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1. Introduction

Regularity properties of collections of sets play an important role in variational analysis and optimization,
particularly as constraint qualifications in establishing optimality conditions and coderivative/subdifferential
calculus and in analyzing convergence of numerical algorithms.

The concept of linear regularity was first introduced in [7,8] as a key condition in establishing linear
convergence rates of sequences generated by the cyclic projection algorithm for finding a point in the
intersection of a collection of closed convex sets. This property has proved to be an important qualification
condition in the convergence analysis, optimality conditions, and subdifferential calculus, cf., [5,6,9,10,12,
26,42,44,45,61].

Recently, when investigating the extremality, stationarity and regularity properties of collections of sets
systematically, several other kinds of regularity were introduced in [33] and have been further investigated
in [34-39,52]. The uniform regularity is the negation of the approximate stationarity property of collections
of sets which is the main ingredient in extensions of the extremal principle [31,32,49]. It has also proved to
be useful in the convergence analysis [4,38,41,47,48].
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The regularity properties of collections of sets are closely related to the well known regularity properties of
set-valued mappings such as the linear openness, covering, metric regularity, Aubin property, and calmness.
The Holder extensions of these properties also play an important role in variational analysis both in theory
and in establishing convergence rates of numerical algorithms, cf. [1,11,18-20,22,40,43,55].

In this paper which continues [39], we attempt to extend regularity properties of collections of sets to the
Holder setting and establish their primal and dual space characterizations. We also discuss their relationships
with the corresponding regularity properties of set-valued mappings.

In Section 2, we discuss three primal space local Holder type regularity properties of finite collections
of sets, namely, [q]-semiregularity, [q]-subregularity, and uniform [q]-reqularity as well as their quantitative
characterizations. The main result of this section — Theorem 1 — gives equivalent metric characterizations
of the three mentioned regularity properties. We also give several examples illustrating these regularity
properties. Section 3 is dedicated to dual characterizations of the regularity properties. In Theorem 2(i), we
give a sufficient condition of [g]-subregularity in terms of Fréchet normals. In Section 4, we present relation-
ships between [g]-regularity properties of collections of sets and the corresponding regularity properties of
set-valued mappings.

Our basic notation is standard, cf. [49,54]. For a normed linear space X, its topological dual is denoted
X* while (-,-) denotes the bilinear form defining the pairing between the two spaces. The closed unit ball
in a normed space is denoted B. Bs(z) stands for the closed ball with radius 6 and center z. If not specified
otherwise, products of normed spaces will be considered with the maximum type norms.

The Fréchet normal cone to a subset 2 C X at x € (2 and the Fréchet subdifferential of a function
f:X =2 Roo =RU{+00} at a point z with f(z) < co are defined, respectively, by

lim sup hu—z) < 0},
u—z, ue2\{z} Hu - x”

g 100 = (@) = " u—a)

uU—T, UFEL ||’U,*IH

No(z) = {:v € X

WV

af(z) = {x e X*

of.

For a given set {2 in X its interior and boundary are denoted, respectively, int {2 and bd {2. The indicator
and distance functions associated with {2 are defined, respectively, by

5 0, ifzen,

Q(af)_{oo7 ifxe X\ £,

d(z,82) = inf ||z —w|, VzelX.
wen

2. [g]-regularity properties of collections of sets

In this section, we discuss local [¢]-regularity properties of finite collections of sets and their primal space
characterizations.

In the sequel, 2 stands for a collection {{21,...,2,,} of m (m > 2) sets in a normed linear space X,
s ﬂzl £2;, and, if not specified otherwise, ¢ € (0, 1].

2.1. Definitions

The next definition introduces several mutually related regularity properties of §2 at x.

Definition 1.

(i) £2 is [g]-semiregular at Z if there exist positive numbers a and ¢ such that
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m
() (2 = 2:) N By() # 0 (1)
=1

for all p € (0,9) and all x; € X (i = 1,...,m) such that max;c;<m ||zl < (ocp)%.
(ii) £2 is [g]-subregular at Z if there exist positive numbers v and § such that

(2 + (ap) B) N Bs(a) < N m) + B (2)

for all p € (0,0).
(iii) 42 is uniformly [¢]-regular at Z if there exist positive numbers o and § such that

ﬂ(Qz —wi —x;) N (pB) # 0 (3)

for all p € (0,9), w; € £2,N Bs(z), and all x; € X (i =1,...,m) such that maxici<m ||| < (ozp)%.

When ¢ = 1, we will skip “[1]” in the name of the corresponding property and write simply “semiregular”,
“subregular”, or “uniformly regular”; cf. [39, Definition 3.1].

Remark 1. Among the three regularity properties in Definition 1, the third one is the strongest. Indeed,
condition (1) corresponds to taking w; = & in (3). To compare properties (ii) and (iii), it is sufficient to
notice that condition (2) is equivalent to the following one: for any x € Bs(Z), w; € 2;, z; € X (i=1,...,m)
such that maxicicm ||zl < (ap)%, and w; +x; =« (¢ =1,...,m), it holds

M)(42 = 2) N (vB) £ 0.
i=1
This corresponds to taking w; + z; =« (i =1,...,m) in (3) (with € X) and possibly choosing a smaller

0 > 0. Hence, (iii) = (i) and (iii) = (ii).
Properties (i) and (ii) in Definition 1 are in general independent — see examples in Section 2.3.

Remark 2. The larger the order g is, the stronger the properties in Definition 1 are.

Remark 3. When z € int(),-, {2;, all the properties in Definition 1 hold true automatically for any ¢ €

(0, 00).
Remark 4. When 2, = {25 = --- = {2, and ¢ € (0, 1], property (ii) in Definition 1 is trivially satisfied (with
a=40=1).

Normally, it does not make sense to consider properties (ii) and (iii) in Definition 1 when ¢ > 1. In the
next proposition, we assume temporarily that all properties in Definition 1 are defined for all ¢ > 1.

Proposition 1. Let the sets £2; (i =1,...,m) be closed and q > 1.

(i) £2 is [g]-subregular at T < §2 is uniformly [q]-regular at T < & € int (-, (2.
(ii) If z € int (-, £2;, then £2 is [q]-semiregular at T.
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(iii) If §2 is [q]-semiregular at T and the sets of primal proximal normals [52, Definition 4.28] N§ (z) :=
{ue X |3Ir>0, dz+ru, ;) =r|ul|} are nontrivial for all i =1,...,m such that & € bd 2;, then
T eint(;L, £2.

Proof. (i) The implications Z € int(/~, £2; = §2 is uniformly [¢]-regular at T = §2 is [g]-subregular at z
are obvious. Next we show that §2 is [g]-subregular at T = z € int (-, £2;.

Suppose Z ¢ int (-, £2; while §2 is [g]-subregular at 7, i.e., there exist numbers o > 0 and § > 0 such that
condition (2) holds true for all p € (0,d). Consider a sequence z — Z such that ry := d(zy, (=, 2) > 0
(k=1,2,...). Then

$k€ﬂ9 + (14 r)B mQ—H“k 1+7‘k)B)
i=1 i=1

and x) € Bs(z) for all sufficiently large k. Denote py := a~(ri(1 + rx))9. Then py < d for all sufficiently
large k, and it follows from (2) that z; € mi:l ;4 piB. Hence, ri, < pg, and consequently a < Tg71(1 +rg)e.
Letting k — oo, we arrive at a contradiction: 0 < o < 0.

