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1. Introduction

The Cahn–Hilliard system,

∂u

∂t
= Δw, w = −Δu + f(u), (1.1)

plays an essential role in materials science as it describes important qualitative features of two-phase systems 
related with phase separation processes. This can be observed, e.g., when a binary alloy is cooled down 
sufficiently. One then observes a partial nucleation (i.e., the apparition of nucleides in the material) or 
a total nucleation, the so-called spinodal decomposition: the material quickly becomes inhomogeneous, 

* Corresponding author.
E-mail addresses: rosamaria.mininni@uniba.it (R.M. Mininni), Alain.Miranville@math.univ-poitiers.fr (A. Miranville), 

silvia.romanelli@uniba.it (S. Romanelli).
http://dx.doi.org/10.1016/j.jmaa.2016.12.071
0022-247X/© 2016 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jmaa.2016.12.071
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jmaa
mailto:rosamaria.mininni@uniba.it
mailto:Alain.Miranville@math.univ-poitiers.fr
mailto:silvia.romanelli@uniba.it
http://dx.doi.org/10.1016/j.jmaa.2016.12.071


JID:YJMAA AID:21011 /FLA Doctopic: Partial Differential Equations [m3L; v1.195; Prn:9/01/2017; 8:55] P.2 (1-19)
2 R.M. Mininni et al. / J. Math. Anal. Appl. ••• (••••) •••–•••
forming a fine-grained structure in which each of the two components appears more or less alternatively. 
In a second stage, which is called coarsening, occurs at a slower time scale and is less understood, these 
microstructures coarsen. We refer the reader to, e.g., [4,5,28,31–33,43] and [44] for more details. Here, u is 
the order parameter (it corresponds to a (rescaled) density of atoms) and w is the chemical potential. 
Furthermore, f is the derivative of a double-well potential.

This system, endowed with Neumann boundary conditions for both u and w (meaning that the interface 
is orthogonal to the boundary and that there is no mass flux at the boundary) or with periodic boundary 
conditions, has been extensively studied and one now has a rather complete picture as far as the existence, 
uniqueness and regularity of solutions and the asymptotic behavior of the solutions are concerned. We refer 
the reader to the review paper [8] and the references therein.

Recently, dynamic boundary conditions, which take into account the interactions with the walls in con-
fined systems, were proposed in [14–17,21] and [27]; these boundary conditions also yield a dynamic contact 
angle with the walls. The Cahn–Hilliard equation, together with such boundary conditions, was studied in, 
e.g., [11,17,19–21,38,40,49] and [57]; see also [9,10,41] and [42] for the numerical analysis and simulations.

We consider in this paper the higher-order Cahn–Hilliard system

∂u

∂t
= Δw, w = P (−Δ)u + f(u), (1.2)

where P (s) =
∑k

i=1 ais
i, ak > 0, k ≥ 2.

Such higher-order equations follow from higher-order (anisotropic) phase-field models recently proposed 
by G. Caginalp and E. Esenturk in [3] in the context of phase-field systems. Assuming isotropy and a 
constant temperature, one finds (1.2). Furthermore, (1.2) was studied in [7], with Dirichlet–Navier boundary 
conditions.

These models also contain sixth-order Cahn–Hilliard models. We can note that there is currently a strong 
interest in the study of sixth-order Cahn–Hilliard equations. These equations arise in situations such as 
strong anisotropy effects being taken into account in phase separation processes (see [53]), atomistic models 
of crystal growth (see [1,2,13] and [18]), the description of growing crystalline surfaces with small slopes 
which undergo faceting (see [50]), oil–water-surfactant mixtures (see [22] and [23]) and mixtures of polymer 
molecules (see [12]). We refer the reader to [6,24–26,29,30,34–37,45–48,54,55] and [56] for the mathematical 
and numerical analysis of such models. In particular, dynamic boundary conditions for several sixth-order 
Cahn–Hilliard equations were proposed in [37].

Our aim in this paper is to propose dynamic boundary conditions for the more general higher-order 
model (1.2). To do so, we follow the approach proposed in [21], i.e., we start with the total (in the bulk and 
on the boundary) mass conservation

d

dt
(
∫
Ω

u dx +
∫
Γ

u dΣ) = 0, (1.3)

instead of the sole bulk mass conservation

d

dt

∫
Ω

u dx = 0,

as in the previous approaches. Here, Ω is the domain occupied by the system (we assume that it is a bounded 
and regular domain of RN , N = 2 or 3) and Γ = ∂Ω. We further assume that f is regular enough.

Following [21], a first dynamic boundary condition, which is compatible with the mass conservation (1.3), 
reads
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∂u

∂t
= ηΔΓw − ∂w

∂ν
on Γ, η ≥ 0, (1.4)

where ΔΓ denotes the Laplace–Beltrami operator (η = 0 corresponds to the case where there is no diffusion 
on the boundary). Indeed, integrating (formally) the first of (1.2) over Ω, we obtain

d

dt

∫
Ω

u dx =
∫
Γ

∂w

∂ν
dΣ,

hence the result, owing to (1.4).
Next, we rewrite (1.2) in the form

∂u

∂t
= Δwk,

wk = −Δwk−1 + f(u),

wk−1 = −Δwk−2 + a1u,

wk−2 = −Δwk−3 + a2u,

· · ·

w2 = −Δw1 + ak−2u,

w1 = −akΔu + ak−1u.

