ̃
∂y (t, ŷ) = 0.

If we guess a trial solution of the form φ̃(t, y) = e−βtv(y), then the PDE can be rewritten as an ordinary
differential equation (ODE):

1
2θ

2y2v′′(y) + (β − r)yv′(y) − βv(y) + γ2

1 − γ2
y−

1−γ2
γ2 + (ψ + r)Fy = 0, for 0 < y < ŷ.

The general solution of the above ODE is A1y
λ1 + A2y

λ2 + γ2
K2(1−γ2)y

− 1−γ2
γ2 + (ψ+r)F

r y, where A1 and A2
are arbitrary constants. Since the value function is well defined and finite, we guess v(y) has the following
form:
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v(y) =

⎧⎨⎩C1y
λ1 + γ2

K2(1−γ2)y
− 1−γ2

γ2 + (ψ+r)F
r y, 0 < y < ŷ,

C1ŷ
λ1 + γ2

K2(1−γ2) ŷ
− 1−γ2

γ2 + (ψ+r)F
r ŷ, y � ŷ.

By the boundary conditions:

∂φ̃

∂y
(t, ŷ) = 0, ∂2φ̃

∂y2 (t, ŷ) = 0,

we obtain the values of C1 and ŷ.
Next we will check the condition (2) of Variational Inequality 3.1. We have for y � ŷ,

Lφ̃ + e−βt
{
ũ2(y) + (ψ + r)Fy

}
= −βe−βt

{
C1ŷ

λ1 + γ2

K2(1 − γ2)
ŷ−

1−γ2
γ2 + (ψ + r)F

r
ŷ

}
+ e−βt

{
γ2

1 − γ2
y−

1−γ2
γ2 + (ψ + r)Fy

}
,

with

−βe−βt

{
C1ŷ

λ1 + γ2

K2(1 − γ2)
ŷ−

1−γ2
γ2 + (ψ + r)F

r
ŷ

}
+ e−βt

{
γ2

1 − γ2
ŷ−

1−γ2
γ2 + (ψ + r)F ŷ

}
= 0.

Therefore, it only needs to prove

γ2

1 − γ2
y−

1−γ2
γ2 + (ψ + r)Fy � γ2

1 − γ2
ŷ−

1−γ2
γ2 + (ψ + r)F ŷ, y � ŷ. (A.1)

We define a function:

f(y) � γ2

1 − γ2
y−

1−γ2
γ2 + (ψ + r)Fy.

Then f ′(y) � 0, for y � ŷ is equivalent to y � ((ψ + r)F )−γ2 . We claim that ŷ � ((ψ + r)F )−γ2 , which can
be proved by direct calculation and the definition of λ1 and K2. Hence (A.1) is proved, and consequently
the condition (2) of Variational Inequality 3.1 holds.

In order to verify the condition (4) of Variational Inequality 3.1, we only need to consider the following
inequality:

C1λ1y
λ1−1 − 1

K2
y−

1
γ2 + (ψ + r)F

r
< 0, 0 < y < ŷ, (A.2)

which becomes an equality at y = ŷ.
Define a function:

g(y) � C1λ1y
λ1−1 − 1

K2
y−

1
γ2 + (ψ + r)F

r
.

We can verify that g′(y) > 0, for 0 < y < ŷ, is equivalent to

y1−λ1− 1
γ2 > −C1K2γ2λ1(λ1 − 1) = ŷ1−λ1− 1

γ2 , 0 < y < ŷ,

which is obvious, since 1 − λ1 − 1 < 0. This proves (A.2) and also the condition (4) holds. �
γ2
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Proof of Theorem 3.3. It is straightforward to see that the optimal consumption process can be written as

c̃∗t =
(
Y ∗
t

)− 1
γ2 .

In order to find the optimal portfolio process, we apply Itô’s formula to X∗
t and obtain

dX∗
t = −

[
C1λ1(λ1 − 1)

(
Y ∗
t

)λ1−2 + 1
K2γ2

(
Y ∗
t

)− 1
γ2

−1
]
dY ∗

t

− 1
2

[
C1λ1(λ1 − 1)(λ1 − 2)

(
Y ∗
t

)λ1−3 − 1 + γ2

K2γ2
2

(
Y ∗
t

)− 1
γ2

−2
](
dY ∗

t

)2
= r

[
−C1λ1

(
Y ∗
t

)λ1−1 + 1
K2

(
Y ∗
t

)− 1
γ2 − (ψ + r)F

r

]
dt + (ψ + r)F dt

+
(
Y ∗
t

)− 1
γ2

[
r − β

K2γ2
+ 1 − γ2

2K2γ2
2
θ2 − r

K2

]
dt

+ λ1C1
(
Y ∗
t

)λ1−1
[
−β(λ1 − 1) + rλ1 −

λ1(λ1 − 1)θ2

2

]
dt

+ θ2
[
C1λ1(λ1 − 1)

(
Y ∗
t

)λ1−1 + 1
K2γ2

(
Y ∗
t

)− 1
γ2

]
dt

+
[
−C1λ1(λ1 − 1)

(
Y ∗
t

)λ1−1 − 1
K2γ2

(
Y ∗
t

)− 1
γ2

]
dD∗

t

D∗
t

+ θ

[
C1λ1(λ1 − 1)

(
Y ∗
t

)λ1−1 + 1
K2γ2

(
Y ∗
t

)− 1
γ2

]
dWt

= r

[
−C1λ1

(
Y ∗
t

)λ1−1 + 1
K2

(
Y ∗
t

)− 1
γ2 − (ψ + r)F

r

]
dt + (ψ + r)Fdt−

(
Y ∗
t

)− 1
γ2 dt

+ θ

[
C1λ1(λ1 − 1)

(
Y ∗
t

)λ1−1 + 1
K2γ2

(
Y ∗
t

)− 1
γ2

]
dWt

+ θ2
[
C1λ1(λ1 − 1)

(
Y ∗
t

)λ1−1 + 1
K2γ2

(
Y ∗
t

)− 1
γ2

]
dt

= rX∗
t dt− c∗t dt + (ψ + r)F dt + θ

[
C1λ1(λ1 − 1)

(
Y ∗
t

)λ1−1 + 1
K2γ2

(
Y ∗
t

)− 1
γ2

]
dWt

+ θ2
[
C1λ1(λ1 − 1)

(
Y ∗
t

)λ1−1 + 1
K2γ2

(
Y ∗
t

)− 1
γ2

]
dt.