(ii) is obvious.

(iii) Suppose T ¢ int();~, £2; and there exist numbers o > 0 and § > 0 such that condition (1) holds
true for all p € (0,0) and all z; € X (i = 1,...,m) such that maxici<m [|2:]] < (« )% Then z € bd §2; for
some j. Choose a nonzero u € NQ (). Then there exists a number r > 0 such that d(z +tu, 2;) = t||u|| for

all t € [0,r] [52, p. 284]. Denote p; := t||ul| and z; := (apt)

sufficiently small ¢. Hence, d(z, $2; — x¢) = d(Z + ¢, £2;) = (apr) (11, and it follows from (1) that (apt)% < pt,
and consequently 0 < a < pgfl. Letting t | 0, we conclude that o = 0, i.e., §2 is not [g]-semiregular at z. O

Then p; < ¢ and (ap)s /Hu|| < r for all

HuH

Remark 5. Unlike [g]-subregularity and [g]-uniform regularity, when z ¢ int(0);", 2;, the property of
[g]-semiregularity can be fulfilled with ¢ > 1 if the assumption of the existence of nontrivial primal proximal

normals in Proposition 1 is not satisfied — see Example 4 below.

The regularity properties in Definition 1 can be equivalently defined using the following nonnegative
constants which provide quantitative characterizations of these properties:

0°(2](@) = lim inf w, (4)
Gr102)@) =ty g P, (5)
. ) o 0,021 — w1, ..., 2oy — W) (0))1
Ry R ©
where, for p > 0 and § > 0,
0,192)(z) == sup{r >0 ‘ ﬁl(ni — 2) N B,(%) £ 0, Ya; € TB}, (7)
Cps]02)(3) == sup{r ‘ ﬁ Q; +7B) N Bs(z ﬂln +pE} (8)

When ¢ = 1, we will not write superscript 1 in the denotations (4)-(6).
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Using the equivalent representation of condition (2) in Remark 1, it is not difficult to check that
07(02)(z) < min{07(£2](2), ¢"[£2]()}.

The next proposition follows immediately from the definitions.
Proposition 2.

(i) £2 is [q]-semiregular at T if and only if 01[2](Z) > 0. Moreover, 01[82|(Z) is the exact upper bound of
all numbers a such that (1) is satisfied.
(ii) 2 is [g]-subregular at T if and only if C1[£2](Z) > 0. Moreover, C1[£2](Z) is the exact upper bound of
all numbers a such that (2) is satisfied.
(iii) §2 is uniformly [q]-regular at T if and only if 01[82])(Z) > 0. Moreover, 01[82)(Z) is the exact upper
bound of all numbers o such that (3) is satisfied.

Remark 6. With ¢ = 1, properties (i) and (iii) in Definition 1 were discussed in [34] (see also [35, Proper-

ties (R)s and (UR)g]), while property (ii) was introduced in [39]. Constants (4), (6), and (7) (with ¢ = 1)
can be traced back to [27-33].

The equivalent representation of constant (7) given in the next proposition can be useful.

Proposition 3. (See [39, Proposition 3.8].) For any p > 0,

where [[i~, (2 —z) = (1 —x) X -+ X (2, — ) and B™ =[]/~ B.

From Propositions 2 and 3, we immediately obtain equivalent representations of [g]-semiregularity and
[g]-uniform regularity.

Corollary 1.

(i) £2 is [g]-semireqular at T if and only if there exist positive numbers o and ¢ such that

(ap)sB™C |J [l =) (10)

2€B,(z) i=1

for all p € (0,0). Moreover, 09(£2](Z) is the exact upper bound of all numbers o such that (10) is
satisfied.
(ii) £2 is uniformly [q]-regular at T if and only if there exist positive numbers o and § such that

@p)B"c () U [ -w -2 (11)

L;Jie.QjﬁB(s(ii) repB i=1
(i=1,...,m)

for all p € (0,8). Moreover, 01[82](Z) is the exact upper bound of all numbers a such that (11) is
satisfied.
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2.2. Metric characterizations
The [g]-regularity properties of collections of sets in Definition 1 can also be characterized in metric
terms. The next proposition generalizing [39, Proposition 3.15] provides equivalent metric representations

of constants (4)-(6).

Proposition 4.

_ o maxi<igm ||z
07(2)(z) =  liminf i<
[ ](LL') xi—>01(i=l£1,4..,m) d(i‘, QZL(Qz — £L‘1>) ’
L m )

mgﬂizl i—Tq

(12)

¢ = lming i P 2)
wfite, AN @)

w; =, wiem(zm(i:L...,m) (.Z‘, ﬂi:l Z)

@iy 2

(13)

)9[92) (% i max1i<m d*( + @4, £2;)
TelE = e AT — a)
z;—0 (i=1,...,m) sl li=1 [ i

sEL, (2 —x4)

maxigi<m || + & — w; ||

d(z, 2y (2 — i)

= lim inf (14)

r—x
z;—0, w; —T, w; €2; (i=1,...,m)
e¢(ViL, (2 —zi)
Proof. Equality (12). Let £ stand for the right-hand side of (12). Suppose that £ > 0 and fix an arbitrary
number v € (0,£). Then there is a number ¢ > 0 such that

’yd(i‘, m(ﬁi - x1)> < max |la|?, Vz; €9B (i=1,...,m). (15)

! 1<i<m
i=1

Choose a number « € (0,7) and set ¢’ = %. Then, for any p € (0,46") and z; € (ap)%IB% (t=1,...,m), it
holds maxy<i<m || < (ap)7 < (ad')s = 5. Hence, (15) yields

d<x,

This implies (1) and consequently 67[§2](Z) > a. Taking into account that a can be arbitrarily close to &,
we obtain 07[2](z) > &.

Conversely, suppose that 09[£2](Z) > 0 and fix an arbitrary number a € (0,6%[£2](z)). Then there is a
number ¢ > 0 such that (1) is satisfied for all p € (0,6) and z; € (ap)%IBB (i =1,...,m). Choose a positive
0 < (ad)%. For any z; € 6'B (i = 1,...,m), it holds maxi<i<m ||2:] < (aé)%. Pick up a p € (0, ¢) such that
maxigi<m ||| = (ap)%. Then (1) yields

DE

1 «
(£2; — xi)) < o [l [|* < 5P <p-

_ o e e
ad (1[,’, Q(Ql xz)) S ap lrgnfgfn ||=T1H
This implies £ > «. Since « can be arbitrarily close to 07[£2](Z), we deduce & > 07[2](Z).
Equality (13). Let £ stand for the right-hand side of (13). Suppose that £ > 0 and fix an arbitrary number
a € (0,€). Then there is a number § > 0 such that
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ad (a:,

If v € N2, (82 + (ap)%IB%) N Bs(z) for some p € (0,6), then maxicicm d¥(x, £2;) < ap, and consequently
d(z, ik, 2;) < p, Le., (5(02)(2) > (a ) . Hence, ¢?[$2](Z) > «. Since a can be arbitrarily close to &, we
obtain (9[£2](Z) > &.

