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1. Introduction

Let p, q € (1,00) be any constants. We define sin, , « by the inverse function of

dt
so—=1 .
sin, , @ = / —(1 i 0<z <1,

and

1
dt 2 11
—9q¢in 11 = [ i
Tp,g = 28in, 1= 2/ A=) qB (p*’ q) ) (1.1)
0
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where p* := p/(p—1) and B denotes the beta function. The function sin, , x is increasing in [0, 7, 4/2] onto
[0, 1]. We extend it to (mp /2, mp 4] by sing 4 (7,4 — ) and to the whole real line R as the odd 27, ,-periodic
continuation of the function. Since sin, ,z € C*(R), we also define cos, , x by cos, 4 := (sin, 4 z)’. Then,
it follows that

| cosp q x|P + | siny 4 z|? =1

In case p = ¢ = 2, it is obvious that sin, 4z, cos, , x and 7, ; are reduced to the ordinary sinz, cosz and T,
respectively. This is a reason why these functions and the constant are called generalized trigonometric
functions (with parameter (p,q)) and the generalized 7, respectively.

Drabek and Mandsevich [5] introduced the generalized trigonometric functions with two parameters to
study an inhomogeneous eigenvalue problem of p-Laplacian. They gave a closed form of solutions (A, u) of
the eigenvalue problem

—(J/[P72) = Aul*"?u, u(0) = u(L) = 0.

Indeed, for any n = 1,2, ..., there exists a curve of solutions (A, r,un r) with a parameter R € R\ {0}
such that
q (NTpq\P _
Mo = 5 (F224) R, 1.2
n= L (e) |y (1.2
Un,r(x) = Rsin, 4 (mz”qx) (1.3)

(see also [12]). Conversely, there exists no other solution of the eigenvalue problem. Thus, the generalized
trigonometric functions play important roles to study problems of the p-Laplacian.

It is of interest to know whether the generalized trigonometric functions have multiple-angle formulas
unless p = ¢ = 2. A few multiple-angle formulas seem to be known. Actually, in case 2p = ¢ = 4, the
function sin, 4 ¢ = siny 4 « coincides with the lemniscate sine function slx, whose inverse function is defined

as
1. / t
) V1= tt
Furthermore, 73 4 is equal to the lemniscate constant @ := 251711 =12.6220---. Concerning slx and w, we

refer to the reader to [11, p. 81], [15] and [16, §22.8]. Since slz has the multiple-angle formula

25137\/1—51496 w
27

sl2z) = ———, 0<x< 1.4
(22) 1+sl*z - (14)
we see that
. 28ins 4 £ COSo.4 T T2 .4
sing 4 (22) = ————————, 0<ax < —.
24 (22) 1+ sin%A T -T2

Also in case p* = q = 4, it is possible to show that sin, ,x = siny/3 4 * can be expressed in terms of the
Jacobian elliptic function, whose multiple-angle formula yields

281114/34$COS4§34$ 0<ue Ta/3,4

Sln4/3 4 (2.]3 (15)

\/1 —|—4sm4/34xcos4§34x
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The formula (1.5) was investigated by Edmunds, Gurka and Lang [6, Proposition 3.4]. They also proved
an addition theorem for siny 34 2 involving (1.5). Such reductions to the elliptic functions have previously
been used by Cayley [4] and Lindqvist and Peetre [8].

In this paper, we will present multiple-angle formulas which are established between two kinds of the
generalized trigonometric functions with parameters (2, p) and (p*, p).

Theorem 1.1. For p € (1,00) and z € [0,72,,/2%/7] = [0, 7p~ /2], we have

*

sing p (2%/P2) = 2*/Psing. v cosh. ' (1.6)

and

*

cosyp (22/Px) = Cosp. , & —sinp.

D P*,p
1 _9unP _ P~ _
=1—2sin,. , & =2cos,. ,z — L. (1.7)
Moreover, for x € R, we have
sing ,, (2%/Px) = 2%/P sing. , x| cosye p [P 2 COSpe p T (1.8)

and

cosn,p (22/72) = | cospe p 2P — [ singe p 2f”

=1 — 2|siny- , z|? = 2| cosp- p x|P — 1. (1.9)
In Theorem 1.1, the fact
T2p _ Tprp
e = (1.10)

is the special case n = 2 of the following identity.

