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1. Introduction

Consider the following stochastic partial differential equation in R?
{ du(t,z) = [Au(t, x) — ug(t, x)] dt + g(u(t, x)) dW (¢), (1.1)
U(O,Jf) = UO(Z‘)’ '

where A is the Laplace operator in R? and W (t) is a one dimensional standard Brownian motion. In the
theory of classical partial differential equations (PDE), it is well-known that when g = 0 and ug is smooth
enough, there exists a unique smooth solution for Eq. (1.1). In this case, the solution is also smooth with
respect to ¢, and the proof of the smoothness of u(t,z) with respect to the spatial variable = is based on
the smoothness of u(¢,z) with respect to the time variable ¢ by a bootstrap method.

However, when g € Cp°(R) does not vanish, Eq. (1.1) becomes a stochastic partial differential equation
(SPDE). A quite natural question is: Is there a smooth or classical solution for Eq. (1.1) when ug is smooth
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enough? In view of the non-differentiability of Brownian motion with respect to ¢, it seems that one cannot
directly obtain the smoothness of u(t, ) with respect to = by the classical method in PDE. It should be
noticed that when g is linear in u and the drift is also linear, the smooth solution for SPDE is well known
(cf. [27,4,15,16,13], etc.). With respect to the existence of smooth solutions of semilinear stochastic partial
differential equations, Zhang [36] proved that when the diffusion and drift coefficients are smooth and have
all bounded derivatives, there exists a unique smooth solution for the Dirichlet boundary problem (some
forced compatibility conditions are required). Therein, a Tartar’s non-linear interpolation theorem (cf. [31])
plays a key role. Moreover, when d = 1, the existence of smooth solutions for Eq. (1.1) was proved in [37]
by using the energy method combined with the mollifying argument.

In the past three decades, the theory of SPDEs has been developed extensively by many authors based
mainly on two different approaches: the semigroup method (cf. [33,9,4-7,35], etc.) and Galerkin’s finite
dimensional approximation method or variational method (cf. [22,23,18,27,15-17,26,8], etc.). To our knowl-
edge, most of these well known results are concentrated on the mild or weak solutions. Obviously, to
establish a regularity theory for SPDEs, by using Sobolev’s embedding theorem, it is natural to consider
the LP-solution of SPDEs. Such an LP-theory for SPDE has been established in [4-6,15,11-13,21,17,35], etc.
But, it seems that no results can deal with the problem of smooth solution for Eq. (1.1). A very close result
related to Eq. (1.1) is given in [6, Theorem 1.3]. Therein, the authors proved the existence of space—time
continuous solutions for SPDEs driven by spatial homogeneous Wiener processes. However, none of further
regularity about the spatial variable was obtained. We also emphasize that the first order term was not
contained in the equation considered in [6].

In the present work, we shall study the existence of LP-strong solutions for SPDEs with monotone drifts
in a general framework by using Yosida’s approximation. Here, the word “strong” has two aspect meanings:
in the sense of SDE as well as in the sense of PDE. Our proof of LP-strong solutions can be considered as
a combination of the semigroup method and the variational method mentioned above. The main result is
given in Section 2, and will be proved in Section 3. In order to cover more general stochastic equations, we
use the notion of carré du champ operator so that our equation can admit a first order term. In Section 4, we
apply our general result to the abstract Wiener space case. In Section 5, the SPDEs on complete Riemannian
manifolds are considered. In order to obtain the existence of smooth solutions, we shall work in weighted
Sobolev spaces by using a non-linear interpolation theorem due to Tartar [31] (cf. [36]). In the case of
Euclidean space, we also consider the SPDEs driven by spatially homogeneous Wiener processes (cf. [25,6]).
Lastly, in Section 6, we deal with Eq. (1.1). There, a sharp result of Littlewood—Paley’s inequality due to
Krylov [14] will play a crucial role.

2. Framework and main result

Let (E, B, 1) be a o-finite measure space. For any 1 < p < 400, we denote by LP(FE, i) the corresponding
real LP-space equipped with the usual norm ||-||zr. Let (Z¢);>0 be a family of symmetric strongly continuous
semigroup on L2(E, i) with Tg = g the identity operator. Suppose also throughout this paper that:

(A) T, is contracted on LP(E, u) for each t > 0, i.e., |Tofllp < [[fllp, 1 < p < o0;
(B) for each t > 0, T; is self-adjoint on L?(E, p).

Under (A) and (B), it is well known that (T;);>o forms an analytic semigroup on LP(E, u) for each
p € (1,00) (cf. Stein [28, p. 67, Theorem 1]). Let (£,D,(L)) be the generator of (¥;)i» in LP(E, i), where

iitu

Dp(8) := {u € LP(E,p): Qu:= %irr(l) T—u exists in Lp(E,,u)}.
—

Obviously, (2,D2(8)) is a negative self-adjoint operator on L?(E, u).
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By [24, Section 2.6], for « € R, the fractional power (g — 2)® of g — £ is defined as the inverse of the
bounded linear operator:

oo

(g— Q) > :=c;! /tafleftfzt dt,
0

where ¢ = [;° t* te~! dt is the Gamma constant.
For p > 1 and a > 0, the Sobolev type spaces are defined by

HE = (g = )72 (L7 (B, )
with the norm:
1 fllezz = ([ (g = )2 f|] -
They are separable and reflexive Banach spaces. Clearly, HY = LP(E, ), HY = D,(2) and
H?, CH? ifd >a>0.

Let 12 be the usual Hilbert space of the sequence of square summable real numbers. Similarly, we may define
the [2-valued Sobolev type spaces HE(I?).

