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Abstract

In this paper, we consider the population dynamics of an invasive species and a

resident species modeled by a diffusive competition model in a radially symmetric

setting with free boundary. We assume that the resident species undergoes diffusion

and growth in R
n, and the invasive species exists initially in a finite ball, but invades

into the environment with spreading front evolving according to a free boundary. In

the case that the invasive species is inferior, we show that if the resident species is

already rather established at beginning, then the invader can never invades deep into

the underlining habitat, and it dies out before its invading front reaches a certain

finite limiting position. While if the invasive species is superior, a spreading-vanishing

dichotomy holds, and the sharp criteria for the spreading and vanishing with d1, μ

and u0 as variable factors is obtained, where d1, μ and u0 are dispersal rate, ex-

pansion capacity and initial number of the invader, respectively. Specially, we still

give some rough estimates of the asymptotic spreading speed when spreading occurs.

Keywords: Diffusive competition model; Invasive population; Selection for dispersal;

Free boundary; Spreading-vanishing dichotomy
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1 Introduction

There are a variety of models which are used to describe the competition and co-existence

dynamics arising in population ecology. Among these, the following Lotka-Volterra com-

petition reaction-diffusion system for two species in a bounded smooth domain Ω ⊂ R
n is

∗Corresponding author.
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2 Invasion of a inferior or superior competitor

the typical one:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ut − d1Δu = [a1(x)− b1(x)u− c1(x)v]u, x ∈ Ω, t > 0,

vt − d2Δv = [a2(x)− b2(x)u− c2(x)v]v, x ∈ Ω, t > 0,

u(x, t) = v(x, t) = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x) ≥ 0, v(x, 0) = v0(x) ≥ 0, x ∈ Ω,

(1.1)

where u, v denote the population densities of two competing species, d1, d2 are positive

and represent the dispersal rates of two species, strictly positive functions ai(x), bi(x),

ci(x)(i = 1, 2) ∈ C1(Ω)∩L∞(Ω) account for the local growth rate of the population or the

density of the local resource, self-regulation of species and competition between species,

respectively.

In general, the long time dynamics is among the central problems investigated for (1.1)

and is quite well understood. The reader is referred to see [4, 5, 14] etc., and references

therein for this aspect. Roughly speaking, people find that weak competition allows for

coexistence states in (1.1), while stronger competition leads to the extinction of the species

with low reproduction rate and large diffusion rate. More precisely, let λ∗ be the princi-

pal eigenvalue of the operator −Δ in Ω subject to the homogeneous Dirichlet boundary

conditions. Set

aiL = inf
x∈Ω

ai(x), aiM = sup
x∈Ω

ai(x)

for i = 1, 2, and biL, biM , ciL and ciM (i = 1, 2) are defined analogously. Then the following

results have been proved for (1.1):

1. if a1L > d1λ
∗ + a2M c1M

c2L
and a2L > d2λ

∗ + a1M b2M
b1L

, then there exists a coexistence

state for (1.1), that is, a stationary solution (u∗, v∗) with u∗, v∗ > 0 in Ω;

2. if a1M
a2L

< min
{

c1L
c2M

, b1L
b2M

}
, a2L ≥ a1M , d1 = d2 = D and a2L > Dλ∗, then the species

u is eventually driven to extinction, that is, limt→∞ u(x, t) = 0 for any v0 �≡ 0;

3. if a1M
a2L

> max
{

c1L
c2M

, b1L
b2M

}
, a1L ≥ a2M , d1 = d2 = D and a1L > Dλ∗, then the species

v is eventually driven to extinction, that is, limt→∞ v(x, t) = 0 for any u0 �≡ 0.

Ecologically, in the second case, the competitor u is wiped out by v in the long run and

v will win the competition, so we call v the superior competitor, while u the inferior

competitor. Analogously, u is the inferior competitor and v is the superior competitor in

the third case. The first case is often regarded as the weak competition case, where no

competitor wins or loses in the competition.

On the other hand, however, we still note that the model (1.1) is not a realistic model

to describe the dynamics of a new competitive invasive species invading into the habitat
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of a resident species, due to the limited fixed domain and the little information about the

precise invading dynamics. Thus, it is necessary to relax these requirement and to consider

the precise dynamics by which an invading species spreads spatially into new habitat.

Inspired by the above aim, the current paper is concerned with the impact of spatial

feature of environment on dynamics of a new competitor u with a free boundary describing

the moving front invading into the habitat of a resident species v. For simplicity, we assume

the environment is radially symmetric and investigate the behavior of the positive solution

(u(r, t), v(r, t), h(t)) with r := |x|(x ∈ R
n) to the following variation of the reaction-

diffusion problem (1.1)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut − d1Δu = [a1(r)− b1(r)u− c1(r)v]u, 0 < r < h(t), t > 0,

vt − d2Δv = [a2(r)− b2(r)u− c2(r)v]v, 0 < r < ∞, t > 0,

ur(0, t) = vr(0, t) = 0, u(r, t) = 0, h(t) ≤ r < ∞, t > 0,

h′(t) = −μur(h(t), t), t > 0,

u(r, 0) = u0(r), h(0) = h0, 0 ≤ r ≤ h0,

v(r, 0) = v0(r), 0 ≤ r < ∞,

(1.2)

where Δu = urr +
n−1
r ur, r = h(t) denotes the spreading front, that is, the free boundary

to be determined, d1, d2 > 0 are diffusion rates, μ > 0 called the expansion capacity,

is the ratio of the expansion speed of the free boundary and the population gradient at

the expanding front and accounts for the ability of the invasive species to transmit and

dispersal in the new habitat, h0 > is the initial boundary or survival range, and ai(r),

bi(r), ci(r)(i = 1, 2) ∈ C1([0,∞))∩L∞([0,∞)) are the strictly positive functions as above.

We still denote the followings in like manner:

aiL = inf
r∈[0,∞)

ai(r), aiM = sup
r∈[0,∞)

ai(r)

for i = 1, 2, and biL, biM , ciL and ciM (i = 1, 2) are defined analogously. Throughout this

paper, we always assume that these constant are well defined and positive. The initial

functions u0 and v0 satisfy{
u0 ∈ C2([0, h0]), u

′
0(0) = u0(h0) = 0, and u0 > 0 in [0, h0);

v0 ∈ C2([0,∞)) ∩ L∞([0,∞)), v′0(0) = 0, and v0 ≥ 0 in [0,∞), and v0 �≡ 0.
(1.3)

When ai(r), bi(r), ci(r)(i = 1, 2) ∈ C1([0,∞))∩L∞([0,∞)) are just positive constant,

that is, the environment is assumed to be spatially homogeneous, Du and Lin [9] proved

that: in the case that the invasive species is inferior, if the resident species is already rather

established at beginning, then the invader can never invades deep into the underlining
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habitat, and it dies out before its invading front reaches a certain finite limiting position;

while if the invasive species is superior, there exists a spreading-vanishing dichotomy for

the invasive species, which means that, as time t → ∞, either h → ∞, u → a1
b1

and v → 0,

namely the invasive species successfully establishes itself in the underlining habitat (called

spreading), or h → h∞ ≤ ∞, u → 0 and v → a2
c2
, namely the invasive species fails to

establish and vanishes eventually (called vanishing). Moreover, some sharp criteria for the

spreading and vanishing presented by μ and h0, and rough estimates of the asymptotic

spreading speed (a concept comes from Aronson and Weinberger [1, 2]) when spreading

occurs were also obtained in Du and Lin [9]. We remark that the similar Lotka-Volterra

type model with free boundary was first introduced by Lin [15], in which a prey-predator

model was studied and only the existence results were given. Some other works on prey-

predator model with free boundary can be referred to [20, 22, 24] and references cited

therein. Moreover, there were still some studies caring about Lotka-Volterra competition

model. See Guo and Wu [13] for weak competition case and Wang and Zhao [23] for some

extensions.