Following again [21], we can then consider the following dynamic boundary conditions:

wk = −σΔΓwk−1 + ∂wk−1

∂ν
+ g(u) on Γ,

wk−1 = −σΔΓwk−2 + ∂wk−2

∂ν
+ a1u on Γ,

wk−2 = −σΔΓwk−3 + ∂wk−3

∂ν
+ a2u on Γ,

· · ·

w2 = −σΔΓw1 + ∂w1

∂ν
+ ak−2u on Γ,

w1 = −akσΔΓu + ∂u

∂ν
+ ak−1u on Γ,

where σ ≥ 0 (again, when σ = 0, there is no diffusion on the boundary) and g is regular enough.
We now set

U =
(

u
u|Γ

)
, Wi =

(
wi

wi|Γ

)
, i = 1, · · ·, k,

and

Aκ

(
ϕ
ϕ|Γ

)
=

(
−Δϕ

(−κΔΓϕ + ∂ϕ
∂ν )|Γ

)
, κ ≥ 0.

We thus have, in view of (1.4) and the above,
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∂U

∂t
= −AηWk,

Wk = AσWk−1 +
(

f(u)
g(u)|Γ

)
,

Wk−1 = AσWk−2 + a1U,

Wk−2 = AσWk−3 + a2U,

· · ·
W2 = AσW1 + ak−2U,

W1 = AσU + ak−1U,

so that

Wk = P (Aσ)U +
(

f(u)
g(u)|Γ

)
.

Setting W =
(

w
w|Γ

)
, we are thus lead to the study of the boundary value problem

∂U

∂t
= −AηW, (1.5)

W = P (Aσ)U +
(

f(u)
g(u)|Γ

)
. (1.6)

Remark 1.1. The Cahn–Hilliard system (1.2) follows from the bulk (Ginzburg–Landau type) free energy

ΨΩ =
∫
Ω

(
k∑

i=1
ai|(−Δ) i

2u|2 + F (u)) dx,

where we keep the operator (−Δ) i
2 formal when i is odd and F ′ = f . We then introduce the surface free 

energy

ΨΓ =
∫
Γ

(
k∑

i=1
bi|(−ΔΓ) i

2u|2 + G(u)) dΣ,

where G′ = g. We define the total free energy as the sum

Ψ = ΨΩ + ΨΓ.

Equations (1.5)–(1.6) are then related to Ψ in the sense that

W = δΨ
δu

,

where δ
δu denotes a variational derivative with respect to u (see [21]), in the particular case

bi = σai, i = 1, · · · , k.

Of course, it is also important to consider general bi’s. In that case, however, the corresponding higher-order 
Cahn–Hilliard system can no longer be rewritten in the compact form (1.5)–(1.6) and is more difficult to 
study; this will be considered elsewhere.
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Our aim in this paper is to study the higher-order model (1.5)–(1.6). In particular, we obtain the existence 
and uniqueness of solutions, as well as the existence of the global attractor.

We will focus here on the case η, σ > 0 only (actually, for simplicity, we will take η = σ = 1), i.e., we 
assume diffusion on the walls. The case η = 0 and/or σ = 0 will be studied elsewhere.

Notation. Throughout the paper, the same letters c, c′, c′′ and c′′′ denote (generally positive) constants 
which may vary from line to line. Similarly, the same letter Q denotes (positive) monotone increasing and 
continuous functions which may vary from line to line.

2. Setting of the problem

We first introduce the following spaces.
1) H = L2(Ω), HΓ = L2(Γ), H = H ×HΓ. Here, H and HΓ are endowed with their usual scalar products 
and associated norms, denoted by ((·, ·)), ‖ · ‖, ((·, ·))Γ and ‖ · ‖Γ, and H is endowed with its usual scalar 
product and associated norm, denoted by ((·, ·))H and ‖ · ‖H. More generally, ‖ · ‖X denotes the norm on 
the Banach space X.

2) V = H1(Ω), VΓ = H1(Γ), V = {
(
ϕ
ψ

)
∈ V × VΓ, ϕ|Γ = ψ} which we again endow with their usual scalar 

products and associated norms.

3) We set, for φ =
(
ϕ
ψ

)
∈ H ×HΓ,

〈φ〉 = 1
Vol(Ω) + |Γ| (

∫
Ω

ϕdx +
∫
Γ

ψ dΣ).

We then set

Ḣ = {φ =
(
ϕ
ψ

)
∈ H, 〈φ〉 = 0}

and

V̇ = V ∩ Ḣ.

In particular, the inclusions V̇ ⊂ Ḣ ⊂ V̇ ′ are dense, continuous and compact.
We have the

Lemma 2.1. The norm ‖ · ‖2
V̇ = ‖∇ · ‖2 + ‖∇Γ · ‖2 is equivalent to the usual H1(Ω) × H1(Γ)-norm on V̇. 

