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Generalized trigonometric functions with two parameters were introduced by 
Drábek and Manásevich to study an inhomogeneous eigenvalue problem of the 
p-Laplacian. Concerning these functions, no multiple-angle formula has been known 
except for the classical cases and a special case discovered by Edmunds, Gurka 
and Lang, not to mention addition theorems. In this paper, we will present new 
multiple-angle formulas which are established between two kinds of the generalized 
trigonometric functions, and apply the formulas to generalize classical topics related 
to the trigonometric functions and the lemniscate function.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Let p, q ∈ (1, ∞) be any constants. We define sinp,q x by the inverse function of

sin−1
p,q x :=

x∫
0

dt

(1 − tq)1/p
, 0 ≤ x ≤ 1,

and

πp,q := 2 sin−1
p,q 1 = 2

1∫
0

dt

(1 − tq)1/p
= 2

q
B

(
1
p∗

,
1
q

)
, (1.1)
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where p∗ := p/(p − 1) and B denotes the beta function. The function sinp,q x is increasing in [0, πp,q/2] onto 
[0, 1]. We extend it to (πp,q/2, πp,q] by sinp,q (πp,q − x) and to the whole real line R as the odd 2πp,q-periodic 
continuation of the function. Since sinp,q x ∈ C1(R), we also define cosp,q x by cosp,q x := (sinp,q x)′. Then, 
it follows that

| cosp,q x|p + | sinp,q x|q = 1.

In case p = q = 2, it is obvious that sinp,q x, cosp,q x and πp,q are reduced to the ordinary sinx, cosx and π, 
respectively. This is a reason why these functions and the constant are called generalized trigonometric 
functions (with parameter (p, q)) and the generalized π, respectively.

Drábek and Manásevich [5] introduced the generalized trigonometric functions with two parameters to 
study an inhomogeneous eigenvalue problem of p-Laplacian. They gave a closed form of solutions (λ, u) of 
the eigenvalue problem

−(|u′|p−2u′)′ = λ|u|q−2u, u(0) = u(L) = 0.

Indeed, for any n = 1, 2, . . ., there exists a curve of solutions (λn,R, un,R) with a parameter R ∈ R \ {0}
such that

λn,R = q

p∗

(nπp,q

L

)p

|R|p−q, (1.2)

un,R(x) = R sinp,q

(nπp,q

L
x
)

(1.3)

(see also [12]). Conversely, there exists no other solution of the eigenvalue problem. Thus, the generalized 
trigonometric functions play important roles to study problems of the p-Laplacian.

It is of interest to know whether the generalized trigonometric functions have multiple-angle formulas 
unless p = q = 2. A few multiple-angle formulas seem to be known. Actually, in case 2p = q = 4, the 
function sinp,q x = sin2,4 x coincides with the lemniscate sine function slx, whose inverse function is defined 
as

sl−1 x :=
x∫

0

dt√
1 − t4

.

Furthermore, π2,4 is equal to the lemniscate constant � := 2 sl−1 1 = 2.6220 · · · . Concerning slx and �, we 
refer to the reader to [11, p. 81], [15] and [16, §22.8]. Since sl x has the multiple-angle formula

sl (2x) = 2 sl x
√

1 − sl4 x
1 + sl4 x

, 0 ≤ x ≤ �

2 , (1.4)

we see that

sin2,4 (2x) = 2 sin2,4 x cos2,4 x
1 + sin4

2,4 x
, 0 ≤ x ≤ π2,4

2 .

Also in case p∗ = q = 4, it is possible to show that sinp,q x = sin4/3,4 x can be expressed in terms of the 
Jacobian elliptic function, whose multiple-angle formula yields

sin4/3,4 (2x) =
2 sin4/3,4 x cos1/34/3,4 x√

1 + 4 sin4 x cos4/3 x
0 ≤ x <

π4/3,4

4 . (1.5)

4/3,4 4/3,4
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The formula (1.5) was investigated by Edmunds, Gurka and Lang [6, Proposition 3.4]. They also proved 
an addition theorem for sin4/3,4 x involving (1.5). Such reductions to the elliptic functions have previously 
been used by Cayley [4] and Lindqvist and Peetre [8].