Furthermore, if in the problem (1.2), the resident species is absent, namely v ≡ 0, we

then obtain the following diffusive logistic problem⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ut − d1Δu = [a1(r)− b1(r)u]u, 0 < r < h(t), t > 0,

ur(0, t) = u(h(t), t) = 0, t > 0,

h′(t) = −μur(h(t), t), t > 0,

u(r, 0) = u0(r) > 0, h(0) = h0 > 0, 0 ≤ r ≤ h0,

(1.4)

which has been well treated in [8] and [6]. Du and Guo [6] showed that a similar spreading-

vanishing dichotomy as above holds. Some sharp criteria for spreading and vanishing by

μ and h0 were presented as well. Specially, Du and Guo [6] further proved that if the

spreading occurs, then the spreading front h(t) behaves precisely like [k0 + o(1)]t for large

time, where k0 is an estimate of the asymptotic spreading speed. In fact, since the work

of Du and Lin [8] and Du and Guo [6], there have been many theoretical advances on the

free boundary problem in homogeneous or heterogeneous environment. In [11], a two free

boundaries problem of single equation with a general reaction term was considered, where

the Dirichlet conditions are assumed at free boundaries. Peng and Zhao [18] studied a

diffusive logistic model with free boundary and seasonal succession. Later on, Du et al. [7]

was concerned with a diffusive logistic equation in time-periodic environment, which was

a development of Du and Guo [6] and Peng and Zhao [18].

Since it have been intensively revealed by more and more empirical facts that the real

environment is usually heterogeneous, one must consider the more general case like (1.1)

and (1.2) to appropriate to the empirical and theoretical requirements. In this paper, we
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mainly study the dynamics of problem (1.2) in the general heterogeneous environment. For

the case that the invasive species is inferior, we will show that it will still dies out before its

invading front reaches a certain finite limiting position, provided its competitor is already

rather established at beginning. Nextly, for the case that the invasive species is superior, we

give some sufficient conditions to ensure that the spreading and vanishing happen, which

result in the spreading-vanishing dichotomy. Furthermore, since dispersal is an important,

perhaps most, aspect of the life histories of many species, and can influence the persistence

of species and mediates interactions between species, we choose the dispersal rete d instead

of h0 used in [9] as the varying parameter to show that there exists a positive threshold

D∗ such that if 0 < du ≤ D∗, then the persistence for invasive species always happens

whatever the the initial function u0 or the expansion capacity μ is; while if du > D∗, there
still exists a critical μ∗ ≥ 0 such that vanishing happens if 0 < μ ≤ μ∗, and spreading

happens if μ > μ∗. Hence, sharp criteria for the invasive species spreading and vanishing

are obtained for problem (1.2). A similar result related to the initial function u0 is also

presented.

The rest parts of this paper are organized as follows. Section 2 is devoted to some

fundamental results, including the global existence and uniqueness of the solution of (1.2).

Moreover, some rough a priori estimates are given, as well as the comparison principle in

the moving domain. In Section 3, we study an eigenvalue problem under some general

assumptions, whose principal eigenvalue will play important roles in our later analysis.

Section 4 treats the case that the invasive species is inferior. Section 5 is all devoted to

the case that the invasive species is superior, where a spreading-vanishing dichotomy is

established, and a sharp criterion to distinguish the dichotomy and some rough estimates

of the asymptotic spreading speed when spreading occurs are also given.

2 Preliminaries results

In this section, we prove the existence and uniqueness of the solution to (1.2) for all t > 0.

The proof of the local existence and uniqueness can be done similarly as in [6,9] by some

minor modifications the arguments there. So we omit the details.

Theorem 2.1 For any given (u0, v0) satisfying (1.3) and any α ∈ (0, 1), there is a con-

stant T > 0 such that problem (1.2) admits a unique solution which satisfies

(u, v, h) ∈ C1+α, 1+α
2 (DT )× C1+α, 1+α

2 (D∞
T )× C1+α

2 ([0, T ]);

moreover,

‖u‖
C1+α, 1+α

2 (DT )
+ ‖v‖

C1+α, 1+α
2 (D∞

T )
+ ‖h‖

C1+α
2 ([0,T ])

< C,
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where

DT = {(r, t) ∈ R
2 : r ∈ [0, h(t)], t ∈ [0, T ]},

D∞
T = {(r, t) ∈ R

2 : r ∈ [0,∞), t ∈ [0, T ]},

and the constants T and C only depend on h0, α, ‖u0‖C2([0,h0]) and ‖v0‖C2([0,∞)).

To prove the global existence of the solution of (1.2) obtained in 2.1, we need the

following estimates.

Lemma 2.2 Let (u, v, h) be a solution to problem (1.2) defined for t ∈ (0, T ) for some

T ∈ (0,∞]. Then there exist constants M1, M2 and M3 independent of T such that

0 < u(r, t) ≤ M1, for 0 < r < h(t), 0 < t ≤ T,

0 < v(r, t) ≤ M2, for 0 < r < ∞, 0 < t ≤ T,

0 < h′(t) ≤ M3, for 0 < t ≤ T.

Proof. It follows from the strong maximum principle that u > 0 in [0, h(t))× (0, T ] and

v > 0 in [0,∞)× (0, T ]. Since u(r, t) satisfies⎧⎪⎨⎪⎩
ut − d1Δu = [a1(r)− b1(r)u− c1(r)v]u, 0 < r < h(t), 0 < t < T,

ur(0, t) = u(h(t), t) = 0, 0 < t < T,

u(r, 0) = u0(r), 0 ≤ r < h0,

we obtain that u(r, t) ≤ max{‖u0‖L∞([0,h0]),
a1M
b1L

} � M1. Similarly, since v(r, t) satisfies⎧⎪⎨⎪⎩
vt − d2Δv = [a2(r)− b2(r)u− c2(r)v]v, 0 < r < ∞, 0 < t < T,

vr(0, t) = 0, 0 < t < T,

v(r, 0) = v0(r), 0 ≤ r < ∞,

we obtain that v(r, t) ≤ max{‖v0‖L∞([0,∞)),
a2M
c2M

} � M2. Moreover, the strong maximum

principle also yields the inequalities ur(t, h(t)) < 0, which implies that h′(t) > 0 in (0, T ].

It remains to verify that h′(t) is bounded from above. To this end, we define

ΩM � {(r, t) : h(t)− 1

M
< r < h(t), 0 < t < T}

and construct the following auxiliary function

u = M1[2M(h(t)− r)−M2(h(t)− r)2]

in ΩM . In what follows, we will choose some M(> 1
h0
) such that u ≤ u in ΩM .
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It follows from some direct calculations that⎧⎪⎨⎪⎩
ut − d1Δu ≥ 2d1M1M

2 ≥ [a1(r)− b1(r)u− c1(r)v]u,

u(h(t)− 1
M , t) = M1 ≥ u(h(t)− 1

M , t),

u(h(t), t) = u(h(t), t),

if M ≥
√

a1M
2d1

. On the other hand, we have

u0(r) = u0(r)− u0(h0) = −
∫ h0

r
u′0(s) ds ≤ (h0 − r)‖u′0‖C([0,h0])

and

u(r, 0) = M1[2M(h0 − r)−M2(h0 − r)2] ≥ M1M(h0 − r)

in [h0− 1
M , h0]. Therefore, if M ≥ ‖u′

0‖C([0,h0])

M1
, we then have u0(r) ≤ u(r, 0) in [h0− 1

M , h0].

Let M = max
{√

a1M
2d1

,
‖u′

0‖C([0,h0])

M1
, 1
h0

}
. We now can apply the maximum principle to

u− u over ΩM to obtain that u ≤ u for (r, t) ∈ ΩM . It follows that

ur(h(t), t) ≥ ur(h(t), t) = −2M1M

and

h′(t) = −μur(h(t), t) ≤ 2μM1M � M3.

The proof is complete. �

The following theorem guarantees the global existence. Since its proof is standard, we

omit it here and one can refer to [9] or [24] for a similar proof.