Theorem 1.2. Let 2 <n < p+ 1. Then

m . 1 n/pﬂ,

m 1,7%2’17 ”ﬂ-p ,L+1’P 171971—" 5P

o T

We give a series expansion of 7, , as a counterpart of the Gregory-Leibniz series for 7. It is worth
pointing out that m,« , is the area enclosed by the p-circle |z|P + |y|P =1 (see [7,9]).

Theorem 1.3.
0 > "
p P
7;0 n' pn+1
2 2+p (24 p)(2+2p)

+ ey,
plp+1)  p*2p+1)  3p°Bp+1)
where (a), :=T(a+n)/T(a) =ala+1)(a+2)---(a+n—1) and T denotes the gamma function.

We will apply Theorems 1.1-1.3 to the following problems (I)—(V).
(I) An alternative proof of (1.5). It should be noted that the multiple-angle formula (1.6) in Theorem 1.1
allows (1.5) to be rewritten in terms of the lemniscate function slz = sing 4 x:
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V25l (vV2x)

sing /3.4 (22) = ————=—, 0<z< Tjsa _ i,
1+ sl* (v2z) 4 2v2
where the last equality above follows from (1.10) with 72 4 = w. This indicates that it is possible to obtain
(1.5) from the multiple-angle formula (1.4) for the lemniscate function.
(IT) A relation between eigenvalue problems of the p-Laplacian and that of the Laplacian. Let u be a
function with (n — 1)-zeros in (0, L) satisfying

—(Ju'[PP) = Auf” Pu, w(0) = (L) =0
for some A\ > 0. Similarly, let v be a function with n-zeros in (0, L) satisfying
—(' P72 = plof” o, '(0) =/ (L) =0

for some g > 0. Then, by Theorem 1.1, we can show that the product w = wv is a function with (2n—1)-zeros
in (0, L) satisfying

—w'" = 2p* () PP 2w, w(0) = w(L) =0,

The curious fact is the consequence of a straightforward calculation with (1.2), (1.3), (1.8) and (1.10). Such
a relation between the eigenvalue problems of the p-Laplacian and that of the Laplacian may be known.
However, we can not find a literature proving it, while the assertion in case p = 2 is trivial because

. (mr) (mr)_l, 2nm
w = sin L:c cos Lx —2s1n Lx.

(II1) A pendulum-type equation with the p-Laplacian. We give a closed form of solutions of the pendulum-
type equation

—(|0']P720") = NP siny,, 0]P~2 sing,, 6.

In case p = 2, this equation is the ordinary pendulum equation —8” = A% sin @ and it is well known that the
solutions can be expressed in terms of the Jacobian elliptic function. We will obtain an expression of the
solution for the pendulum-type equation above by using our special functions involving a generalization of
the Jacobian elliptic function in [12,13]. There are studies of other (forced) pendulum-type equations with
p-Laplacian versus sin 6 in [10]; versus sin, ;, 6 in [1], for the purpose of finding periodic solutions.

(IV) Catalan-type constants. Catalan’s constant, which occasionally appears in estimates in combina-
torics, is defined by

I G Vi
G_Z:O @ 1 = 00180

We can find a lot of representation of G in [2]; for a typical example,
w/2

%/ T dr =G. (1.11)

sin x
0
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The multiple-angle formula (1.6) gives a generalization of (1.11) as

m2,p/2

1 T (2 (D)
22/p / sin27pxdx_2% n! (pn+1)% (1.12)
0 n=

In case p = 2, the formula (1.12) coincides with (1.11). Moreover, for p = 4 we obtain the interesting formula

w /2
1 T = (1/2), (-1
Eb/%dx_; n!  (4n+1)2°

(V) Series expansions of the lemniscate constant to. The lemniscate constant w has the formula [15,

Theorem 5]:

w Lt 15 +(2n—1)!! L
2 10 24 208 (2n)!! dn+1 ’

where (—1)!! := 1. For this, using Theorem 1.3 with (1.10), we will obtain

w 1 1 5 (2n — 1) (=1)"
—  =1-— 4 — — — 4+ ...+ e
22 10 24 208 2n)!! 4n+1

which does not appear in Todd [15] and seems to be unfamiliar. We will also produce some other formulas
of w.

This paper is organized as follows. Section 2 is devoted to the proofs of Theorems 1.1-1.3. In Section 3,
we deal with the above-mentioned problems (I)—(V).
2. The multiple-angle formulas

Let p, g € (1,00) and = € (0,7, 4/2). It is easy to see that

D ind —
cos, , & +sin), & =1,

. I !l q . q—1 2—p
(sinp q ) =cospqx, (cospqx) = —];smpﬂ xcos, F o,
p—1 v _ _ 9 . g1
(cosh x)" = p sing” " .

