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Abstract

The purpose of this paper is twofold. Firstly we investigate the distribution, sim-
plicity and monotonicity of the zeros around the unit circle and real line of the
real self–reciprocal polynomials R

(λ)
n (z) = 1 + λ(z + z2 + · · · + zn−1) + zn, n ≥ 2

and λ ∈ R. Secondly, as an application of the first results we give necessary and
sufficient conditions to guarantee that all zeros of the self–reciprocal polynomials
S
(λ)
n (z) =

∑n
k=0 s

(λ)
n,kz

k, n ≥ 2, with s
(λ)
n,0 = s

(λ)
n,n = 1, s

(λ)
n,n−k = s

(λ)
n,k = 1 + kλ,

k = 1, 2, ..., �n/2� when n is odd, and s
(λ)
n,n−k = s

(λ)
n,k = 1 + kλ, k = 1, 2, ..., n/2 − 1,

s
(λ)
n,n/2 = (n/2)λ when n is even, lie on the unit circle. Solving then an open problem
given by Kim and Park in 2008.

Keywords: Self–reciprocal polynomials, unit circle, zeros, monotonicity,
interlacing.

1. Introduction

Let the polynomial P (z) =
n∑

i=0

aiz
i, ai ∈ C. Define the polynomial

P ∗(z) = znP

(
1

z̄

)
= ā0z

n + ā1z
n−1 + · · ·+ ān = ā0

n∏
j=1

(z − z∗j ),

whose zeros z∗k are the inverses of the zeros zk of P (z), that is, z∗k = 1/z̄k.
If P ∗(z) = uP (z) with |u| = 1, then P (z) is said to be a self–inversive polynomial,

see [19]. If P (z) = znP (1/z), then P (z) is said to be self–reciprocal. If ai ∈ R,
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then P (z) is called real self–reciprocal polynomials, see [14]. Notice that real self–
reciprocal polynomials are also self–inversive polynomials. It is clear that if P (z) is
a self–reciprocal polynomial, then ai = an−i, for i = 0, 1, ..., n.

The properties of self–reciprocal polynomials are interesting topics to study and
have many applications in some areas of mathematics, see for example [9, 10, 11, 13].

It is not difficult to verify that if a polynomial has all its zeros on the unit circle,
then it is a self–inversive polynomial. The reciprocal is not always true, since self–
inversive polynomials can have zeros that are symmetric with respect to the unit
circle. The most famous result about the conditions for a self–inversive polynomial
to have all its zeros on the unit circle is due to Conh, see [19, p. 18]: A necessary
and sufficient condition for all the zeros of P (z) to lie on the unit circle is that P (z)
is self–inversive and that all zeros of P ′(z) lie in or on this circle. In [4], Chen has
given more flexible conditions than the Cohn’s result. Choo and Kim in [7] gave an
extension of Chen’s result, to guarantee that the zeros on the unit circle are simple.
Many authors have investigated special classes of self–inversive polynomials, see for
example [14, 15, 16, 17].

In [14], Kim and Park investigate the distribution of zeros around the unit circle
of real self–reciprocal polynomials of even degree with five terms whose absolute
values of middle coefficients equal the sum of all other coefficients. As a conse-
quence of this study, they present a result related to the location of the zeros of
the real self–reciprocal polynomial S

(λ)
n (z) =

∑n
k=0 s

(λ)
k zk, with s

(λ)
k = 1 + kλ, for

k = 1, 2, ..., �n/2� , for n odd and some values of λ ∈ R (see [14, Th. 7]). The authors
remarked that for the three cases “2 < λ < 2 + 2

�n/2� for �n/2� odd”, “λ = 2+ 2
�n/2�

for �n/2� odd” and “λ = − 2
�n/2�” the location of the zeros of S

(λ)
n (z) remain as an

open problem. Here, we give a complete proof about the location of the zeros of
S
(λ)
n (z) in the case n odd and λ ∈ R, answering the open problems of [14, Th. 7] and

we present a new result when n is even. Precisely, we will deal with the polynomials

S(λ)
n (z) =

n∑
k=0

s
(λ)
n,kz

k, n ≥ 2, (1)

with s
(λ)
n,0 = s

(λ)
n,n = 1 and

s
(λ)
n,k = s

(λ)
n,n−k = 1 + kλ, k = 1, 2, ...,

⌊
n
2

⌋
, if n is odd,

s
(λ)
n,k = s

(λ)
n,n−k = 1 + kλ, k = 1, 2, ..., n

2
− 1, s

(λ)
n,n/2 =

n
2
λ, if n is even.

(2)

The proofs of these results are obtained using properties of the polynomials

R(λ)
n (z) = 1 + λ(z + z2 + · · ·+ zn−1) + zn, n ≥ 2, (3)

with λ ∈ R, studied in [1].
We denote the unit circle by C = {z : z = eiθ, 0 ≤ θ ≤ 2π}. For z = eiθ with

0 ≤ θ ≤ 2π, we consider the transformation

x = x(z) =
z1/2 + z−1/2

2
= cos(θ/2). (4)
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In the context of orthogonal polynomials, see [6, 12], the transformation (4) was
first used by Delsarte and Genin in [8], and later, was further explored by Zhedanov
in [23]. We also consider and present some properties of the zeros of the polynomials

W
(λ)
n (x) defined by

W (λ)
n (x) = W (λ)

n (x(z)) = z−n/2R(λ)
n (z), for n ≥ 1. (5)

For the general case, the relation (5) has been used in [3] for an application of real
orthogonal polynomials in the frequency analysis problem, also it has been used in
[9] and [10] for classes of hypergeometric polynomials with zeros on the unit circle.

In [22] we find the following results. Let the sequence of polynomials {Qm} be
generated by the three term recurrence relation

Qm+1(z) = (z + βm+1)Qm(z)− αm+1zQm−1(z), m ≥ 1, (6)

with Q0(z) = 1 and Q1(z) = z + β1, where the complex numbers αm and βm are
such that αm �= 0, m ≥ 2 and βm �= 0, m ≥ 1.

Theorem 1 ([22]). Let βk = β > 0 for k = 1, 2, ..., n and αk > 0 for k = 2, ..., n.
Then the zeros of any Qk(z), 1 ≤ k ≤ n, are distinct (except for a possible double
zero at z = β) and lie on C (β) ∪ (0,∞), where C (β) ≡ {z : z = βeiθ, 0 < θ < 2π}.
In particular, if

{
αk+1

4β

}n−1

k=1
is a positive chain sequence then all the zeros are distinct

and lie on the open circle C (β).