Theorem 2.3 The solution of problem (1.2) uniquely exists, and it can be extended to

[0,∞).

In what follows, we present the comparison principle for (1.2) which can be proved

similarly as [9, Lemma 2.6].

Theorem 2.4 (The Comparison Principle). Suppose that T ∈ (0,∞), h, h ∈ C1([0, T ]),

u ∈ C(D∗
T ) ∩ C2,1(D∗

T ) with D∗
T := {(r, t) ∈ R

2 : r ∈ (0, h(t)), t ∈ (0, T ]}, u ∈ C(D∗∗
T ) ∩

C2,1(D∗∗
T ) with D∗∗

T := {(r, t) ∈ R
2 : r ∈ (0, h(t)), t ∈ (0, T ]}, v, v ∈ (L∞ ∩ C)([0,∞) ×
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[0, T ]) ∩ C1,2([0,∞)× (0, T ]) and⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut − d1Δu ≤ [a1(r)− b1(r)u− c1(r)v]u, 0 < r < h(t), 0 < t ≤ T,

ut − d1Δu ≥ [a1(r)− b1(r)u− c1(r)v]u, 0 < r < h(t), 0 < t ≤ T,

vt − d2Δv ≤ [a2(r)− b2(r)u− c2(r)v]v, 0 < r < ∞, 0 < t ≤ T,

vt − d2Δv ≥ [a2(r)− b2(r)u− c2(r)v]v, 0 < r < ∞, 0 < t ≤ T,

ur(0, t) = vr(0, t) = 0, u(r, t) = 0, h(t) ≤ r < ∞, 0 < t ≤ T,

ur(0, t) = vr(0, t) = 0, u(r, t) = 0, h(t) ≤ r < ∞, 0 < t ≤ T,

h′(t) ≤ −μur(h(t), t), h
′
(t) ≥ −μur(h(t), t), 0 < t ≤ T,

h(0) ≤ h(0) ≤ h(0),

u(r, 0) ≤ u0(r) ≤ u(r, 0), 0 ≤ r ≤ h0,

v(r, 0) ≤ v0(r) ≤ v(r, 0), 0 ≤ r < ∞.

Let (u, v, h) be the unique solution of the free boundary problem (1.2), then

h(t) ≥ h(t) in (0, T ], u(r, t) ≥ u(r, t), v(r, t) ≤ v(r, t) for (r, t) ∈ [0,∞)× (0, T ],

h(t) ≤ h(t) in (0, T ], u(r, t) ≤ u(r, t), v(r, t) ≥ v(t) for (r, t) ∈ [0,∞)× (0, T ].

In the sequel, we will call the triples (u, v, h) and (u, v, h) an lower solution and supper

solution of (1.2), respectively.

We next fix u0, v0, d1, d2, ai(r), bi(r), ci(r) (i = 1, 2) and examine the dependence of

the solution on μ. It follows from the uniqueness of the solution to free boundary problem

(1.2) and a standard compactness argument that the unique solution (u, v, h) depends

continuously on μ, and we write (uμ, vμ, hμ) to emphasize this dependence. The following

corollary results directly from Theorem 2.4.

Corollary 2.5 For fixed u0, v0, d1, d2, ai(r), bi(r) and ci(r) (i = 1, 2). If μ1 ≤ μ2, then

uμ1(r, t) ≤ uμ2(r, t), vμ1(r, t) ≥ vμ2(r, t) for r ∈ [0, hμ1(t)), t ∈ (0,∞) and hμ1(t) ≤ hμ2(t)

in (0,∞).

Finally, for fixed v0, d1, d2, ai(r), bi(r), ci(r) (i = 1, 2) and μ, we set u0 = δθ(r)

and examine the dependence of the solution on δ, and we write (uδ, vδ, hδ) to emphasize

this dependence. Similar to Corollary 2.5, the following corollary results directly from

Theorem 2.4.

Corollary 2.6 For fixed v0, d1, d2, ai(r), bi(r), ci(r) (i = 1, 2) and μ. If δ1 ≤ δ2, then

uδ1(r, t) ≤ uδ2(r, t), vδ1(r, t) ≥ vδ2(r, t) for r ∈ [0, hδ1(t)), t ∈ (0,∞) and hδ1(t) ≤ hδ2(t)

in (0,∞).
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3 Some eigenvalue problems

In this section, we mainly study an eigenvalue problem and analyze the property of its

principal eigenvalue. These results play an important role in later sections.

Consider the following eigenvalue problem with r := |x|(x ∈ R
n):{

DΔφ+ α(r)φ+ λφ = 0, x ∈ BR,

φ = 0, x ∈ ∂BR,
(3.1)

where D, R are positive constants, and α(r) ∈ C1([0,∞)) ∩ L∞([0,∞)) is positive some-

where in (0, R). Let λ1(D,R, α) denote the principal eigenvalue of the problem (3.1). It is

well known that λ(D,R, α) uniquely exists and the corresponding eigenfunction, denoted

by φ1, can be chosen positive in BR and normalized by ‖φ1‖L2 = 1. Moreover, it is obvi-

ously that φ1 is radially symmetric and (φ1)r(0) = 0. Since the operator DΔ+ α(|x|)I is

self-adjoint, λ1(D,R, α) can be characterized by the following variational form:

λ1(D,R, α) = inf

{∫
BR

[D|∇φ|2 − α(r)φ2] dx : φ ∈ H1
0 (BR) and

∫
BR

φ2 dx = 1

}
. (3.2)

For fixed R and varying D, we write λ1(D,R, α) = λ1(D,α) for brevity. Similarly, we

still write λ1(D,R, α) = λ1(R,α) for fixed D and varying R. We first present the property

of λ1(D,α).

Theorem 3.1 For fixed R, the following conclusions about λ1(D,α) hold:

(i) λ1(D,α) is a strictly monotone increasing function of D;

(ii) λ1(D,α) → λ̂ � −maxr∈[0,R] α(r) < 0 as D → 0;

(iii) λ1(D,α) → +∞ as D → +∞.

Theorem 3.1 can be proved similarly as [25, Theorem 3.1] by making little minor modifi-

cations, so we omit it here.

The above theorem implies the following result.

Corollary 3.2 For any fixed R, there exists a D∗(R,α) > 0 such that λ1(D,α) < 0 if

0 < D < D∗(R,α), λ1(D,α) = 0 if D = D∗(R,α), λ1(D,α) > 0 if D > D∗(R,α).

Next, we fix D and let R change. The results below is the counterpart of Theorem 3.1,

and we recommend [16] or [25] for a detailed proof.

Theorem 3.3 For fixed D, the following conclusions about λ1(R,α) hold:
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(i) λ1(R,α) is a strictly monotone decreasing function of R.

(ii) λ1(R,α) → +∞ as R → 0.

The following corollary is a direct consequence of Theorem 3.3, [25, Theorem 3.2(c)]

and [21, Remark 3.1]

Corollary 3.4 For any fixed D, if α(r) > 0 for r ≥ 0, then there exists a R∗(D,α) > 0

such that λ1(R,α) > 0 if 0 < R < R∗(D,α), λ1(R,α) = 0 if R = R∗(D,α), λ1(R,α) < 0

if R > R∗(D,α).

By Lemma 2.2, it is easy to see that the habitat of the specie u in the free boundary

problem (1.2) increases with time. Under this case, we replace BR by Bh(t), and introduce

λ1(D,h(t), α) = inf

{∫
Bh(t)

[D|∇φ|2 − α(r)φ2] dx : φ ∈ H1
0 (Bh(t)) and

∫
Bh(t)

φ2 dx = 1

}
.

Let λ1(h(t), α) denote λ1(D,h(t), α) for fixed D. From Lemma 2.2, Theorem 3.3 and

Corollary 3.4, we have the following result.

Corollary 3.5 For any fixed D, λ1(h(t), α) is a strictly monotone decreasing function of

time t. Moreover, if α(r) > 0 for r ≥ 0 and h∞ � limt→∞ h(t) = +∞, then λ1(h(t), α) < 0

for sufficient large t.