Conversely, suppose that (7[£2](z) > 0 and fix any « € (0,¢?[$2](Z)). Then there is a number § > 0 such
that (2) is satisfied for all p € (0,4). Choose a positive number §' < mm{(ozd) ,0}. For any = € By (Z), it
holds

1<is<m

[DE

_Ql> < max di(z,2;), Yz € Bs(Z).

max d(z, 2;) < ||z — z|| < &' < (ad)s.

1<i<m

Choose a p € (0,0) such that maxiicm d(z, £2;) = (ap)%. Then, by (2),

ad (z, ﬂ (21') <ap= max di(z, ;).
i=1

M

Hence, a < €. By letting a — (?[$2](Z), we obtain (?[£2](z) < &.
Equality (14). Let & stand for the right-hand side of (14). Suppose that £ > 0 and fix an arbitrary number
~v € (0,€). Then there is a number § > 0 such that

vd (zr

for any « € Bs(z) and x; € 0B (i = 1,...,m). Fix any positive number o < v and pick up a positive number
1 1

0’ satisfying ¢’ 4+ (ad’)e < ¢. Then, for any p € (0,0'], w; € 2, N Bs/(Z) and a; € (ap)eB (i =1,...,m), it

holds

DE

(£ xl)> < max d¥(x + x4, () (16)

1<i<m

1
q

lwi — T + al| <6 + (ap)s <6 + (ad')® < 6.

Applying (16) with x = Z and z; = w; — T + a;, we get

1<i<m

m
< m D — Wi — > <yt max d¥(w; + ag, ;)

-1

<77 max e[ < 7p<p-

1<i<m

Hence, (3) holds true and consequently §7[§2](Z) > o. Taking into account that a can be arbitrarily close
to &, we obtain 09[£2](z) > €.

Conversely, suppose that 7[§2](Z) > 0 and fix an arbitrary number o € (0,07[§2](z)). Then there is some
number § > 0 such that (3) is satisfied for all p € (0,6], w; € 2, N Bs(Z) and a; € (ap)%IB% (i=1,...,m).
We pick up some §’ > 0 satisfying

('a+ ()7 + (‘Z)q +20' < 4. (17)

Now, for « € Bs/(z) and x; € B (i = 1,...,m), we consider two cases.
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Case 1. There exists some j € {1,...,m} such that

d(w + 5, 2;) > (o + (5)7)7.

Take p= 2 <6 w; =2, a;=2; (i=1,...,m). Then ||a;|| < &' = (ap). Applying (3), we find points

[e3%

z" € ﬁ(QZ -z —x;)N(pB)
i=1
and
=z +a" € ﬁ((}l — ;) N B,(Z).
i=1
Hence,

m
d<x, N - >) < o=l < o=l + "]

<51+p: é(5la+ (6/)Q)

1
< — max di(z + x, £2;),
o 1<i<m

and consequently

ad(m, ﬂ(QZ xz)> < max d(x + x4, ;).
i=1

1<i<m

Case 2. maxigi<m d(x + x4, 2;) < (§a+ (5’)‘1)%.
Choose w; € £2; (i =1,...,m) such that

Q=

|2+ —wi|| < (6'a+ (5')%)
Then, thanks to (17),
lwi — 3| < llwi — & — 2| + [Jail] + |1z — 3] < (e + (5')%) 7 + 28 < 0.
Setting

) 1
g =rx+z—w (GF=1,...,m), p::alrglizi}anain,
N

we have

_ Jat @)

[e%

1.
<0, llai]| < (ap)s (E=1,...,m).

Applying (3) again, we find points
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and

m

=z +a" € ﬂ(Qi — ;) N By(x).

i=1

Hence,
(e V@ —20)) <l =l o= 1 max ot
’ 1 @ 1<i<m

Taking infimum in the right-hand side of the last inequality over w; € §2; (i = 1,...,m), we again arrive
at (18).

From (18) we conclude that a < €. Since a can be arbitrarily close to 07[£2](z), we deduce 09[2)(z) < €.

The second equalities in the representations of ?[§2](Z) and §9[2)(Z) are straightforward. 0O

Propositions 2 and 4 imply equivalent metric characterizations of the [¢]-regularity properties of collec-
tions of sets.

Theorem 1.

(i) $2 is [q]-semiregular at T if and only if it is metrically [g]-semiregular at Z, i.e., there exist positive

numbers v and § such that

’yd(a_:, m(ﬂi - xl)> < max |lx||? Vz; €0B (i=1,...,m). (19)

! 1<i<m
i=1

Moreover, 01[82](Z) is the exact upper bound of all numbers vy such that (19) is satisfied.
(ii) $2 is [q]-subregular at T if and only if it is metrically [g]-subregular at Z, i.e., there exist positive

numbers v and 0 such that

'yd<x, ﬂ Qi> < max di(z,(2;), Yz e Bs(z). (20)
i=1

1<i<m

Moreover, (1[$2](Z) is the exact upper bound of all numbers vy such that (20) is satisfied.
(iii) 2 is uniformly [q]-regular at T if and only if it is metrically uniformly [g]-regular ot Z, i.e., there exist

positive numbers v and § such that

m
a0 < q 0
~d (m, Q(Ql xz)> < 1I<niaé)§nd (x4 24, 82;) (21)
for any x € Bs(Z), ; € 0B (i = 1,...,m). Moreover, 0[82)(Z) is the exact upper bound of all numbers

~ such that (21) is satisfied.

Remark 7. With ¢ = 1, property (20) in the above theorem is known as the local linear reqularity, linear
coherence, or metric inequality [5-10,12,23,24,26,42,44,45.50,52,58,61]. It was used as the key condition
when establishing linear convergence rates of sequences generated by cyclic projection algorithms and a
qualification condition for subdifferential and normal cone calculus formulae. The stronger property (21)
is sometimes referred to as uniform metric inequality [33—-35]. Property (19) with ¢ = 1 was investigated
in [39].
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2
)

{2 Qy — @9y

Fig. 1. Semiregularity vs [%]—semiregularity. (For interpretation of the references to color in this figure, the reader is referred to the
web version of this article.)

2.8. Examples

In this subsection, we give several examples illustrating the discussed above regularity properties. We con-
sider collections of two sets in R? having a common point # = (0,0). In the figures below (except Fig. 4),
the two sets are colored cyan and yellow, respectively, while their intersection is colored green.

Below we give two examples of collections of sets that do not satisfy certain g-regularity properties when
q = 1, while the corresponding properties are fulfilled when ¢ = %

Example 1. In the real plane R? with the Euclidean norm, consider two sets
2 = {(u,v)ERﬂv}O}, 29 := {(u,v)ER2|v<u2},

and the point & = (0,0) € 4 N 25 (Fig. 1). The collection {21, {22} is not semiregular at z, while the

[%]—semiregularity is satisfied at this point.