We use this result to verify the location of zeros of the polynomials R
(λ)
n (z), see

Section 3. Notice that C = C (1) ∪ {1}.
If there exists a sequence of real numbers {gk} such that 0 ≤ g0 < 1, 0 < gk < 1

for k ≥ 1 and ak = (1−gk−1)gk for k ≥ 1, then {ak}∞k=1 is said to be a positive chain
sequence and {gk}∞k=0 is called parameter sequence of the sequence {ak}∞k=1.

This manuscript is organized as follow. In Section 2 we write explicitly our
main results about the behaviour of the zeros of the real self–reciprocal polynomials
R

(λ)
n (z) and S

(λ)
n (z), with respect to the parameter λ. In Section 3 we give some old

and new properties of the polynomials R
(λ)
n (z) for different choices of parameter λ,

that are necessary to show the main results. Using the transformation (4) we prove,
in Section 4, results about the location and monotonicity behaviour of the zeros of
the polynomials R

(λ)
n (z) and W

(λ)
n (x). Finally in Section 5 we show completely the

location of the zeros of S
(λ)
n (z) in the case n odd, answering the open problems of

[14, Th. 7] and we show a new result when n is even. As consequence of this last

result, in Section 5, we also provide some relations between polynomials R
(λ)
n (z) and

S
(λ)
n (z), for different choices of parameter λ.

2. Main results

In Sections 3 and 4, we develop all the necessary preliminaries to show our main
result about the distribution, simplicity and monotonicity of the zeros of polynomial
R

(λ)
n (z), defined by (3), on the unit circle, that it is:
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Theorem 2. For − 2
n−1

≤ λ ≤ 2 (n even) or − 2
n−1

≤ λ ≤ 2+ 2
n−1

(n odd), the zeros

of R
(λ)
n (z), defined by (3), are represented by z

(λ)
n,r = eiθ

(λ)
n,r , with θ

(λ)
n,r = 2 arccos(ξ

(λ)
n,r),

where ξ
(λ)
n,r , r = 1, 2, ..., �n/2� are the non–negative zeros of W

(λ)
n (x), defined by (5).

For n odd, r = 1, 2, ..., �n/2�+ 1 and θ
(λ)
n,�n/2�+1 = π. Furthermore,

0 ≤ θ
(λ)
n,1 < θ

(λ)
n,2 < · · · < θ

(λ)
n,�n/2� ≤ π,

θ
(λ)
n,�n/2�+1 = π (n odd) and θ

(λ)
n,r, r = 1, 2, ..., �n/2�, are increasing functions of λ.

Also the main result about the monotonicity behaviour of the two positive zeros
of R

(λ)
n (z) and behaviour of the two negative zeros of R

(λ)
n (z), when these zeros exist,

that it is:

Theorem 3.

1. If λ < − 2
n−1

, n > 1, R
(λ)
n (z) has two positive zeros z

(λ)
k and 1/z

(λ)
k , where

z
(λ)
k ∈ (1,∞) and 1/z

(λ)
k ∈ (0, 1). Moreover, z

(λ)
k is a decreasing function of λ

and, consequently, 1/z
(λ)
k is an increasing function of λ.

2. If λ > 2 (when n > 1 is even) or λ > 2+ 2
n−1

(when n > 1 is odd), R
(λ)
n (z) has

two negative zeros z
(λ)
k and 1/z

(λ)
k , where z

(λ)
k ∈ (−∞,−1) and 1/z

(λ)
k ∈ (−1, 0).

Moreover, z
(λ)
k is a decreasing function of λ and, consequently, 1/z

(λ)
k is an

increasing function of λ.

Another new result of this manuscript is the location of the zeros of the polyno-
mial S

(λ)
n (z) defined by (1) and (2), proved in Section 5, answering the open problem

of [14, Th. 7] when n is odd and also presenting a new result when n is even.

Theorem 4. The zeros of the polynomial S
(λ)
n (z), n ≥ 2, defined by (1) and (2) lie

on the unit circle if and only if

− 2

�n/2� ≤ λ ≤ 2, when �n/2� is odd;

− 2

�n/2� ≤ λ ≤ 2 +
2

�n/2� , when �n/2� is even.

Furthermore,

• if λ ∈
(
−∞,− 2

�n/2�

)
, S

(λ)
n (z) has two positive zeros z

(λ)
k ∈ (1,+∞) and

1/z
(λ)
k ∈ (0, 1) and the other zeros are located on the unit circle;

• if λ ∈ (2,+∞)
(
λ ∈

(
2 + 2

�n/2� ,+∞
))

and �n/2� is odd (�n/2� is even),

S
(λ)
n (z) has two negative zeros z

(λ)
k ∈ (−∞,−1) and 1/z

(λ)
k ∈ (−1, 0) and the other

zeros are located on the unit circle.
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3. Some properties of the polynomial R(λ)
n (z)

Firstly we give some results about the zeros of the polynomials R
(λ)
n (z) and, for

specific values of λ, how they can be factorized.

Lemma 5. Let R
(λ)
n (z) = 1+ λ(z + z2 + · · ·+ zn−1) + zn, n ≥ 2, be a polynomial of

degree n and

A
(λ)
l (z) =

l∑
k=0

a
(λ)
k zk, with l natural and a

(λ)
k =

{
1, k even
λ− 1, k odd

,

Bn−2(z) =
n−2∑
k=0

bkz
k, with bk =

(k + 1)(n− (k + 1))

(n− 1)
,

Cn−3(z) =
n−3∑
k=0

ckz
k, with ck =

⎧⎨
⎩

(k+2)(n−1−k)
2(n−1)

, k even

− (k+1)(n−1−(k+1))
2(n−1)

, k odd
.

1. If λ = − 2
n−1

, n > 1, then z = 1 is a zero of R
(λ)
n (z) of multiplicity 2 and

R
(λ)
n (z) = (z − 1)2Bn−2(z).

2. If n is odd, then z = −1 is a zero of R
(λ)
n (z) and R

(λ)
n (z) = (z + 1)A

(λ)
n−1(z).

3. If n is odd and λ = 2 + 2
n−1

, n > 1, then z = −1 is a zero of R
(λ)
n (z) of

multiplicity 3 and R
(λ)
n (z) = (z + 1)3Cn−3(z).