4 Invasion of a inferior competitor

In this section, we examine the case that the invader u is an inferior competitor, which

means that
a1M
a2L

< min
{ c1L
c2M

,
b1L
b2M

}
. (4.1)

Firstly, consider the following logistic equation on the entire space:

−d2Δv = [a2(r)− c2(r)v]v, x ∈ R
n. (4.2)

It follows from [10, Theorem 2.3] that problem (4.2) has a unique positive (radial) solution,

denoted by V (r), and the symbol V (r) will be always used in the sequel. We have the

following consequence.

Theorem 4.1 If (4.1) holds and v0 ≥ δ for some δ > 0, then h∞ < ∞, limt→∞ u(r, t) = 0

uniformly for r ∈ [0,∞), and limt→∞ v(r, t) = V (r) locally uniformly for r ∈ [0,∞).
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Proof. Step 1 : Proof of limt→∞ u(r, t) = 0 uniformly for r ∈ [0,∞).

It follows from Lemma 2.2 and Theorem 2.3 that there exist positive M1 and M2 such

that

0 ≤ u(r, t) ≤ M1, in [0, h(t)]× [0,∞),

0 ≤ v(r, t) ≤ M2, in [0,∞)× [0,∞).

We now consider the following auxiliary problem⎧⎪⎨⎪⎩
zt = (a1M − b1Lz − c1Lw)z, t > 0,

wt = (a2L − b2Mz − c2Mw)w, t > 0,

z(0) = M1, w(0) = δ.

The comparison principle implies that u(r, t) ≤ z(t) and v(r, t) ≥ w(t) in [0,∞)× [0,∞).

Since (4.1) holds, it is well-known (see, for example, [17]) that (z, w) → (0, a2L
c2M

) as t → ∞.

As a result, we find that limt→∞ u(r, t) = 0 uniformly for r ∈ [0,∞).

Step 2 : Proof of limt→∞ v(r, t) = V (r) locally uniformly for r ∈ [0,∞).

We use a squeezing argument introduced in [12]. Consider the following Dirichlet

problem {
−d2Δv = [a2(r)(1− ε)− c2(r)v]v, x ∈ BR,

v = 0, x ∈ ∂BR,

and the following boundary blow-up problem{
−d2Δv = [a2(r)− c2(r)v]v, x ∈ BR,

v = +∞, x ∈ ∂BR.

It is well known that these problems have positive radial solutions, denoted by V ε
R and

V R respectively, when ε > 0 is small and R > 0 is large. By the comparison principle

given by [12, Lemma 2.1], we see that as ε → 0+ and R → +∞, V ε
R increases to the

unique positive solution V of (4.2) and V R decreases to V , respectively. We thus can

choose a decreasing sequence {εk} and an increasing sequence {Rk} such that εk → 0+,

{Rk} → +∞ as k → ∞, and λ1(d2, Rk,m(1− εk)) < 0 holds for all k ∈ N. It follows from

Step 1 that for each εk, there exists Tk > 0 such that

u(r, t) < εk
a2L
b2M

≤ εk
a2(r)

b2(r)

for all t ≥ Tk and r ∈ [0,∞). For such Tk, we obtain from the choice of εk, Rk and [4,

Proposition 3.3] that the following problem⎧⎪⎨⎪⎩
vt − d2Δv = [a2(r)(1− εk)− c2(r)v]v, 0 < r < Rk, t > Tk,

vr(0, t) = v(Rk, t) = 0, t > Tk,

v(r, Tk) = v(r, Tk), 0 ≤ r ≤ Rk
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admits a unique positive solution vk(r, t) satisfying

vk(r, t) → V εk
Rk

(r) uniformly for r ∈ [0, Rk] as t → ∞.

It follows from the comparison principle that for each k ∈ N,

v(r, t) ≥ vk(r, t), for r ∈ [0, Rk] and t ≥ Tk.

Hence, we have

lim inf
t→∞ v(r, t) ≥ V εk

Rk
(r) uniformly for r ∈ [0, Rk].

By setting k → ∞ in the above inequality, we obtain that

lim inf
t→∞ v(r, t) ≥ V (r) locally uniformly for r ∈ [0,∞).

Analogously, by arguments similar to those in the proof of [12, Theorem 4.1], one can

prove

lim sup
t→∞

v(r, t) ≤ V Rk
(r) uniformly for r ∈ [0, Rk],

which implies (by sending k → ∞) that

lim sup
t→∞

v(r, t) ≤ V (r) locally uniformly for r ∈ [0,∞).

The desired result would then follow directly from the above inequalities.

Step 3 : Proof of h∞ < ∞.

We first note that since h(t) is monotonic increasing, the limit h∞ always exists.

Now, Step 1 shows that limt→∞ u(r, t) = 0 uniformly for r ∈ [0,∞). On the other

hand, it follows from Step 2 that limt→∞ v(r, t) = V (r) locally uniformly for r ∈ [0,∞).

Since V (r) satisfies (4.2), the comparison principle indicates that a2L
c2M

≤ V (r) ≤ a2M
c2L

for

all r ∈ [0,∞). We thus see that

a2L
c2M

≤ lim
t→∞ v(r, t) ≤ a2M

c2L

for all r ∈ [0,∞). Hence,

lim
t→∞[a1(r)− b1(r)u− c1(r)v] ≤ a1(r)− c1(r)

a2L
c2M

< 0

for all r ∈ [0,∞). There thus exists T 
 1 so large that [a1(r)− b1(r)u− c1(r)v] ≤ 0 for

all r ∈ [0,∞), t ≥ T .

Some direct calculations yields that

d

dt

∫ h(t)

0
rn−1u(r, t) dr
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=

∫ h(t)

0
rn−1ut(r, t) dr + hn−1(t)h′(t)u(h(t), t)

=

∫ h(t)

0
rn−1{d1�u+ [a1(r)− b1(r)u− c1(r)v]}dr

= −d1
μ
hn−1(t)h′(t) +

∫ h(t)

0
rn−1[a1(r)− b1(r)u− c1(r)v] dr.

Integrating from T to t yields∫ h(t)

0
rn−1u(r, t) dr

=

∫ h(T )

0
rn−1u(r, T ) dr − d1

nμ
hn(t) +

d1
nμ

hn(T )

+

∫ t

T

∫ h(s)

0
rn−1[a1(r)− b1(r)u− c1(r)v] dr ds.

Since
∫ h(t)
0 rn−1u(r, t) dr ≥ 0 and [a1(r)− b1(r)u− c1(r)v] ≤ 0 for all r ∈ [0,∞), t ≥ T , we

have

hn(t) ≤ nμ

d1

∫ h(T )

0
rn−1u(r, T ) dr + hn(T ) < ∞

for all t ≥ T . It follows that

h∞ < ∞.

The proof is complete. �

Theorem 4.1 implies that if the resident species is already rather established at begin-

ning, then an inferior competitor can never invades deep into the underlining habitat, and

it dies out before its invading front reaches a certain finite limiting position.

5 Invasion of a superior competitor

In this section, we examine the case that the invader u is an inferior competitor, which

means that
a1L
a2M

> min
{c1M
c2L

,
b1M
b2L

}
. (5.1)

The important investigation of ours is the spreading-vanishing dichotomy. In fact, Lemma

2.2 implies that r = h(t) is monotonic increasing, thus, there exists h∞ ∈ (0,∞] such that

limt→∞ h(t) = h∞. Let (u, v, h) be the solution to problem (1.2), we have the following

definitions:
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(A1) Spreading of the invasive species u if

h∞ = ∞ and lim inf
t→∞ ‖u(·, t)‖C([0,h(t)]) > 0;

(A2) Vanishing of the invasive species u if

h∞ < ∞ and lim
t→∞ ‖u(·, t)‖C([0,h(t)]) = 0.