Here, in deriving the third equality we use the definition of K2, λ1 and the fact that ∂2φ
∂y2 dD∗

t = 0.
Comparing the drift term and the volatility term of the optimal wealth process dX∗

t with Eq. (2.10), we
obtain the optimal portfolio π̃∗

t as follows:

π̃∗
t = θ

σ

[
C1λ1(λ1 − 1)

(
Y ∗
t

)λ1−1 + 1
K2γ2

(
Y ∗
t

)− 1
γ2

]
. �

Appendix B. Supplementary proofs for Section 4

In this appendix, we first prove two lemmas for an auxiliary optimal stopping problem, which will be
useful for analyzing the value of Ṽ (ν).
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G(z) � sup
τ∈S

E
z

[ τ∫
0

e−βt γ1

1 − γ1
(Zt)−

1−γ1
γ1 dt + e−βτ

(
U(0) − ZτF

)]
,

with dZt = Zt{(β − r) dt− θ dWt}, Z0 = z, and E
z[·] = E[· | Z0 = z].

Lemma B.1. For the above optimal stopping problem, τ∗ = ∞ is equivalent to F 1−γ1

K
γ1
1 (1−γ1)

� U(0).

Proof. When τ∗ = ∞, we have

G(z) = E
z

[ ∞∫
0

e−βt γ1

1 − γ1
(Zt)−

1−γ1
γ1 dt

]
� U(0) − zF, ∀z > 0. (B.1)

By direct calculation, we see E
z[
∫∞
0 e−βt γ1

1−γ1
(Zt)−

1−γ1
γ1 dt] = γ1

K1(1−γ1)z
− 1−γ1

γ1 .
Define

w(z) � γ1

K1(1 − γ1)
z−

1−γ1
γ1 + zF.

Hence (B.1) is equivalent to w(z) � U(0) for ∀z > 0. On the other hand, we observe that limz→0 w(z) =
limz→∞ w(z) = ∞, and w′(z) = − 1

K1
z−

1
γ1 +F , so w(z) gets its minimum value F 1−γ1

K
γ1
1 (1−γ1)

at z = (K1F )−γ1 .

Therefore, w(z) � U(0) for ∀z > 0 if and only if F 1−γ1

K
γ1
1 (1−γ1)

� U(0).

Conversely, when F 1−γ1

K
γ1
1 (1−γ1)

� U(0), w(z) � U(0) for ∀z > 0, i.e., Ĝ(z) � γ1
K1(1−γ1)z

− 1−γ1
γ1 � U(0) − zF

for ∀z > 0. Moreover, Ĝ(z) also satisfies L1Ĝ + γ1
1−γ1

z−
1−γ1
γ1 = 0. Hence τ = ∞ is optimal. �

Lemma B.2. If F 1−γ1

K
γ1
1 (1−γ1)

< U(0), then βU(0) > (rF )1−γ1

1−γ1
.

Proof. First, we denote S � {z ∈ (0,∞) | G(z) = U(0) − zF}, the stopping region of the optimal stopping
problem. According to Øksendal and Sulem [23], we know {L1(U(0) − zF ) + γ1

1−γ1
z−

1−γ1
γ1 � 0} ⊃ S. By

careful calculation, L1(U(0)− zF )+ γ1
1−γ1

z−
1−γ1
γ1 = −βU(0)+ rzF + γ1

1−γ1
z−

1−γ1
γ1 . For the sake of simplicity,

define w1(z) � rzF + γ1
1−γ1

z−
1−γ1
γ1 . Then we obtain limz→0 w1(z) = limz→∞ w1(z) = ∞, and w′

1(z) =
rF − z−

1
γ1 , so w1(z) gets its minimum value (rF )1−γ1

1−γ1
at z = (rF )−γ1 . Hence, when (rF )1−γ1

1−γ1
> βU(0),

S = ∅; when (rF )1−γ1

1−γ1
< βU(0), there exists two different points z′1, z′2, such that, S ⊂ {z′1 � z � z′2}; when

(rF )1−γ1

1−γ1
= βU(0), S = ∅ or S contains only one single point, which is also equivalent to τ∗ = ∞. Moreover,

from assumption F 1−γ1

K
γ1
1 (1−γ1)

< U(0), the optimal stopping time must be finite. Hence βU(0) > (rF )1−γ1

1−γ1
. �

In order to obtain Ṽ (ν) we introduce two variational inequalities and derive their corresponding solutions.

Variational Inequality B.1. Find a positive number 0 < z̄ � ŷ and a function φ(·) ∈ C1(R+) ∩ C2(R+\{z̄})
satisfying

(1) L1φ + γ1
1−γ1

z−
1−γ1
γ1 = 0, 0 < z < z̄,

(2) L1φ + γ1
1−γ1

z−
1−γ1
γ1 � 0, z̄ � z � ŷ,

(3) φ(z) = C1z
λ1 + γ2

K2(1−γ2)z
− 1−γ2

γ2 + ψ
r Fz, z̄ � z � ŷ,

(4) φ(z) > C1z
λ1 + γ2 z−

1−γ2
γ2 + ψFz, 0 < z < z̄.
K2(1−γ2) r
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The above free boundary value problem can be solved by applying the principle of smooth fit, i.e., the
C1-condition.

Proposition B.1. Assume that z̄ is the unique solution of the following algebraic equation:

(λ1 − 1)γ1 + 1
K1(1 − γ1)

z−
1
γ1 = (λ1 − 1)γ2 + 1

K2(1 − γ2)
z−

1
γ2 + ψ

r
F (λ1 − 1). (B.2)

If 0 < z̄ � ŷ, and the function

φ(z) =

⎧⎨⎩C0z
λ1 + γ1

K1(1−γ1)z
− 1−γ1

γ1 , 0 < z < z̄,

C1z
λ1 + γ2

K2(1−γ2)z
− 1−γ2

γ2 + ψ
r Fz, z̄ � z � ŷ,

with

C0 = C1 −
1

λ1K2
z̄−

(λ1−1)γ2+1
γ2 + ψF

rλ1
z̄1−λ1 + 1

λ1K1
z̄−

(λ1−1)γ1+1
γ1 . (B.3)

Then, φ(z) is a solution to Variational Inequality B.1.