4. If n is even and λ = 2, n > 1, then z = −1 is a zero of R
(λ)
n (z) of multiplicity

2 and R
(λ)
n (z) = (z + 1)2A

(1)
n−2(z).

The proof of items 1 (when n is odd), 2 and 3 of Lemma 5 can be found in [18].
By simple manipulations we can prove the other results.

In [1], one can found the following result about necessary and sufficient conditions

to guarantee that all the zeros of polynomials R
(λ)
n (z) lie on the unit circle.

Theorem 6 ([1]). The zeros of the polynomial R
(λ)
n (z) = 1+λ(z+z2+· · ·+zn−1)+zn,

λ ∈ R, of degree n ≥ 2, lie on the unit circle if and only if

− 2

n− 1
≤ λ ≤ 2, when n is even;

− 2

n− 1
≤ λ ≤ 2 +

2

n− 1
, when n is odd.

Observe that it is considered n > 1 in the conditions of Theorem 6. If n = 1,
z = −1 is a single root of R

(λ)
1 (z) = 0, for λ ∈ R.

Also, it can be proved that

1. If λ ∈ (−∞,− 2
n−1

), R
(λ)
n has two positive zeros z

(λ)
k and 1/z

(λ)
k and the other

zeros are located on the unit circle.
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2. If λ ∈ (2,∞) (even case) and λ ∈ (2+ 2
n−1

,∞) (odd case), R
(λ)
n has two negative

zeros z
(λ)
k and 1/z

(λ)
k and the other zeros are located on the unit circle.

Indeed:

1. For λ < − 2

n− 1
,

lim
z→0

R(λ)
n (z) > 0, lim

z→1
R(λ)

n (z) = 2 + (n− 1)λ < 0 and lim
z→+∞

R(λ)
n (z) > 0.

That is, when λ < − 2

n− 1
, there is a sign change of R

(λ)
n (z) in (0, 1) and

(1,∞). Thus, there is an odd number of zeros of R
(λ)
n (z) in (0, 1) and (1,∞).

From [16, Th. 2.1 item (a)(ii)] follows that there is exactly one zero of R
(λ)
n in

(0, 1), one zero of R
(λ)
n in (1,∞) and n− 2 zeros of R

(λ)
n (z) are located on the

unit circle.

2. For n even, if λ > 2,

lim
z→−∞

R(λ)
n (z) > 0, lim

z→−1
R(λ)

n (z) = 2− λ < 0 and lim
z→0

R(λ)
n (z) > 0.

Hence, there is a sign change of R
(λ)
n (z) in (−∞,−1) and (−1, 0). Using the

same arguments as above and [16, Th. 2.1 item (b)(ii)] follows the result.

For n odd, if λ > 2 +
2

n− 1
, since R

(λ)
n (z) = (z + 1)A

(λ)
n−1(z) we have

lim
z→−∞

A
(λ)
n−1(z) > 0, lim

z→−1
A

(λ)
n−1(z) = n− n− 1

2
λ < 0 and lim

z→0
A

(λ)
n−1(z) > 0.

That is, there is a sign change of A
(λ)
n−1(z) in (−∞,−1) and (−1, 0), and, from

[16, Th. 2.1 item (b)(ii)], R
(λ)
n (z) has one real zero in (−∞,−1), another in

(−1, 0) and n− 2 on the unit circle.

It is also easy to verify, by mathematical induction, that the sequence of poly-
nomials {R(λ)

n (z)}∞n=0 is generated by the three term recurrence relation

R
(λ)
n+1(z) = (z + 1)R(λ)

n (z)− αn+1zR
(λ)
n−1(z), n ≥ 1, (7)

where R0(z) = 1, R1(z) = z + 1, α2 = 2− λ, λ ∈ R, and αn = 1 for n ≥ 3.
Using results from [22] and the recurrence relation (7) we can show that for any

n ≥ 1, the two consecutive polynomials R
(λ)
n (z) and R

(λ)
n+1(z) do not have common

zeros.
Since the sequence of polynomials {R(λ)

n (z)} satisfies the three term recurrence
relation of type (6) with βn = 1 for n ≥ 1, α2 = 2 − λ, and αn = 1 for n ≥ 3, we
can apply Theorem 1. If λ < 2 and, consequently, α2 = 2 − λ > 0, then all zeros
of R

(λ)
n (z) are distinct (except for a possible double zero at z = 1 that occur when

6



λ = − 2
n−1

) and lie on C (1) ∪ (0,∞), where C (1) ≡ {z : z = eiθ, 0 < θ < 2π}.
In particular, from Theorem 1, if 0 ≤ λ < 2,

{
2−λ
4
, 1
4
, 1
4
, ...

}
is a positive chain se-

quence, whose parameter sequence is
{

λ
2
, 1
2
, 1
2
, ...

}
. Then, for 0 ≤ λ < 2 all the zeros

of R
(λ)
n (z) are distinct and lie on the unit circle. These facts were partially given in

the proof of Theorem 6, in [1], using different techniques.

Now we consider z = eiθ with 0 ≤ θ ≤ 2π, and the transformation (4). For
θ ∈ [0, 2π] then x ∈ [−1, 1], and z = z(x) = 2x2 − 1 + 2x

√
x2 − 1.

The polynomials W
(λ)
n (x), defined in (5), are given by

W (λ)
n (x) = Un(x)− (1− λ)Un−2(x), n ≥ 1, (8)

where the polynomials Un(x), n ≥ 0, with U−1(x) = 0, are the Chebyshev polyno-
mials of second kind. Indeed,

R(λ)
n (z) = 1 + λ(z + z2 + · · ·+ zn−1) + zn

= 1 + z + · · ·+ zn + (λ− 1)z(1 + z + · · ·+ zn−2)

=
zn+1 − 1

z − 1
+ (λ− 1)z

zn−1 − 1

z − 1

= zn/2
z(n+1)/2 − z−(n+1)/2

z1/2 − z−1/2
+ (λ− 1)zn/2

z(n−1)/2 − z−(n−1)/2

z1/2 − z−1/2
.

Using that (z1/2 + z−1/2)/2 = cos(θ/2) = x, we get

W (λ)
n (x) = z−n/2R(λ)

n (z) =
z(n+1)/2 − z−(n+1)/2

z1/2 − z−1/2
+ (λ− 1)

z(n−1)/2 − z−(n−1)/2

z1/2 − z−1/2

=
sin ((n+ 1)θ/2)

sin(θ/2)
+ (λ− 1)

sin ((n− 1)θ/2)

sin(θ/2)

= Un(x)− (1− λ)Un−2(x).