We remark that in the case spreading, the invasive species can survive and spread to the

whole space; in the case vanishing, however, the invasive species will be limited in a finite

region and finally goes to extinction.

5.1 Spreading-vanishing dichotomy

In this subsection, we prove the spreading-vanishing dichotomy. The following consequence

indicates that if the invasive species cannot spread into the whole space, then it will vanish

eventually.

Lemma 5.1 If h∞ < ∞, then limt→∞ ‖u(·, t)‖C([0,h(t)]) = 0, and limt→∞ v(r, t) = V (r)

locally uniformly for r ∈ [0,∞).

Proof. We first show that if h∞ < ∞, then limt→∞ ‖u(·, t)‖C([0,h(t)]) = 0 locally uniformly

for r ∈ [0,∞).

Using the same arguments as in Theorem 2.1, one can obtain that for any α ∈ (0, 1),

there exists a constant C̃ depending on α, (u0, v0), h0 and h∞ such that

‖u‖
C1+α, 1+α

2 ([0,h(t)]×[0,∞))
+ ‖v‖

C1+α, 1+α
2 ([0,h(t)]×[0,∞))

+ ‖h‖
C1+α

2 ([0,∞))
< C̃. (5.2)

In what follows, we use the contradiction argument. Assume that

lim sup
t→∞

‖u(·, t)‖C([0,h(t)]) = δ > 0

Then there exists a sequence (rk, tk) ∈ [0, h(t))× (0,∞) with tk → ∞ as k → ∞ such that

u(rk, tk) ≥ δ
2 for all k ∈ N. Since 0 ≤ rk < h(tk) < h∞ < ∞, passing to a subsequence if

necessary, it follows that rk → r0 ∈ [0, h∞), as k → ∞.

Define

uk(r, t) = u(r, t+ tk), vk(r, t) = v(r, t+ tk),

for r ∈ [0, h(t + tk)] and t ∈ (−tk,∞). It follows from (5.2) and the standard parabolic

regularity that {(uk, vk)} has a subsequence {(uki , vki)} such that (uki , vki) → (ũ, ṽ) as

ki → ∞, where (ũ, ṽ) satisfies{
ut − d1Δu = [a1(r)− b1(r)u− c1(r)v]u, (r, t) ∈ (0, h∞)× (−∞,∞),

vt − d2Δv = [a2(r)− b2(r)u− c2(r)v]v, (r, t) ∈ (0, h∞)× (−∞,∞).
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Since ũ(r0, 0) = limki→∞ uki(rki , 0) = limki→∞ u(rki , tki) ≥ δ
2 , it follows from the maxi-

mum principle that ũ > 0 in [0, h∞) × (−∞,∞). Thus we can apply the Hopf boundary

lemma at the point (h∞, 0), where ũ(h∞, 0) = 0, to conclude that

ũr(h∞, 0) ≤ −σ < 0

for some σ > 0. From the above fact and (5.2), we find that

ur(h(tki), tki) = ∂ruki(h(tki), 0) ≤ −σ

2
< 0

for all large ki, which together with the Stefan condition implies that h′(tki) ≥ μσ
2 > 0

On the other hand, combining (4.2) with h∞ < ∞, we find that h′(t) → 0 as t → ∞.

This contradiction shows that we must have

lim
t→∞ ‖u(·, t)‖C([0,h(t)]) = 0.

The proof of limt→∞ v(r, t) = V (r) locally uniformly for r ∈ [0,∞) is just same as in

Theorem 4.1, so we omit it. the proof is complete. �

Set R∗(d1, a1− c1V ) the positive constant determined by Corollary 3.4, which satisfies

λ1(d1, R
∗(d1, a1 − c1V ), a1 − c1V ) = 0. The following result gives a sufficient condition of

spreading and an estimate of h∞ when h∞ < ∞.

Lemma 5.2 If h∞ < ∞, then h∞ ≤ R∗(d1, a1 − c1V ). Hence, h0 ≥ R∗(d1, a1 − c1V )

implies h∞ = ∞.

Proof. Arguing indirectly, we suppose that h∞ > R∗(d1, a1− c1V ) to get a contradiction.

It follows from Lemma 5.1 and the continuity ofR∗(d1, α) in α that for any given 0 < ε � 1,

there is Tε > 0 such that

h(Tε) > max{h0, R∗(d1, a1 − c1V − ε)},

and

v(r, t) ≤ V (r) +
ε

c1(r)

for any t ≥ Tε and r ∈ [0, h∞]. Setting R = h(Tε), we then have R > R∗(d1, a1 − c1V − ε).

Consider the following auxiliary problem⎧⎪⎨⎪⎩
ut − d1Δu = [a1(r)− c1(r)V − ε− u]u, 0 < r < R, t > Tε,

ur(0, t) = u(R, t) = 0, t > Tε,

u(r, Tε) = u(r, Tε), 0 ≤ r ≤ R,
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It follows from the choice of R and [4, Proposition 3.3] that the above problem admits a

unique positive solution u(r, t) satisfying

lim
t→∞u(r, t) = U ε(r) uniformly for r ∈ [0, R],

where U ε(r) is the unique positive solution of{
−d1Δu = [a1(r)− c1(r)V − ε− u]u, 0 < r < R,

ur(0) = u(R) = 0.

By the comparison principle ( [6, Lemma 2.6]), we have

u(r, t) ≥ u(r, t), for all r ∈ [0, R], t ≥ Tε,

which implies that

lim inf
t→∞ ‖u(r, t)‖C([0,h(t)]) ≥ U ε(0) > 0.

The above fact makes a contradiction with Lemma 5.1, and the proof is finished. �

Let U(r) denote the unique positive (radial) solution to the following equation deter-

mined by [10, Theorem 2.3]

−d1Δu = [a1(r)− b1(r)u]u, x ∈ R
n. (5.3)

We have the following consequence.

Lemma 5.3 If h∞ = ∞, then spreading occurs, and limt→∞ u(r, t) = U(r), limt→∞ v(r, t) =

0 locally uniformly for r ∈ [0,∞).

Proof. We first prove that limt→∞ v(r, t) = 0 locally uniformly for r ∈ [0,∞).

To begin with, the comparison principle implies that v(r, t) ≤ v∗(t) for r ∈ [0,∞),

t > 0, where v∗(t) satisfies{
v∗t = (a2M − c2Lv

∗)v∗, t > 0,

v∗(0) = ‖v0‖L∞([0,∞)).

Since v∗(t) → a2M
c2L

as t → ∞, we thus have

lim sup
t→∞

v(r, t) ≤ a2M
c2L

uniformly for r ∈ [0,∞).

Therefore for ε1 =
1
2(

a1L
c1M

− a2M
c2L

), there exists T1 > 0 such that

v(r, t) ≤ a2M
c2L

+ ε1
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for any t ≥ Tε and r ∈ [0,∞). It follows that u satisfies⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ut − d1Δu ≥ (c1Lε1 − b1Mu)u, 0 < r < h(t), t > T1,

ur(0, t) = u(h(t), t) = 0, t > T1,

h′(t) = −μur(h(t), t), t > T1,

u(r, T1) > 0, 0 < r < h(t).

We claim that for any R > R∗(d1, c1Lε1), there exists TR ≥ T1 such that u(r, t) ≥ c1Lε1
b1M

for 0 ≤ r ≤ R, t ≥ TR. In fact, since h∞ = ∞, there always exists T2 ≥ T1 such that

h(T2) ≥ R. Consider the following auxiliary problem⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ut − d1Δu = (c1Lε1 − b1Mu)u, 0 < r < h(t), t > T2,

ur(0, t) = u(h(t), t) = 0, t > T2,

h′(t) = −μur(h(t), t), t > T2,

u(r, T2) = u(r, T2), h(T2) = h(T2), 0 < r < h(T2).

