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We establish the linear stability of an electron equilibrium for an electrostatic and 
collisionless plasma in interaction with a wall. The equilibrium we focus on is called 
in plasma physics a Debye sheath. Specifically, we consider a two species (ions 
and electrons) Vlasov–Poisson–Ampère system in a bounded and one dimensional 
geometry. The interaction between the plasma and the wall is modeled by original 
boundary conditions: On the one hand, ions are absorbed by the wall while electrons 
are partially re-emitted. On the other hand, the electric field at the wall is induced 
by the accumulation of charged particles at the wall. These boundary conditions 
ensure the compatibility with the Maxwell–Ampère equation. A global existence, 
uniqueness and stability result for the linearized system is proven. The main 
difficulty lies in the fact that (due to the absorbing boundary conditions) the 
equilibrium is a discontinuous function of the particle energy, which results in a 
linearized system that contains a degenerate transport equation at the border.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

1.1. A kinetic model of plasma-wall dynamics: the Vlasov–Poisson–Ampère system

We consider an electrostatic and collisionless plasma consisting of one species of ions and electrons. 
We use a kinetic approach to model this plasma. To this purpose, we set Ω = (0, 1) × R and denote by 
(x, v) ∈ Ω = [0, 1] ×R the phase space variable, where x is the particle position and v the particle velocity. 
This work is concerned with the linear stability of an equilibrium for the two species Vlasov–Poisson system 
in the presence of spatial boundaries

{
∂tfi + v∂xfi + E∂vfi = 0 in (0,+∞) × Ω,

∂tfe + v∂xfe − 1
μE∂vfe = 0 in (0,+∞) × Ω,

(1)

−ε2∂xxφ = ni − ne in (0,+∞) × (0, 1), (2)
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where fi : [0, +∞) × Ω → R
+, fe : [0, +∞) × Ω → R

+ are the ions and electrons distribution functions in 
the phase-space and φ : [0, +∞) × [0, 1] → R is the electric potential. Here the physical parameters μ and ε
stand respectively for the mass ratio between electrons and ions, and a normalized Debye length that will 
be (for simplicity) in the sequel taken equal to 1. We also denote

E = −∂xφ, ni =
∫
R

fidv, ne =
∫
R

fedv,

the electric field, the ion density and the electron density. The boundary conditions are given for all t ∈
(0, +∞) by

{
fi(t, 0, v > 0) = f in

i (v), fi(t, 1, v < 0) = 0,
fe(t, 0, v > 0) = f in

e (v), fe(t, 1, v < 0) = αfe(t, 1,−v),
(3)

φ(t, 0) = 0, E(t, 1) = E∗(t, fi, fe), (4)

where f in
i and f in

e denote two given incoming particles velocity distributions that are time independent. 
The scalar parameter α belongs to the interval [0, 1) and represents the rate of re-emitted electrons in the 
domain (0, 1). The scalar E∗(t, fi, fe) depends on the unknown (fi, fe, φ) via the formula

E∗(t, fi, fe) =

⎛
⎝E0

w −
t∫

0

∫
R

(fi(τ, 1, v) − fe(τ, 1, v)) vdvdτ

⎞
⎠ . (5)

Up to our knowledge, the theory of existence and uniqueness for such a initial boundary value problem 
(1)–(4) has not been treated in full details. In the one dimensional case, there is the result of Bostan [5]
which establishes the existence and uniqueness of the mild solution to a Vlasov–Poisson system in which 
the boundary conditions do not depend on the solution itself. Still in the one dimensional case, the work 
of Guo [10] studies the dynamic of a plane diode. Also, the result of BenAbdallah [3] shows the existence 
of weak solutions for the Vlasov–Poisson system in dimension greater than or equal to one, but once again 
the boundaries are not coupled to the solution itself. The existence and uniqueness of weak solutions in the 
half-space with specular reflection condition is obtained in [11]. The case of partially absorbing boundary 
condition is treated in [9]. The existence of a stationary solution to the system (1)–(4) was proven in [1], 
the stationary solution corresponds to the Debye sheath (see [17] for further physical details). This work 
can be considered as a continuation of the work [1], and a first step in the study of the wellposedness of the 
non-linear system (1)–(4).