In this paper, we will present multiple-angle formulas which are established between two kinds of the 
generalized trigonometric functions with parameters (2, p) and (p∗, p).

Theorem 1.1. For p ∈ (1, ∞) and x ∈ [0, π2,p/22/p] = [0, πp∗,p/2], we have

sin2,p (22/px) = 22/p sinp∗,p x cosp
∗−1

p∗,p x (1.6)

and

cos2,p (22/px) = cosp
∗

p∗,p x− sinp
p∗,p x

= 1 − 2 sinp
p∗,p x = 2 cosp

∗

p∗,p x− 1. (1.7)

Moreover, for x ∈ R, we have

sin2,p (22/px) = 22/p sinp∗,p x| cosp∗,p x|p
∗−2 cosp∗,p x (1.8)

and

cos2,p (22/px) = | cosp∗,p x|p
∗ − | sinp∗,p x|p

= 1 − 2| sinp∗,p x|p = 2| cosp∗,p x|p
∗ − 1. (1.9)

In Theorem 1.1, the fact

π2,p

22/p = πp∗,p

2 (1.10)

is the special case n = 2 of the following identity.

Theorem 1.2. Let 2 ≤ n < p + 1. Then

π p
p−1 ,p

π p
p−2 ,p

· · ·π p
p−n+1 ,p

= n1−n/pπ n
n−1 ,p

π n
n−2 ,p

· · ·πn
1 ,p.

We give a series expansion of πp∗,p as a counterpart of the Gregory–Leibniz series for π. It is worth 
pointing out that πp∗,p is the area enclosed by the p-circle |x|p + |y|p = 1 (see [7,9]).

Theorem 1.3.

πp∗,p

4 =
∞∑

n=0

(2/p)n
n!

(−1)n

pn + 1

= 1 − 2
p(p + 1) + 2 + p

p2(2p + 1) − (2 + p)(2 + 2p)
3p3(3p + 1) + · · · ,

where (a)n := Γ(a + n)/Γ(a) = a(a + 1)(a + 2) · · · (a + n − 1) and Γ denotes the gamma function.

We will apply Theorems 1.1–1.3 to the following problems (I)–(V).
(I) An alternative proof of (1.5). It should be noted that the multiple-angle formula (1.6) in Theorem 1.1

allows (1.5) to be rewritten in terms of the lemniscate function slx = sin2,4 x:
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sin4/3,4 (2x) =
√

2 sl (
√

2x)√
1 + sl4 (

√
2x)

, 0 ≤ x <
π4/3,4

4 = �

2
√

2
,

where the last equality above follows from (1.10) with π2,4 = �. This indicates that it is possible to obtain 
(1.5) from the multiple-angle formula (1.4) for the lemniscate function.

(II) A relation between eigenvalue problems of the p-Laplacian and that of the Laplacian. Let u be a 
function with (n − 1)-zeros in (0, L) satisfying

−(|u′|p−2u′)′ = λ|u|p∗−2u, u(0) = u(L) = 0

for some λ > 0. Similarly, let v be a function with n-zeros in (0, L) satisfying

−(|v′|p−2v′)′ = μ|v|p∗−2v, v′(0) = v′(L) = 0

for some μ > 0. Then, by Theorem 1.1, we can show that the product w = uv is a function with (2n −1)-zeros 
in (0, L) satisfying

−w′′ = 2p∗(λμ)1/p|w|p∗−2w, w(0) = w(L) = 0.

The curious fact is the consequence of a straightforward calculation with (1.2), (1.3), (1.8) and (1.10). Such 
a relation between the eigenvalue problems of the p-Laplacian and that of the Laplacian may be known. 
However, we can not find a literature proving it, while the assertion in case p = 2 is trivial because

w = sin
(nπ
L

x
)

cos
(nπ
L

x
)

= 1
2 sin

(
2nπ
L

x

)
.