Since Un(x)−Un−2(x) = 2Tn(x), for n ≥ 2, see [20], where the polynomial Tn(x)
is the Chebyshev polynomial of first kind, we also can write

W (λ)
n (x) = λUn(x) + 2(1− λ)Tn(x). (9)

4. Zeros of the polynomials R(λ)
n (z) and W (λ)

n (x)

From relation (8) the polynomials {W (λ)
n (x)} are quasi-orthogonal polynomials

associated with the polynomials {Un(x)}, see [5, 6]. Furthermore, W
(λ)
n (x) has at

least n− 2 real distinct zeros in (−1, 1) for λ �= 1, see [21].

The trivial case λ = 1 in relation (8) means that W
(1)
n (x) = Un(x) and all zeros

of W
(1)
n (x) are real, distinct and they are located in (−1, 1). The following results

provide the location of the zeros of the polynomial W
(λ)
n (x) for different choices of

the parameter λ.

7



Lemma 7. For λ ∈ R we have the following results about the zeros of W
(λ)
n (x).

1. At least n− 2 zeros of W
(λ)
n (x) are real, distinct and are located in (−1, 1).

2. If − 2
n−1

< λ < 2
(− 2

n−1
< λ < 2 + 2

n−1

)
then all the zeros of W

(λ)
n (x) are

distinct and located in (−1, 1), when n is even (odd).

3. If λ = 2
(
λ = 2 + 2

n−1

)
, then x = 0 is zero of multiplicity 2 (3) of W

(λ)
n (x),

when n is even (odd).

4. If λ > 2
(
λ > 2 + 2

n−1

)
, then W

(λ)
n (x) has two purely imaginary zeros, when n

is even (odd).

5. If λ = − 2
n−1

, then x = 1 and x = −1 are zeros of W
(λ)
n (x).

6. If λ < − 2
n−1

, W
(λ)
n (x) has two real zeros (ξ

(λ)
n,k and −ξ

(λ)
n,k) outside of the interval

[−1, 1].

Proof. 1. Follows directly, since W
(λ)
n (x) is quasi–orthogonal polynomial of order

2 with respect to w(x) =
√
1− x2 on (−1, 1) when λ−1 �= 0, and when λ = 1,

W
(1)
n (x) = Un(x).

2. For these values of λ, R
(λ)
n (z) has all its zeros on the unit circle. Consequently,

from relation (5) all the zeros of W
(λ)
n (x(z)) are in (−1, 1). Observe that z = 1

is not a zero of R
(λ)
n (z) and z(1) = z(−1) = 1. Hence, x = 1 and x = −1 are

not zeros of W
(λ)
n (x(z)). For this reason, we consider the open interval (−1, 1).

Furthermore, in the even case, from Theorem 1 follows that all the zeros of
R

(λ)
n (z) are distinct and, consequently, all the zeros of W

(λ)
n (x) are distinct.

For n odd, the result that the zeros of W
(λ)
n (x) are distinct follow by the facts

that x = 0 is a simple zero of W
(λ)
n (x), n − 2 zeros of W

(λ)
n (x) are distinct

in the interval (−1, 1) and W
(λ)
n (x) = (−1)nW

(λ)
n (−x) (i.e., the real zeros of

W
(λ)
n (x) are symmetric with respect to the origin).

3. In this case, z = −1 is zero of multiplicity 2 (n even) and multiplicity 3 (n

odd) of R
(λ)
n (z). Observe that x(−1) = 0. Hence, x = 0 is zero of multiplicity

2 (3) of W
(λ)
n (x) when n is even (odd).

4. If λ > 2
(
λ > 2 + 2

n−1

)
, from Theorem 6 we know that R

(λ)
n (z) has two negative

zeros z
(λ)
k and 1/z

(λ)
k and the remaining n− 2 zeros are on the unit circle. We

can write z
(λ)
k = r

(λ)
k eiπ for r

(λ)
k > 1, and

x(z
(λ)
k ) = x(r

(λ)
k eiπ) =

(r
(λ)
k eiπ)1/2 + (r

(λ)
k eiπ)−1/2

2

=

(
(r

(λ)
k )1/2 − (r

(λ)
k )−1/2

2

)
i = β

(λ)
n,ki,

also

x

(
1

z
(λ)
k

)
= x

(
eiπ

r
(λ)
k

)
=

(eiπ/r
(λ)
k )1/2 + (eiπ/r

(λ)
k )−1/2

2
= −β

(λ)
n,ki,

8



then W
(λ)
n (x) has two zeros that are purely imaginary complex numbers and

the remaining n− 2 zeros are in (−1, 1).

5. If λ = − 2
n−1

, z = 1 is zero of multiplicity 2 of R
(λ)
n (z). Observe that z(1) =

z(−1) = 1. Hence, x = 1 and x = −1 are zeros of W
(λ)
n (x).

6. If λ < − 2
n−1

, from Theorem 6 we know that R
(λ)
n (z) has two positive zeros z

(λ)
k

and 1/z
(λ)
k and n−2 zeros on the unit circle. Observe that if z

(λ)
k ∈ (1,∞), then

x
(
z
(λ)
k

)
= x

(
1/z

(λ)
k

)
∈ (1,∞). As the zeros of W

(λ)
n (x) are symmetric with

respect to the origin, we conclude that −x
(
z
(λ)
k

)
is zero of W

(λ)
n (x). Hence,

W
(λ)
n (x) has two zeros outside [−1, 1].

Remark 8. From Lemma 7 there follows that all the zeros of W
(λ)
n (x) are distinct,

except in the cases λ = 2 for n even, and λ = 2 + 2
n−1

for n odd.

Let xn,1, xn,2, ..., xn,n and xn−2,1, xn−2,2, ..., xn−2,n−2 be zeros of Un(x) and Un−2(x),
respectively. We know that the zeros of Un(x) and Un−2(x) are real, simple and they
are located in (−1, 1). Furthermore, since Un(x) = (−1)nUn(−x) and their zeros are
symmetric with respect to the origin, it suffices to consider only their positive zeros,
i.e., xn,1 > xn,2 > · · · > xn,�n/2� > 0 and xn−2,1 > xn−2,2 > · · · > xn−2,�(n−2)/2� > 0,
here denoted in decreasing order. It is very well known that these zeros satisfy the
interlacing property

xn,1 > xn−2,1 > · · · > xn−2,�(n−2)/2� > xn,�n/2� > 0.