Proof. First, we consider the differential equation (DE) (1) of Variational Inequality B.1:

1
2θ

2z2φ′′(z) + (β − r)zφ′(z) − βφ(z) + γ1

1 − γ1
z−

1−γ1
γ1 = 0, for 0 < z < z̄,

with a boundary condition φ(z̄) = C1z̄
λ1 + γ2

K2(1−γ2) z̄
− 1−γ2

γ2 + ψ
r F z̄.

The general solution of the above DE is A1z
λ1 + A2z

λ2 + γ1
K1(1−γ1)z

− 1−γ1
γ1 , where A1 and A2 are two

arbitrary constants. Since the value function is well defined and finite, we guess φ(z) has the following form:

φ(z) =

⎧⎨⎩C0z
λ1 + γ1

K1(1−γ1)z
− 1−γ1

γ1 , 0 < z < z̄,

C1z
λ1 + γ2

K2(1−γ2)z
− 1−γ2

γ2 + ψ
r Fz, z̄ � z � ŷ.

By the boundary condition and the C1-condition, we have:

C0z̄
λ1 + γ1

K1(1 − γ1)
z̄−

1−γ1
γ1 = C1z̄

λ1 + γ2

K2(1 − γ2)
z̄−

1−γ2
γ2 + ψ

r
F z̄,

and

C0λ1z̄
λ1−1 − 1

K1
z̄−

1
γ1 = C1λ1z̄

λ1−1 − 1
K2

z̄−
1
γ2 + ψ

r
F,

from which we obtain the values of C0 and z̄.
Next we will prove Eq. (B.2) has a unique solution z̄. Define:

H(z) � (λ1 − 1)γ1 + 1
K1(1 − γ1)

z−
1
γ1 − (λ1 − 1)γ2 + 1

K2(1 − γ2)
z−

1
γ2 , (B.4)

and

z0 �
(

((λ1 − 1)γ1 + 1)γ2K2(1 − γ2)
((λ1 − 1)γ2 + 1)γ1K1(1 − γ1)

) γ1γ2
γ2−γ1

,

with 0 < γ1 < γ2 < 1.
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It is seen that

lim
z→0

H(z) = lim
z→0

z−
1
γ1

(
(λ1 − 1)γ1 + 1
K1(1 − γ1)

− (λ1 − 1)γ2 + 1
K2(1 − γ2)

z
γ2−γ1
γ1γ2

)
= ∞,

and

lim
z→∞

H(z) = lim
z→∞

z−
1
γ2

(
(λ1 − 1)γ1 + 1
K1(1 − γ1)

z
γ1−γ2
γ1γ2 − (λ1 − 1)γ2 + 1

K2(1 − γ2)

)
= 0.

Moreover,

H ′(z) = − (λ1 − 1)γ1 + 1
γ1K1(1 − γ1)

z−
1
γ1

−1 + (λ1 − 1)γ2 + 1
γ2K2(1 − γ2)

z−
1
γ2

−1,

and H ′(z) > 0 for z > z0, H ′(z) < 0 for 0 < z < z0, and H(z0) = z
− 1

γ1
0

(γ1−γ2)(λ1γ1+1−γ1)
K1γ1(1−γ1) < 0. Hence

H(z) = ψ
r F (λ1 − 1) has a unique solution z̄.

To check the condition (2) of Variational Inequality B.1, we see for z̄ � z � ŷ,

L1φ(z) + γ1

1 − γ1
z−

1−γ1
γ1 = γ1

1 − γ1
z−

1−γ1
γ1 − γ2

1 − γ2
z−

1−γ2
γ2 − ψFz = z

(
h(z) − ψF

)
,

where h(z) � γ1
1−γ1

z−
1
γ1 − γ2

1−γ2
z−

1
γ2 , and h′(z) = − 1

1−γ1
z−

1
γ1

−1 + 1
1−γ2

z−
1
γ2

−1. It is easily found h′(z) < 0,
for 0 < z < z1, h′(z) > 0, for z > z1, with z1 � (1−γ2

1−γ1
)

γ1γ2
γ2−γ1 . Moreover, we observe that limz→0 h(z) = ∞,

limz→∞ h(z) = 0, and h(z1) = z
− 1

γ1
1

γ1−γ2
1−γ1

< 0. Thus h(z) = ψF has a unique solution which we denote
by z̃. If we can prove z̄ � z̃, then h(z) � ψF holds for z̄ � z � ŷ.

In the following we will prove z̄ � z̃. First we know that H(z) is decreasing for 0 < z < z̄ < z0, so to
prove z̄ � z̃ is equivalent to prove

H(z̃) � H(z̄) = ψF

r
(λ1 − 1). (B.5)

Substituting h(z̃) = ψF , we have

(λ1 − 1)γ1 + 1
K1(1 − γ1)

z̃−
1
γ1 − (λ1 − 1)γ2 + 1

K2(1 − γ2)
z̃−

1
γ2 � λ1 − 1

r

(
γ1

1 − γ1
z̃−

1
γ1 − γ2

1 − γ2
z̃−

1
γ2

)
,

i.e.,

r(λ1γ1 + 1 − γ1) − γ1K1(λ1 − 1)
K1(1 − γ1)

z̃−
1
γ1 � r(λ1γ2 + 1 − γ2) − γ2K2(λ1 − 1)

K2(1 − γ2)
z̃−

1
γ2 . (B.6)

By the definition of K1 and λ1, we get

r(λ1γ1 + 1 − γ1) − γ1K1(λ1 − 1) = −β(λ1 − 1) + rλ1 −
γ1 − 1
2γ1

(λ1 − 1)θ2

= 1
2θ

2λ1(λ1 − 1) − γ1 − 1
2γ1

(λ1 − 1)θ2

= 1
θ2(λ1 − 1)(λ1γ1 + 1 − γ1). (B.7)
2γ1
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Similarly,

r(λ1γ2 + 1 − γ2) − γ2K2(λ1 − 1) = 1
2γ2

θ2(λ1 − 1)(λ1γ2 + 1 − γ2). (B.8)