Here, ∇Γ denotes the surface gradient.

Proof. It suffices to prove that there exists a positive constant c such that

‖ϕ‖2
H1(Ω) + ‖ϕ|Γ‖2

H1(Γ) ≤ c‖φ‖2
V̇ , ∀φ =

(
ϕ
ϕ|Γ

)
∈ V̇.

For the sake of simplicity, we omit the symbol |Γ in what follows.

Suppose not. Then, for any n ∈ N, there exists φn =
(
ϕn

ϕn

)
∈ V̇\{0} such that

‖φn‖2
˙ <

1 (‖ϕn‖2
H1(Ω) + ‖ϕn‖2

H1(Γ)).
V n
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We set

Θn =
(
θn
θn

)
= φn

(‖ϕn‖2
H1(Ω) + ‖ϕn‖2

H1(Γ))
1
2
,

so that

‖θn‖2
H1(Ω) + ‖θn‖2

H1(Γ) = 1, (2.1)

‖Θn‖2
V̇ ≤ 1

n
. (2.2)

It then follows from (2.2) that

∇θn → 0 in L2(Ω) and ∇Γθn → 0 in L2(Γ). (2.3)

Furthermore, it follows from (2.1) and the compact embeddings H1(Ω) ⊂ L2(Ω) and H1(Ω) ⊂ L2(Γ) that, 
up to a subsequence which we do not relabel,

θn → θ in L2(Ω) and L2(Γ) (2.4)

and

0 =
∫
Ω

θn dx +
∫
Γ

θn dΣ →
∫
Ω

θ dx +
∫
Γ

θ dΣ, (2.5)

for some Θ =
(
θ
θ

)
. Next, it follows from (2.4) that

θn → θ in D′(Ω),

so that

∇θn → ∇θ in D′(Ω),

whence, in view of (2.3),

θ = c (constant).

We finally deduce from (2.5) that c = 0, so that Θ = 0, hence a contradiction, since, passing to the limit 
in (2.1), there holds

‖θ‖2
H1(Ω) + ‖θ‖2

H1(Γ) = 1.

This finishes the proof. �
Next, we introduce the bilinear form

a : V̇ × V̇ → R, (φ,Θ) 
→ ((∇ϕ,∇θ)) + ((∇Γϕ,∇Γθ))Γ,

φ =
(
ϕ
ϕ

)
, Θ =

(
θ
θ

)
.
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It follows from Lemma 2.1 that a is symmetric, continuous and coercive in V̇. This allows us to define 
the linear operator

A : V̇ → V̇ ′

by

〈Aφ,Θ〉V̇′,V̇ = a(φ,Θ), φ, Θ ∈ V̇.

The operator A is a strictly positive, selfadjoint and unbounded linear operator. Furthermore, we can define 
the domain of A in Ḣ, D(A) = {φ ∈ V̇, ∃ Ξ ∈ Ḣ, ((Ξ, Θ))H = a(φ, Θ), ∀ Θ ∈ V̇}. Note that A is an 
isomorphism from V̇ onto V̇ ′ and from D(A) onto Ḣ. Finally, noting that A−1 can be considered as a 
selfadjoint and compact operator in Ḣ, we can define the powers As, together with their domains D(As), 
s ∈ R (being understood that D(A0) = Ḣ), and As, s > 0, can be extended as an isomorphism from Ḣ onto 
D(A−s) and, more generally, from D(As1) onto D(As1−s), s1 ∈ R. We refer the interested reader to, e.g., 
[51] for more details. In particular, there holds

Proposition 2.2. For k ∈ N, D(Ak) = V̇ ∩ (H2k(Ω) ×H2k(Γ)) and the norm ‖Ak · ‖H is equivalent to the 
usual H2k(Ω) ×H2k(Γ)-one on D(Ak).

Proof. We proceed by induction.

First case: k = 1. Let φ =
(
ϕ
ϕ

)
∈ V̇ be the solution to

a(φ,Θ) = ((F ,Θ))H, ∀Θ ∈ V̇ , (2.6)

where F =
(
f1
f2

)
∈ Ḣ. Then, it is easy to see that

a(φ,Θ) = ((F ,Θ))H, ∀Θ ∈ V. (2.7)

Let us first assume that φ ∈ H2(Ω) ×H2(Γ). Then, integrating by parts, we have

−
∫
Ω

Δϕθ dx +
∫
Γ

(−ΔΓϕ + ∂ϕ

∂ν
)θ dΣ = ((f1, θ)) + ((f2, θ))Γ, ∀

(
θ
θ

)
∈ H1(Ω) ×H1(Γ).

Taking θ ∈ D(Ω), this yields that

−Δϕ = f1 in D′(Ω), L2(Ω) and a.e. (2.8)

There thus remains
∫
Γ

(−ΔΓϕ + ∂ϕ

∂ν
)θ dΣ = ((f2, θ))Γ, ∀ θ ∈ H1(Γ),

which yields that

−ΔΓϕ + ∂ϕ = f2 in L2(Γ) and a.e. (2.9)

∂ν
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We thus deduce that V̇ ∩ (H2(Ω) ×H2(Γ)) ⊂ D(A) and, if φ =
(
ϕ
ϕ

)
belongs to this space, then

Aφ =
(

−Δϕ

−ΔΓϕ + ∂ϕ
∂ν

)
.