1.2. Physical interpretation of the model

The bi-kinetic model (1)–(4) models the dynamical transition between the core of a plasma and a wall 
(see for instance [13]). The region of plasma we consider is modeled by the line segment [0, 1] where x = 0 is 
assumed to be somewhere in the bulk plasma and thus a source of particles. The sources here are modeled 
by the injection of particles that are mathematically encoded in the given distributions f in

i and f in
e . The 

wall at x = 1 is supposed to be metallic and partially absorbing: it absorbs completely the ions and re-emits 
a fraction α of the electrons. The parameter α can be seen as a constitutive parameter of the wall. The 
accumulation of charged particles at the wall induces an electric-field that is given by (5) (the number 
E0

w denotes the initial electric field at the wall). The boundary condition of the electric-field at the wall 
can be formally re-written as ∂tE(t, 1) + j(t, 1) = 0 where j(t, 1) :=

∫
R
(fi(t, 1, v) − fe(t, 1, v))vdv is the 

current density at the wall. At a formal level, one easily verifies that this boundary condition ensures the 



956 M. Badsi / J. Math. Anal. Appl. 453 (2017) 954–972
compatibility of the solutions to (1)–(4) with the Vlasov–Ampère system made of equations (1), (3) with 
the Maxwell–Ampère equation

∂tE = −j in (0,+∞) × [0, 1], j :=
∫
R

(fi − fe)vdv, (6)

provided the initial data satisfy the Poisson equation

∂xE(0, .) =
∫
R

fi(0, ., .) − fe(0, ., .)dv.

Because of this equivalence, we shall rather consider the Vlasov–Ampère system (1), (3) and (6).

1.3. Statement of the main result

The mathematical and physical aspect we investigate in this work is the linear stability of the Debye 
sheath for the Vlasov–Ampère model (1), (3) and (6). The rigorous mathematical construction of such an 
equilibrium was obtained for the first time for the model (1), (3) together with (6) in [1]. The main result 
of this work can be roughly summarized as follows: if the initial data that is a small perturbation of the 
sheath equilibrium, then the solution of the system (1), (3) and (6) remains close to the sheath equilibrium 
for all times provided the ions are frozen. To make things more precise at this stage, we need supplementary 
materials. Let us denote by (f∞

i , f∞
e , φ∞) the sheath equilibrium to (1), (3) and (6). Let us write the solution 

of (1), (3) and (6) as the sum of the sheath equilibrium plus an interior perturbation that affects only the 
electrons and the electrostatic field, namely: (fi, fe, φ) = (f∞

i , f∞
e + f̃e, φ∞ + φ̃). The formal linearization 

yields the linearized Vlasov–Ampère system (after dropping the ˜)

(LVA):

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
∂tfe + Dfe = E∂vf

∞
e , in (0,+∞) × Ω

∂tE =
∫
R

fevdv, in (0,+∞) × [0, 1]

fe(t, 0, v > 0) = 0, fe(t, 1, v < 0) = αfe(t, 1,−v) in (0,+∞)

where D denotes the first order linear differential operator defined formally by

D := v∂x −E∞∂v with E∞ = −(φ∞)′ being the equilibrium electric field. (7)

Because the equilibrium density f∞
e is discontinuous across the curve of equation v = ve(x) where the 

function ve is defined for all x ∈ [0, 1] by

ve(x) := −
√

2 (φ∞(x) − φw), (8)

its velocity derivative takes the form

∂vf
∞
e = [f∞

e ]δve − vf∞
e , (9)

where δve is a Dirac distribution supported on the curve of equation v = ve(x), namely:

〈δve , ϕ〉 =
1∫
ϕ(x, ve(x))dx ∀ϕ ∈ D(Ω) (10)
0
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and where

[f∞
e ] := lim

v→ve(x)+
f∞
e (x, v) − lim

v→ve(x)−
f∞
e (x, v) (11)

denotes the constant jump of f∞
e across the characteristic curve v = ve(x). As a consequence, it is natural 

to look for solutions to (LVA) that decompose into a singular part plus a regular one, as

fe = ηe(t, x)δve + ge(t, x, v) (12)

with ηe and ge two functions. The main result can be in rough terms stated as follows: For any initial data 
(f0

e , E
0) with f0

e of the form f0
e (x, v) = η0(x)δve + g0

e(x, v) where η0 and g0
e are two functions, there exists a 

couple of functions (ηe, ge) and an electric field E such that if we define fe(t, x, v) = ηe(t, x)δve + ge(t, x, v), 
then the couple (fe, E) is solution to the linearized Vlasov–Ampère system with initial condition fe(t =
0, x, v) = f0

e (x, v) and E(t = 0, x) = E0(x). Moreover the non-negative energy functional defined for t ≥ 0
by

E(t) = 1
2

⎛
⎝ 1∫

0

η2
e(t, x)|ve(x)|dx

[f∞
e ] dx +

∫
Ω

ge(t, x, v)2

f∞
e (x, v) dxdv +

1∫
0

E(t, x)2dx

⎞
⎠ (13)

is non-increasing.