(III) A pendulum-type equation with the p-Laplacian. We give a closed form of solutions of the pendulum-
type equation

−(|θ′|p−2θ′)′ = λp| sin2,p θ|p−2 sin2,p θ.

In case p = 2, this equation is the ordinary pendulum equation −θ′′ = λ2 sin θ and it is well known that the 
solutions can be expressed in terms of the Jacobian elliptic function. We will obtain an expression of the 
solution for the pendulum-type equation above by using our special functions involving a generalization of 
the Jacobian elliptic function in [12,13]. There are studies of other (forced) pendulum-type equations with 
p-Laplacian versus sin θ in [10]; versus sinp,p θ in [1], for the purpose of finding periodic solutions.

(IV) Catalan-type constants. Catalan’s constant, which occasionally appears in estimates in combina-
torics, is defined by

G =
∞∑

n=0

(−1)n

(2n + 1)2 = 0.9159 · · · .

We can find a lot of representation of G in [2]; for a typical example,

1
2

π/2∫
x

sin x
dx = G. (1.11)
0
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The multiple-angle formula (1.6) gives a generalization of (1.11) as

1
22/p

π2,p/2∫
0

x

sin2,p x
dx =

∞∑
n=0

(2/p)n
n!

(−1)n

(pn + 1)2 . (1.12)

In case p = 2, the formula (1.12) coincides with (1.11). Moreover, for p = 4 we obtain the interesting formula

1√
2

�/2∫
0

x

sl x dx =
∞∑

n=0

(1/2)n
n!

(−1)n

(4n + 1)2 .

(V) Series expansions of the lemniscate constant �. The lemniscate constant � has the formula [15, 
Theorem 5]:

�

2 = 1 + 1
10 + 1

24 + 5
208 + · · · + (2n− 1)!!

(2n)!!
1

4n + 1 + · · · ,

where (−1)!! := 1. For this, using Theorem 1.3 with (1.10), we will obtain

�

2
√

2
= 1 − 1

10 + 1
24 − 5

208 + · · · + (2n− 1)!!
(2n)!!

(−1)n

4n + 1 + · · · ,

which does not appear in Todd [15] and seems to be unfamiliar. We will also produce some other formulas 
of �.

This paper is organized as follows. Section 2 is devoted to the proofs of Theorems 1.1–1.3. In Section 3, 
we deal with the above-mentioned problems (I)–(V).

2. The multiple-angle formulas

Let p, q ∈ (1, ∞) and x ∈ (0, πp,q/2). It is easy to see that

cospp,q x + sinq
p,q x = 1,

(sinp,q x)′ = cosp,q x, (cosp,q x)′ = −q

p
sinq−1

p,q x cos2−p
p,q x,

(cosp−1
p,q x)′ = − q

p∗
sinq−1

p,q x.

If we extend to these formulas for any x ∈ R, then the last one, for example, corresponds to

(| cosp,q x|p−2 cosp,q x)′ = − q

p∗
| sinp,q x|q−2 sinp,q x. (2.1)

In a particular case,

cosp
∗

p∗,p x + sinp
p∗,p x = 1, (2.2)

(sinp∗,p x)′ = cosp∗,p x, (cosp∗,p x)′ = −(p− 1) sinp−1
p∗,p x cos2−p∗

p∗,p x,

(cosp
∗−1

p∗,p x)′ = − sinp−1
p∗,p x.
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From the last one and the differentiation of inverse functions,

(cosp
∗−1

p∗,p )−1(y) =
1∫

y

dt

(1 − tp)1/p∗ , 0 ≤ y ≤ 1,

hence

sin−1
p∗,p y + (cosp

∗−1
p∗,p )−1(y) = πp∗,p

2 .

Therefore, for x ∈ [0, πp∗,p/2]

sinp∗,p

(πp∗,p

2 − x
)

= cosp
∗−1

p∗,p x, (2.3)

cosp
∗−1

p∗,p

(πp∗,p

2 − x
)

= sinp∗,p x. (2.4)

Throughout this paper, the following function is useful:

τp,q(x) := sinp,q x

| cosp,q x|p/q−1 cosp,q x
, x �= 2n + 1

2 πp,q, n ∈ Z.