For p > 1 and a < 0, one defines H? as the dual space of Hf*a, where % + 1% = 1. In the sequel, (p,p*)
will always be used to denote a couple of conjugated indexes. It is not hard to see that for any f € HZ,
there exists a unique element h € LP(E, ) such that

HP <f7 g>Hf; = Lp<h, (g - 2)—&/29>Lp*’ v.g € Hga‘

In this sense, H? may also be regarded as (g— )~ */2(LP(E, 1)) for o < 0. We remark that for any «a, 8 € R,
(g — £)*/? is an isomorphic mapping from Hp to H_,.
Moreover, we also assume that

(C) There exists a set D such that D is an algebra and dense in HP for all p > 1 and « € R;..
(D) (Z4)e>0 is sub-Markovian, and associates with a unique local Dirichlet form (&, D(&)) (see [3, Defini-
tions 2.1.1 and 5.1.2]).

Under (C) and (D), the Dirichlet form (&, D(&)) admits a carré du champ operator (see [3, Corol-

lary 4.2.3]), denoted by I', which is the unique positive symmetric continuous form from D(&) x D(&) into
LY(E, ), such that for all u,v,h € D(&) N L=(E, i),

& (uh,v) + &(hv,u) — &(uv, h) = Q/hf(u,v) dp.
B

We have (cf. [3, Proposition 6.1.1])

& (u,v) :/F(u,v)du: —le<u,ﬁv>H31, u,v € D(&). (2.1)

Later, we shall simply write I'(u) := I'(u, u), and suppose that the following Meyer type inequality holds:
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(E) For any p > 1, there exists a constant ¢, > 0 such that for any u € D,
ey ullge < |[T2()]|, + llullze < cpllull gz
We need the following function class on F x R:

for p-a.a. x € E, the map z — f(z,2) € C1(R),
¢ := ¢ and for each z € R, f(-,2), 0.f(-,2) € H?, and . (2.2)
for p-a.a. x € E, the map z — I'(0,f(-,2))(z) € C(R)

In the sequel, although it is not true in general that 1 € D(2) and 21 = 0, we still use the following
convention: for any constant ¢ € R,

I'(e)=0.

Let (£2,F,(F)i>0,P) be a complete and right-continuous filtration probability space. Let P be the
predictable o-field associated with (F3)¢>0. A family of independent one dimensional (F;)-adapted Brownian
motions {WF; t >0, k=1,2,...} on (£2, F, P) is given. In the following, the letters c or C' with or without
subscripts will denote different positive constants on different occasions.

In the present paper, we consider the following type SPDE:

{ du(t,z) = [Qu(t, x) + F(f1 (t, ~,u(t)), gp) (z) + fo(t,x, u(t,x))] dt + ng (t, x, u(t, x)) dwk, (2.3)

u(0, ) = ug(x), g
where ¢ € D(8) satisfies |2p| + I''/2(p) < ¢y, and

fi: 2 xRy xExR =R,
fo: 2 xRy xExR =R,
g:2xRy x ExR = 1I?

are measurable functions.
We impose the following conditions on f1, fo and g:

(H1) For each (z,z) € E x R, the following maps
(w,t) = fi(w,t,z, 2), folw,t,x,2), gr(w,t,x,2), keN
are P-measurable, and for each (w,t) € 2 x Ry and k € N,
(x,2) = filw,t,z,2), gr(w,t,z,2) €Y,
and for each (w,t,2) € 2 xRy X E,
z = fo(w,t,x, 2) is continuous.

(H2) There exist a constant cs, > 0and Ay, () € (1,59 LP(E, p) =: L7 (E, p) such that for all (w,t,z, 2) €
xRy x ExR,
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Fl/z(azfl(w7t7 ,Z))(l') + |62f1(w7t7x7z)‘ < Cfis
F1/2(f1(wat7 ’O))(I) + |f1(w,t,x,0)| < Afl(x)

(H3) There exist constants CfO,C/fO >0, n € Nand A\, (x) € L (E,u) such that for all (w,t,z,y,2) €
2 xRy x ExR?,

(y—Z) ! (fO(W7t7x7y) - fo(w,t,.T,Z)) < Cfo * |y _Z‘ )
| folw, t,2,2) = folw, t,2,0)| <, - (J2* + 2),
|f0(w,t,x,0)| < Ap (@)

(H4) There exist a constant ¢, > 0 and A\y(z) € L~ (E, p) such that for all (w,t,z,2) € 2 xRy x E xR,

Z(F(azgk(w,t, - 2))(z) + lazgk(w,t,x,z)m < ¢y,
%

Z(F(gk(w,t, - 0))(z) + ‘gk(w7t,x,0)|2) < (7).

k

Remark 2.1. Fix an odd number n. Let fy be an n-order polynomial with the form
z) = chzj, where ¢1,...,¢,_1 € R and ¢, < 0.

Then fy satisfies (H3).
For ¢ > 2, we define the Banach space
B? := HIN H}
with the norm
I~ Mg = |- g + Il - |2
We can now state our main result as follows:

Theorem 2.2. Assume that (H1)—(H4) hold. Then, for any q > 2n, where n satisfy (H3) and ug € B?, there
exists a unique H?-valued continuous and (Fy)-adapted process u(t) (called a solution of Eq. (2.3)) such that
forany T > 0,

T
E( sup [lu(t)ll;,) + (:[%%]Hu(t)uj{f)+/E||u(t>||§,§dt<cT(|u0||§Bq+1), (2.4)
’ 0

te[0,T

and the following equation holds in L*(E, ),

=wup + )+ L (fi(s,u(s)), @) + fo(s,-,u(s))] ds

+ gr(s de for any t >0, P-a.ec. (2.5)

fi
2o
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Moreover, let u(t) and a(t) be two solutions of Eq. (2.3) corresponding to the initial values wug, iy € BY.
Then

E( sup [lu(t) = a(t)]},) < Crlluo — o3 (2.6)
te[0,T]

Remark 2.3. If ¢ > 2, by (2.4) and the interpolation inequality between L?(E, u) and LY(E, ) (cf. [2]), we
in fact have the continuity of ¢ — u(t) in LP(E, ) for any 2 < p < q.