Observe, from relation (8), that also W
(λ)
n (x) = (−1)nW

(λ)
n (−x). Let

ξ
(λ)
n,1, ξ

(λ)
n,2, ..., ξ

(λ)
n,n be zeros of W

(λ)
n (x). As W

(λ)
n (x) is an even (odd) polynomial for

n even (odd), their real zeros are symmetric with respect to the origin and also

it suffices to consider only the positive zeros, ξ
(λ)
n,1, ξ

(λ)
n,2, ..., ξ

(λ)
n,�n/2�−1. If n is odd,

ξ
(λ)
n,�n/2�+1 = 0 is zero of W

(λ)
n (x). We also denote the positive zeros in decreasing

order, i.e.,
ξ
(λ)
n,1 > ξ

(λ)
n,2 > · · · > ξ

(λ)
n,�n/2�−1 > 0.

The following results deal with the location of the zeros of polynomials W
(λ)
n (x)

with respect to the zeros of polynomials Un(x) and Un−2(x).

Lemma 9. For λ ∈ R, we have the following results about the zeros of W
(λ)
n (x):

1. If λ < 1, then

xn,1 < ξ
(λ)
n,1 and xn,r < ξ(λ)n,r < xn−2,r−1, r = 2, 3, ..., �n/2� .

Furthermore,

• if − 2

n− 1
< λ < 1, then ξ

(λ)
n,1 < 1.

9



• If λ = − 2

n− 1
, then ξ

(λ)
n,1 = 1.

• If λ < − 2

n− 1
, then ξ

(λ)
n,1 > 1.

2. If λ > 1, then

xn−2,r < ξ(λ)n,r < xn,r, r = 1, 2, ..., �n/2� − 1.

Furthermore,
• if 1 < λ < 2

(
1 < λ < 2 + 2

n−1

)
for n even (odd), then ξ

(λ)
n,�n/2� < xn,�n/2� < 1.

• If λ = 2
(
λ = 2 + 2

n−1

)
for n even (odd), then 0 = ξ

(λ)
n,�n/2� < xn,�n/2�, that

is, 0 is zero of multiplicity 2 (3) of W
(λ)
n (x).

• If λ > 2
(
λ > 2 + 2

n−1

)
for n even (odd), then the other zero is ξ

(λ)
n,�n/2� =

β
(λ)
n,�n/2�i.

Proof. 1. The proof of this interlacing property of zeros of combination of poly-
nomials, for general case, can be found in [2, Lemma 2]. For the sake of the
completeness of this work we give the proof for the zeros of Un(x), Un−2(x)

and W
(λ)
n (x).

For λ < 1 and r = 2, 3, ..., �n/2�,

sign(W (λ)
n (xn,r+1)) = −sign(Un−2(xn,r+1)) = (−1)r−1

and
sign(W (λ)

n (xn−2,r)) = sign(Un(xn−2,r)) = (−1)r.

Hence there exist zeros ξ
(λ)
n,r , r = 2, 3, ..., �n/2�, of W (λ)

n (x) such that xn,r <

ξ
(λ)
n,r < xn−2,r−1. Furthermore,

sign(W (λ)
n (xn,1)) = −sign(Un−2(xn,1)) = −1 and lim

x→∞
W (λ)

n (x) = ∞.

Hence, ξ
(λ)
n,1 is a real zero of W

(λ)
n (x) and xn,1 < ξ

(λ)
n,1. Furthermore,

• if − 2

n− 1
< λ < 1, from Lemma 7 item 2 it follows that ξ

(λ)
n,1 < 1;

• if λ = − 2

n− 1
, from Lemma 7 item 5 it follows that ξ

(λ)
n,1 = 1;

• if λ < − 2

n− 1
, from Lemma 7 item 6 it follows that ξ

(λ)
n,1 > 1.

2. Similarly we have for r = 1, 2..., �n/2� − 1, that

sign(W (λ)
n (xn,r)) = sign(Un−2(xn,r)) = (−1)r−1

and
sign(W (λ)

n (xn−2,r)) = sign(Un(xn−2,r)) = (−1)r.

10



Hence there exist zeros ξ
(λ)
n,r , r = 1, 2, ..., �n/2�−1, ofW

(λ)
n (x) such that xn−2,r <

ξ
(λ)
n,r < xn,r. Furthermore,

• If 1 < λ < 2 and n even, for r = �n/2� we get sign(W
(λ)
n (xn,�n/2�)) =

(−1)n/2−1 and sign(W
(λ)
n (0)) = (−1)n/2−1sign(−2 + λ).

Hence, if n/2 is even,

sign(W (λ)
n (xn,�n/2�)) = −1 and sign(W (λ)

n (0)) = 1,

and, for n/2 odd,

sign(W (λ)
n (xn,�n/2�)) = 1 and sign(W (λ)

n (0)) = −1.

Then, ξ
(λ)
n,�n/2� is zero of W

(λ)
n (x) and ξ

(λ)
n,�n/2� < xn,�n/2�.

Similarly, if 1 < λ < 2 + 2
n−1

and n odd, for r = �n/2�, we get

sign(W (λ)
n (x

(λ)
�n/2�)) = (−1)�n/2�−1 and W (λ)

n (0) = 0.

Then, we need to analyse the behaviour of [W
(λ)
n (0)]′. Firstly, we have

[W (λ)
n (0)]′ = (−1)�n/2�(λ(1− n) + 2n) = (−1)�n/2�(n− 1)

(
2 +

2

n− 1
− λ

)
.

Since (n − 1)
(
2 + 2

n−1
− λ

)
> 0, it follows that sign([W

(λ)
n (0)]′) = (−1)�n/2�.

Hence, W
(λ)
n (x) is an increasing (decreasing) function at the point x = 0

when �n/2� is even (odd). Consequently, ξ
(λ)
n,�n/2� is real zero of W

(λ)
n (x) and

ξ
(λ)
n,�n/2� < xn,�n/2�.
• If λ = 2

(
λ = 2 + 2

n−1

)
and n even (odd), for r = �n/2�, we have that

ξ
(λ)
n,�n/2� = 0 is zero of multiplicity 2 (3) of W

(λ)
n (x) and 0 = ξ

(λ)
n,�n/2� < xn,�n/2�,

see Lemma 7 item 3.
• If λ > 2

(
λ > 2 + 2

n−1

)
and n even (odd), from Lemma 7 item 4 it follows

that ξ
(λ)
n,�n/2� = β

(λ)
n,�n/2�i is zero of W

(λ)
n (x).