Then, it follows immediately from (2.3) and (2.2) that

Lemma 2.1. For x ∈ (0, πp∗,p/2), τp∗,p(x) = 1 implies x = πp∗,p/4. Moreover, sin−1
p∗,p (2−1/p) =

cos−1
p∗,p (2−1/p∗) = πp∗,p/4.

Let us prove the multiple-angle formulas in Theorem 1.1.

Proof of Theorem 1.1. Let x ∈ [0, πp∗,p/4]. Then, y = sinp∗,p x ∈ [0, 2−1/p] by Lemma 2.1. Setting tp =
(1 − (1 − sp)1/2)/2 in

sin−1
p∗,p y =

y∫
0

dt

(1 − tp)1/p∗ ,

we have

sin−1
p∗,p y =

y(4(1−yp))1/p∫
0

2−1−1/psp−1

(1 − sp)1/2(1 − (1 − sp)1/2)1−1/p ds

2−1+1/p(1 + (1 − sp)1/2)1−1/p

= 2−2/p

y(4(1−yp))1/p∫
0

ds

(1 − sp)1/2
;

that is,

sin−1
p∗,p y = 2−2/p sin−1

2,p (y(4(1 − yp))1/p). (2.5)

Hence we obtain

sin2,p (22/px) = 22/p sinp∗,p x cosp
∗−1

p∗,p x,
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and (1.6) is proved. In particular, letting y = 2−1/p in (2.5) and using Lemma 2.1, we get

πp∗,p

4 = 2−2/p sin−1
2,p 1 = π2,p

21+2/p ,

which implies (1.10).
Next, let x ∈ (πp∗,p/4, πp∗,p/2] and y := πp∗,p/2 − x ∈ [0, πp∗,p/4). By the symmetry properties (2.3)

and (2.4), we obtain

22/p sinp∗,p x cosp
∗−1

p∗,p x = 22/p cosp
∗−1

p∗,p y sinp∗,p y.

According to the argument above, the right-hand side is identical to sin2,p (22/py). Moreover, (1.10) gives

sin2,p (22/py) = sin2,p (π2,p − 22/px) = sin2,p (22/px).

The formula (1.7) is deduced from differentiating both sides of (1.6). Moreover, (1.8) and (1.9) come from 
the periodicities of the functions. �
Proof of Theorem 1.2. Setting x = 1/n and y = 1/p in the formula of the beta function (see [16, §12.15, 
Example])

B(nx, ny) = 1
nny

∏n−1
k=0 B (x + k/n, y)∏n−1

k=1 B(ky, y)
, n ≥ 2, x, y > 0,

we have

p

n
= 1

nn/p

∏n
k=1 B(k/n, 1/p)∏n−1
k=1 B(k/p, 1/p)

.

Hence,

n−1∏
k=1

B

(
k

p
,
1
p

)
= n1−n/p

n−1∏
k=1

B

(
k

n
,
1
p

)
, n ≥ 2.

From (1.1), this is rewritten as

n−1∏
k=1

π(p/k)∗,p = n1−n/p
n−1∏
k=1

π(n/k)∗,p, 2 ≤ n < p + 1,

which is precisely the assertion of the theorem. �
Remark 2.2. Taking n = 2 in Theorem 1.2, we have the relation (1.10) between πp∗,p and π2,p. In fact, 
(1.10) is equivalent to the duplication formula of the gamma function (see [16, §12.15, Corollary])

Γ(2x) = 22x−1
√
π

Γ(x)Γ
(
x + 1

2

)
.

Proof of Theorem 1.3. Let x ∈ (0, 1). Differentiating the inverse function of τp∗,p, we have

τ−1
p∗,p(x) =

x∫
dt

(1 + tp)2/p
.

0
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Hence

τ−1
p∗,p(x) =

x∫
0

∞∑
n=0

(
−2/p
n

)
tpn dt = x

∞∑
n=0

(2/p)n
n!

(−xp)n

pn + 1 . (2.6)

By Abel’s continuity theorem [16, §3.71], it is sufficient to show that the right-hand side of (2.6) converges 
at x = 1; i.e., the series

∞∑
n=0

(2/p)n
n!