If we extend to these formulas for any x € R, then the last one, for example, corresponds to
(| cosp,q z[P% cosy,q ) = _]%l sing,q 2|77 % sing, g 2. (2.1)

In a particular case,

P s p
COSpx ,, T + S

v z=1, (2.2)

P
(sing« p )" = cosps px, (COSpx px) = —(p — 1)sin

p*—1

I b1
(cosp., @) = —sinp.  x.
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From the last one and the differentiation of inverse functions,

1
"
(cosb. ! /1—1&2’1/1’*’ 0<y<1,
Y

hence

_ e
sin,, y + (cosh. 1) T (y) = 2L

Therefore, for z € [0, mp /2]

TT oy *

. p*,p p—1

sing- , ( - :r) = COSps , T, (2.3)
* T %
p-—1 (Zp*.p o

COSpr ( 5 x) = sing« , . (2.4)

Throughout this paper, the following function is useful:

sing ¢ T 2n+1
x) = , T F—— , nE€Z.
Ta(®) | cosp,q [P/ cosy 4 @ 7T e
Then, it follows immediately from (2.3) and (2.2) that
Lemrlna 2.1. For z € (0,mpp/2), Tp=plx) = 1 implies x = mp~ /4. Moreover, sin;*{p (27Vr) =
cosp p (2 27U = mpe /4

Let us prove the multiple-angle formulas in Theorem 1.1.

Proof of Theorem 1.1. Let © € [0, ,/4]. Then, y = sin, ,z € [0,27/?] by Lemma 2.1. Setting t? =

(1—(1—5P)/2)/2in
)
Sm / 1—t1’1/1’*’
0

we have
—1-1/p p—1
y(1(1—y") V7 2 st ds
(1 —sP)1/2(1 — (1 — sP)1/2)1-1/p
Sln py - 271"1’1/1)(1 4 (1 _ Sp)l/z)lfl/p
0
y(4(1—y?)'/?
—972/p ds .
(]_ _ sp)1/2’
0
that is,
sing./, y = 277 sing |, (y(4(1 = y7))'/7). (2.5)

Hence we obtain

. . *—1
sinp, (2%/P2) = 2*/Psin,- , v cosh. ' @,
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and (1.6) is proved. In particular, letting y = 2-%/? in (2.5) and using Lemma 2.1, we get

T2,p

Tpe —o/p .
Pl =272/ sing 1= o1+2/p’

which implies (1.10).
Next, let € (mp p/4,Tpx p/2] and y = mp+ /2 — x € [0, 7y~ ,/4). By the symmetry properties (2.3)
and (2.4), we obtain

2/p g Pl 92/ 0Pt L g
29/ sinps p w cosy,. =27 cosp. Yy sings , y.

According to the argument above, the right-hand side is identical to sing (22/Py), Moreover, (1.10) gives
sing p (2/7y) = sing ,, (73 — 2/Px) = sing , (2°/7x).

The formula (1.7) is deduced from differentiating both sides of (1.6). Moreover, (1.8) and (1.9) come from
the periodicities of the functions. 0O

Proof of Theorem 1.2. Setting z = 1/n and y = 1/p in the formula of the beta function (see [16, §12.15,
Example])

1 [Tisg B+ k/n,y)

B(nz,ny) = — , n>2 x, y>0,
we have
p_ 1 Il Blk/n,1/p)
no P B(k/p,1/p)
Hence,
n—1 n—1
k1 k1
HB(_,_> :nl_”/pHB<—,—)7 n>2.
k=1 pp k=1 np

From (1.1), this is rewritten as

n—1 n—1
H T(p/k)*p = nton/p H Tn/k)ps 2S<n<p+1,
k=1 k=1

which is precisely the assertion of the theorem. 0O

Remark 2.2. Taking n = 2 in Theorem 1.2, we have the relation (1.10) between m,+ , and ma,. In fact,
(1.10) is equivalent to the duplication formula of the gamma function (see [16, §12.15, Corollary])

I'(2z) = %I’(w)l‘ (33 + %) .