Let now φ ∈ V̇ and F ∈ Ḣ be such that (2.6) and, thus, (2.7) are satisfied. Then, taking Θ =
(
θ
0

)
, 

θ ∈ D(Ω), in (2.7), we can see that (2.8) still holds. Furthermore, since ϕ ∈ H1(Ω) and Δϕ ∈ L2(Ω), the 
trace ∂ϕ∂ν can be defined in H− 1

2 (Γ) and a generalized form of Green’s formula is valid for every θ ∈ H1(Ω)
(see [52]; see also [51], Chapter II, Example 2.5), yielding

−((Δϕ, θ)) = −〈∂ϕ
∂ν

, θ〉
H− 1

2 (Γ),H
1
2 (Γ)

+ ((∇ϕ,∇θ)), ∀ θ ∈ H1(Ω),

whence, in view of (2.7) and (2.8),

〈∂ϕ
∂ν

− f2, θ〉
H− 1

2 (Γ),H
1
2 (Γ)

+ ((∇Γϕ,∇Γθ))Γ = 0, ∀ θ ∈ H1(Ω), θ ∈ H1(Γ). (2.10)

Actually, (2.10) also holds for any θ ∈ H1(Γ) (take θ ∈ H
3
2 (Ω) and note that Ω is regular enough) and we 

see that

〈−ΔΓϕ + ∂ϕ

∂ν
− f2, θ〉H−1(Γ),H1(Γ) = 0, ∀ θ ∈ H1(Γ),

so that (2.9) is again valid, in a weak form.

Next, it follows from Lemma 2.1 and the beginning of the proof of [38], Lemma A.1, that, if φ =
(
ϕ
ϕ

)
∈

D(A),

‖ϕ‖2
H1(Ω) + ‖ϕ‖2

H1(Γ) ≤ c‖Aφ‖2
H.

Rewriting then our elliptic problem in the form

−Δϕ = f1, −ΔΓϕ + ∂ϕ

∂ν
+ ϕ = f2 + ϕ, (2.11)

it follows from [38], Lemma A.1, that

‖ϕ‖2
H2(Ω) + ‖ϕ‖2

H2(Γ) ≤ c(‖Aφ‖2
H + ‖φ‖2

V) ≤ c′‖Aφ‖2
H,

which completes the proof in the case k = 1.

Second case: k ≥ 2. We assume that

‖φ‖H2(k−1)(Ω)×H2(k−1)(Γ) ≤ c‖Ak−1φ‖H, ∀φ ∈ D(Ak−1). (2.12)

Let φ belong to D(Ak). Noting that Akφ = F , F ∈ Ḣ, is equivalent to

Ak−1Aφ = F , Aφ ∈ D(Ak−1),

we deduce from (2.12) that
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‖Aφ‖H2(k−1)(Ω)×H2(k−1)(Γ) ≤ c‖Akφ‖H. (2.13)

On the other hand, it follows from the elliptic regularity result given in [38], Corollary A.1 (once more 
applied to the slightly modified elliptic system (2.11)), and (2.12)–(2.13) that

‖φ‖2
H2k(Ω)×H2k(Γ) ≤ c(‖Aφ‖2

H2(k−1)(Ω)×H2(k−1)(Γ) + ‖φ‖2
H2(k−1)(Ω)×H2(k−1)(Γ))

≤ c(‖Akφ‖2
H + ‖Ak−1φ‖2

H),

whence

‖φ‖H2k(Ω)×H2k(Γ) ≤ c‖Akφ‖H,

noting that D(Ak) is continuously embedded into D(Ak−1). This finishes the proof. �
Noting that, by definition, D(A 1

2 ) = V̇ and proceeding in a similar way (writing, in particular, that 
Ak+ 1

2 = Ak− 1
2A, k ≥ 1), we can also prove the

Proposition 2.3. For k ∈ N ∪ {0}, D(Ak+ 1
2 ) = V̇ ∩ (H2k+1(Ω) × H2k+1(Γ)) and the norm ‖Ak+ 1

2 · ‖H is 
equivalent to the usual H2k+1(Ω) ×H2k+1(Γ)-one on D(Ak+ 1

2 ).

We finally note that D(A− 1
2 ) = V̇ ′ and, since the norm ‖A 1

2 · ‖H is equivalent to the V̇-one, it follows 
that the norm ‖ · ‖−1 = ‖A− 1

2 · ‖H is equivalent to the usual V̇ ′-one.

Remark 2.4. We can note that the bilinear form a can also be defined on V × V; in that case however, it 
is still continuous, but not coercive. This allows us to also consider the operator A as an operator from V
onto V ′.

We now consider the following initial and boundary value problem:

∂U

∂t
= −AW in V ′, (2.14)

W = P (A)U + F(U) in V ′, (2.15)

U |t=0 = U0, (2.16)

where U =
(
u
u

)
, W =

(
w
w

)
and F(U) =

(
f(u)
g(u)

)
. Furthermore,

P (s) =
k∑

i=1
ais

i, ak > 0, k ≥ 2.