Proof. This example is taken from [35, Fig. 8]. We first observe that, for any r € (0,1) and all 1,25 € rB,
it holds

(21 —21) N (29 — x2) D (21 — 1) N (22 — 22,),
where 21, = (0, —r) and xo, = (0, 7). Besides,

2= (V2r,7) € (1 — 21,) N (22 — 2,),
d(@, (21— 21,) N (22 = 22,)) = ||20]| = V2r +r2.

Hence, by (7), for p € (0,1), we have

9,3[{91,!22}](%) :sup{r >0 ’ V2r+1r2 < p} =14+p%—1,

and consequently, by (4),

which means that {{21, {2} is not semiregular at z, while it is [$]-semiregular at this point.
One can easily show that 0,[{2) —wy, 25 — w2 }](0) > 0,[{§21, £22}](z) for any wy € 21 and wo € 25, and
consequently, by (6), 02 [{£21, 2:}](Z) = 02 [{£21, 2:}](Z) and {121, 25} is even [L]-uniformly regular at .
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of Ty L
v
z &
XL
Qs

Fig. 2. Subregularity vs [%]—subrcgularity. (For interpretation of the references to color in this figure, the reader is referred to the
web version of this article.)

Observe also that, for any z € R? max;—12d(z,$2;) = d(z,1 N (%), and consequently, by (13),
C[{f, 22}](Z) =1 and {21, 25} is subregular at Z. O

Example 2. In the real plane R? with the Euclidean norm, consider two sets
21 ::{(x,x2)e]R2’x€]R}, (2 ::{(x,—mQ)ERQ‘xER},

and the point £ = (0,0) € 1 N 2y (Fig. 2). The collection {21, 2} is not subregular at z, while the
[3]-subregularity is satisfied at this point.

Proof. We first check that, for each number p € (0, 3),

min{max d(e, 2:) | o € R, [lal] = p} = d(z,, @) = d(z,, 22),

1=1,2
where z, := (p,0). By the symmetry of the sets, it suffices to show that
min{d(x, ) | = (z1,22) €R?, ||z|| = p, 71 >0, x5 < O} =d(z,, (). (22)

Denote z, = (a,a?) := Pg,(z,) (the metric projection of x, onto £21). Then, with f(z) = 22, we have
f'(zp) < 1= f/(3) for any p € (0, 3). Thus, the lines h, and [, through z, and z,, respectively, with the
slope f'(z,) separate the constraint set in (22) and {2; and consequently, for any x in the constraint set

n (22), it holds
d(.’E, Ql) > d(xalp) > d(hﬁ’lp) = d(xpv “Ql)a
which proves (22). One can easily check that p = 2a® + a and d(z,, z,) = V/4a® + a*. Hence, by (13),

C[{021, 2)](z) :%M g YA dE

im ,
p al0 2a3—|—a
1
1 _ . dz(wp,2,) .. V4aS +a*
4, 02 =lim —2%% — lim———— =1
(2 [{ 1 2}](':1:) plilol P O}f& 2a3+a )

which means that {§21, {22} is not subregular at z, while it is [%]—subregular at this point.
Observe also that (21 — (0, —¢)) N (22 — (0,¢)) = 0 for any £ > 0. Hence, by (7) and (4), {21, 22} is not
[g]-semiregular at = for any ¢ > 0. O

The above two examples show, in particular, that a collection of sets can be [g]-subregular at some point
while not being [¢]-semiregular at this point. In fact, these two regularity properties are independent. Next
we give an example of a collection of sets that is semiregular at some point while it is not subregular at this
point.
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Qy

Fig. 3. Subregularity vs semiregularity. (For interpretation of the references to color in this figure, the reader is referred to the web
version of this article.)

Fig. 4. g-semiregularity.

Example 3. In the real plane R? with the Euclidean norm, consider two sets
2 = {(u,v) ER* |u<0orv=u’}, 25 :={(u,v) ER* | u < 0orv<—u},

and the point z = (0,0) € 2, N 25 (Fig. 3). The collection {21, (22} is semiregular at Z, while it is not
subregular at this point.

Proof. The proof of the absence of the subregularity in this example does not differ from that in Example 2.
Next we show that {{21,(2} is semiregular at z. For any number p > 0, we set z, := (—p,0). Then
B,(x,) C §2;, i.e., x, +x; € £2; for any x; € pB (i = 1,2), and consequently

Ty € (91 — iL‘l) n (QQ — 172) n Bp(.f‘), Va; € pB (Z = 1,2).

Hence, 0,[{(21, 22}](Z) > p and 0[{(21, {22}](Z) > 1. (One can show that these are actually equalities.) Thus,
{21, {22} is semiregular at Z. O

Example 4. In the real plane R? with the Euclidean norm, consider two sets
21 == {(u,v) eR* | u <0 or o] >u}

(Fig. 4) and 25 := R?, and the point z = (0,0) € 2; N 2. The collection {2y, 25} is g-semiregular at T
for any ¢ € (0,1].

Proof. Obviously 2, —z = 2, = R? for any € R%. Given a p > 0 and an r > 0, using the computations in
Example 2, one can show that (12, —x) N B,(Z) # 0 for all z € rB if and only if r < 2a® + a where a positive
number a satisfies 4a% + a* = p?. Hence, 0,[{£21, 22}](Z) = 2a® + a where 4a°® + a* = p? and consequently

_ . (2a® +a)?
09[{021, 2} (%) = lim ~—2 LU
A N

i.e., the collection {{21, 25} is g-semiregular at z for any ¢ € (0, 1].

= +OO,

Note that in fact the g-semiregularity condition is satisfied for any ¢ < 2. O
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3. Dual characterizations

This section discusses dual characterizations of [¢]-regularity properties (¢ € (0, 1]) of a collection of sets
Q:={2,....,2,}at T €, 2;. We are going to use the notation 0= QXX 2, CX™.

Recall that the (normalized) duality mapping [46, Definition 3.2.6] J between a normed space Y and its
dual Y* is defined as

J(y) == {y* € Sy-

(y*.y)=llyll}, VyeY.

Note that J(—y) = —J(y).
The following simple fact of convex analysis is well known (cf., e.g., [56, Corollary 2.4.16]).

Lemma 1. Let (Y, | - ||) be a normed space.

(i) 9l - lI(y) = J(y) for any y # 0.
(i) 9l - [1(0) = B

Making use of the convention that the topology in X™ is defined by the maximum type norm, it is not
difficult to establish a representation of the duality mapping on X™ (cf. [39, Proposition 4.2]).

Proposition 5. For each (x1,...,2,) € X™,

J(@1,. .., xm) = {(x}‘,,xfn) € (X*)m ‘ ZH:}Z:‘H =1; either 7 =0

=1

or (llzill = max flo;ll, o} € |7 (i) (il,...,m)}.