Since h(T2) ≥ R > R∗(d1, c1Lε1), it follows from [6, Theorem 2.1] that the above problem

has a unique solution (u, h) existing for all t ≥ T . Moreover, [6, Theorem 2.5] implies

that h(t) → ∞ and u(r, t) → c1Lε1
b1M

as t → ∞ uniformly in [0, R] . Taking (u, h) as supper

solution, we obtain from the comparison principle [6, Lemma 2.6] that u(r, t) ≥ u(r, t) for

r ∈ [0, h(t)], t ∈ [T2,∞), and h(t) ≥ h(t) for t ∈ [T2,∞). These facts indicate our claim

hold for some TR ≥ T1.

We thus find that (u, v) satisfies the following⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ut − d1Δu = [a1(r)− b1(r)u− c1(r)v]u, 0 ≤ r ≤ R, t ≥ TR,

vt − d2Δv = [a2(r)− b2(r)u− c2(r)v]v, 0 ≤ r ≤ R, t ≥ TR,

ur(0, t) = vr(0, t) = 0, t ≥ TR,

u(r, t) ≥ c1Lε1
b1M

, v(r, t) ≤ a2M
c2L

+ ε1, 0 ≤ r ≤ R, t ≥ TR.

Since h∞ = ∞, the comparison principle yields u ≥ u and v ≤ v for 0 ≤ r ≤ R, t ≥ TR,

where (u, v) is the solution of the following system⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ut − d1Δu = [a1(r)− b1(r)u− c1(r)v]u, 0 ≤ r ≤ R, t ≥ TR,

vt − d2Δv = [a2(r)− b2(r)u− c2(r)v]v, 0 ≤ r ≤ R, t ≥ TR,

ur(0, t) = vr(0, t) = 0, t ≥ TR,

u(R, t) = c1Lε1
b1M

, v(R, t) = a2M
c2L

+ ε1, t > TR

u(r, TR) =
c1Lε1
b1M

, v(r, TR) =
a2M
c2L

+ ε1, 0 ≤ r ≤ R.

The above system generates a monotone dynamical system with respect to the competition

order, which means that

(u1, v1) ≤C (u2, v2) if and only if u1 ≤ u2 and v1 ≥ v2.
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Specially, the initial value ( c1Lε1b1M
, a2Mc2L

+ ε1) is a lower solution with respect to the compe-

tition order. The theory of monotone dynamical systems (see, for example, [19, Corollary

7.3.6]) yields that limt→∞ u(r, t) = uR(r) and limt→∞ v(r, t) = vR(r) uniformly in [0, R],

where (uR(r), vR(r)) is the minimal solution above ( c1Lε1b1M
, a2Mc2L

+ε1) of the following system

under the competition order⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−d1ΔuR = [a1(r)− b1(r)uR − c1(r)vR]uR, 0 ≤ r ≤ R,

−d2ΔvR = [a2(r)− b2(r)uR − c2(r)vR]vR, 0 ≤ r ≤ R,

∂ruR(0) = ∂rvR(0) = 0,

uR(R) = c1Lε1
b1M

, vR(R) = a2M
c2L

+ ε1.

Let R → ∞. It follows from the classical elliptic regularity theory and a diagonal procedure

that (uR(r), vR(r)) converges locally uniformly to (u∞(r), v∞(r)), which satisfies⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−d1Δu∞ = [a1(r)− b1(r)u∞ − c1(r)v∞]u∞, 0 ≤ r < ∞,

−d2Δv∞ = [a2(r)− b2(r)u∞ − c2(r)v∞]v∞, 0 ≤ r < ∞,

∂ru∞(0) = ∂rv∞(0) = 0,

u∞(r) ≥ c1Lε1
b1M

, v∞(r) ≤ a2M
c2L

+ ε1, 0 ≤ r < ∞.

In sequel, we show that v∞(r) = 0. Consider the following ODE system⎧⎪⎨⎪⎩
zt = (a1L − b1Mz − c1Mw)z, t > 0,

wt = (a2M − b2Lz − c2Lw)w, t > 0,

z(0) = c1Lε1
b1M

, w(0) = a2M
c2L

+ ε1.

Since (5.1) holds, we have (z(t), w(t)) → ( a1Lb1M
, 0) as t → ∞. Hence, the solution

(Z(r, t),W (r, t)) of the following system⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Zt − d1ΔZ = (a1L − b1MZ − c1MW )Z, 0 ≤ r < ∞, t > 0,

Wt − d2ΔW = (a2M − b2LZ − c2LW )W, 0 ≤ r < ∞, t > 0,

Zr(0, t) = Wr(0, t) = 0, t > 0,

Z(r, 0) = c1Lε1
b1M

, W (r, 0) = a2M
c2L

+ ε1, 0 ≤ r < ∞.

satisfies (Z(r, t),W (r, t)) → ( a1Lb1M
, 0) as t → ∞ uniformly for r ∈ [0,∞). On the other

hand, the comparison principle implies that u∞(r) ≥ Z(r, t) and v∞(r) ≤ W (r, t) for

r ∈ [0,∞), t > 0. We immediately obtain that v∞(r) = 0

Now, since lim inft→∞ u(r, t) ≥ uR(r) and lim supt→∞ v(r, t) ≤ vR(r) in [0, R], it follows

that lim supt→∞ v(r, t) ≤ 0 in [0, R], which directly yields that limt→∞ v(r, t) = 0 locally

uniformly for r ∈ [0,∞).

Since limt→∞ v(r, t) = 0 locally uniformly for r ∈ [0,∞), by the similar arguments used

in Theorem 4.1, we can show that limt→∞ u(r, t) = U(r) locally uniformly for r ∈ [0,∞),

and we omit it for brevity. The proof is complete. �
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Combining Lemmas 5.1, 5.2 and 5.3, we immediately have the following spreading-

vanishing dichotomy theorem.

Theorem 5.4 Let (u, v, h) be the solution to problem (1.2). Then the following alternative

holds: either

(i) Spreading: h∞ = ∞ and limt→∞ u(r, t) = U(r) locally uniformly for r ∈ [0,∞);

or

(ii) Vanishing: h∞ ≤ R∗(d1, a1 − c1V ) and limt→∞ ‖u(·, t)‖C([0,h(t)]) = 0.

5.2 Sharp criteria for the spreading and vanishing

This subsection is devoted to establish sharp criterion by choosing d1, μ and initial function

u0 as varying factors to distinguish the spreading-vanishing dichotomy for the invasive

species claimed by Theorem 5.4.

Let D∗(h0, a1− c1V ) be the positive constant determined by Corollary 3.4 which satis-

fies λ1(D
∗(h0, a1−c1V ), h0, a1−c1V ) = 0. The following result implies that the spreading

will occur for small d1, which means that for the invasive species, there exists a uncondi-

tional selection for slow dispersal rate.

Theorem 5.5 If 0 < d1 ≤ D∗(h0, a1 − c1V ), then spreading occurs.

Proof. We will first prove the case 0 < d1 < D∗(h0, a1 − c1V ). To begin with, define

K =
c2M
a2L

‖v0‖L∞([0,∞)), ω =
a2Lc2L
c2M

, v(r, t) = (1 +Ke−ωt)V (r). (5.4)

Since a2L
c2M

≤ V (r) ≤ a2M
c2L

for any r ≥ 0. It follows from direct calculations that

vt − d2Δv − [m(r)− u− v]v ≥ Ke−ωtV (r)[−ω + (1 +Ke−ωt)c2(r)V (r)]

≥ Ke−ωtV (r)[
a2Lc2L
c2M

− ω]

≥ 0

for any u ≥ 0, r ≥ 0 and t > 0, and v(r, 0) = (1 + K)V (r) > ‖v0‖L∞([0,∞)) ≥ v0(r) for

any r ≥ 0. Since limt→∞ v(r, t) = V (r) uniformly in [0,∞), it follows that for any given

0 < ε � 1, there exists Tε > 0 such that

v(r, t) ≤ (1 + ε)V (r),

for any r ∈ [0,∞), t ≥ Tε. The comparison principle still yields that v(r, t) ≤ (1 + ε)V (r)

for any r ∈ [0,∞), t ≥ Tε.
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On the other hand, use λ1 and φ1 to denote the principal eigenvalue and the correspond-

ing eigenfunction of problem (3.1) with D = d1, R = h(Tε) and α(r) = a1(r)− c1(r)V (r),

respectively. Since λ1(D
∗(h0, a1 − c1V ), h0, a1 − c1V ) = 0 and h(t) is strictly increasing

with respect to t, it follows from Corollary 3.5 that λ1 < 0. We now set

u(r, t) =

{
δφ1(r), r ∈ [0, h(Tε)], t ≥ Tε;

0, r ∈ (h(Tε),∞), t ≥ Tε.