Substituting (B.7) and (B.8) into (B.6), we derive the inequality:

z̃ �
(

((λ1 − 1)γ1 + 1)K2γ2(1 − γ2)
((λ1 − 1)γ2 + 1)K1γ1(1 − γ1)

) γ1γ2
γ2−γ1

. (B.9)

If we denote the right hand side of (B.9) by z2, we have

h(z2) = z
− 1

γ1
2

(
γ1

1 − γ1
− K2γ

2
2((λ1 − 1)γ1 + 1)

γ1(1 − γ1)K1((λ1 − 1)γ2 + 1)

)
. (B.10)

We claim

K2γ2((λ1 − 1)γ1 + 1)
K1γ1((λ1 − 1)γ2 + 1) > 1, for 0 < γ1 < γ2 < 1. (B.11)

Then Eq. (B.10) can be calculated as

h(z2) < z
− 1

γ1
2

γ1 − γ2

1 − γ1
< 0,

which implies that z̃ < z2.
In order to prove (B.11), let us define

q(x) �
x(r + β−r

x + x−1
2x2 θ

2)
1 − x + λ1x

.

By direct calculation and the definition of λ1, we have q′(x) > 0. Hence q(γ1) < q(γ2), i.e.,

K1γ1

(λ1 − 1)γ1 + 1 <
K2γ2

(λ1 − 1)γ2 + 1 ,

since Ki = r + β−r
γi

+ γi−1
2γ2

i
θ2, and this proves (B.11).

Now we will check the condition (4), which is equivalent to:

m(z) � C0z
λ1 + γ1

K1(1 − γ1)
z−

1−γ1
γ1 − C1z

λ1 − γ2

K2(1 − γ2)
z−

1−γ2
γ2 − ψ

r
Fz > 0, 0 < z < z̄,

the above inequality becomes an equality when z = z̄.
We observe that

1
K1

z̄−
1
γ1 >

1
K2

z̄−
1
γ2 , (B.12)

which needs to check that

z̄ <

(
K2

) γ1γ2
γ2−γ1

. (B.13)

K1
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Denoting the right hand side of (B.13) by z3, we find

H(z3) = z
− 1

γ1
3

λ1(γ1 − γ2)
K1(1 − γ1)(1 − γ2)

< 0.

Therefore, (B.13) is valid.
Now we have

m′(z) = C0λ1z
λ1−1 − 1

K1
z−

1
γ1 − C1λ1z

λ1−1 + 1
K2

z−
1
γ2 − ψ

r
F

=
(

1
K1

z̄−
1
γ1 − 1

K2
z̄−

1
γ2

)(
z

z̄

)λ1−1

+ ψF

r

((
z

z̄

)λ1−1

− 1
)

−
(
z

z̄

)− 1
γ1
(

1
K1

z̄−
1
γ1 − 1

K2
z̄−

1
γ2

(
z

z̄

) γ2−γ1
γ1γ2

)

<

(
1
K1

z̄−
1
γ1 − 1

K2
z̄−

1
γ2

)((
z

z̄

)λ1−1

−
(
z

z̄

)− 1
γ1
)

+ ψF

r

((
z

z̄

)λ1−1

− 1
)

< 0.

The second equality holds by substituting Eq. (B.3), the third inequality follows by 0 < z
z̄ < 1, and the

last inequality holds by (B.12), 0 < z
z̄ < 1 and λ1 > 1. This proves the condition (4) of Variational

Inequality B.1. �
Variational Inequality B.2. Find two positive numbers 0 < z̃1 < z̃2 < ∞ and a function φ(·) ∈ C1(R+) ∩
C2(R+\{z̃1, z̃2}) satisfying

(1) L1φ + γ1
1−γ1

z−
1−γ1
γ1 = 0, 0 < z < z̃1, z > z̃2,

(2) L1φ + γ1
1−γ1

z−
1−γ1
γ1 � 0, z̃1 � z � z̃2,

(3) φ(z) = U(0) − zF , z̃1 � z � z̃2,
(4) φ(z) > U(0) − zF , 0 < z < z̃1, z > z̃2.

Proposition B.2. If F 1−γ1

K
γ1
1 (1−γ1)

< U(0), then we can find z̃1, z̃2 such that 0 < z̃1 < (K1F )−γ1 < z̃2 < ∞ and

φ(z) =

⎧⎪⎪⎨⎪⎪⎩
C2z

λ1 + γ1
K1(1−γ1)z

− 1−γ1
γ1 , 0 < z < z̃1,

U(0) − zF, z̃1 � z � z̃2,

C̃2z
λ2 + γ1

K1(1−γ1)z
− 1−γ1

γ1 , z > z̃2,

where

C2 = 1
λ1K1

z̃
− (λ1−1)γ1+1

γ1
1 − F

λ1
z̃1−λ1
1 > 0,

and

C̃2 = 1
λ2K1

z̃
− (λ2−1)γ1+1

γ1
2 − F

λ2
z̃1−λ2
2 > 0.

Then, φ(z) is a solution to Variational Inequality B.2.
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Proof. First, we consider the differential equation (DE) (1) of Variational Inequality B.2:

1
2θ

2z2φ′′(z) + (β − r)zφ′(z) − βφ(z) + γ1

1 − γ1
z−

1−γ1
γ1 = 0.

Similarly as in Proposition B.1, we guess φ(z) has the following form:

φ(z) =

⎧⎨⎩C2z
λ1 + γ1

K1(1−γ1)z
− 1−γ1

γ1 , 0 < z < z̃1,

C̃2z
λ2 + γ1

K1(1−γ1)z
− 1−γ1

γ1 , z > z̃2.

By the boundary conditions and the C1-condition, we obtain the values of C2, C̃2 and the equations satisfied
by z̃1 and z̃2 as follows:

(λ1 − 1)γ1 + 1
K1(1 − γ1)

z̃
− 1−γ1

γ1
1 + (λ1 − 1)z̃1F = λ1U(0), (B.14)

and

(λ2 − 1)γ1 + 1
K1(1 − γ1)

z̃
− 1−γ1

γ1
2 + (λ2 − 1)z̃2F = λ2U(0). (B.15)

Now we find the values of z̃1 and z̃2. Define

g1(z) � (λ1 − 1)γ1 + 1
K1(1 − γ1)

z−
1−γ1
γ1 + (λ1 − 1)zF.