As far as the functions f and g are concerned, we assume that

f, g ∈ C2(R), (2.17)

f ′ ≥ −c0, g′ ≥ −c1, c0, c1 ≥ 0, (2.18)

f(s)(s−m) ≥ c2F (s) − c3(m) ≥ −c4(m), c2 > 0, c3, c4 ≥ 0, s, m ∈ R, (2.19)

g(s)(s−m) ≥ c5G(s) − c6(m) ≥ −c7(m), c5 > 0, c6, c7 ≥ 0, s, m ∈ R, (2.20)

where F (s) =
∫ s

f(ξ) dξ, G(s) =
∫ s

g(ξ) dξ and the constants c3, c4, c6 and c7 depend continuously on m;
0 0
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F (s) ≥ c8s
4 − c9, G(s) ≥ c10s

4 − c11, c8, c10 > 0, c9, c11 ≥ 0, s ∈ R. (2.21)

Remark 2.5. In particular, the above assumptions are satisfied by the usual cubic bulk nonlinear term 
f(s) = s3 − s. However, it was proposed in [14,15] and [16] that g be affine, g(s) = as + b, a > 0. 
Unfortunately, such surface “nonlinear” terms do not satisfy (2.21), which is essential to have coercivity in 
the proof of existence given below (see (3.16)–(3.18)), and cannot be considered in general. However, when 
ai ≥ 0, i = 1, · · ·, k−1 (recall that ak > 0), the coercivity is straightforward and (2.21) is no longer needed, 
so that the affine surface terms can be considered.

Setting, whenever it makes sense,

φ = φ−
(
〈φ〉
〈φ〉

)
,

so that 〈φ〉 = 0, we can rewrite (2.14) in the following equivalent form

A−1 ∂U

∂t
= −W in V̇ ′, (2.22)

noting that 〈∂U∂t 〉 = 0. Furthermore, it follows from (2.15) that

〈W 〉 = 〈F(U)〉. (2.23)

We finally note that Aφ = Aφ (see Remark 2.4).

3. A priori estimates

The estimates derived in this section are formal. They can however easily be justified within, e.g., 
a Galerkin scheme.

We multiply (2.14) by W , scalarly in H, and have

((∂U
∂t

,W ))H + ‖W‖2
V̇ = 0. (3.1)

We then multiply (2.15) by ∂U∂t to obtain

((∂U
∂t

,W ))H = ((P (A)U, ∂U
∂t

))H + ((F(U), ∂U
∂t

))H. (3.2)

We note that

((P (A)U, ∂U
∂t

))H = 1
2
d

dt

k∑
i=1

ai‖A
i
2U‖2

H (3.3)

and

((F(U), ∂U
∂t

))H = d

dt
(
∫
Ω

F (u) dx +
∫
Γ

G(u) dΣ). (3.4)

It then follows from (3.2)–(3.4) that
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((∂U
∂t

,W ))H = 1
2
d

dt
(

k∑
i=1

ai‖A
i
2U‖2

H + 2
∫
Ω

F (u) dx + 2
∫
Γ

G(u) dΣ). (3.5)

We finally deduce from (3.1) and (3.5) that

d

dt
(

k∑
i=1

ai‖A
i
2U‖2

H + 2
∫
Ω

F (u) dx + 2
∫
Γ

G(u) dΣ) + 2‖W‖2
V̇ = 0. (3.6)

We further note that it follows from the interpolation inequality

‖φ‖Hi(Ω)×Hi(Γ) ≤ c(i)‖φ‖
i
m

Hm(Ω)×Hm(Γ)‖φ‖
1− i

m

H , (3.7)

φ ∈ Hm(Ω) ×Hm(Γ), i ∈ {1, · · · , m− 1}, m ∈ N, m ≥ 2,

and Propositions 2.2 and 2.3 that

ak
2 ‖U‖2

Hk(Ω)×Hk(Γ) − c‖U‖2
H ≤

k∑
i=1

ai‖A
i
2U‖2

H ≤ c′‖U‖2
Hk(Ω)×Hk(Γ). (3.8)

Next, we multiply (2.22) by U to find

1
2
d

dt
‖U‖2

−1 = −((W,U))H. (3.9)

We then multiply (2.15) by U and have

((W,U))H =
k∑

i=1
ai‖A

i
2U‖2

H + ((F(U), U))H. (3.10)

It follows from (3.9)–(3.10) that

d

dt
‖U‖2

−1 + 2
k∑

i=1
ai‖A

i
2U‖2

H + 2((F(U), U))H = 0. (3.11)

We assume from now on that

|〈U0〉| ≤ M, M ≥ 0 given. (3.12)

Therefore,

|〈U(t)〉| ≤ M, ∀ t ≥ 0. (3.13)

We thus deduce from (2.19)–(2.20) and (3.13) that

((F(U), U))H ≥ c(
∫
Ω

F (u) dx +
∫
Γ

G(u) dΣ) − c′M , c > 0, c′M ≥ 0. (3.14)

For simplicity, we omit the dependence of the constants on M in what follows.