(−1)n

pn + 1 =:
∞∑

n=0
(−1)nan

converges. This is an alternating series and {an} is decreasing because

0 ≤ an+1

an
= (2/p + n)(pn + 1)

(n + 1)(pn + p + 1) = (n + 1/p)(pn + 2)
(n + 1)(pn + p + 1) < 1.

Moreover, {an} converges to 0 as n → ∞. Indeed, Euler’s formula for the gamma function [16, §12.11, 
Example] gives

lim
n→∞

an = lim
n→∞

2/p(2/p + 1)(2/p + 2) · · · (2/p + n− 1)
(n− 1)!n2/p

n2/p−1

pn + 1

= 1
Γ(2/p) · 0 = 0.

Therefore, the series above converges to τ−1
p∗,p(1) (see for instance [16, §2.31, Corollary (ii)]). From Lemma 2.1, 

we conclude the theorem. �
Remark 2.3. Combining (1.8) and (1.9), we can assert that τ2,p and τp∗,p satisfy the multiple-angle formula

τ2,p(22/px) = 22/pτp∗,p(x)
|1 − |τp∗,p(x)|p|2/p−1(1 − |τp∗,p(x)|p) ,

which coincides with that of the tangent function if p = 2.

3. Applications

3.1. An alternative proof of (1.5)

Let us give an alternative proof of the multiple-angle formula of sin4/3,4 x:

sin4/3,4 (2x) =
2 sin4/3,4 x cos1/34/3,4 x√

1 + 4 sin4
4/3,4 x cos4/34/3,4 x

, 0 ≤ x <
π4/3,4

4 , (1.5)

which was discovered by Edmunds, Gurka and Lang [6].
Recall that sin2,4 x is equal to the lemniscate function slx. Applying (1.6) in case p = 4 with x replaced 

by 2x ∈ [0, π4/3,4/2), we get

sl (2
√

2x) =
√

2 sin4/3,4 (2x)(1 − sin4
4/3,4 (2x))1/4. (3.1)
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First, we consider the case

0 ≤ x <
π4/3,4

8 = �

4
√

2
.

Then, since 0 ≤ 2 sin4
4/3,4 (2x) < 1 by Lemma 2.1, the equation (3.1) gives

2 sin4
4/3,4 (2x) = 1 −

√
1 − sl4 (2

√
2x).

Set S = S(x) := sl (
√

2x). Using the multiple-angle formula (1.4) for the lemniscate function, we have

2 sin4
4/3,4 (2x) = 1 −

√√√√1 −
(

2S
√

1 − S4

1 + S4

)4

= 1 −
√

1 − 12S4 + 38S8 − 12S12 + S16

(1 + S4)2

= 1 − |1 − 6S4 + S8|
(1 + S4)2 .

Since 0 ≤ S < sl (�/4) = (3 − 2
√

2)1/4, evaluated by (1.4), we see that 1 − 6S4 + S8 ≥ 0. Thus,

2 sin4
4/3,4 (2x) = 1 − 1 − 6S4 + S8

(1 + S4)2 = 8S4

(1 + S4)2 . (3.2)

Therefore, by (1.6),

sin4/3,4 (2x) =
√

2S√
1 + S4

=
2 sin4/3,4 x cos1/34/3,4 x√

1 + 4 sin4
4/3,4 x cos4/34/3,4 x

.

In the remaining case

�

4
√

2
=

π4/3,4

8 ≤ x <
π4/3,4

4 = �

2
√

2
,

it follows easily that 1 ≤ 2 sin4
4/3,4 (2x) < 2 and 1 − 6S4 + S8 ≤ 0, hence we obtain (3.2) again. The proof 

of (1.5) is complete.