Remark 2.4. In terms of I;, the solution u can be written as the following mild form

t

u(t) = Tyuo + /Et,s [T(fi(s,u(s)), ) + fo(s,u(s))] ds + Z/flt,sgk(s, u(s)) dWr. (2.7)
ko

0

This expression will be used to improve the regularity of the solution in Sections 5 and 6.
3. Proof of main result

We first prepare two lemmas about the carré du champ operator for later use. The following lemma is as
the chain rule.

Lemma 3.1. Let f € 4. Assume that for some cg >0 andp >0
Fl/Q(azf(-,z))(x) +|0.f (@, 2)| < co(l2” +1). (3.1)
Then for any u,v € Hf N Hf(pﬂ), we have

F(f(,u))(x) = (8uf(x7u(x)))2 - I(u)(z) —l—f’(f(m(x)))(ac) +28uf(x,u(x)) ~F(u, (,u(x)))(x) (3.2)

and

L(f(,u),v)(z) = 0uf(z,u(@)) - I'(u,v)(x) + T'(f(-,u(x)),v)(@). (3.3)
Here and below, I'(f(-,u(z)))(x) := I'(f(:,2))(®)|.=u(@) and similarly for others.

Proof. We only prove the first one, the second is analogous. Denote f(z,z) = f(x,2) — f(z,0) and assume
f(x,0) = 0 for simplicity. For n € N, let x,, € C}(R) be a cutoff function with |y,| < 1 and

) 1, for |z| < n,
Z) =
An 0, for |z|=n+1.

Define

Z 8 f Z, k2~ ) 1[k2 n (k4+1)2— n)(Z)

k=—o00

and

z z

fule.2)i= [ xalw)on(z)d Y (). [tz )

0 k=—o0 0
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where the sum only has finite terms. Since f € ¢ (see (2.2) for the definition), it is easy to see that for
pa.a. x € Eand all z € R,

im0, fu(x,2) = 0:f(x,2), (3.4)
and
Jim I(0fu(,2) = 0:£(-,2)) (x) = 0. (3.5)
Moreover, by (3.1) we also have
]F1/2(8an(-,z))(a:)| + |3an(x,z)| <C- (2P +1). (3.6)

Now, by u € H2 N le(pH) and [3, Corollary 6.1.3], we know

F(fn(7u))(ar) = ((?ufn (w,u(m)))2f’(u)(x) + F(fn (w(w)))(m) + 20y fn (a:,u(x))F(u,fn (w(w)))(m)
=: I7'(z) + I3 (z) + I3 (x). (3.7)

Let I;(x), i = 1,2, 3, be the corresponding terms in (3.2). By the dominated convergence theorem and (3.4),
we have

lin 1)~ L], =O.

n—oo

By a direct calculation, one finds that
L(fa(-2))(2) = //F(ﬁyfn(-,y),ay/fn(~,y/))(z) dy dy/,
00

which together with (3.5) and (3.6) yields

lim [13() — (]|, =O.

n—oo

Similarly, we have

lim || 13(-) = Is(-)|| ., = 0.

n—oo

Hence,

i [[1(fw) = I (fn )| 0 =0,

n,m— oo

Noting that

lim an(»u) - f('vu)HLz =0,

n—oo

we have f(-,u) € H? and

tim || (fa (- 0) = (/)| = 0,

n—oo

which gives (3.2) by taking limits for (3.7). O
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Lemma 3.2. Assume that ¢ € D(L) satisfies
[Qp| + F1/2(g0) < Cyp.
Then for any p > 1, there is a constant Cp , > 0 such that for any u € LP(E, 1),
100 0, < Coolelo

Proof. Suppose u € D and let p* = p/(p — 1). We have

|1 (u, sD)HHfl = sup /F(%@) "Ud,u‘ = sup

veD,; HU”Hf* <1 E vED; Hv”Hf* <1

/ (uv, ) — I'(v, ) - u) du'

E
/F1/2 F1/2( ) ud'u‘
E

<2 sup /(uv) <Ly du’ + sup
veD; ol pe <11 vED; ol pe <1
< 2¢p - |ullpe + ¢y - sup HFI/2 )| o - Nullze,
veD; [|v]| p* <1

which gives the desired result by (C) and (E). O
8.1. Lipschitz continuous fo
Without loss of generality, we assume in what follows that
cs, = 0.

Otherwise, we may use the transformation (¢, z) = u(t, z)e~%o? to reduce the coefficients to this case.
First of all, we consider the case that ug € D and fy is Lipschitz continuous with respect to z, i.e., for
some K > 0

|f0(w,t,x,y)ffo(w,t,a:,z” <k-|y—2z|. (3.8)

Under (H1)-(H4) and (3.8), using Lemmas 3.1 and 3.2, it is easy to see by Corollary 5.4 of [36] and
Theorem 2.2 of [37] that there exists a unique strong solution u to Eq. (2.3) such that for any p > 2 and
T >0,

T

E( sup ||u(t)|}z;1f) +/]E||u(t)||2§ At < Cp 1.

te[0,T] 0

In the following, we shall prove three uniform estimates which are independent of the Lipschitz constant s
of fo .