1<j<m

In this section, along with the maximum type norm on X™+! = X x X™, we are going to use another
one depending on a parameter p > 0 and defined as follows:

[(z,2)]| , = max{||z[l, pll2[|}, 2 € X, z€X™ (23)
It is easy to check that the corresponding dual norm has the following representation:
1" 2], = ll=

Note that if, in (23) and (24), & = (21,...,2m) and &* = (zf,...,2}) with z; € X and 2 € X* (i =
1,2,...,m), then ||#]| = maxicicm |2l and [|27]| = 35, [l ])-

-1

A%

T

, TreX' ite (XM (24)

p

The next few facts of subdifferential calculus are used in the proof of the main theorem below.

Lemma 2. (See [39, Lemma 4.5].) Let X be a normed space and o(u, @) = ||(u — u1,...,u — tun)|| (v € X,
@ i= (U1, Um) € X™). Suppose x € X, & := (21,...,&m) € X™, and 0 := (x — x1,...,& — Tpy) # 0.
Then

&p(a:,i)g{(:c*,a?*)eX* ( ) |—a: e J(o :(aﬁ,...,xfn), x*:—(xf+-~-+xf,l)}.

Lemma 3. Let X be a normed space, p : X — Ry, ¢ > 0, and f(u) := (p(u))? (v € X). If x € X and
p(x) #0, then 0f (z) = qp(x))T D¢ ().
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Proof. Follows from the standard chain rule for Fréchet subdifferentials, cf., e.g., [31, Corollary 1.14.1]. O
Lemma 4. Let X be a normed space and & = (w1, . .., wn) € £2. Then Ng(@) = Ng,(w1) X -+ x Ng,, (Wm).
Proof. Follows directly from the definition of the Fréchet normal cone. 0O

The proof of the main theorem of this section relies heavily on two fundamental results of variational
analysis: the Ekeland variational principle (Ekeland [16]; cf., e.g., [31, Theorem 2.1], [49, Theorem 2.26])
and the fuzzy (approximate) sum rule (Fabian [17]; cf., e.g., [31, Rule 2.2], [49, Theorem 2.33]). Below we
provide these results for completeness.

Lemma 5 (Ekeland variational principle). Suppose X is a complete metric space, and f : X — Ry, is lower
semicontinuous and bounded from below, € > 0, A > 0. If

f) <inf f +e,
X
then there exists x € X such that

(a) d(z,v) < A,
(b) f(z) < f(v),
(¢) f(u)+ (e/Nd(u,x) = f(z) for allu € X.

Lemma 6 (Fuzzy sum rule). Suppose X is Asplund, fi : X — R is Lipschitz continuous and fo : X — Ry
is lower semicontinuous in a neighborhood of & with fo(Z) < oco. Then, for any e > 0, there exist 1,25 € X
with ||z; — Z|| < e, |fi(z;) — fi(Z)] <e (i =1,2) such that

O(fr + f2)(Z) C Of1(z1) + Ofa(xe) + eB*.

The next theorem gives dual sufficient conditions for [g]-regularity of collections of sets in Asplund spaces.
Recall that a Banach space is called Asplund if any continuous convex function defined on a nonempty open
convex set is Fréchet differentiable on a dense subset of its domain. Asplund spaces form a broad subclass of
Banach spaces including, e.g., all spaces which admit Fréchet differentiable re-norms (in particular, Fréchet
smooth spaces). Reflexive spaces are examples of Fréchet smooth spaces. Asplund property of a Banach
space is necessary and sufficient for the fulfillment of some basic results involving Fréchet normals and
subdifferentials (cf. [31,49]). See [53] for various properties and characterizations of Asplund spaces.

Theorem 2. Let X be an Asplund space and 21, ..., 82, be closed.

(i) 92 is [q]-subregular at T if there exist positive numbers o and & such that, for any p € (0,0), x € B,(Z),
w; € 2,NBy(z) (i=1,...,m) withw; # x for some j € {1,...,m}, there is an € > 0 such that, for any
x' € Bo(x), &) € £2;NB:(w;), xf € Ng, (W) +pB* (i =1,...,m) satisfying v .= (wij—a',...,w,—2') #0
and

)

. / / / !/
z; =0 if |2/ —wj|| < max |= —wj}
1<gsm

([l = wil] =),

m
> ll=5]l = allol*,
i=1

<xf,x'—w§> > ’

%
€Ty
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it holds

m

*
2.
i=1

(25)

(ii) £2 is uniformly [q]-regular at T if there are positive numbers o and § such that (25) holds true for all
w; € ;N Bs(Z) and xf € No,(w;) (i = 1,...,m) satisfying .-, ||z}|| = 1. The inverse implication
holds true when q = 1.

The proof of Theorem 2(i) consists of a series of propositions providing lower estimates for constant (13)
and, thus, sufficient conditions for [g]-subregularity of £2 which can be of independent interest. Observe that
constant (13) can be rewritten as

_ .. fq(xad))
1M102)(z) = lim inf _— 26
C [ ]( ) z%i:uf:i (i=1,.. ) .,m) d( nz 1 Q) ( )

@iy 2
with function f, : X™™! — Ry := RU{+o00} defined as

fq(x7:%):11<naéx |z —2i|T+65(2), z€X, &:=(x1,...,2m) € X7, (27)

where 65 is the indicator function of 0 Ip(@)=0if T € 2 and d5(%) = +o0o otherwise.
Proposition 6. Let X be a Banach space and 21, ..., §2,, be closed.
(i) ¢U[92](z) < ¢U[92](Z), where

¢1[02)(z) := lim inf 2)(z,w) (28)
pl0 le—zl<p
O=(W1,...,wm )EN
0<maxigig<m llz—wi|<p

~

and, forx € X and & = (w1,...,wm) € 12,
. : (maxigicm | — will? — maxigigm [Ju — vil| )+
CU2)(z,&) :=  limsup = - i (29)
r (u,0)—(z,0) ”(uvv) - (xaw)”P
) )

(ii) If C1[82](z) > 0, then £ is [q]-subregular at &.

Proof. (i) Let ¢?[£2](Z) < av < 0o. Choose a p € (0,1) and set

n:i= mln{

By (26), there are 2’ € B, (Z) and &’ = (w},...,w!,) € 2 such that

l\le
SRS
o

,,} (30)

0< fo(, <ad< ﬂn) (31)
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Denote ¢ := fy(a/,&’) and p := d(z/, ;%1 £2;). Then p < ||’ — Z|| < n < § < 1. Observe that f, is lower

semicontinuous. Applying to f, Lemma 5 with & as above and
A= (1 - p),
we find points z € X and & = (w,...,wm,) € X™ such that
(@, @) = (@, )|, <A fal2,@) < folo', &),
and
D)+ <)o) = @), > fole,@),
for all (u,?) € X x X™. Thanks to (33), (32), (30), and (31), we have
lz = 2| <A< <]
m
d(LQQZ d( ﬂ!)) — |l —a|| = p— A= pT,

o — 2l < [l — ] + o ~ 7] < 2o’ ~ 5| <20 <

fo(z, @) < fq (ac’,d)') <ap < an<p.

It follows from (35), (36), and (37) that

~

_3 A —wille
|z —z| < p, W e L, O<1r\<nizi)%Hx wil|? < p.