3.2. A relation between eigenvalue problems of the p-Laplacian and that of the Laplacian

Theorem 3.1. Let n ∈ N and p ∈ (1, ∞). Let u be an eigenfunction with (n − 1)-zeros in (0, L) for an 
eigenvalue λ > 0 of the eigenvalue problem

−(|u′|p−2u′)′ = λ|u|p∗−2u, u(0) = u(L) = 0, (3.3)

and v an eigenfunction with n-zeros in (0, L) for an eigenvalue μ > 0 of the eigenvalue problem

−(|v′|p−2v′)′ = μ|v|p∗−2v, v′(0) = v′(L) = 0. (3.4)

Then, the product w = uv is an eigenfunction for the eigenvalue ξ = 2p∗(λμ)1/p with (2n −1)-zeros in (0, L)
of the eigenvalue problem
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−w′′ = ξ|w|p∗−2w, w(0) = w(L) = 0. (3.5)

Proof. By (1.2) and (1.3), the solution (λ, u) of (3.3) can be expressed as follows:

λ =
(nπp,p∗

L

)p

|R|p−p∗
,

u(x) = R sinp,p∗

(nπp,p∗

L
x
)
, R �= 0.

Similarly, by the symmetry (2.3), the solution (μ, v) of (3.4) is represented as

μ =
(nπp,p∗

L

)p

|Q|p−p∗
,

v(x) = Q
∣∣∣cosp,p∗

(nπp,p∗

L
x
)∣∣∣p−2

cosp,p∗

(nπp,p∗

L
x
)
, Q �= 0.

Applying (1.8) in Theorem 1.1 and (1.10) to the product w = uv, we have

w(x) = RQ sinp,p∗

(nπp,p∗

L
x
) ∣∣∣cosp,p∗

(nπp,p∗

L
x
)∣∣∣p−2

cosp,p∗

(nπp,p∗

L
x
)

= 2−2/p∗
RQ sin2,p∗

(
2nπ2,p∗

L
x

)
,

which belongs to C2(R) and has (2n − 1)-zeros in (0, L). Therefore, by (2.1) with p = 2, a direct calculation 
shows

w′′ = −p∗21−2/p∗
(nπ2,p∗

L

)2
RQ

∣∣∣∣sin2,p∗

(
2nπ2,p∗

L
x

)∣∣∣∣
p∗−2

sin2,p∗

(
2nπ2,p∗

L
x

)

= −p∗23−4/p∗
(nπ2,p∗

L

)2
|RQ|2−p∗ |w|p∗−2w. (3.6)

On the other hand, (1.10) gives

(λμ)1/p = 22−4/p∗
(nπ2,p∗

L

)2
|RQ|2−p∗

. (3.7)

Combining (3.6) and (3.7), we obtain (3.5). �
3.3. A pendulum-type equation

We give an expression of the solution of the following initial value problem:

−(|θ′|p−2θ′)′ = λp| sin2,p θ|p−2 sin2,p θ, θ(0) = 0, θ′(0) = ω0. (3.8)

For p, q ∈ (1, ∞) and k ∈ [0, 1) we define amp,q (x, k) by the inverse function of

am−1
p,q (x, k) :=

x∫
0

dθ

(1 − kq| sinp,q θ|q)1/p∗ , −∞ < x < ∞,

in particular,

Kp,q(k) := am−1
p,q

(πp,q

2 , k
)

=
πp,q/2∫

dθ

(1 − kq sinq
p,q θ)1/p

∗ . (3.9)

0
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Then, the function

snp,q (x, k) := sinp,q (amp,q (x, k))

is a 4Kp,q(k)-periodic odd function in R. In case p = q = 2, the functions amp,q, Kp,q and snp,q coincide 
with the amplitude function, the complete elliptic integral of the first kind and the Jacobian elliptic func-
tion, respectively (see [11, §2.8] for them). It is easy to see that Kp,q(0) = πp,q/2, snp,q(x, 0) = sinp,q x, 
limk→1−0 Kp,q(k) = ∞ and limk→1−0 snp,q(x, k) = tanhq x, defined as the inverse function of

tanh−1
q x =

x∫
0

dt

1 − |t|q , −1 < x < 1.

See [13,14] for details of snp,q and Kp,q. Another type of generalization of the Jacobian elliptic function also 
appears in a bifurcation problem of the p-Laplacian; see [12].