Lemma 10. Every positive zero ξ
(λ)
n,r of W

(λ)
n (x) , for r = 1, 2, ..., �n/2�, is an

increasing function of 1− λ (consequently, decreasing function of λ).

The proof of this result, for general case, can be found in [2].

From items 2 and 5 of Lemma 7 we know that if − 2
n−1

≤ λ < 2 for n even or

− 2
n−1

≤ λ < 2 + 2
n−1

for n odd, the zeros of W
(λ)
n (x) are real, distinct and lie in the

interval [−1, 1]. In this case we are denoting the positive zeros of W
(λ)
n (z) by ξ

(λ)
n,r ,

r = 1, 2, ..., �n/2� and if n is odd ξ
(λ)
n,�n/2�+1 = 0. Observe that, from Lemma 7 item

11



3, if λ = 2
(
λ = 2 + 2

n−1

)
, x = 0 is zero of multiplicity 2 (3) of W

(λ)
n (x), when n is

even (odd). Hence, in these cases, we are considering ξ
(λ)
n,�n/2� = 0.

Now we are able to prove Theorem 2 with results about the distribution, sim-
plicity and monotonicity of the zeros of polynomial R

(λ)
n (z) on the unit circle. Also

we show Theorem 3 that deals with the monotonicity behaviour of the two positive
zeros of R

(λ)
n (z) with respect to the parameter λ, when λ < − 2

n−1
and n > 1, and

with the behaviour of the two negative zeros of R
(λ)
n (z), when λ > 2 for n even or

when λ > 2 + 2
n−1

for n odd, and n > 1.

Proof of Theorem 2. For − 2
n−1

≤ λ ≤ 2 (n even) or − 2
n−1

≤ λ ≤ 2+ 2
n−1

(n odd),

we know from Theorem 6 that all the zeros of R
(λ)
n (z) lie on the unit circle. From (5)

and using the mapping (4) the zeros z
(λ)
n,r of the polynomial R

(λ)
n (z) are represented

by z
(λ)
n,r = eiθ

(λ)
n,r , with θ

(λ)
n,r = 2 arccos(ξ

(λ)
n,r), where ξ

(λ)
n,r , r = 1, 2, ..., �n/2� are the non–

negative zeros of W
(λ)
n (x). For n odd, since W

(λ)
n (x) has a zero at ξ

(λ)
n,�n/2�+1 = 0,

then z
(λ)
n,�n/2�+1 = −1 is zero of R

(λ)
n (z) and θ

(λ)
n,�n/2�+1 = π.

Since ξ
(λ)
n,1 > ξ

(λ)
n,2 > · · · > ξ

(λ)
n,�n/2� ≥ 0 and θ

(λ)
n,r = 2 arccos(ξ

(λ)
n,r) is a decreasing

function in [−1, 1], it follows that 0 ≤ θ
(λ)
n,1 < θ

(λ)
n,2 < · · · < θ

(λ)
n,�n/2� ≤ π.

For λj < λl, from Lemma 10 it follows that ξ
(λj)
n,r > ξ

(λl)
n,r . Hence, since θ

(λ)
n,r =

2 arccos(ξ
(λ)
n,r) is a decreasing function in [−1, 1], we have θ

(λj)
n,r < θ

(λl)
n,r . Then, for

λj < λl, θ
(λj)
n,r < θ

(λl)
n,r .

Proof of Theorem 3.

1. We consider ε ≥ 0, such that λ+ ε < − 2
n−1

(to guarantee the existence of two
positive zeros) and

R(λ)
n,ε(z) = 1 + (λ+ ε)(z + z2 + · · ·+ zn−1) + zn,

with its real zeros are represented by z
(λ)
k (ε) and 1/z

(λ)
k (ε).

It is clear that z
(λ)
k = z

(λ)
k (0) and R

(λ)
n,ε(z) = R

(λ)
n (z) + ε(z + z2 + · · · + zn−1).

Thus R
(λ)
n,ε(z

(λ)
k ) = ε(z

(λ)
k + (z

(λ)
k )2 + · · ·+ (z

(λ)
k )n−1) and then, for ε > 0,

sign(R(λ)
n,ε(z

(λ)
k )) = 1.

Hence, z
(λ)
k (0) > z

(λ)
k (ε), showing that z

(λ)
k is a decreasing function of λ. Con-

sequently, 1/z
(λ)
k is an increasing function of λ.

2. The result follows using the same idea of the proof of the previous item and
the fact that sign(R

(λ)
n,ε(z

(λ)
k )) = (−1)n−1.
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Now we can give other information about the monotonicity of the complex zeros
of polynomials W

(λ)
n (x), when they exist, with respect to parameter λ.

Theorem 11. For λ > 2
(
λ > 2 + 2

n−1

)
and n even (odd), let ±β

(λ)
n,ki be the purely

imaginary zeros of W
(λ)
n (x). Then β

(λ)
n,k is an increasing function of λ.

Proof. From item 4 of Lemma 7, the purely imaginary zeros ±β
(λ)
k i of W

(λ)
n (x) are

represented by

x(z
(λ)
k ) =

(
(r

(λ)
k )1/2 − (r

(λ)
k )−1/2

2

)
i and x

(
1

z
(λ)
k

)
=

(
(r

(λ)
k )−1/2 − (r

(λ)
k )1/2

2

)
i,

where z
(λ)
k ∈ (−∞,−1) is a negative zero of R

(λ)
n (z), i.e., z

(λ)
k = −r

(λ)
k with r

(λ)
k > 1,

and also β
(λ)
n,k = ((r

(λ)
k )1/2 − (r

(λ)
k )−1/2)/2 > 0.

Observe that β
(λ)
n,k is a decreasing function of z

(λ)
k in the interval (−∞, 0). Hence,

from item 2 of Theorem 3, if λj < λl then z
(λj)
k > z

(λl)
k and, consequently, x(z

(λj)
k ) <

x(z
(λl)
k ). Hence, β

(λ)
n,k is an increasing function of λ.