JID:YJMAA AID:21011 /FLA Doctopic: Partial Differential Equations [m3L; v1.195; Prn:9/01/2017; 8:55] P.12 (1-19)
12 R.M. Mininni et al. / J. Math. Anal. Appl. ••• (••••) •••–•••
Summing (3.6) and (3.11), we deduce from (3.14) a differential inequality of the form

dE1

dt
+ c(E1 + ‖W‖2

V̇) ≤ c′, c > 0, (3.15)

where

E1 = ‖U‖2
−1 +

k∑
i=1

ai‖A
i
2U‖2

H + 2
∫
Ω

F (u) dx + 2
∫
Γ

G(u) dΣ. (3.16)

Furthermore, it follows from (2.21) and (3.8) that

E1 ≥ c(‖U‖2
Hk(Ω)×Hk(Γ) +

∫
Ω

F (u) dx +
∫
Γ

G(u) dΣ) + c′‖U‖4
L4(Ω)×L4(Γ) − c′′‖U‖2

H − c′′′,

so that

E1 ≥ c(‖U‖2
Hk(Ω)×Hk(Γ) +

∫
Ω

F (u) dx +
∫
Γ

G(u) dΣ) − c′, (3.17)

noting that

‖U‖2
H ≤ ε‖U‖4

L4(Ω)×L4(Γ) + cε, ∀ ε > 0. (3.18)

Moreover,

E1 ≤ c(‖U‖2
Hk(Ω)×Hk(Γ) +

∫
Ω

F (u) dx +
∫
Γ

G(u) dΣ) + c′. (3.19)

In particular, it follows from (3.13), (3.15), (3.17), (3.19) and Gronwall’s lemma that

‖U(t)‖2
Hk(Ω)×Hk(Γ) (3.20)

≤ ce−c′t(‖U0‖2
Hk(Ω)×Hk(Γ) +

∫
Ω

F (u0) dx +
∫
Γ

G(u0) dΣ) + c′′, c′ > 0, t ≥ 0,

and
t+r∫
t

(‖∂U
∂t

‖2
−1 + ‖W‖2

V̇) ds (3.21)

≤ ce−c′t(‖U0‖2
Hk(Ω)×Hk(Γ) +

∫
Ω

F (u0) dx +
∫
Γ

G(u0) dΣ) + c′′, c′ > 0, t ≥ 0,

r > 0 given, where U0 =
(
u0
u0

)
. Note indeed that it follows from (2.14) that

‖∂U
∂t

‖−1 = ‖W‖V̇ . (3.22)

We now rewrite (2.14)–(2.15) in the equivalent form

A−1 ∂U + P (A)U + F(U) − 〈F(U)〉 = 0 in V̇ ′. (3.23)

∂t
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We multiply (3.23) by AkU , scalarly in H, and have, owing to the interpolation inequality (3.7),

d

dt
‖A k−1

2 U‖2 + c‖U‖2
H2k(Ω)×H2k(Γ) ≤ c(‖U‖2

H + ‖f(u)‖2 + ‖g(u)‖2
Γ). (3.24)

Recalling that k ≥ 2, it follows from the continuous embeddings Hk(Ω) ⊂ C(Ω) and Hk(Γ) ⊂ C(Γ) and the 
continuity of f and g that

‖U‖2
H + ‖f(u)‖2 + ‖g(u)‖2

Γ ≤ Q(‖U‖Hk(Ω)×Hk(Γ)), (3.25)

whence, owing to (3.20),

‖U‖2
H + ‖f(u)‖2 + ‖g(u)‖2

Γ ≤ e−ctQ(‖U0‖Hk(Ω)×Hk(Γ)) + c′, c > 0, t ≥ 0, (3.26)

and (3.24) and (3.26) yield

d

dt
‖A k−1

2 U‖2 + c‖U‖2
H2k(Ω)×H2k(Γ) ≤ e−ctQ(‖U0‖Hk(Ω)×Hk(Γ)) + c′, c > 0, t ≥ 0. (3.27)

Summing (3.15) and (3.27), we obtain a differential inequality of the form

dE2

dt
+ c(E2 + ‖∂U

∂t
‖2
−1 + ‖W‖2

V̇) ≤ e−c′tQ(‖U0‖Hk(Ω)×Hk(Γ)) + c′′, c′ > 0, t ≥ 0, (3.28)

where

E2 = E1 + ‖A k−1
2 U‖2 (3.29)

satisfies

c(‖U‖2
Hk(Ω)×Hk(Γ) +

∫
Ω

F (u) dx +
∫
Γ

G(u) dΣ) − c′ ≤ E2 (3.30)

≤ c′′(‖U‖2
Hk(Ω)×Hk(Γ) +

∫
Ω

F (u) dx +
∫
Γ

G(u) dΣ) + c′′′, c > 0.