1.4. The mathematical approach and its difficulty

The main difficulty in the analysis lies in the fact that for α ∈ [0, 1) the electron sheath equilibrium 
is a discontinuous function of the particle energy. This is due to the absorption of particles with positive 
velocities at the wall (x = 1), which creates a discontinuity that propagates into the domain along the 
characteristic curve v = ve(x). Thus the linearization of the Vlasov–Ampère system (1), (3), (6) around the 
sheath equilibrium (f∞

i , f∞
e , E∞) with no perturbation on the ions, yields a linear system whose solution 

still denoted (fe, E) is singular. Assuming a decomposition of the form

fe(t, x, v) = ηe(t, x)δve + ge(t, x, v)

where ηe and ge are two functions and δve is a Dirac mass supported by the characteristic curve of equation 
v = ve(x) yields another linear system on (ηe, ge, E). Making a suitable change of variable leads to the 
system (VAL). The system (VAL) contains a degenerate transport equation because the given velocity 
field ve vanishes at x = 1 and its derivate ∂xve is not essentially bounded as the Diperna–Lions theory 
of transport equation [8] requires. This difficulty is overcame using the fact that the velocity field is only 
weakly degenerated, it vanishes at the border like a square-root. This allows us to prove a Hardy–Poincaré 
type inequality. Ultimately by applying the Hille–Yosida theorem, we show that the linearized system (VAL) 
is well-posed and that the energy of the system is non-increasing.

1.5. Previous works

Stability issues for Vlasov–Poisson systems in bounded geometry are of a tremendous importance for 
practical applications, be it in the modeling of laboratory plasmas, or in the design of numerical methods. 
Unfortunately, and despite its worthy interest, it seems that it has not been studied in full details. Stability 
analysis for such a Vlasov–Poisson system has already been performed in the absence of spatial boundaries, 
that is, either in all space or in a periodical setting [16,14,12]. However, it seems that in the presence of 
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spatial boundaries, the question of stability has not been extensively addressed. Up to our knowledge, it is 
only very recently, with the work of Nguyen and Strauss in [15] that the question was raised. The authors 
considered the Vlasov–Maxwell system in a cylindrical geometry and assumed an equilibrium that is a C1

function of the particle energy and momentum. Additionally, they assumed as in the previous works [16,12]
that the equilibrium, on its support, is monotone in the particle energy, which seem to be a key ingredient to 
prove stability results. Only the recent work of Ben-Artzi in [4] deals with equilibria that are not monotone 
in the particle energy. The author gives sufficient conditions for an instability, but on the other hand the 
analysis is performed in an unbounded geometry.

1.6. Organization of the paper

The plan of this paper is as follows. In section 2, we derive the system (VAL) and give a precise statement 
of the main result, including the functional spaces, and the notions of solutions we consider. In section 3, we 
state the Hardy–Poincaré type inequality and give some technical lemmas needed to prove the main result. 
We eventually prove the main result. In Appendix A, we briefly discuss the regularity of the solution.

2. The stability result

2.1. Description of the sheath equilibrium

The equilibrium (f∞
i , f∞

e , φ∞) is associated with an electron boundary condition which is a Maxwellian, 
namely it takes the form

f in
e (v) = n0

√
2
π
e−

v2
2 for v > 0, (14)

where n0 > 0 is an electron reference density. The sheath equilibrium is a stationary and weak solution of 
the Vlasov–Ampère system (1), (3), (6). It belongs to the space (L1 ∩ L∞(Ω))2 × C2[0, 1] and enjoys the 
following properties:

1. For all x ∈ [0, 1], (φ∞)′′(x) ≤ 0, E∞(x) := −(φ∞)′(x) ≥ 0, φ∞(0) = 0, φ∞(1) =: φw and E∞(1) =:
E∞

w > 0.

2. f∞
i (x, v) =

⎧⎨
⎩f in

i

(√
v2 + 2φ∞(x)

)
for (x, v) s.t. v >

√
−2φ∞(x)

0 elsewhere.

3. f∞
e (x, v) = n0

√
2
π

{
e−

v2
2 eφ

∞(x) for (x, v) s.t. v ≥ ve(x)
αe−

v2
2 eφ

∞(x) for (x, v) s.t. v < ve(x).
4.

∫
R
f∞
i (x, v)vdv =

∫
R
f∞
e (x, v)vdv for all x ∈ [0, 1].