Lemma 3.3. For any p > 2 and T > 0, there exists a constant C, v > 0 independent of k such that

E( s [[ud)ll}, ) < Cpr - (luols +1). (3.9)
t€[0,T]
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Proof. By the usual It&’s formula (cf. [6, Theorem A.2]), we have
Hu(t)HI;p = |Juo||}p + I1(t) + L2(t) + I5(t) + L4(t) + I5(t),

where

First of all, we have

) =y [ [ ()PP uls) - s u(s)e) duds —p [ [ fisiu(s)) - T(Julo)”us). o) dds
2 / / 2o |u(s)[""u(s) - f1 (5. u(s)) duds — p / / fi(s,u(s)) - [u(s)|" ™2 D(u(s), @) dpds
< p// [Lop| - }u(s)‘p_l . (cﬁ’u(s)‘ + /\fl) duds

+p//(cf1|u(s)| +An) - |u(s)|pi2 -Fl/Q(u(s)) - IV2(p)dpds

p//;u P2 ))duderC/ Ju(s)[[7, + 1) ds,
0 F

where we have used that |€p| + I''/2(¢) < c,,. Here and after, the constant C' is independent of .
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For I5(t), since we have assumed cy, = 0, by (H3) we have
t
t) = p//|u(s)‘p_2u(s) < fo(s, - u(s)) duds
0 E
t t
< p//Afo ()P dpds < C/(||u(s)||";p +1)ds
0 E 0
Moreover, it is clear that by (H4)
t
C/ Hu ) ds.
0
Hence
a()|]?, < lluollZ + c/(||u(s)||§p +1)ds+ L(2). (3.10)
0
Taking expectations for (3.10) and using Gronwall’s inequality, we get that for any 7" > 0,
sup IEHu H C([luollzs +1). (3.11)
t€[0,T]

On the other hand, by BDG’s inequality and (H4) we have

E(t:Eé%]|I4 ‘ < C’E(/T(/|U(S)’p—l ) HQ(S,-,U(S))HIZ du>2d8> 1/2
( [l +1)a )”2
:

s [l [, w) e
0
< 38( g [uol7,) +0 [l + s

€[0,77
0

< CE

< CE

N)l»—A

which together with (3.10) and (3.11) yields the desired estimate. O

Similarly, we can prove that

Lemma 3.4. Let u(t) and a(t) be two solutions of Eq. (2.3) corresponding to the initial values ug, iy € D
For any p > 2 and T > 0, there exists a constant C, 7 > 0 independent of k such that

E(tes[%pT]Hu(t) H ) Cp,1 + |l — o[-

187
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We also have
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Lemma 3.5. For any T > 0, there exists constant Ct > 0 independent of k such that

IE( sup ||u(t)
t€[0,7]

Proof. Consider the following evolution triple:

T
I52) + [ Bl
0

[

dt <C

X

(HUOHH2 + HUOHLG + 1).

H? C H? C H?

with

2 2 (u, v)H

By It6’s formula (cf. [27,26]), we have

<(g - 2)“7 U>Hg7

we HZ ve Hp.

@) = lluole + 1u(t) + Ia(t) + Is(2) + La(®) + I (8),

where

li
\H

0
t
= /Hgk ()| ds
0

First of all, we have

: t
=2 [ )|z ds + 2 [ (o) ds
0 0

and by Young’s inequality, Lemma 3.1 and (H2),

< %/Hu(s)Hzg ds + C’/(Hu(s)”il12 +1)ds
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Similarly, by (H3) we have

t
1
B(t) < 5 [ Ju(s)f a5+ € [1fo(ou)[3 as
0

0
1 t t
<5 [ gas+ € [ (|, + o), +1) ds.
0 0

Moreover, it is obvious by (H4) and Lemma 3.1 that

Is(t) < C/(Hu(s)HZ% +1)ds.

Combining the above calculations gives that

t i t
Ju®)[% < lluoli%; — /Hu(s)”ig ds + C’/(Hu(s)”i{% 1) ds+ C/Hu(s)“iﬁn ds + L,(t).
0 0 0

As in the proof of Lemma 3.3, we deduce that

T T
2 2 2
B( sup [Ju(o)l3) + [EJu]y de < Cr( ol + [ BJuts)]}2 ds+1),
teloT] ' 0 : 0
which gives the desired estimate by (3.9). O
3.2. Proof of Theorem 2.2

Let f§ be the Yosida approximation of fy defined as follows:

fg(wat,$7 Z) = fO (wvtaxa Jg(w,t,x,z)),

where € > 0 and

Jﬁ(wutvxa Z) = AE("J?tvxv ')_1(2)’

As(wa t,x, Z) =z 5f0(w) i, Z)
The following lemma is well known (cf. [10, p. 74]).

Lemma 3.6. For all (w,t,z,y,2) € 2 xRy x Ex R? and &,&" > 0,
(1) (yfz) (fg(w7ta‘r7y)7f5(w7tax7z)) <0,
|f§(w,t,x,y) - fg(w,t,x,z)| < 1/6 ' |y72|a

(ii) |f§(w,t,x,z)‘ < |fo(w,t,m,z)

)
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(iii) lim f§(w,t,x,2) = fo(w,t,z, 2);
e—0

(iv) (= 2)- (f§lw.t,m,y) = f5 (@ t,2,2) < (e +&) ([f(w,t.2,0)]* + 5 (@, t,2,2)]).

In the following, we shall fix ¢ > 2n and wug, 4y € B?. Let u. (resp. @) solve the following equation

ue(t) :uf)Jr/[Qus(s)JrF(fl(s,us( ), @) + [5 (s uc(s derZ/ s,us(s))dWr,  (3.12)
0

where u§ € D (resp. 4§ € D) satisfies
. . _ e _
im0~ oy, =0l — o], =0.
Then by Lemmas 3.3, 3.4 and 3.5, for some ¢y > 0 we have

sup E( sup |Jue(t) ||qu> < C(Jluollfa +1),

e€(0,e0) t€[0,T]
sup E( sup [lu(t) = @(8)], ) < Clluo — ol
e€(0,e0) t€[0,T]
and

T

2 2

sup IE( sup ||u5 HH%) + sup /EHuf(t)HHg < (Hu0||H2—|—Hu0||L2n+1).
€€(0,20) t€(0,T €€(0,e0) 5
Set