L
2

Observe that p2°7 < n¥7 < n% < p, and consequently, by (31) and (32),

e _an_ o o
ATAN 1o T 1-p
Thanks to (34) and (27), we have
max |z —wil|’ — max |lu—v;| < Lu(u 0) — |
1<i<m ‘ 1<i< ’ ’ 2

for all w € X and © = (vy,...,vm) € £2. It follows that A2 (z,0) < 7 ©_ and consequently

inf o) < 75

le—zll<p 1—p
O=(wW1,...,wm )ESN
0<maxigi<m [[x—wil|<p

Taking limits in the last inequality as p | 0 and o — (4[£2](Z) yields the claimed inequality.
(ii) follows from (i) and Proposition 2(ii). O

Proposition 7. Let X be an Asplund space and §24, ..., 82, be closed.

~

(i) Af*[ﬂ](a_:) < ¢102)(z), where @[Q](a‘:) is given by (28),
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f*[()](a}) := lim inf g*l[ﬂ](x,@) (38)
pl0 le—zll<p ’
(:):(Wla-~7w7n)69
O<maxigigm llz—will<p

~

and, forx € X and & = (w1,...,wn) € 2,
a* 102 V) = inf * 39
L P v S &2
lg™ll<p

(with the convention that the infimum over the empty set equals +00).
(ii) If CI*[02)(&) > 0, then £2 is [q]-subregular at Z.

Proof. (i) Let (4[£2)(Z) < o < 00. Choose a 3 € (C1[§2](Z), a) and an arbitrary p > 0. Set p’ = min{1,a"'}p.
By (28) and (29), one can find points z € X and & = (w1,...,wy) € §2 such that ||z — Z|| < p/, 0 <
maxi<i<m ||wi — || < p/, and

max [z —w;||? — max [lu—v;l|? < B|(u,?) — (x,d)

1<i<m 1<i<m o'
for all (u, ) with d = (vy,...,v,,) € £2 near (z,&). In other words, (z,®) is a local minimizer of the function
. g N (oA
(u,d) — 11%11%(% lw — ;|7 + BH(u,v) (x,d) o
subject to © = (vy,...,v,) € £2. By definition (27), this means that (z,@) minimizes locally the function

(u,0) = fq(u,0) + ﬂ”(u,f)) — (m,@)|

p/7

and consequently its Fréchet subdifferential at (z,®) contains zero. Take an

. 1 1
ce (0mingp— o7l 5 max flo el 5 (o~ max o —will) o~ 5 ).

Applying Lemma 6 and Lemma 1(ii), we can find points 2’ € X, &' = (w},...,w!)) € 2, and (z*, %) €
Ofq(a’, &) such that

2" — 2| <&, max ||w] — wi|| <e, | (", 9%)

— * Ak /
1<i<m |p/ = [lz*|[ + [|g7[|/p" < B +e.

It follows that

" —z|| < p. 0< max |2 = wi|| < p, |z*|| <, and 7% < p'a < p.

<i<m
Hence, (', [£2](2,&') < a, and consequently (7 [02](z) < a. By letting o — ([42](Z), we obtain the claimed
inequality.
(ii) follows from (i) and Proposition 6(ii). O

Proposition 8. Let X be an Asplund space and (24, ..., 2., be closed.

(i) (*[02)(z) < (T [0)(z), where (T*[02)(Z) is given by (38),
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CI*102)(7) = lim inf lim  inf > 192)(z, & 40
ClO@ =, el Cl0)(0 ) (10
O=(W1,...,wm )EN o'eN
O<maxyciom li-will<p  &'—dll<e
and, forx € X, & = (w1,...,wm) € ﬁ, and 0= (x —w1,...,& —wp) #0,

ZQJQK@@):JM{ ’foAbA%)+PB*@=1wn,m%

m
*
2.
i=1

7 =0 if o —will < max [z~

(27,2 —wi) = ||z || (lz = will —e),
St = qmnq-l}. @)
=1

(ii) If 3 [£2)(Z) > 0, then §2 is [q]-subregular at .

Proof. (i) Let p > 0, |lz — &|| < p, & := (w1, ... ,wm) € 2 with 0 < maxigi<m || — wi|| < p, (u*,0%) €
Ofy(z, ), where f, is given by (27), and [|0*|| < p. Denote ¢ := (z —w1,...,& — wp,). Then 0 < [|3]] < p.
Observe that function f, is the sum of two functions on X™*1:

(z,8) = o(z,8) = ||(x —21,..., 2 — xm)Hq and (z,2) — d5(2),

where Z := (x1,...,7,) and 5 is the indicator function of (2. The first function is Lipschitz continuous
near (z,®) (since © # 0), while the second one is lower semicontinuous. One can apply Lemma 6. For any
£ > 0, there exist points 2’ € X, & := (21,...,2Zm) € X™, & = (w],...,w)) € 2, (z*,§*) € dp(2', &), and
O* € Nj(@') such that

/ A A, € AT A €
Hx —xH <, |z — o] < 7 @ —wH <
| (u*,9%) = (z*,9%) — (0,&")| <e. (42)
Taking a smaller ¢ if necessary, one can ensure that ¢’ := (' —wi,..., 2’ —w!,) #0,9" := (¢’ —x1,...,2" —
Zm) # 0, and
R H@W|>l_q
0| +e< p( — (43)
(el
and, for any i = 1,...,m, [[2" — ;]| < maxigjcm ||2" — 74| if and only if [[2" — wi|| < maxigjgm |7 — wj-

By Lemmas 3 and 2,

2* = —* ||@”H 1 w1 L]*lJ N7 d * % . *
=Y H@/H € qHU || (’U ) an T =T + +xm

where 2* = (z7,...,2,). By Proposition 5,

m
> |
i=1

: / / / /
z; =0 if HJ; —wiH < max Hx - wj
1<gism

q—1

A1
v )

* J—
Li|| =4

)
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(@f,a’ —wi) > (afs 2’ —w) = [lef[|fles = wi]] = [l (2" = @] = [|ls - wil])
> eI’ = will ~ 2os = wll) > oz ("~ will &) (i = 1.
Inequalities (42) and (43) yield the estimates:
. ol e (TINT  a (AR
i R ‘”(w) <Uerl+aly) <o
and consequently
m
|u || > fo —¢&, &°€Ng(@)+pB;,.
i=1

It follows from Lemma 4 and definitions (39) and (41) that

2 2)(x,0) > ¢ 5[62] (2/,0") —e.
The claimed inequality is a consequence of the last one and definitions (38) and (40).
(ii) follows from (i) and Proposition 7(ii). O

Proof of Theorem 2. (i) follows from Proposition 8(ii) and definitions (40) and (41).
(ii) follows from [35, Theorem 4] thanks to Remark 2. O

Remark 8. One of the main tools in the proof of Theorem 2 is the fuzzy sum rule (Lemma 6) for Fréchet
subdifferentials in Asplund spaces. The statements can be extended to general Banach spaces. For that, one
has to replace Fréchet subdifferentials (and normal cones) with some other kind of subdifferentials satisfying
a certain set of natural properties including the sum rule (not necessarily fuzzy) — cf. [36, p. 345].