In a next step, we differentiate (3.23) with respect to time to find

A−1 ∂

∂t

∂U

∂t
+ P (A)∂U

∂t
+ F ′(U) · ∂U

∂t
− 〈F ′(U) · ∂U

∂t
〉 = 0 in V̇ ′, (3.31)

where

F ′(U) · ∂U
∂t

=
(
f ′(u)∂u∂t
g′(u)∂u∂t

)
.

We multiply (3.31) by ∂U∂t , scalarly in H, and have, owing to (2.18) and the interpolation inequality (3.7)
(also recall that 〈∂U∂t 〉 = 0),

d

dt
‖∂U
∂t

‖2
−1 + c‖∂U

∂t
‖2
Hk(Ω)×Hk(Γ) ≤ c′‖∂U

∂t
‖2
H, c > 0. (3.32)

Noting that
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‖∂U
∂t

‖2
H = ((A− 1

2
∂U

∂t
,A

1
2
∂U

∂t
))H,

we see that

‖∂U
∂t

‖2
H ≤ c‖∂U

∂t
‖−1‖

∂U

∂t
‖H1(Ω)×H1(Γ) (3.33)

and (3.32)–(3.33) yield

d

dt
‖∂U
∂t

‖2
−1 + c‖∂U

∂t
‖2
Hk(Ω)×Hk(Γ) ≤ c′‖∂U

∂t
‖2
−1, c > 0. (3.34)

We thus deduce from (3.21), (3.34) and the uniform Gronwall’s lemma (see, e.g., [51], Chapter III, 
Lemma 1.1) that

‖∂U
∂t

(t)‖2
−1 ≤ e−ctQ(‖U0‖Hk(Ω)×Hk(Γ)) + c′, c > 0, t ≥ r, (3.35)

r > 0 given.
We finally rewrite (3.23) as an elliptic system, for t > 0 fixed,

P (A)U = h(t) in V̇ ′, (3.36)

where h(t) = −A−1 ∂U
∂t (t) −F(U(t)) satisfies, owing to (3.26) and (3.35),

‖h(t)‖H ≤ e−ctQ(‖U0‖Hk(Ω)×Hk(Γ)) + c′, c > 0, t ≥ r, (3.37)

r > 0 given. Multiplying (3.36) by AkU , scalarly in H, we obtain, owing to (3.13), (3.20), (3.37) and the 
interpolation inequality (3.7),

‖U(t)‖H2k(Ω)×H2k(Γ) ≤ e−ctQ(‖U0‖Hk(Ω)×Hk(Γ)) + c′, c > 0, t ≥ r, (3.38)

r > 0 given.

Remark 3.1. If we further assume that U0 ∈ H2k+1(Ω) ×H2k+1(Γ), then ∂U∂t (0) ∈ H and

‖∂U
∂t

(0)‖−1 ≤ Q(‖U0‖H2k+1(Ω)×H2k+1(Γ)). (3.39)

In that case, it follows from (3.34) and Gronwall’s lemma that

‖∂U
∂t

(t)‖2
−1 ≤ Q(‖U0‖H2k+1(Ω)×H2k+1(Γ)), t ∈ [0, 1], (3.40)

which, combined with (3.38) (for r = 1), yields

‖U(t)‖H2k(Ω)×H2k(Γ) ≤ e−ctQ(‖U0‖H2k+1(Ω)×H2k+1(Γ)) + c′, c > 0, t ≥ 0. (3.41)

4. The dissipative semigroup

We first give the definition of a weak solution to (2.14)–(2.16).



JID:YJMAA AID:21011 /FLA Doctopic: Partial Differential Equations [m3L; v1.195; Prn:9/01/2017; 8:55] P.15 (1-19)
R.M. Mininni et al. / J. Math. Anal. Appl. ••• (••••) •••–••• 15
Definition 4.1. We assume that U0 ∈ V ′. A weak solution to (2.14)–(2.16) is a pair (U, W ) such that, for 
any given T > 0,

U ∈ C([0, T ]; 〈U0〉 + V̇ ′) ∩ L2(0, T ;Hk(Ω) ×Hk(Γ)),

W ∈ L2(0, T ;V),

U(0) = U0

and

d

dt
((A−1U, φ))H = −((W,φ)H, ∀φ ∈ V̇ ,

((W,Θ))H =
k∑

i=1
ai((A

i
2U,A

i
2 Θ))H + ((F(U),Θ))H, ∀Θ ∈ V̇ ∩ (Hk(Ω) ×Hk(Γ)),

in the sense of distributions, with

U = U + 〈U0〉,
〈W 〉 = 〈F(U)〉.

Here, it is understood that 〈U0〉 = 1
Vol(Ω)+|Γ| 〈U0, 1〉V′,V .

We have the

Theorem 4.2. (i) We assume that U0 ∈ Hk(Ω) ×Hk(Γ) and |〈U0〉| ≤ M , M ≥ 0 given. Then, (2.14)–(2.16)
possesses a unique weak solution (U, W ) such that, for any T > 0,

U ∈ L∞(R+;Hk(Ω) ×Hk(Γ)) ∩ L2(0, T ;H2k(Ω) ×H2k(Γ))

and

∂U

∂t
∈ L2(0, T ; V̇ ′).