It is easily seen limz→∞ g1(z) = limz→0 g1(z) = ∞ and g′1(z) = − (λ1−1)γ1+1
K1γ1

z−
1
γ1 + (λ1 − 1)F . Hence

g1(z) gets its minimum at z∗ = (K1γ1F (λ1−1)
(λ1−1)γ1+1 )−γ1 and g1(z∗) = F 1−γ1

K
γ1
1 (1−γ1)

( (λ1−1)γ1+1
(λ1−1)γ1

)γ1(λ1 − 1). From

the assumption F 1−γ1

K
γ1
1 (1−γ1)

< U(0) and the fact that ( (λ1−1)γ1+1
(λ1−1)γ1

)γ1 < λ1
λ1−1 , we obtain g1(z∗) < λ1U(0).

Therefore, the equation g1(z) = λ1U(0) has two roots. We claim z̃1 is the smaller one, i.e., z̃1 < z∗. Simple
algebraic calculation yields g1((K1F )−γ1) < λ1U(0), hence, z̃1 < (K1F )−γ1 , so C2 > 0.

Similarly, define

g2(z) � (λ2 − 1)γ1 + 1
K1(1 − γ1)

z−
1−γ1
γ1 + (λ2 − 1)zF.

Since (λ2 − 1)γ1 + 1 < 0, limz→0 g2(z) = limz→∞ g2(z) = −∞, g2(z) gets its maximum at z∗∗ =
(K1γ1F (λ2−1)

(λ2−1)γ1+1 )−γ1 and g2(z∗∗) = F 1−γ1

K
γ1
1 (1−γ1)

( (λ2−1)γ1+1
(λ2−1)γ1

)γ1(λ2 − 1). From the assumption F 1−γ1

K
γ1
1 (1−γ1)

< U(0)
and the fact that ( (λ2−1)γ1+1

(λ2−1)γ1
)γ1 < λ2

λ2−1 , we obtain g2(z∗∗) > λ2U(0). Therefore, the equation g2(z) =
λ2U(0) has two roots. We claim z̃2 is the larger one, i.e., z̃2 > z∗∗. Moreover, we find g2((K1F )−γ1) > λ2U(0),
hence, z̃2 > (K1F )−γ1 , so C̃2 > 0.

To check the condition (2) of Variational Inequality B.2, we see for z̃1 � z � z̃2,

L1φ(z) + γ1

1 − γ1
z−

1−γ1
γ1 = rzF + γ1

1 − γ1
z−

1−γ1
γ1 − βU(0) = ω1(z) − βU(0),

where ω1(z) = rzF + γ1 z−
1−γ1
γ1 .
1−γ1
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From the proof of Lemma B.2, we know if F 1−γ1

K
γ1
1 (1−γ1)

< U(0), then the equation ω1(z) = βU(0) has two
different roots, z′1 and z′2. So, in order to prove Variational Inequality B.2(2), we only need to prove z̃1 � z′1
and z̃2 � z′2, which are equivalent to ω1(z̃1) � βU(0) and ω1(z̃2) � βU(0). First, we prove

ω1(z̃1) � βU(0). (B.16)

Substituting Eq. (B.14) into the above inequality yields(
r − β(λ1 − 1)

λ1

)
z̃1F +

(
γ1

1 − γ1
− β(λ1 − 1)γ1 + β

λ1K1(1 − γ1)

)
z̃
− 1−γ1

γ1
1 � 0. (B.17)

With the definition of λ1 and K1, we derive

r − β(λ1 − 1)
λ1

= 1
2θ

2(λ1 − 1),

and

γ1

1 − γ1
− β(λ1 − 1)γ1 + β

λ1K1(1 − γ1)
= −θ2((λ1 − 1)γ1 + 1)

2γ1K1
.

Substituting the above results into (B.17), we obtain z̃1 � (K1γ1F (λ1−1)
(λ1−1)γ1+1 )−γ1 , which is obviously valid from

the selection of z̃1. Hence, (B.16), and z̃1 � z′1. The proof for z̃2 � z′2 is similar, so we omit it.
Next we check the condition (4) for 0 < z < z̃1, which is equivalent to

C2 + γ1

K1(1 − γ1)
z−

(λ1−1)γ1+1
γ1 − U(0)z−λ1 + z1−λ1F > 0,

with C2 = U(0)z̃−λ1
1 − z̃1−λ1

1 F − γ1
K1(1−γ1) z̃

− (λ1−1)γ1+1
γ1

1 . Therefore, we only need to prove h1(z) is increasing

for 0 < z < z̃1, where h1(z) � U(0)z−λ1 − z1−λ1F − γ1
K1(1−γ1)z

− (λ1−1)γ1+1
γ1 . By direct calculation, we have

h′
1(z) = z−1−λ1

(
−λ1U(0) + (λ1 − 1)zF + (λ1 − 1)γ1 + 1

K1(1 − γ1)
z−

1−γ1
γ1

)
.

From the definition of z̃1 we know that h′
1(z) > 0, for 0 < z < z̃1. For z > z̃2, the condition (4) of Variational

Inequality B.2 can be verified by using the same method. �
Remark B.1. From the derivation in Section 3, we find U(0) = (λ1−1)γ2+1

K2λ1γ2(1−γ2) ŷ
− 1−γ2

γ2 . Moreover by careful
computation, we get

g1(ŷ) − λ1U(0) = ŷ

(
H(ŷ) − ψ

r
F (λ1 − 1)

)
. (B.18)

Hence if z̄ < ŷ, i.e., H(ŷ)− ψ
r F (λ1 − 1) < 0, then, g1(ŷ)− λ1U(0) < 0, which implies z̃1 < ŷ. If z̄ � ŷ, then

g1(ŷ)− λ1U(0) � 0. In addition, from H(ŷ)− ψ
r F (λ1 − 1) � 0, we obtain ŷ−

1
γ1 � (rγ2+ψ)FK1(λ1−1)(1−γ1)

r(1−γ2)((λ1−1)γ1+1) >
(λ1−1)FK1γ1
(λ1−1)γ1+1 , i.e., ŷ < z∗. Therefore, we have ŷ � z̃1.

In order to prove Proposition 4.2, we first prove a lemma.