Veer (B, ) := ue(t, x) — uer (t, ).
By Itd’s formula we have
2
Hvs,s/(t)HLz = ||U(E) - Ug HL2 + Il(t) + IQ(t) + I3(t) + I4(t) + I5(t)7

where

t):=2 <’UE75/ (s),ﬁv€75/(3)> , ds,
0/ .
Ir(t) := 2/(1)575/ (5),F(f1 (s, ~,u5(s)) - f (s, ‘) Ugs (5)),@)>L2 ds,
0
3 t) = 2/<Us,s’(3)a fS(S, '7“6(3)) - fgl( Sy U, )>L2 ds,

ue(s)) — 9k (37 "y UE/(S))>L2 dWska

||
o\

@

m

m

/ugk () = k(o ) 09

(3.13)

(3.14)

(3.15)

(3.16)
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First of all, we have

—2/t/r(v5,a/(s)) dpds.
0 FE

For I5(t), by (H2) and Young’s inequality we have

5) 2//F(v€75/(8) . (f1 (s, -,ue(s)) - (3, -,ue/(s))),go) duds

2// — fi(s, 50 (5)) - D (vecr(5), 0) dpds

(e}

< 2¢yp, //|’UEE 8¢l dppds + 2¢y, //|U55 F1/2 = (3)) CIY2 () dpds
B

/Hvss ||de5+// Ve ( d,uds

Here and after, the constant C' is independent of € and &’.
For I5(t), we have by (iv) and (ii) of Lemma 3.6 and (H3) with fy(w,t,x,0) =0,

[}

I €+€ //|f0 Sy U |+|f0(aa ())|)2dlu‘ds

\c@+a/m% 2+ )2 + ()2 + [l ()2 + 1) s
0

For I5(t), by (H4) we have

t
< ci /||UE,EI(S)H2L2 ds.
0

Hence, by taking expectations for (3.16) and (3.13) we find

e O3 < 5 6 22 + e+ <) + € [ Efoeao) s
0

which yields by Gronwall’s inequality that

— Ejv-. (1)

EH“E(t) HL2

0|7, < Clug—ug |2, + C(e +£).

As in the proof of Lemma 3.3, we further have for any 7' > 0,

E( s[lépT”us )= e (®)]72) < Cllws = w72 + C(e +2).
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Therefore, there exists an L2-valued continuous (F;)-adapted process u such that

: 2
l‘eli]élE(tg[lépT]HuE - u(t)HLQ) =0. (3.17)

Moreover, by (3.13) and (3.15), we also have

q
B sup [lul0)3,) < (ot +1) (3.18)
and
T
E(t;‘é%]““ i) + /Euumuig C(|luol%z + luolF3. +1), (3.19)
0

as well as by the interpolation inequality (cf. [2]),

T T
IE/Ilus(s) —u(s)| 2 ds < E/||u5(s) = ()] gy + [Ju= () = ()] 15 ds
0 0
T 1/2
< (E/ Jue(s) = uts) 1 )
0
T 12
x (E/Hue(s) — ()| s ds> 00, aselo. (3.20)
0

It must be noticed that one cannot directly take limits for (3.12) in order to show that u solves Eq. (2.3).
Instead of that, we shall use the standard weak convergence method (cf. [26]) to derive that u(t) solves the
original equation.

In the following, we fix T" > 0 and set

F(w,s,x):= f§ (5, X, ue (s, x))

By (ii) of Lemma 3.6, (H3) and (3.13), (3.15), one knows that

T
sup E(/”Fa(‘S)Hiz ds) <C
€€(0,e0) 0

Therefore, there exists an F' € L?(2 x [0,T); L?(E, 1)) and a subsequence ¢, (still denoted by ¢) such that
F. — F weakly in L?(2 x [0,T]; L*(E, ).

Now, define

u(t) :=ug + /[Qu(s) +I'(fi(s,u(s)), ) + F(s)] ds + Z/gk de (3.21)
0 ko

By taking weak limits for (3.12), we find that
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u(t) = a(t), as. Vte[0,T],
which combining with It&’s formula gives
2
E[[w(T)|| 7. = lluollZ> + J1 + J2 + J3 + Ju,

where

Jl =2

JQI

Il
N}

I
[N}
O\s] o\ﬂ o\H
=
—
S~—"
—~
s
-
—
=
=
S
S~—
~~—
h
M
o
»

Jgt

E||gx (s, uls)) |2, ds

e
k

St~

On the other hand, from (3.12) we also have

Elluc(T)|| . = lluollz> + J5 + J5 + J5 + J§,

2
17

where

By (3.17) and (3.20), we easily have

2 = E||u(T)|>

i [ (7). 2.

and

lim .]15 = Jl.
el0

193

(3.22)
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For J5, by Lemma 3.2 and (H2) we have

195 = ] <2 [ B(lueo) = o) o 7o 0e(9), ) ) ds

#2 By 170006 — A5 0). )]s, 0

1/2 T 1/2
cof fetm i) - ( [euo,a)
0 0
T 1/2 T 1/2
—|—O</EHU(S)H§{12 ds) . </]E||u5(s) —u(s)”i2 ds)
0 0

which gives by (3.15), (3.17) and (3.19) the limit:
lim|.J5 — J2| = 0.
el0
Moreover, by (H4) and (3.17) we also have
li i — = 0.
Elﬁ)l!J4 J4| 0
Combining the above calculations, we obtain
lim J§ = Js. 2
Elg]l J3 = J3 (3.23)

Now, for any @ € (L2NL*")(2x[0,T] x E), by (ii) and (iii) of Lemma 3.6 and the dominated convergence
theorem we have

T
laiﬁ)l E//(ug(s) —45(8)) . [fg(s, ,45(5)) — fo(s, ,@(S))] dpds
0B
T 1/2 T 1/2
< E&ll(o/EHfg(s,-,sﬁ(s)) —fo(s,-,sﬁ(s))Hi2 ds) (O/IEHuE(s) —@(S)Hiz ds) ] =0. (3.24)

In virtue of (i) in Lemma 3.6, we have

T
E(!Z(UE(S) *@(5)) . [fg(s,.,us(s)) — f§(57.7@(5))] d,uds) <o.