Proof of Theorem 1.3. Let z € (0, 1). Differentiating the inverse function of 7,« ,, we have

x

dt
1 _
TP*,D(:I") _/(1+tp)2/p
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Hence
=[5 )erais oLt o)

By Abel’s continuity theorem [16, §3.71], it is sufficient to show that the right-hand side of (2.6) converges
at x = 1; i.e., the series

Z (2/p)n (_1)n —. Z(fl)nan

|
= n! pn+1 =

converges. This is an alternating series and {a,} is decreasing because

o<t _ @/ptn)ntl) _ (n+1/p)pn+2)

an (m+Dpn+p+1) m+1D(prn+p+1)

Moreover, {a,} converges to 0 as n — oo. Indeed, Euler’s formula for the gamma function [16, §12.11,
Example| gives

_ 2/p—1
lm a, — Lim ZPEPEDER/P+2)-2/ptn-1)n

1
=Tem YT

Therefore, the series above converges to Tp_*}p(l) (see for instance [16, §2.31, Corollary (ii)]). From Lemma 2.1,
we conclude the theorem. 0O

Remark 2.3. Combining (1.8) and (1.9), we can assert that 7, and 7, , satisfy the multiple-angle formula

22/1)717*47(55)
|1 — ‘Tp*,p(z)|p|2/p71(1 = |7 p(2)[P)

which coincides with that of the tangent function if p = 2.

T2,p (22/pm) =

3. Applications
3.1. An alternative proof of (1.5)
Let us give an alternative proof of the multiple-angle formula of sing/3 4 x:

2siny /3 4:z:cosl/3 T
; 4/3,4 T4/3,4
3 : 0<x<%, (1.5)

Sin4/374 (2£E) =

\/1 + 4sinj/3’4xcosj§§ AT

which was discovered by Edmunds, Gurka and Lang [6].
Recall that sing 4 x is equal to the lemniscate function slz. Applying (1.6) in case p = 4 with x replaced
by 2z € [0,7y/3.4/2), we get

s1(2V27) = V2sing 34 (22)(1 — sing 5, (22))"/%. (3.1)
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First, we consider the case

T4/34 = W

8 42

Then, since 0 < 2sinj/3’4 (2z) < 1 by Lemma 2.1, the equation (3.1) gives

0<z<

2sing 5, (20) = 1—1/1—sl" (2v22).

Set S = S(x) := sl (v/2x). Using the multiple-angle formula (1.4) for the lemniscate function, we have

4
25v1— 54
1+ 54

2sing 54 (22) =1 — 4|1 — (

_ V1 —125%+ 3858 — 12512 + 516
(1+54)2
_1-65" + 58
(1+54)2

=1

Since 0 < S < sl (w/4) = (3 — 2v/2)'/4, evaluated by (1.4), we see that 1 —6S* + S® > 0. Thus,

4 1—68%+ 58 854
251n4/3’4 (2x)=1- 15502 = 0L (3.2)

Therefore, by (1.6),

. 1/3
V28 251n4/3,4xcos4§374x

V14 54 \/1+4sin3/3)4xcosijg,4x

sing 3.4 (21)

In the remaining case

w T4/3,4 T4/3,4 w
= < xr < = s
w2 o 8 T 4 2v2
it follows easily that 1 < 2sini/3 4(22) <2 and 1 — 65* + S® < 0, hence we obtain (3.2) again. The proof
of (1.5) is complete.

8.2. A relation between eigenvalue problems of the p-Laplacian and that of the Laplacian

Theorem 3.1. Let n € N and p € (1,00). Let u be an eigenfunction with (n — 1)-zeros in (0,L) for an
etgenvalue A > 0 of the eigenvalue problem

—(Ju'[P2u') = Aul”" Pu, u(0) = u(L) =0, (3.3)
and v an eigenfunction with n-zeros in (0, L) for an eigenvalue p > 0 of the eigenvalue problem
—('[P~2"Y = plolP 20, V'(0) =(L) =0. (3.4)

Then, the product w = uv is an eigenfunction for the eigenvalue &€ = 2p*(A\u)Y/P with (2n—1)-zeros in (0, L)
of the eigenvalue problem
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—w” = ¢wlP 2w, w(0) =w(L) =0. (3.5)
Proof. By (1.2) and (1.3), the solution (A, u) of (3.3) can be expressed as follows:
_ ("2 \P | pip—p”
r= () e

u(z) = Rsinp - (mrz,p* x) , R#O.

Similarly, by the symmetry (2.3), the solution (u,v) of (3.4) is represented as

_ n7rp7p*)17 p—p*
p (—L QP

x p—2 *
v(z) =Q ’cosp,p* (nwgp z)‘ COSp p+ (mTZ’p a:) , Q#N0.