Such an equilibrium is proven to exist in [1] under the necessary and sufficient condition that the following 
kinetic Bohm criterion

∫
R+

f in
i (v)
v2 dv

∫
R+

f in
i (v)dv

<

⎛
⎜⎝√

2π + (1 − α)
+∞∫

√
−2φw

e−
v2
2

v2 dv

⎞
⎟⎠

⎛
⎜⎝√

2π − (1 − α)
+∞∫

√
e−

v2
2 dv

⎞
⎟⎠
−2φw
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Fig. 1. Ions and electrons phase space.

holds true for f in
i ∈ L1 ∩ L∞(R+). The physical meaning of this inequality is that there cannot be too 

many ions particles entering the domain with low velocities. It is instructive to have a representation of 
the ions and electrons characteristics in the phase space (see Fig. 1). We see that for the electrons, the 
equilibrium is a truncated Maxwellian distribution. Especially, it is discontinuous across the characteristic 
curve S := {(x, ve(x)) / x ∈ [0, 1]} where the function ve is defined in (8). To be more precise we have the 
following:

Lemma 2.1.

a) f∞
e ∈ C2(Ω \ S).

b)

∂vf
∞
e = [f∞

e ]δve − vf∞
e ,

where [f∞
e ] = n0

√
2
π (1 − α)eφw > 0 is the jump f∞

e across the characteristic curve S defined in (11)
and δve is the Dirac mass supported by the function ve defined in (8).

Proof. a) It is straightforward from its definition that f∞
e belongs to C2(Ω \ S). b) It follows from an 

integration by parts. Indeed, for all ϕ ∈ D(Ω) we have

〈∂vf∞
e , ϕ〉 = −〈f∞

e , ∂vϕ〉

= −
1∫

0

∫
R

f∞
e (x, v)∂vϕ(x, v)dvdx

= −
1∫ ∫

f∞
e (x, v)∂vϕ(x, v)dvdx
0 v≥ve(x)
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−
1∫

0

∫
v<ve(x)

f∞
e (x, v)∂vϕ(x, v)dvdx

= −n0

√
2
π

1∫
0

[
e−

v2
2 eφ

∞(x)ϕ(x, v)
]+∞

ve(x)
dx

− n0

√
2
π

1∫
0

∫
v≥ve(x)

ve−
v2
2 eφ

∞(x)ϕ(x, v)dvdx

− n0

√
2
π

1∫
0

[
αe−

v2
2 eφ

∞(x)ϕ(x, v)
]ve(x)

−∞
dx

− n0

√
2
π

1∫
0

∫
v<ve(x)

αve−
v2
2 eφ

∞(x)ϕ(x, v)dvdx.

It is then easy to conclude. �
Lemma 2.2. The function x ∈ [0, 1] �→ ve(x) := −

√
2(φ∞(x) − φw) has the following properties:

a) ve ∈ C0([0, 1]) ∩ C2([0, 1)).
b) For all x ∈ [0, 1), ve(x) < 0, ve(1) = 0, ve(x) ∼

x→1−
−ν

√
1 − x where ν =

√
2E∞

w .
c) For all x ∈ (0, 1), v′e(x)ve(x) + E∞(x) = 0.
d) ve ∈ W 1,1(0, 1) and 1

ve
∈ L1(0, 1).

Proof. We skip the proof because it is essentially a consequence of the regularity of φ∞. �
This lemma is important because it makes precise the regularity of ve which must be known insofar as it 

will appear as the velocity field of a one dimensional transport equation of the form (∂t + ve∂x)u = s. The 
fact that 1

ve
∈ L1(0, 1) implies that the characteristics, namely the solutions of the ode

ẋ(t) = ve(x(t))

have a finite incoming time into the domain [0, 1]. We give a sketch of the characteristics in the plan (x, t).

2.2. Derivation of the linearized system (VAL)

We now derive the linear system (VAL). Let us give the definition of solution we consider for the linearized 
Vlasov–Ampère system.

Definition 2.3. Assume f0
e a measure on Ω and E0 ∈ L2(0, 1). Let fe be a measure on [0, +∞) × Ω and 

E ∈ W 1,∞
loc

(
[0,+∞);L2(0, 1)

)
. We say that (fe, E) is a weak solution of (LVA) system iff:

a) For all ϕ ∈ C1
c ([0, +∞) × Ω) such that ϕ(t, 0, v ≤ 0) = 0 and ϕ(t, 1, v ≥ 0) = −αϕ(t, 1, −v)

− 〈fe, ∂tϕ + Dϕ〉[0,+∞)×Ω

= 〈f0
e , ϕ(0, .)〉Ω
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+ [f∞
e ]

+∞∫
0

1∫
0

E(t, x)ϕ(t, x, ve(x))dxdt

−
+∞∫
0

1∫
0

∫
R

E(t, x)vf∞
e (x, v)ϕ(t, x, v)dxdvdt.

b) The current density (t, x) ∈ (0, +∞) × (0, 1) �→ je(t, x) := 〈fe(t, x, .), v〉R belongs to L∞
loc([0, +∞);

L2(0, 1)), ∂tE(t, x) = je(t, x) for a.e. (t, x) ∈ (0, +∞) × (0, 1) and E(t = 0, x) = E0(x) for a.e. x ∈ (0, 1).