Lemma B.3. E[sup0<t<∞ e−βt(Zν
t )−

1−γi
γi ] < ∞, i = 1, 2 and E[sup0<t<∞ e−βtZν

t ] < ∞, with Zν
t =

ν exp{(β − r)t− θWt − 1θ2t}.
2
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Proof. First, we define Yt � (−r − β−r
γ1

+ 1−γ1
2γ1

θ2)t + 1−γ1
γ1

θWt, then e−βt(Zν
t )−

1−γ1
γ1 = ν−

1−γ1
γ1 eYt . Denote

Y ∞ = sup0<t<∞ Yt. From Chapter 3 of [18], Y ∞ is exponentially distributed with parameter Φ(0), where
Φ(q) = sup{δ � 0: ψ(δ) = q} and E[eδYt ] = eψ(δ)t. In our case, ψ(δ) = (−r− β−r

γ1
+ 1−γ1

2γ1
θ2)δ + (1−γ1)2

2γ2
1

θ2δ2.

Hence, Φ(0) =
r+ β−r

γ1
− 1−γ1

2γ1
θ2

(1−γ1)2

2γ2
1

θ2
> 1, since K1 > 0. Therefore, E[sup0<t<∞ e−βt(Zν

t )−
1−γ1
γ1 ] = ν−

1−γ1
γ1 E[eY ∞ ] <

∞. For other cases, the proof is similar, hence we omit it. �
Proof of Proposition 4.2. From Proposition B.1 and Proposition B.2, it is easy to check that φ(z) satisfies
the above conditions. Here, in the following we only verify that Ṽ (ν) = φ(ν).

First, we know that φ(·) ∈ C1(R+) ∩ C2(R+ \ {z̄, z̃2}). ∀τ ∈ S, define τR � τ ∧R, R is a fixed constant.
By applying the generalized Itô rule (see [14, Problem 3.7.3]) to e−βτRφ(Zν

τR), we have

e−βτRφ
(
Zν
τR

)
= φ(ν) +

τR∫
0

e−βtL1φ
(
Zν
t

)
dt−

τR∫
0

e−βtθZν
t φ

′(Zν
t

)
dWt.

Taking expectations and noting the above conditions (1)–(6), we obtain

φ(ν) � E

[ τR∫
0

e−βt γ1

1 − γ1

(
Zν
t

)− 1−γ1
γ1 dt

]
+ E

[
e−βτR

(
U(0) − Zν

τRF
)
1(Zν

τR
>ŷ)

+ e−βτR

(
C1

(
Zν
τR

)λ1 + γ2

K2(1 − γ2)
(
Zν
τR

)− 1−γ2
γ2 + ψ

r
FZν

τR

)
1(0<Zν

τR
�ŷ)

]
.

Since E[sup0<t<∞ e−βt(Zν
t )−

1−γi
γi ] < ∞, i = 1, 2 and E[sup0<t<∞ e−βtZν

t ] < ∞ (see Lemma B.3), by the
monotone convergence theorem and the dominated convergence theorem, taking R → ∞, we have

φ(ν) � E

[ τ∫
0

e−βt γ1

1 − γ1

(
Zν
t

)− 1−γ1
γ1 dt

]
+ E

[
e−βτ

(
U(0) − Zν

τ F
)
1(Zν

τ>ŷ)

+ e−βτ

(
C1

(
Zν
τ

)λ1 + γ2

K2(1 − γ2)
(
Zν
τ

)− 1−γ2
γ2 + ψ

r
FZν

τ

)
1(0<Zν

τ �ŷ)

]
.

Since τ is arbitrary, φ(ν) � Ṽ (ν).
Moreover, if we apply the above arguments to τ = τν , by the definition of τν , we see

φ(ν) = E

[ τR∫
0

e−βt γ1

1 − γ1

(
Zν
t

)− 1−γ1
γ1 dt

]
+ E

[
e−βτRφ

(
Zν
τR

)]
.

Taking R → ∞, we obtain

φ(ν) = E

[ τν∫
0

e−βt γ1

1 − γ1

(
Zν
t

)− 1−γ1
γ1 dt

]
+ E

[
e−βτνφ

(
Zν
τν

)]

= E

[ τν∫
0

e−βt γ1

1 − γ1

(
Zν
t

)− 1−γ1
γ1 dt

]
+ E

[
e−βτν

(
U(0) − Zν

τνF
)
1(Zν

τν
>ŷ)

+ e−βτν

(
C1

(
Zν
τν

)λ1 + γ2

K2(1 − γ2)
(
Zν
τν

)− 1−γ2
γ2 + ψ

r
FZν

τν

)
1(0<Zν

τν
�ŷ)

]
.

Hence, we conclude φ(ν) = Ṽ (ν) and τν is optimal. �
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Proof of Proposition 4.3. From Proposition B.2, we see that φ(z) satisfies the above conditions (1), (2), (3),
and (5). In the following we verify the correctness of the condition (4). From Remark B.1, we know z̃1 � ŷ,
so φ(z) = C2z

λ1 + γ1
K1(1−γ1)z

− 1−γ1
γ1 , for 0 < z � ŷ. Therefore to prove the condition (4) is equivalent to

prove

C2z
λ1 + γ1

K1(1 − γ1)
z−

1−γ1
γ1 > C1z

λ1 + γ2

K2(1 − γ2)
z−

1−γ2
γ2 + ψ

r
Fz, for 0 < z � ŷ. (B.19)

Define

f1(z) � C2 − C1 + γ1

K1(1 − γ1)
z−

(λ1−1)γ1+1
γ1 − γ2

K2(1 − γ2)
z−

(λ1−1)γ2+1
γ2 − ψ

r
Fz1−λ1 .

Then (B.19) is valid if and only if f1(z) > 0, 0 < z � ŷ. From the proof of Proposition B.2, we have
f1(ŷ) > 0. Moreover,

f ′
1(z) = z−λ1

(
− (λ1 − 1)γ1 + 1

K1(1 − γ1)
z−

1
γ1 + (λ1 − 1)γ2 + 1

K2(1 − γ2)
z−

1
γ2 + ψ

r
F (λ1 − 1)

)
� 0,

for 0 < z � ŷ � z̄, by the definition of z̄. Hence, (B.19) is proved. The verification for Ṽ (ν) = φ(ν) is similar
to Proposition 4.2, so here we omit it. �
Proof of Proposition 4.4. Taking the similar method as in Proposition B.2, we can easily guess φ(z) has
the form of (4.4). Then by the boundary conditions and the C1-condition, we obtain the values of Ĉ2, C0
(which is the same as in Proposition B.1) and the equation satisfied by y̌.