If the sets 21, ..., (2, are convex or the norm of X is Fréchet differentiable away from 0, then the fuzzy
sum rule can be replaced in the proof by either the convex sum rule (Moreau-Rockafellar formula) or the
simple (exact) differentiable rule (see, e.g., [31, Corollary 1.12.2]), respectively, to produce dual sufficient
conditions for [g]-regularity of collections of sets in general Banach spaces in terms of either normals in the
sense of convex analysis or Fréchet normals.

Remark 9. Since uniform [g]-regularity is a stronger property than [g]-subregularity (Remark 1), the criterion
in part (ii) of Theorem 2 is also sufficient for the [g]-subregularity (with any ¢ € (0, 1]) of the collection of
sets in part (i).

For an example illustrating application of Theorem 2(i) for detecting subregularity of collections of sets,
see [39, Example 4.13].

4. [g]-regularity of set-valued mappings

In this section, we present relationships between [g]-regularity properties of collections of sets and the
corresponding properties of set-valued mappings. Nonlinear regularity properties of set-valued mappings
have been investigated, cf., e.g., [2,11,19,20,25,40,43,55].

Consider a set-valued mapping F' : X = Y between metric spaces and a point (Z,y) € gph F' := {(z,y) €
X xY |yeF(x)}.
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Definition 2.

(i) F is metrically [q]-semiregular at (Z,y) if there exist positive numbers v and  such that

vd(z, F'(y)) < d%(y.), Vy € Bs(y). (44)

The exact upper bound of all numbers v such that (44) is satisfied will be denoted by 67[F](z,y).
(ii) F is metrically [q]-subregular at (Z,y) if there exist positive numbers v and § such that

vd(z, F~1(y)) < d'(y,F(z)), Vz € Bs(%). (45)

The exact upper bound of all numbers + such that (45) is satisfied will be denoted by (?[F|(Z, 7).
(iii) F is metrically [q]-reqular at (Z,y) if there exist positive numbers v and § such that

vd(z, F~'(y)) < d?(y, F(x)), VY(z,y) € Bs(z,7). (46)

The exact upper bound of all numbers ~ such that (46) is satisfied will be denoted by 0[F](z, 7).

Remark 10. Property (ii) and especially property (iii) in Definition 2 with ¢ = 1 are very well known and
widely used in variational analysis; see, e.g., [13-15,24,35,49,51,54,57,59,60]. Property (i) (with ¢ = 1) was
introduced in [35]. In [2,3], it is referred to as metric hemiregularity.

For a collection of sets 2 := {21,...,2,} in a normed linear space X, one can consider the set-valued
mapping F': X = X™ defined by (cf. [24, Proposition 5|, [33, Theorem 3], [34, Proposition 8], [41, p. 491],
[21, Proposition 33])

Flz)=1 —z)x - x (2, —x), VrelX.

It is easy to check that, for z € X and u = (uy,...,u,) € X™, it holds
re() <« 0eF(x), F'u)=[)0—uw).
i=1 ;

The next proposition is a consequence of Theorem 1.

Proposition 9. Consider £2 and F as above and a point T € ﬂ:il £2;.

(i) 92 is [g]-semiregular at T if and only if F' is metrically [q]-semiregular at (Z,0). Moreover, 1[82](z) =

09[F](z,0).

(ii) 2 is [q]-subregular at T if and only if F is metrically [q]-subregular at (Z,0). Moreover, (1[2](z) =
¢I[F)(z,0). X

(iii) 82 is uniformly [g]-regular ot T if and only if F' is metrically [q]-regular at (Z,0). Moreover, 01[2](Z) =
01[F)(z,0).

For a further discussion of the relationships between regularity properties of £2 and F see [39, Remark 5.4].

Conversely, regularity properties of set-valued mappings between normed linear spaces can be treated as
realizations of the corresponding properties of certain collections of two sets.

For a given set-valued mapping F : X = Y between normed linear spaces and a point (Z,y) € gph F,
one can consider the collection §2 of two sets 21 = gph F' and 25 = X x {g} in X x Y. It is clear that
(j,g) € NI



A.Y. Kruger, N.H. Thao / J. Math. Anal. Appl. 416 (2014) 471-496 491

Proposition 10. Consider F' and §2 as above.

(i) F is metrically [q]-semiregular at (Z,y) if and only if §2 is [q]-semiregular at (Z,y). Moreover,

011F)(Z, )

PR E.9) 1+ o1 < 1@ 0) < OFIG@ )2 @

(ii) F is metrically [q]-subregular at (Z,y) if and only if §2 is [q]-subregular at (Z,y). Moreover,
C(P)(a.7) - N
Gyt < o@D < @)/ (43)

(iii) F is metrically [q]-reqular at (Z,q) if and only if £2 is uniformly [q]-regular at (Z,y). Moreover,
< 0[0)(z,7) < 0°[F)(%,5)/2°. (49)

Proof. (i) Suppose F is metrically [¢]-semiregular at (Z,y), i.e., 0[F|(Z,y) > 0. Fix a v € (0,04[F|(Z,y)).

Then there exists a number ¢’ > 0 such that (44) is satisfied for all y € By (y). Set an « := A{JZQQ (so

29 /v + ai < 1) and a & ;= min 5/—[17 1}. We are going to check that
29
(21 — (u1,v1)) N (22 — (uz,v2)) N B,(Z,5) # 0 (50)

for all p € (0,6) and (u1,v1), (us,v2) € (ozp)%IB%. Indeed, take any p € (0,9) and (uy,v1), (ug,v2) € (ozp)%IB%.
We need to find a point (x,y) € B,(Z,y) satisfying

{ (xay) + (Ul,’Ul) € gphFa
Y=y — v

We set i := § — vs + 01, 50 ¥ € By (§) as ||y’ — 7|l = |[v1 — va]| < 2(ap)7 < 2(ad)s = &'. Then, by (44),
there is an 2’ € F~1(y/) such that

_ 1,_
& —a'|| < Sl = Y[

Put y ;== ¢y — vy = § — vy and x := 2’ — uy. Then it holds (z,y) + (u1,v1) = (2',y') € gph F, ||y — y|| =
1
[va]l < (ap)s < p, and

1
o2l < e+ -l < ol + Lo
1
= Jluall + ;Hvl — el < (2qa/’y+a%)p < p.

Hence, (50) is proved.

The above reasoning also yields the first inequality in (47).

To prove the inverse implication, we suppose 2 is [¢]-semiregular at (Z, y), i.e., 09[82](Z,y) > 0. Fixan o €
(0,07[82](z,y)). Then there exists 8’ > 0 such that (50) holds true for all p € (0,¢") and (uy,v1), (uz,v2) €
(ozp)%IB%. Set v := 2% and ¢ < (a5’)%. We are going to check that (44) is satisfied. Take any y € Bs(y), i.e.,
ly —gll <9 < (045/)%. Set r € (0,4") such that ||y — g|| = (ar)%. Then, applying (50) for p := 57 € (0,9"),
and (u1,v1) := (O,y%g), (ug,v2) == (O,QQ;y) € (ozz%)%lﬁi, we can find (z1,y1) € gph F and (x2,9) € {25
satisfying
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(z1,91) = (u1,v1) = (22, ) — (u2,v2) € B (2,9).