One readily checks that fe satisfies

∂tfe + Dfe = [f∞
e ]Eδve − Evf∞

e in D′((0,+∞) × Ω). (15)

Since the right hand side of (15) is the sum of Dirac mass supported by ve plus a function, a natural idea 
is to look for fe ∈ D′((0, +∞) × Ω) under the following form

fe = ηe(t, x)δve + ge(t, x, v)

where ηe : [0, +∞) × [0, 1] → R and ge : [0, +∞) × Ω are a priori two regular functions. Note that for all 
ϕ ∈ D((0 + ∞) × Ω)

〈fe, ϕ〉 =
+∞∫
0

1∫
0

ηe(t, x)ϕ(t, x, ve(x))dxdt +
+∞∫
0

∫
Ω

ge(t, x, v)ϕ(t, x, v)dxdvdt.

Proposition 2.4. Let (fe, E) be a weak solution of (LVA) with fe of the form (12) where ηe ∈ L1
loc([0, +∞) ×

(0, 1)) and ge ∈ L1
loc([0, +∞) × Ω). Then fe is solution of the Vlasov equation (15) if and only if ηe and ge

satisfy

∂tηe + ∂x(veηe) = [f∞
e ]E in D′((0,+∞) × (0, 1)), (16)

∂tge + Dge = −Evf∞
e in D′((0,+∞) × Ω). (17)

Proof. We omit the proof because it follows from standard calculations. �
Let us now introduce the change of unknown

we(t, x) := ve(x)ηe(t, x), he(t, x, v) :=

⎧⎨
⎩

ge(t,x,v)√
f∞
e (x,v) if f∞

e (x, v) �= 0

ge(t, x, v) if f∞
e (x, v) = 0.

(18)

We recall that Df∞
e = 0 in D′(Ω) and we note that by definition f∞

e never vanishes when α ∈ (0, 1). One 
also checks by a straightforward calculation that the couple (ηe, ge) is a solution of (16)–(17) if and only if 
(we, he) is a solution to

∂twe + ve∂xwe = [f∞
e ]veE in D′((0,+∞) × (0, 1)), (19)

∂the + Dhe = −Ev
√

f∞
e in D′((0,+∞) × Ω). (20)

The transport equation (19) has a negative on [0, 1) and vanishing at x = 1 velocity field ve defined by (8). 
It is a priori not clear whether a boundary condition is needed for this equation. Having a closer look at 
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Fig. 2. Characteristics curves in the plan (x, t). The backward in time characteristics cross x = 1 in finite time.

the characteristics that are draw in Fig. 2, we see that a boundary condition at x = 1 is necessary if one 
wants to solve the equation on the domain (0, +∞) × (0, 1). Physically speaking, the number we(t, x) is the 
current of electrons at the position x ∈ [0, 1] carried by the singular part of fe notably

we(t, x) = ηe(t, x)〈δv=ve(x), v〉

where δv=ve(x) denotes the classical Dirac mass supported at v = ve(x). For ηe =
x→1−

o( 1
ve

) this yields 
we(t, 1) = 0. We thus impose the homogeneous Dirichlet boundary condition we(t, 1) = 0. The boundary 
conditions for the transport equation (20) are easily derived from the original boundary condition on fe, 
they write for all t > 0:

he(t, 0, v > 0) = 0, he(t, 1, v < 0) =
√
αhe(t, 1,−v). (21)

The initial boundary value problem then writes: given w0
e : [0, 1] → R, h0

e : Ω → R and E0 ∈ [0, 1] → R, 
find we : [0, +∞) × [0, 1] → R, he : [0, +∞) × Ω → R and E : [0, +∞) × [0, 1] → R solution to

(VAL) :

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∂twe + ve∂xwe = [f∞
e ]veE in (0,+∞) × (0, 1),

∂the + Dhe = −Ev
√

f∞
e in (0,+∞) × Ω,

∂tE = we +
∫
R
v
√

f∞
e hedv in (0,+∞) × [0, 1],

he(t > 0, 0, v > 0) = 0, he(t > 0, 1, v < 0) =
√
αhe(t, 1,−v),

we(t > 0, 1) = 0,

satisfying we(t = 0, .) = w0
e , he(t = 0, ., .) = h0

e, E(t = 0, .) = E0.