Applying (1.8) in Theorem 1.1 and (1.10) to the product w = uv, we have

. n. * nI. * p—2 n «
w(z) = RQ siny, p- ( bp aj) ‘cosp’p* (ﬂxﬂ COSp p* (%x)

L L
* 2 x
= 2_2/p RQ Sing’p* ( nﬂ-z,p J]) ,
L
which belongs to C?(R) and has (2n — 1)-zeros in (0, L). Therefore, by (2.1) with p = 2, a direct calculation
shows
" wol—2/p* (MT2p~ 2 . 2Ny g P2 ) 2nrg pe
w' = —p*2 P ( L, ) RQ |sing p- L7 x sing p= L7 T
* * 2 * *
= = (B2 RQP . (3.6)
On the other hand, (1.10) gives
_ * ’]’L’]'('Q’ * 2 %
() = 22240 ()T RQPT (3.7)

Combining (3.6) and (3.7), we obtain (3.5). O
3.3. A pendulum-type equation
We give an expression of the solution of the following initial value problem:
—(|0/[P720") = NP|sing, 0|P % sing, 6, 0(0) =0, §'(0) = wo. (3.8)

For p, ¢ € (1,00) and k € [0,1) we define am,, 4 (x, k) by the inverse function of

x

L2, k) = d0 —o <z <
am,, . (z,k) = (0= k[ sin, , [0/ 00 < & < 00,
0
in particular,
Tp.q/2
1Ty B do
Kp,q(k) E aInp,q (T’ k) - (1 — ka Sing . a)l/p* . (39)

0
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Then, the function
snp. q (z, k) :=sing, 4 (am, 4 (2, k))

is a 4K, 4(k)-periodic odd function in R. In case p = ¢ = 2, the functions am, 4, K, , and sn, , coincide
with the amplitude function, the complete elliptic integral of the first kind and the Jacobian elliptic func-
tion, respectively (see [11, §2.8] for them). It is easy to see that K, 4(0) = m, /2, snp q(x,0) = sin, 42,
limy_y1-0 Kp q(k) = 0o and limg_,1 g sn, ¢(x, k) = tanhg x, defined as the inverse function of

x

dt
tanhflm:/i, -l<ax<l.
‘ T i

See [13,14] for details of sn, , and K, ,. Another type of generalization of the Jacobian elliptic function also
appears in a bifurcation problem of the p-Laplacian; see [12].

Theorem 3.2. Let p € (1,00) and \, wo € (0,00), and set k := wy/(22/PX). Then, the solution of (3.8) is as

follows:

(i) Case k < 1.
0(t) = 2*/Psin ! (ksn,, (At k),
which is a 4K, ,(k)/A-periodic function and

o(t)| = 2*/Psin;! k.
oax [0(t)] i1,

(ii) Case k =1.
0(t) = 22/Psin, | (tanh, (At)),
which is a strictly monotone increasing function and

tlggo 0(t) = 22/1)_1”10*,17 = T2p-

(iii) Case k> 1.

0(t) = 2%/ am,. ,, (k)\t, ;ﬂ),

which is a strictly monotone increasing function and

tlggo 0(t) = 0.
Proof. By the standard argument (for example, [5, Proposition 2.1] or [7, Theorem 3.1]), we can show that
there exists a unique global solution of (3.8).
Let 6 be the solution of (3.8) and T := inf{¢t > 0: ¢'(¢) = 0}. On the interval (0,T), 0 satisfies 6(t) > 0
and €’(t) > 0. Then, using (2.1) with p = 2, we obtain
1 2\P 2\P

1
0 ()P — ZwPl = Z—cosy, O(t) — —. 3.10
p (t) 240 = 2,p 0(t) » (3.10)
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From (1.9) in Theorem 1.1 we have
cosgp O(t) = 1 — 2| sin,- , (272/PH(t))P.
Combining (3.10) and (3.11) we obtain
0'(t)F = ANP(KP — | siny- , (272/76(2))[7),
where k = wg/(2%/P\), hence, for t € [0,T7,

o(t)

1 / do
T 2x ) (= sing, 22R0))
0

1011

(3.11)

(3.12)

(i) Case k < 1. We can find a € (0,22/P~'m,- ,) such that k = sin, ,(272/Pa) and T = 6~ (a). Letting

sing« ,, (272/P6) = ksin, , ¢ in (3.12), we obtain

(t)

S

do
(1 — kP[siny, , @[P)t/P"’

1
A

o

which implies
(t) = amy, , (A, k).
Therefore,

a(t) = 22/1) sin;*{p (k Sn;mp()\ta k))