Theorem 3.2. Let p ∈ (1, ∞) and λ, ω0 ∈ (0, ∞), and set k := ω0/(22/pλ). Then, the solution of (3.8) is as 
follows:

(i) Case k < 1.

θ(t) = 22/p sin−1
p∗,p (k snp,p (λt, k)),

which is a 4Kp,p(k)/λ-periodic function and

max
0≤t<∞

|θ(t)| = 22/p sin−1
p∗,p k.

(ii) Case k = 1.

θ(t) = 22/p sin−1
p∗,p (tanhp (λt)),

which is a strictly monotone increasing function and

lim
t→∞

θ(t) = 22/p−1πp∗,p = π2,p.

(iii) Case k > 1.

θ(t) = 22/p amp∗,p

(
kλt,

1
k

)
,

which is a strictly monotone increasing function and

lim
t→∞

θ(t) = ∞.

Proof. By the standard argument (for example, [5, Proposition 2.1] or [7, Theorem 3.1]), we can show that 
there exists a unique global solution of (3.8).

Let θ be the solution of (3.8) and T := inf{t > 0 : θ′(t) = 0}. On the interval (0, T ), θ satisfies θ(t) > 0
and θ′(t) > 0. Then, using (2.1) with p = 2, we obtain

1
θ′(t)p − 1

ωp
0 = 2λp

cos2,p θ(t) −
2λp

. (3.10)

p p p p
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From (1.9) in Theorem 1.1 we have

cos2,p θ(t) = 1 − 2| sinp∗,p (2−2/pθ(t))|p. (3.11)

Combining (3.10) and (3.11) we obtain

θ′(t)p = 4λp(kp − | sinp∗,p (2−2/pθ(t))|p),

where k = ω0/(22/pλ), hence, for t ∈ [0, T ],

t = 1
22/pλ

θ(t)∫
0

dθ

(kp − | sinp∗,p (2−2/pθ)|p)1/p . (3.12)

(i) Case k < 1. We can find α ∈ (0, 22/p−1πp∗,p) such that k = sinp∗,p(2−2/pα) and T = θ−1(α). Letting 
sinp∗,p (2−2/pθ) = k sinp,p ϕ in (3.12), we obtain

t = 1
λ

ϕ(t)∫
0

dϕ

(1 − kp| sinp,p ϕ|p)1/p∗ ,

which implies

ϕ(t) = amp,p(λt, k).

Therefore,

θ(t) = 22/p sin−1
p∗,p (k snp,p(λt, k)).

We have thus found the unique solution θ of (3.8) in [0, T ]. However, in view of the periodicity properties 
of snp,p, this function θ is actually the unique global solution of (3.8), which is periodic of 4T = 4Kp,p(k)/λ
and whose maximum value is α = 22/p sin−1

p∗,p k.
(ii) Case k = 1. In this case, letting sinp∗,p(2−2/pθ) = x in (3.12), we obtain

t = 1
λ

x(t)∫
0

dx

1 − |x|p = 1
λ

tanh−1
p x(t).

Therefore,

θ(t) = 22/p sin−1
p∗,p (tanhp (λt))

and T = ∞. Moreover, by (1.10)

lim
t→∞

θ(t) = 22/p sin−1
p∗,p 1 = 22/p−1πp∗,p = π2,p.

(iii) Case k > 1. In this case, (3.12) becomes

t = 1
22/pkλ

θ(t)∫
dθ

(1 − k−p| sinp∗,p (2−2/pθ)|p)1/p

0
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= 1
kλ

ϕ(t)∫
0

dϕ

(1 − k−p| sinp∗,p ϕ|p)1/p

= 1
kλ

am−1
p∗,p

(
ϕ(t), 1

k

)
.

Therefore,

θ(t) = 22/p amp∗,p

(
kλt,

1
k

)

and T = ∞. It is obvious that limt→∞ θ(t) = ∞. �
Remark 3.3. The solution θ(t) in (ii) does not attain π2,p for any finite t, while equations with p-Laplacian 
sometimes have flat-core solutions (cf. [12]).