2.3. The main result

We are now in position to state precisely our main result. First let us begin with defining what linear 
stability stands for in this work.

Definition 2.5. Let G and H be two Hilbert spaces equipped respectively with the norm ‖.‖H , ‖.‖G and with 
the continuous embedding G ↪→ H. We say that the equilibrium (f∞

i , f∞
e , φ∞) is linearly stable by interior 

electron perturbation of the form (12) iff:

a) For all (w0
e , h

0
e, E

0) ∈ G the system (VAL) admits a unique strong solution (we, he, E) ∈ C0([0, +∞); G) ∩
C1([0, +∞); H).

b) For all ε > 0, there is η > 0 such that ‖(w0
e , h

0
e, E

0)‖H < η ⇒ ‖(we, he, E)‖H < ε ∀t ≥ 0.
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The Hilbert spaces to be considered are the following

G := H1
|ve|

1
2 ,0

(0, 1) ×W 2
0,α(Ω) × L2(0, 1), H := L2

|ve|−
1
2
(0, 1) × L2(Ω) × L2(0, 1)

where the spaces L2
|ve|−

1
2
(0, 1), H1

|ve|
1
2 ,0

(0, 1) and W 2
0,α(Ω) are defined in section 3.

Theorem 2.6. The equilibrium (f∞
i , f∞

e , φ∞) is linearly stable in the sense of Definition 2.5. More precisely,

a) For all (w0
e , h

0
e, E

0) ∈ G there exists a unique strong solution (we, he, E) ∈ C0 ([0,+∞);G) ∩
C1 ([0,+∞);H) to (VAL).

b) The energy defined in (13) is well-defined and for all times t ≥ 0, re-writes

E(t) = 1
2

⎛
⎝ 1∫

0

we(t, x)2

[f∞
e ]|ve(x)|dx +

∫
Ω

he(t, x, v)2dxdv +
1∫

0

E(t, x)2dx

⎞
⎠

and is non-increasing.

One of the key ingredient in the proof of Theorem 2.6 is the following energy identity.

Proposition 2.7 (Energy dissipation). Strong solutions to (VAL) satisfy

d

dt
E(t) = −1

2

⎛
⎝ 1

[f∞
e ]w

2
e(t, 0) + (1 − α)

∫
R+

vh2
e(t, 1, v)dv −

∫
R−

vh2
e(t, 0, v)dv

⎞
⎠ ≤ 0.

In particular, for all 0 ≤ t ≤ t′, 0 ≤ E(t′) ≤ E(t).

Proof. Let (we, he, E) ∈ C0([0, +∞); G) ∩ C1([0, +∞); H) a solution to (VAL). We set Ewe
(t) :=

1
[f∞

e ]
∫ 1
0

we(t,x)2
|ve(x)| dx, Ehe

(t) :=
∫
Ω he(t, x, v)2dxdv and Epot(t) :=

∫ 1
0 E(t, x)2dx. We compute each terms sepa-

rately. Because of the regularity of (we, he, E) we can differentiate under the integral sign.

d

dt
Ewe

(t) = 2
[f∞

e ]

1∫
0

∂twe(t, x)we(t, x)
|ve(x)| dx

= 2
[f∞

e ]

1∫
0

([f∞
e ]E(t, x)ve(x) − ve(x)∂xwe(t, x)) we(t, x)

|ve(x)| dx.

Once again because we(t, .) ∈ H1
|ve|

1
2 ,0

(0, 1) ⊂ L2
|ve|−

1
2
(0, 1) the second integral is convergent

∣∣∣∣∣∣
1∫

0

(ve(x)∂xwe(t, x))we(t, x)
|ve(x)| dx

∣∣∣∣∣∣ < +∞,

and we deduce

d

dt
Ewe

(t) = −2
1∫

0

E(t, x)we(x)dx− 1
[f∞

e ]w
2
e(t, 0).
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We now compute the energy part associated with he. Using the boundary conditions and an integration by 
parts we get

d

dt
Ehe

(t) = 2
∫
Ω

∂the(t, x, v)he(t, x, v)dxdv

= 2
∫
Ω

(
−E(t, x)v

√
f∞
e (x, v) −Df∞

e (x, v)
)
he(t, x, v)dxdv

= −2
∫
Ω

E(t, x)v
√
f∞
e (x, v)he(t, x, v)dxdv

− (1 − α)
∫
R+

vh2
e(t, 1, v)dv +

∫
R−

vh2
e(t, 0, v)dv.