(ii) If we further assume that U0 ∈ Hk+1(Ω) ×Hk+1(Γ), then, for any T > 0,

U ∈ L∞(R+;Hk+1(Ω) ×Hk+1(Γ))

and

∂U

∂t
∈ L∞(0, T ; V̇ ′) ∩ L2(R+;Hk(Ω) ×Hk(Γ)).

Proof. The proofs of existence and regularity in (i) and (ii) follow from the a priori estimates derived in 
the previous section and, e.g., a standard Galerkin scheme. In particular, we can consider a Galerkin basis 
based on the spectrum of the operator A (see, e.g., [51]).

Let then (U1, W1) and (U2, W2) be two weak solutions to (2.14)–(2.15) such that

〈U1(0)〉 = 〈U2(0)〉.

We set U = U1 − U2 and W = W1 −W2 and have, noting that 〈U(0)〉 = 0,
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d

dt
((A−1U, φ))H = −((W,φ))H, ∀φ ∈ V̇ , (4.1)

((W,Θ))H =
k∑

i=1
ai((A

i
2U,A

i
2 Θ))H + ((F(U),Θ))H, ∀Θ ∈ V̇ ∩ (Hk(Ω) ×Hk(Γ)), (4.2)

〈W 〉 = 〈F(U1) −F(U2)〉. (4.3)

Taking φ = U in (4.1), we obtain

1
2
d

dt
‖U‖2

−1 = −((W,U))H. (4.4)

Taking then Θ = U in (4.2), we find

((W,U))H =
k∑

i=1
ai‖A

i
2U‖2

H + ((F(U1) −F(U2), U))H. (4.5)

Noting that

((F(U1) −F(U2), U))H = ((f(u1) − f(u2), u)) + ((g(u1) − g(u2), u))Γ,

it follows from (2.18), (3.7) and (4.5) that

((W,U))H ≥ ak
2 ‖A k

2 U‖2
H − c‖U‖2

H

≥ ak
2 ‖A k

2 U‖2
H − c‖U‖−1‖A

k
2 U‖H

≥ c‖U‖2
Hk(Ω)×Hk(Γ) − c′‖U‖2

−1, c > 0,

which, combined with (4.4), yields

d

dt
‖U‖2

−1 ≤ c‖U‖2
−1. (4.6)

Gronwall’s lemma finally gives

‖u1(t) − u2(t)‖−1 ≤ ect‖u1(0) − u2(0)‖−1, t ≥ 0, (4.7)

whence the uniqueness, as well as the continuous dependence with respect to the initial data in the 
V̇ ′-norm. �

It follows from Theorem 4.2 that we can define the family of solving operators

S(t) : ΦM → ΦM , U0 
→ U(t), t ≥ 0,

where

ΦM = {Θ ∈ Hk(Ω) ×Hk(Γ), 〈Θ〉 = M},

M ∈ R given. This family of solving operators forms a semigroup, i.e., S(0) = I and S(t + τ) = S(t) ◦S(τ), 
∀ t, τ ≥ 0, which is continuous with respect to the V̇ ′-topology (more precisely, one writes S(t) = M +S(t), 
where S(t) : U0 
→ U(t), t ≥ 0, is continuous with respect to the V̇ ′-topology).
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Remark 4.3. It follows from (4.7) that we can extend S(t) (by continuity and in a unique way) to M + V̇ ′.

It follows from (3.20) that we have the

Theorem 4.4. The semigroup S(t) is dissipative in ΦM , in the sense that it possesses a bounded absorbing 
set B0 ⊂ ΦM (i.e., ∀ B ⊂ ΦM bounded, ∃ t0 = t0(B) such that t ≥ t0 implies S(t)B ⊂ B0).

Remark 4.5. (i) The dissipativity is a first step in view of the study of the (temporal) asymptotic be-
havior of the associated dynamical system. In particular, an important issue is to prove the existence of 
finite-dimensional attractors: such objects describe all possible dynamics of the system; furthermore, the 
finite-dimensionality means, very roughly speaking, that, even though the initial phase space ΦM has infinite 
dimension, the reduced dynamics can be described by a finite number of parameters (we refer the interested 
reader to, e.g., [39] and [51] for discussions on this subject).
(ii) Actually, it follows from (3.38) that we have a bounded absorbing set B1 which is compact in Φ and 
bounded in H2k(Ω) ×H2k(Γ). This yields the existence of the global attractor AM which is compact in Φ, 
bounded in H2k(Ω) ×H2k(Ω) and attracts the bounded sets of ΦM in the topology of V̇ ′ (see [39] and [51]
for more details).
(iii) We recall that the global attractor AM is the smallest (for the inclusion) compact set of the phase space 
which is invariant by the flow (i.e., S(t)AM = AM , ∀ t ≥ 0) and attracts all bounded sets of initial data as 
time goes to infinity; it thus appears as a suitable object in view of the study of the asymptotic behavior of 
the system. We refer the reader to, e.g., [39] and [51] for more details and discussions on this.
(iv) We can also prove, based on standard arguments (see, e.g., [39] and [51]) that AM has finite dimension, 
in the sense of covering dimensions such as the Hausdorff and the fractal dimensions.
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