We have thus found the unique solution 6 of (3.8) in [0,7T]. However, in view of the periodicity properties

of sny, ,,, this function 6 is actually the unique global solution of (3.8), which is periodic of 4T = 4K, ,(k)/X

and whose maximum value is o = 2%/? sin;*l,p k.
(ii) Case k = 1. In this case, letting sin,« ,(272/P¢) = x in (3.12), we obtain

xz(t)
1 dx 1 -1
t== | ——— = —tanh; ' z(t).
)\/1—|x|P 5 tanby " 2(t)
0

Therefore,
o(t) = 2%/» Sin;*l,p (tanh,, (At))
and T = oo. Moreover, by (1.10)
Jlim 0(t) = 22/Psin 1 1 =220 ., =
(iii) Case k > 1. In this case, (3.12) becomes

o(t)

. / do
22\ | (1 — kmP|sing. , (272/p0)|P)1/P
0
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w(t)

_ 1 / dy
kX (1 — k=P|siny~ ,, p[P)1/?
0

Therefore,

1
0(t) = 2%/ am,. ,, (m, E)
and T = oco. It is obvious that lim;_, o 6(t) = 00. O

Remark 3.3. The solution 6(¢) in (ii) does not attain 7y , for any finite ¢, while equations with p-Laplacian
sometimes have flat-core solutions (cf. [12]).

3.4. Catalan-type constants

We define

n!  (pn+1)2

S

n=0

It is clear that Gy = G, i.e. Catalan’s constant described in Introduction.

Theorem 3.4. Let p € (1,00), then

1
1 T 1
Gy = s / = / Ko, (k) dk, (3.13)
0 0

where Ko (k) is defined by (3.9).

Proof. By (2.6),

x n!

[r(@) S @) [
O/dz 0/de

n=0

On the other hand, letting Tp_*}p(l‘) = 272/Py we obtain

1 22/p=2,
—1 PP
Tp*’p(l‘) _ 1 Y
dxf—24/p - 2/ =1 5 2/ dy
) x J sing« , (272/Py) cosy. , (272/Py)
7T2yp/2

_ y
22/p sing p ¥
0

dy.

Here, we have used (1.10) and (1.6). This shows the first equality in (3.13).
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The second equality in (3.13) follows from Fubini’s theorem:

772,;)/2 1

1
Ky (k) dk = dk d
[ Rt = [ [ G ke

0 0

T2 p/2 sina p ©
1
———dtdx

/ sing p / (1 —tp)l/2

0
T2,p/2 )

sing  (sing ,

2 2,p
p dzx
sing , =

0
T2,p/2
x
- dx.
sing ,
0

The proof is accomplished. 0O
By Theorem 3.4 with p = 4, we obtain

Corollary 3.5.

/2
(1/2)n (="
\/_/slx n!  (4n+1)%

Remark 3.6. In a similar way to [3, §3.2] or the last paragraph of [7, §2.1], we can also obtain the formula

7!‘21p/2 00

x (1/2)n(1/p)n 1 T2.p
= =: —==(C,. 3.14
/sin2,px ;1/2+1/pnn'pn+1 2 P ( )
5 =

Therefore, from (3.13), (3.14) and (1.10),

0o (2/p)n (=D

Tp*sp _ T2p % _ 2in=0"u (pn+1)2 (3.15)

4 22l O, 5% 0/2a(/pla 17 ‘
=0 (1/2+1/p)nn! pn+1

particularly,
0o (="
S =

™
4 2 '
ZZO:O ((122') ) 2n1+1

3.5. Series expansions of the lemniscate constant w

The series of Proposition 1.3 for p = 2 is nothing but the Gregory—Leibniz series. Letting p = 4 and using
(1.10), we have the expansion series for the lemniscate constant c:

w 1 1 5 (2n — I (=1)"

— 1 — = ... 3.16
2V/2 10+ 208+ + 2n)!! 4dn+1 + ( )
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On the other hand, there is the similar series to this in [15, Theorem 5]:

w_1+1+1+5+ +(2n—1)!! 1 N
2 10 24 208 (2n)!! 4n+1

(3.17)

Combining (3.16) and (3.17), we obtain

2++/2 1 (dn—11 1

Z Yt o=14—1...
Y T T B
2—1/2 1 5 dn+ 1)1 1
—\/_w:——l——+.-.+(n+) + ..
8 10 208 (4n+2)!'8n +5

Finally, letting p = 4 in (3.15) we obtain

0o (1/2), (=1"
© Yoo U it

- 1/2)n (/D0 1
2v2 Ziiio B/Dnn!  4n+1
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