Thus, by (3.23) and (3.24) we finally arrive at

T
E( / E/ (u(s) = 8(5)) - [F(s) — fo(s. 8(s))] d ds) <0 (3.25)

for any @ € (L2 N L?") (2 x [0,T] x E).
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Replacing @ in (3.25) by u — 6P, where § > 0, we have

E(//@(s) [F(s) = fo(s, - u(s) — 6®(s))] duds) <0.

0 E

Letting § | 0 and using the dominated convergence theorem, one finds that

E(O/E/@(s)- [F(s) = fo(s,-u(s))] duds> <0.

By changing @ to —®, we conclude that by the arbitrariness of @,

F(s,z) = fo (5, x,u(s, x)),

which together with (3.21) and (3.22) produces (2.5).
Lastly, the continuity of ¢ — u(t) in H? follows from the It6 formula in [27], and the estimate (2.6) follows
from (3.14) and (3.17).

4. Application to SPDEs on abstract Wiener space

Let (X,H, 1) be an abstract Wiener space. Namely, H is a real and separable Hilbert space, and it is
continuously and densely embedded into Banach space X. Therefore, by transposition, the dual space X*
of X could be injected in H and we have the triplet X* — H — X. The measure p is the Gaussian measure
on B(X).

Let C be the set of smooth cylindrical functions on (X, pt). The Ornstein—Uhlenbeck semigroup is defined
by Mehler’s formula: for every f € C,

T f(2) = /f(xe‘t +yV1—e2)u(dy).
X
For any p > 1, T; can be extended to a strongly continuous Cy-semigroup of contraction on LP (X, ). The
generator € of semigroup ¥; is a non-positive self-adjoint operator on L?(X, u). For f € C with the form
f@)=F((a,hi),....{x, hy)), FeC&(RF), h € H,
the Malliavin derivative of f is defined by

Df(x) := Z@iF(@r:,hl}, ooy (@ he)) by hy € HL

The carré du champ operator is then given by

F(fag):<Df7Dg>H7 f,gEC.

Note that the following Meyer inequality holds (cf. [20]): for any p > 1 and some ¢, > 0,

& M lap < Ifllee + 1D flleeqy < cpll fllap-

We can choose D := ) H? as our test functions space in (C).

p>1,n>1
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Consider the following SPDE:

(4.1)

{ du(t,z) = [Qu(t,z) + Dpfi(t, - u(t)) (@) + fo(t, =, u(t, x))] dt + ng (t, 2, u(t,z)) AW},
k

u(0,2) = ug(x),

where h € H and fi, fy and ¢ satisfy (H1)—(H4). Then applying Theorem 2.2 to this case, we can get the
same conclusions as Theorem 2.2.

5. Application to SPDEs on complete Riemannian manifold

Let (M,g) be a d-dimensional and complete Riemannian manifold with Riemannian metric g. The Rie-
mannian volume is denoted by dz. Let V denote the gradient or covariant derivatives without confusion,
A the Laplace-Beltrami operator, T(M) the tangent bundle. The curvature tensor of (M, g) is denoted
by R, and the Ricci curvature is denoted by Ric,.

Given p(z) € C®(M), let p(dz) := e~ **) dz. Assume that

w(M) = /e*”("”) dz < 4o0.
M

Let D := C§°(M) be the smooth functions on M with compact support. We consider the following distorted
Laplace—Beltrami operator:

Qu = Au—o(Vp,Vu), ueD.

It is well known that (£,D) is an essentially self-adjoint operator on L?(M, 1) (cf. [34]), whose closure is
denoted by (£,D(2)). Let (T;);>0 be the symmetric heat semigroup on L?(M, u) associated to (€, D(L)).
Then, (T¢):>0 can be extended to a strongly continuous contraction semigroup on LP (M, u) for 1 < p < 400,
which is also contracted on L (M, p) (cf. [30,34]). Therefore, for each 1 < p < 400, (T¢)¢>0 forms an analytic
semigroup on Banach space L?(M, ). The Sobolev spaces are defined by

HE = (g — &) "/2(LP (M, ).
The carré du champ operator is given by

I'(f,9)(z) =0,(Vf,Vyg), f,geD.

In this section, we make the following geometric assumptions:

(M.,,) The tensors V2p+Ric, and R together with their covariant derivatives up to n-th order are bounded.
The trace(R ® Vp) together with its covariant derivatives up to n — 1-th order are bounded.

Under (M,,), an equivalent norm of H? is given by the covariant derivatives up to n-th order, i.e., for
p > 1, there exists a positive constant ¢, , such that for any f € D,

npllfllez < DNVl < enpll fll- (5.1)
j=0

In the case of n = 1, this equivalence was first proved by Bakry in [1] under the assumption of V2p + Ric,
bounded from below. The higher order derivative case was proved by Yoshida in [34].
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Consider the following SPDE:

{ du(t,z) = [Qu(t,z) + 8. (V[ (L, ut)), V) + fo(t,z,u(t,z))] dt + ng (¢, z,u(t, z)) dwk, 52
- )

u(0, ) = uo(x),

where ¢ € D, and in addition to (H1)-(H4), we also assume that

(H5) For every n,m = 0,1,2,..., there exist Cpp, > 0, Ly € N and hy,, € L7 (M, p) such that for all
z€R,z€ M and (w,t) € 2 x Ry,

|(V207 fo) (w, t, 2, 2)| < Crml2|"™™ + By (2),
|(V2OI f1) (w, t, 2, 2)| < Com 2| + him (),
(V7207 g) (w,t,2,2)||,» < Coum |2l + B ().