Note that since he(t, ., .) ∈ W 2
0,α(Ω) the boundary terms make sense. We lastly turn to the electric part of 

the energy.

d

dt
Epot(t) = 2

1∫
0

∂tE(t, x)E(t, x)dx

= 2
1∫

0

⎛
⎝we(t, x) +

∫
R

v
√

f∞
e (x, v)he(t, x, v)dv

⎞
⎠E(t, x)dx.

Gathering all terms together enables to get the desired identity. In particular, we deduce that t ∈ [0, +∞) �→
E(t) is non-increasing. Hence E(t) ≤ E(t′) for all 0 ≤ t ≤ t′. �
3. Functional spaces, technical lemmas and proof of the main result

In this section, we define the functional framework that is part of the main result of Theorem 2.6. We 
eventually prove the main result by showing that the Hille–Yosida theorem applies.

3.1. Functional spaces

We define the following spaces

H1
|ve|

1
2
(0, 1) := {u ∈ L2(0, 1) s.t.

√
|ve|u′ ∈ L2(0, 1)}

where ve is the function defined by (8) and note that it is such that 1
ve

∈ L1(0, 1). It is a Hilbert space 
endowed with the inner product

(u, v)H1

|ve|
1
2

(0,1) :=
1∫

0

u(x)v(x) + |ve(x)|u′(x)v′(x)dx ∀(u, v) ∈ H1
|ve|

1
2
(0, 1)2.

Moreover, we can prove the imbedding H1
|ve|

1
2
(0, 1) ↪→ C0[0, 1] so that we can define the space

H1
1 (0, 1) := {u ∈ H1

1 (0, 1) s.t. u(1) = 0}.

|ve| 2 ,0 |ve| 2
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We also defined the weighted Lebesgue space

L2
|ve|−

1
2
(0, 1) := {u : (0, 1) → R measurable s.t.

1∫
0

u2(x)
|ve(x)|dx < +∞}

and the quotient space

L2
|ve|−

1
2
(0, 1) := L2

|ve|−
1
2
(0, 1)/R

where R denotes the usual equivalence relation of almost everywhere equality for the Lebesgue measure. 
The space L2

|ve|−
1
2
(0, 1) is an Hilbert space endowed with the inner product

(u, v)L2

|ve|−
1
2

(0,1) :=
1∫

0

u(x)√
|ve(x)|

v(x)√
|ve(x)|

dx ∀(u, v) ∈ L2
|ve|−

1
2
(0, 1)2.

An important tool in this work is the following inequality.

Lemma 3.1 (Hardy–Poincaré type inequality). For all ϕ ∈ H1
|ve|

1
2 ,0

(0, 1),

1∫
0

ϕ(x)2

|ve(x)|dx ≤ ‖ 1
ve

‖2
L1(0,1)

1∫
0

|ve(x)|ϕ′(x)2dx.

Consequently, H1
|ve|

1
2 ,0

(0, 1) ↪→ L2
|ve|−

1
2
(0, 1).

Proof. We prove the inequality for ϕ ∈ C∞
c (0, 1). Let δ > 0, one has for all x ∈ [0, 1 − δ]

ϕ(x) − ϕ(1 − δ) = −
1−δ∫
x

ϕ′(s)
√

|ve(s)|√
|ve(s)|

ds.

Using the Cauchy–Schwarz inequality yields

|ϕ(x) − ϕ(1 − δ)| ≤ ‖
√

|ve|ϕ′‖L2(x,1−δ)‖
1√
|ve|

‖L2(x,1−δ)

≤

⎛
⎝ 1∫

0

|ve(x)|ϕ′(x)2dx

⎞
⎠

1
2

‖ 1
ve

‖
1
2
L1(0,1).

Taking the limit as δ → 0+ yields for all x ∈ [0, 1].

|ϕ(x)| ≤

⎛
⎝ 1∫

0

|ve(x)|ϕ′(x)2dx

⎞
⎠

1
2

‖ 1
ve

‖
1
2
L1(0,1).

Therefore for all x ∈ [0, 1) we have
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ϕ(x)2

|ve(x)| ≤
1

|ve(x)|

⎛
⎝ 1∫

0

|ve(x)|ϕ′(x)2dx

⎞
⎠ ‖ 1

ve
‖L1(0,1).

One has therefore for δ > 0
1−δ∫
0

ϕ(x)2

|ve(x)|dx ≤
1−δ∫
0

1
|ve(x)|dx

⎛
⎝ 1∫

0

|ve(x)|ϕ′(x)2dx

⎞
⎠ ‖ 1

ve
‖L1(0,1)

≤ ‖ 1
ve

‖2
L1(0,1)

1∫
0

|ve(x)|ϕ′(x)2dx.