Remark 12. From Lemma 5 and Theorems 2, 3 and 11, it follows that the zeros
of R

(λ)
n (z) are distinct, except in the cases: λ = − 2

n−1
(z = 1 is a zero of R

(λ)
n (z) of

multiplicity 2); n even and λ = 2 (z = −1 is a zero of R
(λ)
n (z) of multiplicity 2); n

odd and λ = 2 + 2
n−1

(z = −1 is a zero of R
(λ)
n (z) of multiplicity 3).

Furthermore, we observe that for any x̃ ∈ R there exists a parameter λ̃ such that

W
(λ̃)
n (x̃) = 0. Indeed,
• If x̃ is such that Un−2(x̃) = 0, i.e., x̃ = xn−2,r for r = 1, 2, ..., n− 2, since

W
(λ̃)
n (x̃)

λ̃
= Un(x̃) + 2

(
1

λ̃
− 1

)
Tn(x̃),

then, when λ̃ −→ +∞ or λ̃ −→ −∞, the n−2 real zeros of the polynomialW
(λ̃)
n (x)

tend, respectively, to the n− 2 zeros of the polynomial Un(x)− 2Tn(x) = Un−2(x).
• If x̃ is such that Un−2(x̃) �= 0, then we may choose

λ̃ = 1− Un(x̃)

Un−2(x̃)

and from (8) we have that W
(λ̃)
n (x̃) = Un(x̃)− (1− λ̃)Un−2(x̃) = 0.

From the three term recurrence relation for the Chebyshev polynomial of second
kind, Un+1(x) = 2xUn(x)−Un−1(x), for n ≥ 1, with U0(x) = 1 and U1(x) = 2x, one
can easily show that Un(1) = (−1)nUn(−1) = n+ 1. Furthermore that, for n ≥ 2,

Un(x) >
n+ 1

n
Un−1(x) >

n+ 1

n− 1
Un−2(x), for x > 1.
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Notice that if x̃ = 1 (or x̃ = −1), then

λ̃ = 1− Un(1)

Un−2(1)
= 1− (−1)nUn(−1)

(−1)n−2Un−2(−1)
= 1− n+ 1

n− 1
= − 2

n− 1
.

From Remark 12, when λ̃ = − 2
n−1

, the value z̃ = 1 is a zero of R
(λ̃)
n (z) of multiplicity

2, that correspond to x̃ = 1 and x̃ = −1.
If x̃ > 1 (or x̃ < −1), then

λ̃ = 1− Un(x̃)

Un−2(x̃)
= 1− (−1)nUn(−x̃)

(−1)n−2Un−2(−x̃)
< 1− n+ 1

n− 1
= − 2

n− 1
.

Also, z̃ ∈ (1,∞) and 1/z̃ ∈ (0, 1) are zeros of R
(λ)
n (z).

Consequently, using the transformation (4) and the relation (8) we can observe
the following.

Remark 13. For any x̃ ∈ R there exists a parameter λ̃ such that W
(λ̃)
n (x̃) = 0. For

any θ̃ ∈ [0, 2π] there exists a parameter λ̃ such that R
(λ̃)
n (eiθ̃) = 0. It means that

the unit circle is covered by zeros of R
(λ)
n (z) for different choices of the parameter

λ ∈ (−∞,∞).

4.1. Special cases

For − 2
n−1

≤ λ ≤ 2 (n even) or − 2
n−1

≤ λ ≤ 2 + 2
n−1

(n odd), we know that

the zeros of R
(λ)
n (z) located in the first and second quadrants are represented by

z
(λ)
n,r = eiθ

(λ)
n,r , r = 1, 2, ..., �n/2�, 0 ≤ θ

(λ)
n,r ≤ π, with θ

(λ)
n,r = 2 arccos(ξ

(λ)
n,r), where

ξ
(λ)
n,r are the non–negative zeros of W

(λ)
n (x). If n is odd, r = 1, 2, ..., �n/2� + 1 and

θ
(λ)
n,�n/2�+1 = π.

If λ = 0, from equation (9) we have z−n/2R
(0)
n (z) = W

(0)
n (x) = 2Tn(x). Then, the

zeros of W
(0)
n (x) are represented by ξ

(0)
n,r = cos

(
(2r−1)π

2n

)
, r = 1, 2..., �n/2�. Hence,

θ(0)n,r = 2 arccos(ξ(0)n,r) =
(2r − 1)π

n

and, for n odd, θ
(0)
n,�n/2�+1 = π.

If λ = 1, from equation (8) we have W
(1)
n (x) = Un(x). Then, the zeros of W

(1)
n (x)

are represented by ξ
(1)
n,r = cos

(
rπ
n+1

)
, r = 1, 2, ..., �n/2�. Hence,

θ(1)n,r = 2 arccos(ξ(1)n,r) =
2rπ

n+ 1

and, for n odd, θ
(1)
n,�n/2�+1 = π.
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If λ = 2, from equation (8) we have W
(2)
n (x) = Un(x)−Tn(x). Then, the zeros of

W
(2)
n (x) are represented by ξ

(2)
n,r = cos

(
rπ
n

)
, r = 1, 2, ..., �n/2� and ξ

(2)
n,�n/2�+1 = cos

(
π
2

)
(for n odd). Hence,

θ(2)n,r = 2 arccos(ξ(2)n,r) =
2rπ

n
, r = 1, 2, ..., �n/2� and θ

(2)
n,�n/2�+1 = π (for n odd).

Observe that, if λ = 2 and n is even, from Lemma 5 follows that z = −1 is zero
of multiplicity 2 of R

(λ)
n (z) and, consequently, θ

(2)
n,�n/2� = θ

(2)
n,�n/2�+1 = π.

5. An application: zeros of the polynomials S(λ)
n (z)

We give here the proof of Theorem 4, about the location of the zeros of the
polynomial S

(λ)
n (z) defined by (1) and (2).

Proof of Theorem 4. Observe that, if n is even,

S(λ)
n (z) =

(
zn/2 − 1

z − 1

)
R

(λ)
n/2+1(z) = R

(1)
n/2−1(z)R

(λ)
n/2+1(z). (10)

Hence, we need to analyse the zeros of R
(1)
n/2−1(z) and R

(λ)
n/2+1(z).