In this and next sections, we use the following Banach spaces as in [35]. For T > 0, p > 2 and « € R,
define:

HE (T) := LP(2 % [0,T],P,dP x dt; HE), (5.3)
HP, (T;17) := LP (2 x [0,T],P,dP x dt; H,(I?)). (5.4)

We now prove the following result.

Theorem 5.1. Assume that (My) holds for any n € N and (H1)-(H5) hold. Then, for any uy €
Nps2, nen HE =1 H*, there exists a unique solution u(t) € H* C C*(M) to Eq. (5.2) so that

u(t, z) = up(z) + /[Qu(s,x) + 82 (Vf1(s, - u(s), Vo) + fo(s, 2, u(s, x))] ds

+ /g;C s,z u(s,x)) dWE, V(t,z) € Ry x M, P-a.s.
0

Moreover, there exists a version @ such that for any j = 1,2,..., the mapping (t,x) — VJi(t,x) is contin-
UOUS a.8.

Proof. For p > 2 and u,v € LP(E, ), by (H2), (H4) and Lemma 3.2 we have
Hg(v(fl(sa ) U) - fl(sa ',U))aVQO) HH{I g CHU - UHLT’7
Hg(87 B U) - g<57 '7U)HLP(I2) < CHU’ - UHLP
and by (H5), Lemma 3.1 and (5.1), for any n € N and some k, € N
la(V (fi(s.w), Vo) | o < C(L+ lullfn, ),
||g(s7'7u)||Hﬁ(l2) (1+ HUHI_Ik71 P)

Thus, by [36, Corollary 3.2] we have, for any 0 < 6 < n+1’
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ls(V(fils,w) Vo)l <O+ ||u||’;§z_§), (5.5)
loCs, s )llr ey SOOIl ) (5.6)

Moreover, by (H5), Lemma 3.1 and (5.1) again we have, for any § € (0,1), n € N and some m,, € N,
Hfo(S, .7u)HH§_1_(n+l)6 < CHfo(s, "U>HH§71 <C(1+ ||uH7H"::L1p) <C(1+ ||u||”Hl£n_n5p) (5.7)

Fix T > 0. By (2.4) and [35, Theorem 3.2], for any § € (0,1) we have
u(-) e HY (1), Vp=>2.

Using the representation (2.7), [35, Theorem 3.2], (5.5)(5.7) and induction method, as in the proof of [36,
Theorem 2.5], we may prove that for any n € N and ¢ € (0,1),

u(-) e P _(T), Vp=2.
The proof is thus completed by [35, Theorem 3.4] (see also [4]). O

We now consider a special case of M =R endowed with the Euclidean metric. Let p € C*°(R?) satisfy

/e*P(l’)dx<+oo and |V"p| <e¢, foranyn=1,2,....

Rd

For example, p(z) = (1 + |z|?)'/? and p(x) = alog(1 + |z|?), a > d/2, satisfy the above conditions. In this
case, (M) clearly holds for any n € N.

Below, we recall the definition of spatially homogeneous Wiener process (random fields case) (cf. [25,
p. 190]):

Definition 5.2 (and Theorem). Let 1 be a symmetric and finite measure on (R¢, 2(R%)), and I" the Fourier
transform of x. Then there exists a Gaussian random field W on R, x R? defined on some probability space
(2, F, P) such that

(i) For P-almost all w, (t,z) — W (w,t,z) is measurable.
(ii) For each z € RY, (w,t) — W(w,t,z) is a one-dimensional Wiener process.
(iii) For t,s € R, and z,y € RY, E(W(t, )W (s,y)) = (tAs) - ['(z —y).

The w is called the spectral measure of W, and I" the spatial correlation function of W.

In the following, we assume that the spectral measure of W satisfies
/(1 1 J2l?)"u(de) < +oo, VneN, (5.8)
Rd

and consider the following SPDE in R¢ driven by W (¢, z):

{ d’LL(L 1[,’) = [Au(ta .T) + <vf1 (ta B U(t))avP>Rd =+ fO (ta Z, u(ta l’))} dt + g(ta €T, u(tv (E)) dW(ta ([),
u(0,2) = ug(x),

where f1, fo and g satisfy (H1)—(H5).
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In order to use Theorem 5.1, we need a representation of W (t,z) in terms of WF. Let L%S)(Rd, 1) be the

subspace of L?(R?, 1;C) consisting of all u such that u(—z) = u(x), which is a separable Hilbert space.
Define

Hy, o= {upi: uwe L, (R, )},
and
(up, op)m, == (u, U>L2 o (R0

where wp(z) = [pa € —#@¥)zdy(y) pu(dy) denotes the Fourier transform of wup.

It is well known that t — W(t, -) is a cylindrical Brownian motion in H,,, and H, is called the reproducing
kernel Hilbert space of W (¢, ). Let {eg: k € N} be an orthogonormal basis of L%S)(}Rd, w). Then {hy := exp,
k € N} is an orthogonormal basis of H,,, and

= Z hk (m)Wk
k

where {W} = Jga W (t, 2)hi(x) dz, k € N} is a sequence of independent standard one dimensional Brownian
motions (cf. [25, p. 191}).
We need the following simple lemma.

Lemma 5.3. Assume that (5.8) holds. Then {hy,k € N} € C°(R%;1%), i.e

STV i (@)|* < oo, Yn=0,1,2,....