Next, we prove Eq. (4.5) do has a solution on z ∈ (z̄, ŷ). Define

p(z) � (λ2 − λ1)C1z
λ1−1 − (λ2 − 1)γ1 + 1

K1(1 − γ1)
z−

1
γ1 + (λ2 − 1)γ2 + 1

K2(1 − γ2)
z−

1
γ2 + (λ2 − 1)ψ

r
F,

and

p(z̄) = (λ1 − 1)γ1 + 1
K1(1 − γ1)

z̄−
1
γ1 − (λ1 − 1)γ2 + 1

K2(1 − γ2)
z̄−

1
γ2 − ψ

r
F (λ1 − 1) + p(z̄)

= (λ2 − λ1)
[
C1z̄

λ1−1 + γ2

K2(1 − γ2)
z̄−

1
γ2 − γ1

K1(1 − γ1)
z̄−

1
γ1 + ψ

r
F

]
= (λ2 − λ1)C0z̄

λ1−1 < 0,

since C0 is positive in both cases (for case (2) see Lemma B.4).
For the case (1) F 1−γ1

K
γ1
1 (1−γ1)

� U(0), which is equivalent to U(0) − zF − γ1
K1(1−γ1)z

− 1−γ1
γ1 � 0, ∀z > 0, we

obtain

p(ŷ) > (λ1 − 1)γ1 + 1
K1(1 − γ1)

ŷ−
1
γ1 − (λ1 − 1)γ2 + 1

K2(1 − γ2)
ŷ−

1
γ2 − ψ

r
F (λ1 − 1) + p(ŷ)

= (λ2 − λ1)ŷ−1
[
C1ŷ

λ1 + γ2

K2(1 − γ2)
ŷ−

1−γ2
γ2 − γ1

K1(1 − γ1)
ŷ−

1−γ1
γ1 + ψ

r
F ŷ

]
= (λ2 − λ1)ŷ−1

[
U(0) − ŷF − γ1

K1(1 − γ1)
ŷ−

1−γ1
γ1

]
� 0,

the inequality holds by the assumption that z̄ < ŷ.



X. Liang et al. / J. Math. Anal. Appl. 413 (2014) 905–938 935
For the case (2) F 1−γ1

K
γ1
1 (1−γ1)

< U(0), z̃2 < ŷ, we get

p(ŷ) = (λ2 − λ1)ŷ−1
[
U(0) − γ2

K2(1 − γ2)
ŷ−

1−γ2
γ2 − ψ + r

r
F ŷ

]
− (λ2 − 1)γ1 + 1

K1(1 − γ1)
ŷ−

1
γ1 + (λ2 − 1)γ2 + 1

K2(1 − γ2)
ŷ−

1
γ2 + ψ

r
F (λ2 − 1)

= ŷ−1
[
λ2U(0) − (λ2 − 1)ŷF − (λ2 − 1)γ1 + 1

K1(1 − γ1)
ŷ−

1−γ1
γ1

]
− λ1U(0)ŷ−1 + (λ1 − 1)(ψ + r)F

r
+ (λ1 − 1)γ2 + 1

K2(1 − γ2)
ŷ−

1
γ2

> −λ1U(0)ŷ−1 + (λ1 − 1)(ψ + r)F
r

+ (λ1 − 1)γ2 + 1
K2(1 − γ2)

ŷ−
1
γ2

= 0.

Here, we derive the first equality by substituting the value of U(0), the third inequality by the fact that
z̃2 < ŷ, and the last equality by the values of U(0) and ŷ.

Hence, Eq. (4.5) has a solution on z ∈ (z̄, ŷ), we denote y̌ is the largest one. Moreover, we claim that
Ĉ2 > 0, because

0 = p(y̌) > (λ1 − 1)γ1 + 1
K1(1 − γ1)

y̌−
1
γ1 − (λ1 − 1)γ2 + 1

K2(1 − γ2)
y̌−

1
γ2 − ψ

r
F (λ1 − 1) + p(y̌)

= (λ2 − λ1)
[
C1y̌

λ1−1 + γ2

K2(1 − γ2)
y̌−

1
γ2 − γ1

K1(1 − γ1)
y̌−

1
γ1 + ψ

r
F

]
= (λ2 − λ1)Ĉ2y̌

λ2−1,

if Ĉ2 � 0, then there is a contradiction.
From Proposition B.1, we see conditions (1)–(3) are valid, we only need to verify the conditions (4)

and (5). Next, we prove the condition (4) (for the case 0 < z < z̄, see the proof of Proposition B.1), i.e.,

φ(z) > C1z
λ1 + γ2

K2(1 − γ2)
z−

1−γ2
γ2 + ψ

r
Fz, for y̌ < z � ŷ, (B.20)

the inequality becomes an equality at z = y̌. Moreover, (B.20) can be simplified as

Ĉ2 > C1z
λ1−λ2 + γ2

K2(1 − γ2)
z−

(λ2−1)γ2+1
γ2 − γ1

K1(1 − γ1)
z−

(λ2−1)γ1+1
γ1 + ψ

r
Fz1−λ2 ,

i.e.,

C1y̌
λ1−λ2 + γ2

K2(1 − γ2)
y̌−

(λ2−1)γ2+1
γ2 − γ1

K1(1 − γ1)
y̌−

(λ2−1)γ1+1
γ1 + ψ

r
F y̌1−λ2

> C1z
λ1−λ2 + γ2

K2(1 − γ2)
z−

(λ2−1)γ2+1
γ2 − γ1

K1(1 − γ1)
z−

(λ2−1)γ1+1
γ1 + ψ

r
Fz1−λ2 , (B.21)

by substituting the value of Ĉ2.
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Let us denote the right hand side of (B.21) by q1(z), then

q′1(z) = z−λ2

[
(λ1 − λ2)C1z

λ1−1 + (λ2 − 1)γ1 + 1
K1(1 − γ1)

z−
1
γ1 − (λ2 − 1)γ2 + 1

K2(1 − γ2)
z−

1
γ2 − (λ2 − 1)ψ

r
F

]
= −p(z)z−λ2 .