By some direct calculations, we have⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ut − d1Δu− [a1(r)− b1(r)u− c1(r)(1 + ε)V ]u = (λ1 + δb1(r)φ1 + εc1(r)V )δφ1,

0 < r < h(Tε), t > Tε,

ur(0, t) = u(r, t) = 0, r ≥ h(Tε), t > Tε,
d
dth(Tε) = 0 ≤ −μur(h(Tε), t), t > Tε,

u(r, Tε) = δφ1(r), 0 ≤ r ≤ h(Tε).

Choosing ε and δ so small that

λ1 + δb1(r)φ1 + εc1(r)V ≤ 0

and

δφ1(r) ≤ u(r, Tε)

for all r ∈ [0, h(Tε)], we thus can use Theorem 2.4 with (u, (1+ε)V, h(Tε)) as lower solution

to (1.2) to get u(r, t) ≥ u(r, t) for r ∈ [0, h(Tε)], t ∈ [Tε,∞). It follows that

lim inf
t→∞ ‖u(r, t)‖C([0,h(t)]) ≥ δφ1(0) > 0.

In view of Lemma 5.1, we conclude that h∞ = ∞, that is, spreading occurs.

When it comes to the case d1 = D∗(h0, a1 − c1V ), we see that

λ1 = λ1(d1, h0, a1 − c1V ) = 0.

Using the monotonicity of h(t) again, we can choose t∗ > 0 such that h(t∗) > h0. It follows

from Corollary 3.5,

λ1(d1, h(t
∗), a1 − c1V ) < λ1(d1, h0, a1 − c1V ) = 0.

Therefore, after replacing h0 with h(t∗), the same course as above could be done to obtain

the desired result again. The proof is finished. �

Let D∗(h0, a1) be the positive constant determined by Corollary 3.4 which satisfies

λ1(D
∗(h0,m), h0, a1) = 0. It follows from [4, Corollary 2.2] that

D∗(h0, a1) > D∗(h0, a1 − c1V ).
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The following consequence indicates that the vanishing will conditionally occur for large

d1.

Lemma 5.6 If d1 > D∗(h0, a1), then then for any given u0 satisfying (1.3), there exists

μ > 0 depending on u0 and h0 such that vanishing occurs if 0 < μ ≤ μ.

Proof. It is clearly that (u, h) satisfies the following problem⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ut − d1Δu ≤ [a1(r)− b1(r)u]u, 0 < r < h(t), t > 0,

ur(0, t) = u(h(t), t) = 0, t > 0,

h′(t) = −μur(h(t), t), t > 0,

u(r, 0) = u0(r), 0 ≤ r ≤ h0,

which together with the comparison principle [6, Lemma 2.6] implies that (u, h) is a lower

solution to the problem⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ut − d1Δu = [a1(r)− b1(r)u]u, 0 < r < h(t), t > 0,

ur(0, t) = u(h(t), t) = 0, t > 0,

h
′
(t) = −μur(t, h(t)), t > 0,

u(r, 0) = u0(r), h(0) = h0, 0 ≤ r ≤ h0,

(5.5)

Since d1 > D∗(h0, a1), by the similar arguments applied in [25, Theorem 4.3] or [16,

Lemma 5.3] with some minor modifications, we can prove that there exists μ > 0 depending

on u0 such that h∞ < ∞ if 0 < μ ≤ μ. The above fact immediately yields that that

vanishing occurs if 0 < μ ≤ μ, and the proof is complete. �

In contrast with Lemma 5.6, the following result indicates that the spreading will still

conditionally occur for large d1.

Lemma 5.7 If d1 > D∗(h0, a1 − c1V ), then for any given (u0, v0) satisfying (1.3), there

exists μ > 0 depending on u0, v0 and h0 such that spreading occurs if μ ≥ μ.

Proof. One first note that since a2L
c2M

≤ V (r) ≤ a2M
c2L

for any r ≥ 0 and (5.1) holds, it

follows from Theorem 3.3 (ii) that

lim
T→∞

λ1(d1,
√
T , a1 − c1V ) = − sup

r∈[0,∞)
[a1(r)− c1(r)V (r)] < 0.

Therefore there exists T ∗ > 0 such that λ1(d1,
√
T ∗, a1 − c1V ) < 0.

Next we are going to construct a suitable lower solution to (1.2) and then apply The-

orem 2.4. Define v(r, t) as in (5.4). We thus find that

vt − d2Δv − [a2(r)− b2(r)u− c2(r)v]v ≥ 0
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for any u ≥ 0, r ≥ 0 and t > 0, and v(r, 0) ≥ v0(r) for any r ≥ 0.

On the other hand, inspired by Lei et al. [16], we set λ be the eigenvalue of{
−d1Δψ − 1

2ψ
′ = λψ, 0 < r < 1,

ψ′(0) = ψ(1) = 0,

with the corresponding eigenfunction ψ > 0, ψ′ ≤ 0 in [0, 1), and ‖ψ‖L∞([0,1)) = 1. Define

h(t) =
√
t+ σ, t ≥ 0

u(r, t) =
ρ

(t+ σ)k
ψ(

r√
t+ σ

), 0 ≤ r ≤ √
t+ σ, t ≥ 0,

where σ, k and ρ are positive constants to be chosen later. By Lemma 2.2, we have 0 <

u(r, t) ≤ M1 and 0 < v(r, t) ≤ M2 for any 0 ≤ r ≤ h(t) and t ≥ 0. This fact together with

a1L ≤ a1(r) ≤ a1M , b1L ≤ b1(r) ≤ b1M , and c1L ≤ c1(r) ≤ c1M implies that there exists

a positive constant L such that f(r, u, v) ≥ −Lu for any 0 ≤ r ≤ h(t) and 0 < u ≤ M1,

where f(r, u) � (a1(r) − b1(r)u − c1(r)v)u. We now first choose 0 < σ ≤ min{1, h20},
k > λ+ L(T ∗ + 1), and ρ > 0 small such that u(r, 0) = ρ

σkψ(
r√
σ
) < u0(r) for 0 ≤ r ≤ √

σ.

For these k and ρ, we then further select μ > 0 large, say μ ≥ μ � − (T ∗+1)k

ρψ′(1) . By the

choices of σ, k, ρ and μ, we obtain from direct calculations that

ut − d1Δu− [a1(r)− b1(r)u− b1(r)v]u

= − ρ

(t+ σ)k+1

[
kψ +

r

2
√
t+ σ

ψ′ + d1Δψ − L(t+ σ)ψ
]

≤ − ρ

(t+ σ)k+1

[
d1Δψ +

1

2
ψ′ + kψ − L(t+ σ)ψ

]
≤ − ρ

(t+ σ)k+1

[
d1Δψ +

1

2
ψ′ + kψ − λψ

]
= 0,

for 0 < r < h(t) and 0 < t ≤ T ∗, and

h′(t) + μur(h(t), t) =
1

2
√
t+ σ

+
μρ

(t+ σ)k+
1
2

ψ′(1) ≤ 0

for 0 < t ≤ T ∗.
Since h(0) =

√
σ ≤ h0, we thus see that (u, v, h) is a lower solution to (1.2). By

applying Theorem 2.4, we conclude that h(t) ≥ h(t) for 0 < t ≤ T ∗. Specially, it follows

that

h(T ∗) ≥ h(T ∗) =
√
T ∗ + σ ≥

√
T ∗.