From Theorem 6 and the results presented in Section 4.1, we have that the zeros

of R
(1)
n/2−1(z) are located on the unit circle and are given by z

(1)
n/2−1,r = eiθ

(1)
n/2−1,r , where

θ
(1)
n/2−1,r =

4rπ
n
, r = 1, 2, ..., n/2−1

2
= n−2

4
, if n/2−1 is even, and r = 1, 2, ..., n/2−1

2
+1 =

n+2
4
, if n/2 − 1 is odd. Notice that 0 ≤ θ

(1)
n/2−1,r ≤ π (we are considering just the

zeros on the first and second quadrants; the other zeros are the complex conjugate
ones). Notice, also, that the zeros of R

(1)
n/2−1(z) are fixed.

Also, from Theorem 6 we know that the zeros of R
(λ)
n/2+1(z) are located on the

unit circle if

− 2

n/2
≤ λ ≤ 2, when

n

2
is odd

or

− 2

n/2
≤ λ ≤ 2 +

2

n/2
, when

n

2
is even.

Furthermore, if λ ∈
(
−∞,− 2

n/2

)
, R

(λ)
n/2+1(z) has two positive zeros z

(λ)
k ∈ (1,+∞)

and 1/z
(λ)
k ∈ (0, 1) and the other zeros are located on the unit circle. In the same way,

if λ ∈ (2,+∞)
(
when n

2
odd

)
and λ ∈

(
2 + 2

n/2
,+∞

) (
when n

2
even

)
, R

(λ)
n/2+1(z) has

two negative zeros z
(λ)
k ∈ (−∞,−1) and 1/z

(λ)
k ∈ (−1, 0) and the other zeros are

located on the unit circle.
In the case that n is odd,

S(λ)
n (z) =

(
z�n/2�+1 − 1

z − 1

)
R

(λ)
�n/2�+1(z) = R

(1)
�n/2�(z)R

(λ)
�n/2�+1(z). (11)

15



Hence, we need to analyse the zeros of R
(1)
�n/2�(z) and R

(λ)
�n/2�+1(z).

From Theorem 6 and the results presented in Section 4.1, we have that the
zeros of R

(1)
�n/2�(z) are located on the unit circle and they are given by z

(1)
�n/2�,r =

eiθ
(1)
�n/2�,r , where θ

(1)
�n/2�,r = 2rπ

�n/2�+1
, for r = 1, 2, ..., �n/2�

2
, if

⌊
n
2

⌋
is even, and for r =

1, 2, ..., �n/2�
2

+ 1, if
⌊
n
2

⌋
is odd. Here 0 ≤ θ

(1)
�n/2�,r ≤ π (again we are considering just

the zeros on the first and second quadrants).

Also, from Theorem 6 we have that the zeros of R
(λ)
�n/2�+1(z) are located on the

unit circle if

− 2

�n/2� ≤ λ ≤ 2, when
⌊n
2

⌋
is odd

or

− 2

�n/2� ≤ λ ≤ 2 +
2

�n/2� , when
⌊n
2

⌋
is even.

Furthermore, if λ ∈
(
−∞,− 2

�n/2�

)
, R

(λ)
�n/2�+1(z) has two positive zeros z

(λ)
k ∈ (1,+∞)

and 1/z
(λ)
k ∈ (0, 1) and the other zeros are located on the unit circle. In the same way,

if λ ∈ (2,+∞) (when �n/2� odd) and λ ∈
(
2 + 2

�n/2� ,+∞
)

(when �n/2� even),

R
(λ)
�n/2�+1(z) has two negative zeros z

(λ)
k ∈ (−∞,−1) and 1/z

(λ)
k ∈ (−1, 0) and the

other zeros are located on the unit circle.

As consequence of Lemma 5 and Theorem 4 (relations (10) and (11)) we have
the following results:

Corollary 14. Considering the polynomial S
(λ)
n (z), n ≥ 3 with n odd, then

1. if
⌊
n
2

⌋
is odd,

S(λ)
n (z) = (z + 1)A

(1)
�n/2�−1(z)R

(λ)
�n/2�+1(z);

2. if
⌊
n
2

⌋
is odd and λ = 2,

S(2)
n (z) = (z + 1)A

(1)
�n/2�−1(z)(z + 1)2A

(1)
�n/2�−1(z) = (z + 1)3

(
A

(1)
�n/2�−1(z)

)2

;

3. if
⌊
n
2

⌋
is even,

S(λ)
n (z) = (z + 1)R

(1)
�n/2�(z)A

(λ)
�n/2�(z);

4. if
⌊
n
2

⌋
is even and λ = 2,

S(2)
n (z) = (z + 1)R

(1)
�n/2�(z)A

(2)
�n/2�(z) = (z + 1)

(
R

(1)
�n/2�(z)

)2

;

5. if
⌊
n
2

⌋
is even and λ = 2 + 2

�n/2� ,

S(2+2/�n/2�)
n (z) = (z + 1)3R

(1)
�n/2�(z)C�n/2�−2(z).
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Corollary 15. Considering the polynomial S
(λ)
n (z), n ≥ 2 with n even, then

1. if n
2
is even,

S(λ)
n (z) = (z + 1)2A

(1)
n/2−2(z)A

(λ)
n/2(z);

2. if n
2
is even and λ = 2 + 2

n/2
,

S(2+2/(n/2))
n (z) = (z + 1)4A

(1)
n/2−2(z)Cn/2−2(z);

3. if n
2
is odd and λ = 2,

S(2)
n (z) = (z + 1)2R

(1)
n/2−1(z)A

(1)
n/2−1(z).

Corollary 16. Considering the polynomial S
(λ)
n (z), n ≥ 2 with λ = − 2

�n/2� , then

1. if n is even,
S(−2/�n/2�)
n (z) = (z − 1)2R

(1)
n/2−1(z)Bn/2−1(z);

2. if n is odd,
S(−2/�n/2�)
n (z) = (z − 1)2R

(1)
�n/2�(z)B�n/2�−1(z).

Remark 17. The zeros of S
(λ)
n (z), n ≥ 2, are distinct, except in the following cases

1. n even and �n/2� even (Corollary 15 item 1);

2. λ = − 2
�n/2� (Corollary 16);

3. n odd, �n/2� even and λ = 2 (Corollary 14 item 4);

4. �n/2� odd and λ = 2 (Corollary 14 item 2 and Corollary 15 item 3);

5. �n/2� even and λ = 2 + 2
�n/2� (Corollary 14 item 5 and Corollary 15 item 2).
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