We see p(z) > 0 on z ∈ (y̌, ŷ] from the selection of y̌. Hence, q1(z) is decreasing on z ∈ (y̌, ŷ], and (B.21) is
proved.

In the following we will check the condition (5). For case (1), it is easy to verify the correctness since
F 1−γ1

K
γ1
1 (1−γ1)

� U(0) and Ĉ2 > 0. For case (2), we need to verify

Ĉ2z
λ2 + γ1

K1(1 − γ1)
z−

1−γ1
γ1 > U(0) − zF, (B.22)

which is valid when z = ŷ.
Define

q2(z) � Ĉ2 + γ1

K1(1 − γ1)
z−

(λ2−1)γ1+1
γ1 − U(0)z−λ2 + z1−λ2F,

and

q′2(z) = z−λ2−1
[
λ2U(0) − (λ2 − 1)γ1 + 1

K1(1 − γ1)
z−

1−γ1
γ1 − (λ2 − 1)Fz

]
.

Since z̃2 < ŷ, we have q′2(z) > 0, ∀z > ŷ and q2(z) > q2(ŷ) > 0. Hence (B.22) is verified. The verification
for Ṽ (ν) = φ(ν) is similar to Proposition 4.2, so here we omit it. �
Proof of Proposition 4.5. When τ = ∞, we have

φ(z) � E

[ ∞∫
0

e−βt γ1

1 − γ1
(Zt)−

1−γ1
γ1 dt

]
= γ1

K1(1 − γ1)
z−

1−γ1
γ1 ,

and L1φ(z) + γ1
1−γ1

z−
1−γ1
γ1 = 0.

According to Lemma B.1, we see if F 1−γ1

K
γ1
1 (1−γ1)

� U(0), then

γ1

K1(1 − γ1)
z−

1−γ1
γ1 � U(0) − zF, for ŷ � z < ∞. (B.23)

Next, we prove

γ1

K1(1 − γ1)
z−

1−γ1
γ1 � C1z

λ1 + γ2

K2(1 − γ2)
z−

1−γ2
γ2 + ψ

r
Fz, for 0 < z � ŷ. (B.24)

It is equivalent to prove

l(z) � C1 + γ2

K2(1 − γ2)
z−

(λ1−1)γ2+1
γ2 − γ1

K1(1 − γ1)
z−

(λ1−1)γ1+1
γ1 + ψ

r
Fz1−λ1 � 0, for 0 < z � ŷ,

which is satisfied at z = ŷ, since C1ŷ
λ1 + γ2 ŷ−

1−γ2
γ2 + ψF ŷ = U(0) − ŷF .
K2(1−γ2) r
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Moreover,

l′(z) = z−λ1

(
(λ1 − 1)γ1 + 1
K1(1 − γ1)

z−
1
γ1 − (λ1 − 1)γ2 + 1

K2(1 − γ2)
z−

1
γ2 − ψ

r
F (λ1 − 1)

)
.

If 0 < z < z̄, then l′(z) > 0; if z > z̄, then l′(z) < 0, so l(z) gets its maximum at z = z̄. Therefore, if ŷ � z̄,
then l(z) < l(ŷ) � 0, for 0 < z < ŷ; if z̄ < ŷ, and C0 � 0, which implies that l(z̄) � 0, then we also have
l(z) � 0 for 0 < z � ŷ. Hence, the optimal stopping time is τν = ∞ and the proof is completed. �
Lemma B.4. If z̄ < ŷ, and F 1−γ1

K
γ1
1 (1−γ1)

< U(0), then C0 > 0.

Proof. (1) We first consider the case when ŷ � z̃2. Under the assumption F 1−γ1

K
γ1
1 (1−γ1)

< U(0), we see
w(z) = U(0) has two roots, denoted by z∗1 , z∗2 , respectively, where w(z) is defined in Lemma B.1. From
Remark B.1 and the assumption, we get z̃1 < ŷ � z̃2. We claim z̃1 > z∗1 , and z̃2 < z∗2 . Because they
are equivalent to w(z̃i) < U(0), i = 1, 2, which can be easily verified by the definition of z̃1, z̃2 and the
fact that 0 < z̃1 < (K1F )−γ1 < z̃2 < ∞. Hence, we obtain U(0) − ŷF > γ1

K1(1−γ1) ŷ
− 1−γ1

γ1 , i.e., C1ŷ
λ1 +

γ2
K2(1−γ2) ŷ

− 1−γ2
γ2 + ψ

r F ŷ > γ1
K1(1−γ1) ŷ

− 1−γ1
γ1 . Moreover, from the proof of Proposition 4.5, we have l′(z) < 0,

when z > z̄, so l(z̄) > l(ŷ) > 0. Therefore, C0 > 0.
(2) For ŷ > z̃2, if we assume C0 � 0, then following the proof of Proposition 4.5, we see

γ1

K1(1 − γ1)
z−

1−γ1
γ1 � C1z

λ1 + γ2

K2(1 − γ2)
z−

1−γ2
γ2 + ψ

r
Fz, for 0 < z � ŷ.

Next, by using the notations in Section 3, we have Ũ(z) = C1z
λ1 + γ2

K2(1−γ2)z
− 1−γ2

γ2 + (ψ+r)F
r z, 0 < z < ŷ,

which is decreasing and convex in z. So we get Ũ(z) > Ũ(ŷ) = U(0), i.e.,

C1z
λ1 + γ2

K2(1 − γ2)
z−

1−γ2
γ2 + ψ

r
Fz � U(0) − zF, 0 < z � ŷ.

On the other hand, combining the assumption F 1−γ1

K
γ1
1 (1−γ1)

< U(0), (K1F )−γ1 < z̃2 < ŷ, and the fact
γ1

K1(1−γ1) ŷ
− 1−γ1

γ1 > U(0) − ŷF , we obtain

γ1

K1(1 − γ1)
z−

1−γ1
γ1 > U(0) − zF, z � ŷ.

Therefore, ∀z > 0, γ1
K1(1−γ1)z

− 1−γ1
γ1 > U(0) − zF , which contradicts with the assumption that F 1−γ1

K
γ1
1 (1−γ1)

<

U(0). Hence C0 > 0. �
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