Since λ1(d1,
√
T ∗, a1 − c1V ) < 0, we deduce from Theorem 3.3 that

h(T ∗) ≥
√
T ∗ > R∗(d1, a1 − c1V ),
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which implies that h∞ > R∗(d1, a1− c1V ). It follows from Lemma 5.2 that h∞ = ∞, that

is, spreading occurs. The proof is complete. �

Lemmas 5.6 and 5.7 imply that for the invasive species, there exists a conditional

selection for fast dispersal rate.

Now we can derive the sharp criterion spreading-vanishing for the invasive species.

Theorem 5.8 For any d1 > 0 and given (u0, v0) satisfying (1.3), there exists μ∗ ≥ 0

depending on u0, v0, h0 and d1 such that spreading occurs if μ > μ∗, and vanishing

occurs if 0 < μ ≤ μ∗. Moreover, μ∗ = 0 if 0 < d1 ≤ D∗(h0, a1 − c1V ), μ∗ ≥ 0 if

d1 > D∗(h0, a1 − c1V ), and μ∗ > 0 if d1 > D∗(h0, a1).

We remark that in the above consequences, parameter μ can be replaced by the initial

function u0(r). In fact, we have the following results.

Lemma 5.9 If d1 > D∗(h0, a1), then for any given (u0, v0) satisfying (1.3), vanishing

occurs if ‖u0‖L∞([0,∞)) sufficiently small.

Lemma 5.10 If d1 > D∗(h0, a1−c1V ), then for any given (u0, v0) satisfying (1.3), spread-

ing occurs if ‖u0‖L∞([0,∞)) sufficiently large.

We note that Lemmas 5.9 and 5.10 are the counterparts of [25, Theorem 4.2] and [16,

Lemma 5.1] respectively, and they can be proved by the similar arguments used in the

proofs of Lemmas 5.6 and 5.7, so we omit them here.

The following theorem is the direct result of Lemmas 5.9 and 5.10, and can be proved

by the similar arguments used in the proofs of Theorem 5.8, so we omit it again.

Theorem 5.11 For any d1 > 0 and given v0 satisfying (1.3), if u0(r) = δθ(r) for some

δ > 0 and θ(r) such that u0 satisfying (1.3), then there exists δ∗ depending on θ, v0 and

d1 such that spreading occurs if δ > δ∗, and vanishing occurs if 0 < δ ≤ δ∗. Moreover,

δ∗ = 0 if 0 < d1 ≤ D∗(h0, a1 − c1V ), δ∗ ≥ 0 if d1 > D∗(h0, a1 − c1V ), and δ∗ > 0 if

d1 > D∗(h0, a1).

5.3 Estimates of spreading speed

In this subsection, we will give some rough estimates on the spreading speed of the free

boundary r = h(t) for the spreading case. To this aim, let us first denote the followings

ai∞ � lim inf
r→∞ ai(r), a∞i � lim sup

r→∞
ai(r)
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for i = 1, 2, and bi∞, b∞i , ci∞ and c∞i (i = 1, 2) are defined analogously. Obviously, we

have a(b, c)iL ≤ a(b, c)i∞ ≤ a(b, c)∞i ≤ a(b, c)iM for i = 1, 2.

The following proposition is taken from [6], whose complete proof is given in [3].

Proposition 5.12 Let D, a and b be given positive constants. Then for any K ∈ [0, 2
√
aD),

the following problem{
−DU ′′ +KU ′ = aU − bU2, 0 < r < ∞,

U(0) = 0, U(∞) = a
b ,

(5.6)

admits a unique positive solution U = UK = Ua,b,D,K satisfying U ′
K(r) > 0 for r ≥ 0,

U ′
K1

(0) > U ′
K2

(0), UK1(r) > UK2(r) for r ≥ 0 and K1 > K2, and for each μ > 0, there

exists a unique K0 = K0(μ, a, b,D) ∈ [0, 2
√
aD) such that μU ′

K0
(0) = K0. Moreover,

lim
aμ
bD

→∞
K0√
aD

= 2, lim
aμ
bD

→0

K0√
aD

bD

aμ
=

√
3

3
.

We now have the following estimates for the spreading speed of the free boundary r = h(t).

Theorem 5.13 If h∞ = ∞, that is, the spreading occurs, then

K0(μ, a1L − a2Mc1M
c2L

, b1M , d1) ≤ lim inf
t→∞

h(t)

t
≤ lim sup

t→∞
h(t)

t
≤ K0(μ, a1M , b1L, d1).

Furthermore,

K0(μ, a1∞ − a∞2 c∞1
c2∞

, b∞1 , d1) ≤ lim inf
t→∞

h(t)

t
≤ lim sup

t→∞
h(t)

t
≤ K0(μ, a

∞
1 , b1∞, d1).

Proof. Since the method is similar, we only prove the second estimates.

We first show that lim supt→∞
h(t)
t ≤ K0(μ, a

∞
1 , b1∞, d1). It follows from the compari-

son principle [6, Lemma 2.6] that (u, h) is a lower to the following auxiliary problem⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ut − d1Δu = [a1(r)− b1(r)u]u, 0 < r < h(t), t > 0,

ur(0, t) = u(h(t), t) = 0, t > 0,

h
′
(t) = −μur(h(t), t), t > 0,

u(r, 0) = u(r, 0), h(0) = h0, 0 < r < h0.

We thus see that h(t) ≥ h(t) → ∞ as t → ∞. By [6, Theorem 3.6], we have

lim sup
t→∞

h(t)

t
≤ K0(μ, a

∞
1 , b1∞, d1),

which directly yields our upper estimate.
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On the other hand, similar in the proof of Theorem 5.5, we find that for any given 0 <

ε < ε2 =
a1L
c1M

/a2M
c2L

−1, there exists Tε > 0 such that v(r, t) ≤ (1+ε)V (r) for any r ∈ [0,∞),

t ≥ Tε. Since h∞ = ∞, there still exists T ′
ε > 0 such that h(T ′

ε) > R∗(d1, a1− (1+ ε)c1V ).

By choosing T ε � max{Tε, T
′
ε}, we see that (u, h) satisfies⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ut − d1Δu ≥ [a1(r)− c1(r)(1 + ε)V − b1(r)u]u, 0 < r < h(t), t > T ε,

ur(0, t) = u(h(t), t) = 0, t > T ε,

h′(t) = −μur(h(t), t), t > T ε,

u(r, T ε) > 0, 0 < r < h(T ε).

The comparison principle [6, Lemma 2.6] implies that (u, h) is an upper solution to the

following problem⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ut − d1Δu = [a1(r)− c1(r)(1 + ε)V − b1(r)u]u, 0 < r < h(t), t > T ε,

ur(0, t) = u(h(t), t) = 0, t > T ε,

h′(t) = −μur(h(t), t), t > T ε,

u(r, T ε) = u(r, T ε), h(T ε) = h(T ε), 0 < r < h(T ε).

Since h(T ε) > R∗(d1, a1 − (1 + ε)c1V ), [6, Lemma 2.2] yields that h → ∞ as t → ∞.

Moreover, it is well known (see, e.g. [10]) that lim supr→∞ V (r) ≤ a∞2
c2∞ . By [6, Theorem

3.6], we have K0(μ, a1∞ − (1 + ε)
a∞2 c∞1
c2∞ , b∞1 , d1) ≤ lim inft→∞

h(t)
t , which implies that

K0(μ, a1∞ − (1 + ε)
a∞2 c∞1
c2∞

, b∞1 , d1) ≤ lim inf
t→∞

h(t)

t

for any 0 < ε ≤ ε1. Due to the arbitrariness of ε and the continuity of K0 with respect to

its arguments, we thus obtain the desired lower estimate. �

We still note that since there do not exist appropriate comparison functions, for exam-

ple, some traveling waves, due to the heterogeneous environment assumption, thus only

the weaker estimates of spreading speed as above can be obtained.
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