3.4. Catalan-type constants

We define

Gp :=
∞∑

n=0

(2/p)n
n!

(−1)n

(pn + 1)2 .

It is clear that G2 = G, i.e. Catalan’s constant described in Introduction.

Theorem 3.4. Let p ∈ (1, ∞), then

Gp = 1
22/p

π2,p/2∫
0

x

sin2,p x
dx = 1

22/p

1∫
0

K2,p(k) dk, (3.13)

where K2,p(k) is defined by (3.9).

Proof. By (2.6),

1∫
0

τ−1
p∗,p(x)
x

dx =
∞∑

n=0

(2/p)n(−1)n

n!

1∫
0

xpn

pn + 1 dx = Gp.

On the other hand, letting τ−1
p∗,p(x) = 2−2/py, we obtain

1∫
0

τ−1
p∗,p(x)
x

dx = 1
24/p

22/p−2πp∗,p∫
0

y

sinp∗,p (2−2/py) cosp∗−1
p∗,p (2−2/py)

dy

= 1
22/p

π2,p/2∫
0

y

sin2,p y
dy.

Here, we have used (1.10) and (1.6). This shows the first equality in (3.13).
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The second equality in (3.13) follows from Fubini’s theorem:

1∫
0

K2,p(k) dk =
π2,p/2∫
0

1∫
0

1
(1 − kp sinp

2,p x)1/2
dk dx

=
π2,p/2∫
0

1
sin2,p x

sin2,p x∫
0

1
(1 − tp)1/2

dt dx

=
π2,p/2∫
0

sin−1
2,p (sin2,p x)
sin2,p x

dx

=
π2,p/2∫
0

x

sin2,p x
dx.

The proof is accomplished. �
By Theorem 3.4 with p = 4, we obtain

Corollary 3.5.

1√
2

�/2∫
0

x

sl x dx =
∞∑

n=0

(1/2)n
n!

(−1)n

(4n + 1)2 .

Remark 3.6. In a similar way to [3, §3.2] or the last paragraph of [7, §2.1], we can also obtain the formula

π2,p/2∫
0

x

sin2,p x
dx = π2,p

2

∞∑
n=0

(1/2)n(1/p)n
(1/2 + 1/p)nn!

1
pn + 1 =: π2,p

2 Cp. (3.14)

Therefore, from (3.13), (3.14) and (1.10),

πp∗,p

4 = π2,p

22/p+1 = Gp

Cp
=

∑∞
n=0

(2/p)n
n!

(−1)n
(pn+1)2∑∞

n=0
(1/2)n(1/p)n
(1/2+1/p)nn!

1
pn+1

, (3.15)

particularly,

π

4 =
∑∞

n=0
(−1)n

(2n+1)2∑∞
n=0

(
(1/2)n

n!

)2
1

2n+1

.

3.5. Series expansions of the lemniscate constant �

The series of Proposition 1.3 for p = 2 is nothing but the Gregory–Leibniz series. Letting p = 4 and using 
(1.10), we have the expansion series for the lemniscate constant �:

�√ = 1 − 1 + 1 − 5 + · · · + (2n− 1)!! (−1)n + · · · . (3.16)

2 2 10 24 208 (2n)!! 4n + 1
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On the other hand, there is the similar series to this in [15, Theorem 5]:

�

2 = 1 + 1
10 + 1

24 + 5
208 + · · · + (2n− 1)!!

(2n)!!
1

4n + 1 + · · · . (3.17)

Combining (3.16) and (3.17), we obtain

2 +
√

2
8 � = 1 + 1

24 + · · · + (4n− 1)!!
(4n)!!

1
8n + 1 + · · · ,

2 −
√

2
8 � = 1

10 + 5
208 + · · · + (4n + 1)!!

(4n + 2)!!
1

8n + 5 + · · · .

Finally, letting p = 4 in (3.15) we obtain

�

2
√

2
=

∑∞
n=0

(1/2)n
n!

(−1)n
(4n+1)2∑∞

n=0
(1/2)n(1/4)n

(3/4)nn!
1

4n+1

.
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