This implies that y; =y, x1 € F_l(y)7 and

r 1 1
_ 7 L Ny — Gl = Iy — 7|2
lzy =2l < 55 = 5-lly —9ll* = ,ylly yll*.
Hence, (44) holds true.

The last reasoning also yields the second inequality in (47).

(ii) Suppose F' is metrically [g]-subregular at (Z,%), i.e., C¢[F](z,y) > 0. Fix a v € (0,¢?[F](z,y)). Then

there exists a 0’ > 0 (one can take §’ € (0,1)) such that (45) is satisfied for all 2 € By (2). Set an a := o7
(so 2% /v + Qi < 1) and a ¢ > 0 satisfying (a5)% + 0 < ¢’. We are going to check that
(21 + (ap) B) N (22 + (ap) 1B) N Bs(7,5) C 21N 2 + pB (51)

for all p € (0,6). Indeed, take any
(2,9) € (21 + (ap) 7B) N (2 + (ap) 1B) N B5(2, 7).

Then (z,y) =1($1,y1) + (u1,v1) = (22,9) + (u2,v2) for some (z1,y1) € gphF, 2 € X, and (uy,v1),
(ug2,v2) € (ap)aB. Since

_ _ 1
[z = 2| < flua]l + |z — Z|| < (ap)s +6 <0,

by (45), there exists an #’ € F~1(y) such that ||x; — 2’| < %Hg —y1||9. Then

1,_ 1
o1 =2’ +ur|| < <17 =yl + Juall = = llor = v2 | + Jua |
v v
2%p 1 29¢ 1
< 5 + (ap)s < T+aq p<p,

1 1
vl < (@p)s < @ip <p.

Hence, (z,y) = (¢/,9) + (z1 — 2’ + u1,v2) € 21 N 22 + pB.

The above reasoning also yields the first inequality in (48).

To prove the inverse implication, we suppose that 2 is [g]-subregular at (z,7), i.e., (?[£2](z,y) > 0.
Fix an a € (0,¢?[$2](Z,y)). Then there exists a ¢’ > 0 such that (51) holds true for all p € (0,4"). Set
~v:=2% >0 and 0 := min{d’, v, 2?&} We are going to check that (45) holds true. Take any = € Bs(Z).
Because d(z, F~1(y)) < ||z — z|| < 6, it is sufficient to consider the case 0 < d(y, F(z)) < (76)%. We take a
y € F(x) such that d(y, F(z)) < |ly—yg| :==r< (75)%. Then

Yty _ Y=Y\ _ (2 g y—y Y=Y _" o

and consequently

(x, Y ; g) € <!21 + gB> n <!22 + g%) N By (%, §). (52)

Take p := £~ < § < &'. Then 5= (ap)%, and it follows from (51) and (52) that

29
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( y;”’) €M m(22+—IB% F~1(y) x {y}+—”y_7y|q18%.
Hence, there is an 2’ € F~1(y) such that
e =] < Sy -
Y

Taking infimum in the last inequality over 2’ € F~1(y) and y € F(z), we arrive at (45).
(iii) Suppose F is metrically [g]-regular at (Z,7), i.e., §4[F)(Z,7) > 0. Fix a v € (0,04[F](z,7)). Then
there exists a ¢’ > 0 (one can take ¢ € (0,1)) such that (46) is satisfied for all (z,y) € Bs/(Z, 7). Set an

o= (so 2%(/7—1—045 <1)andad:= —
2009 +1

(921 = (z1,91) = (w1, 01)) N (22 = (22,9) — (uz,v2)) N (pB) # 0 (53)

vjﬁ . We are going to check that

for all p € (0,0), (z1,91) € 1 N Bs(Z,y),x2 € Bs(x), and (u1,v1), (ug,v2) € (ap)%IB%. Take any such
0, (z1,91), 2, (u1,v1), and (ug,vy). We need to find (a,b) € pB satisfying

{ (w1,y1) + (u1,v1) + (a,b) € gph F,
b= —V2

We set ¢y = y1 —va +v1, so y € Bs/(y) as
1 1
[y =9l < ||y = wil| + g1 = 9l < [lvr — o2l +6 < 2(ap)s +6 < (2a0 +1)5 ="
Then, applying (46) for (z1,y’) € Bs/(Z,7y), we find 2’ € F~1(y’) such that

1 1 1 29
s = < 314 F@) < Sl =l = Slon = valt < 222

Put a = 2’ — 21 — uy and b = —vg. Then ||a| < ||’ — z1|| + [Ju1]] < (2%a/vy + a%)p < p, Ib]] € (ap)% < p,
and it holds (z1,y1) + (u1,v1) + (a,b) = (2',y') € gph F.

Hence, (53) is proved.

The above reasoning also yields the first inequality in (49).

To prove the inverse implication, we suppose that §2 is uniformly [¢]-regular at (Z,y), i.e., éq[ﬂ](a_c, g) > 0.
Fix an o € (0,09[£2](z,7)). Then there exists a & > 0 (one can take &’ € (0,1)) such that (53) holds true
for all p € (0,¢), (z1,y1) € 1 N B/ (Z,9), x2 € By (x), and (uy,v1), (ug,va) € (ap)%IB. Set v := 2%« > 0.
Because 09[82](z,7) > 0[82](Z, ) (see Remark 1), assertion (i) implies that there exists a 6* > 0 such that
(44) is satisfied for all y € Bs«(y). Choose a positive number § satisfying the following conditions

§ < 6%,
54
214 + — <0, (54)
(276 + 6‘1) T +0< 0.
Now, take any (x,y) € Bs(Z,y). We are going to check that (46) is satisfied. Because (44) implies
vd(z, F~(y)) <ylle — 2| +d(z, F(y)) <0+ ly — gl|* <0+ 6%,

it suffices to consider the case d(y, F(x)) < (754—5‘1)% (note that v0 + 07 < ad’ by (54)). Choose a ¢’ € F(x)
such that
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1
q

d(y, F(2)) < [ly = o'l| < (9 +47)
and set r € (0,0") such that ||y — /|| = (ar)%. Then
[v =gl <l vl +ly—9ll < (vd+07) 7 +5 <5
due to (54). Applying (53) with
(xlayl) = (xvy,) S gphFﬁB(S’(‘iag)v (1‘2, y2) = (j7y)7

1
o ! _ r q
(ur,v1) = <07 Y 2y )7 (uz,v2) = <0, Y 2 y) € <Oé§> B,

we can find (Z, ) € gph F and (z,y) € {2, satisfying

(,9) — (z1,91) — (u1,v1) = (2,7) — (22, 7) — (u2,v2) € %B.

This implies & — 21 € 3B and § = y1 +v1 —v2 =y, so & € F~!(y). Then we obtain

r 1

dz, F7'(y) <z —%| < == = =—
(2. F ') <o =3l < 5; = 5~

1
ly || = Sy = y'||"

Taking infimum in the last inequality over ¢y’ € F'(x), we arrive at (46).
The last reasoning also yields the second inequality in (49). O
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