Proof. It follows from

SV h(@)|?
k

(Vn —i(%mkd) e (y)p(dy)

/|Vn z,y) ]Rd (dy) < C/(l + |y|2)nu(dy) < +00. O
Rd

Now we rewrite Eq. (5.9) as follows:

{ du(t,z) = [Qu(t, x) + <Vf1 (¢, u(t)),Vp>Rd + fo(t,z,u(t, x))] dt + gi (¢, =, u(t, z)) dwk,
u(0, z) = uo(x),

where Lu = Au — <Vu7 Vp>]Rd7 f~1(t7 z, u) - fl(ta z, u) + u and gk(tv T, U) = g(t7 z, u) : hk('r)
Clearly, by Lemma 5.3, one knows that f; and § satisfy (H1)—(H5). Thus, we may use Theorem 5.1 to get

Theorem 5.4. Assume that (5

5.8) and (H1)—-(H5) hold. For any uy € H, there exists a unique solution
u(t) € H* C C*(RY) of Eq. (5

.9) such that

u(t, ) = uo(z) + /[Au(s,x) +(Vfi(s, - u(s)), Vp)ga + fo(s,2,u(s,x))] ds

t
+ /g(s,x,u(s,x)) dW(s,z), VY(t,z) € Ry x R
0
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Remark 5.5. Since we are working in the weighted space, the initial value ug(x) can be constant. Obviously,
one may also consider the more general uniformly second order symmetric elliptic operator having smooth
coefficients with all orders of bounded derivatives.

6. Application to stochastic reaction diffusion equations in R¢
For p > 1 and n € N, let HP be the Bessel space in R? given by
HE = (g— A)™/2(LP (R, dx)).
It is well known that for any p > 1 and f € C$°(R?) (cf. [29,32]):

& My <N llee + 1V e < cpllfllaps (6.1)

where V is the usual gradient operator.
Consider the following stochastic heat equation in R%:

{ du(tv :E) = [Au(ta x) + <vf1 (ta K U(t)), V(P>Rd ($) + fO (t7 Z, u(t, SL’))] dt + Egk (tv Z, u(tv x)) thka (62)
k

u(0,2) = ug(x),

where ¢ € C§°(R?), and fo, f1, g satisfy (H1)—(H5). In this case, we remark that the result in Section 5 is
not available since we are working in the whole space R¢ and without weights.
For p > 2 and T > 0, we shall use the following deep result (cf. [19]):
¢

T
!t/ztﬁ

as well as a generalization of Littlewood—Paley’s inequality due to Krylov [14]

p/2 T
//(/\vz:t s9(s )]st> dmdt<Cd’p//|g(t,m)‘gdwdt, (6.4)

0 Rd 0 R4

dt < cd,,,/T/{f(s,x)y”dxds (6.3)

HY 0 Rd

where f € LP((0,T) x R?) and

Tf(w) = (zng/éx“””ﬂmdy

Rd

G is a Hilbert space, and g € LP((0,T) x R%; G). Here, the constant Cy, only depends on d and p.
We now prove the following result.

Theorem 6.1. Assume that (H1)~(H5) hold. Then, for any uo € (5o ey HE =0 H>, there exists a unique
solution u(t) € H® C C*(RY) to Eq. (6.2) so that

u(t, z) = up(z —|—/ [Au(s, ) + (V1 (s,u(s)), Vo)ga + fo(s,z,u(s, x))] ds
0

+ Z/gk(s,m,u(s,x)) dWF, V(t,z) € Ry x RY P-a.s.
ko
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Moreover, there exists a version @ such that for any j = 1,2,..., the mapping (t,x) — V7i(t,x) is contin-
UOUS a.8S.

Proof. Fix T' > 0. Recall the spaces Hb(T’;1?) and HA(T) given in (5.3) and (5.4). For any p > 2, by (6.1),
(6.4) and Minkowski’s inequality we have

p
/ i:t sgk y U )) de de
HY
p p
C/ I15 Sgk y oy U )) de dt+0/ /vzt sgk 5 %y (5)) dWSk dt
LP Lp

C/T/E</tuztSg(s,.,u(s))(x)uli ds)p/2 de dt

C//E</|}V1t_sg(s,~,u(s))(x)||l22 ds)p/dedt
0 Rd 0

p/2 T
< 5 Jlaecns ) o [t

0
c/mw,, ey = Clla ) [y

and by (6.3) and Lemma 3.2,
T

/IE

0

t

[ 2V (s () Vi) ds

0

T
0 0

/115—5(9 — A)71/2<Vf1 (s, . u(s)),V<p>Rd ds

P
dt
HY

t p

dt
HE

T
< C’/EH(g — ATVt u(t), Vo) gl lh, dt
0

T
<0 [EIA (@) 0t = O3 o) gy
0

Moreover, noting that (cf. [19]),

C
IVZefllor < m”fHLPa

by Minkowski’s inequality and Hélder’s inequality, we have for p > 2,
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T t p t P
/IE /zt_sfo(s,,u(s))ds / / 1/2||f0( u(s))],ds | dt
0 0 HY 0 0
Z T
/ / % ds dt~/E||f0(s,~,u(s))||Zp ds
0 0

<C’HfO(‘v )HHg(T

By (2.7) and combining the above calculations, we find that for any p > 2,

ullggp ) < C/ [TeuollZ, dt + CHfl(V“('))H%g(T) + CHfO("u('))HHpi]Ig(T) + C||9('7“('))||§ng(T;12)
0
< Clluollf, + C||u||f;1 )+ C||u||an < 400,

where we have used (H2)-(H4) and (2.4).
By similar calculations as above, we also have, for any m € N and p > 2,

||u||€11§n+1(:r) < C/ ||<It“0||11ar,%’n+1 dt + C||f1(-,u(-)) ||§u§n(:r) + CHfO(‘v“(’)) ||§]I£,L(T) + CHQ(W“(’)) ||§u£,1(T;z2)'
0

Now, by (H5) and using induction method, we finally have that for any m € N and p > 2,
P
||u||an+1(T) < +o0.
The proof is thus completed by [35, Theorem 3.4] (see also [4]). O
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