Taking the limit at δ → 0+ yields the desired inequality. The result extends to functions of the space 
H1

|ve|
1
2 ,0

(0, 1) by using the density of C∞
c (0, 1) in H1

|ve|
1
2 ,0

(0, 1) (see [7] Lemma 2.6 for the proof of den-
sity). �

Thanks to Lemma 3.1 we can define on H1
|ve|

1
2 ,0

(0, 1) the following norm

‖u‖H1

|ve|
1
2 ,0

(0,1) :=

⎛
⎝ 1∫

0

|ve(x)|u′(x)2dx

⎞
⎠

1
2

∀u ∈ H1
|ve|

1
2 ,0

(0, 1).

It is an equivalent norm to the H1
|ve|

1
2
(0, 1)-norm. We will also need the following density result.

Lemma 3.2. H1
|ve|

1
2 ,0

(0, 1) is dense in L2
|ve|−

1
2
(0, 1).

Proof. Let u ∈ L2
|ve|−

1
2
(0, 1). Let us build a sequence (un)n∈N ⊂ H1

|ve|
1
2 ,0

(0, 1) such that ‖un −
u‖L2

|ve|−
1
2

(0,1) →
n→+∞

0. We firstly remark that since u√
−ve

∈ L2(0, 1) and because H1
0 (0, 1) is dense in L2(0, 1)

there is a sequence (ũn)n∈N ⊂ H1
0 (0, 1) such that 

1∫
0

∣∣∣∣ũn − u√−ve

∣∣∣∣2 (x)dx →
n→+∞

0. Let us then define for 

all n ∈ N un := ũn
√−ve. To conclude the proof, it suffices to check that for all n ∈ N, un ∈ H1

|ve|
1
2 ,0

(0, 1). 

Because ve ∈ C0[0, 1] one readily verifies that un ∈ C0[0, 1] ∩ L2(0, 1). Let us now compute the derivative. 
One has in D′(0, 1)

u′
n = ũ′

n

√
−ve − ũn

v′e
2
√−ve

⇒
√
−veu

′
n = −ũnve −

ũnv
′
e

2 .

One has ũnve ∈ L2(0, 1), it therefore suffices to prove that ũnv
′
e ∈ L2(0, 1). Using Lemma 2.2 d) we have 

for all x ∈ (0, 1)

ũn(x)v′e(x) = −ũn(x)E
∞(x)
ve(x) .

Since E∞ ∈ C0[0, 1], it suffices to show that ũn

ve
∈ L2(0, 1). Still using Lemma 2.2 b), we have 

ũ2
n(x)
v2
e(x) ∼

x→1−

ν2 ũn(x)2

(1 − x) . But ũn ∈ H1
0 (0, 1) and a classical Hardy inequality (see [6, p. 147] for instance) enables us to 

conclude that ũn ∈ L2(0, 1). �

ve
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We now define

W 2(Ω) :=
{
h ∈ L2(Ω) s.t. Dh ∈ L2(Ω)

}
.

Following [2], for a function h ∈ W 2(Ω) we can define its restriction to Σ− := {0} × (0, +∞) ∪{1} × (−∞, 0)
and Σ+ := {0} × (−∞, 0) ∪ {1} × (0, +∞). Moreover, h|Σ− and h|Σ+ belongs respectively to L2

loc(Σ−) and 
L2
loc(Σ+). Thus, we can also define

W 2
0,α(Ω) :=

{
h ∈ W 2(Ω) s.t. h(0, v > 0) = 0 and h(1, v < 0) =

√
αh(1,−v)

}
.

Lemma 3.3. W 2
0,α(Ω) is dense in L2(Ω) for the L2-norm.

Proof. It suffices to remark that C1
c (Ω) ⊂ W 2

0,α(Ω). Then we deduce that C1
c (Ω) ⊂ W 2

0,α(Ω) ⊂ L2(Ω) where 

X denotes the closure of the set X in L2(Ω) for the L2-norm. But, C1
c (Ω) is dense in L2(Ω) so C1

c (Ω) = L2(Ω)
and then W 2

0,α(Ω) = L2(Ω). �
To finish with this section, we state a Lemma due to Bardos [2] and justify a Green formula.

Lemma 3.4. C∞
c (Ω) ∩W 2

0,α(Ω) is dense in W 2
0,α(Ω) for the norm defined by

‖h‖2
W 2

0,α
:= ‖h‖2

L2(Ω) + ‖Dh‖2
L2(Ω) ∀h ∈ W 2

0,α.

Proof. See [2]. �
Lemma 3.5 (Traces integrability). Let h ∈ W 2

0,α(Ω) then h(1, .) ∈ L2(R+, |v|dv) and h(0, .) ∈ L2(R−, |v|dv)
and the following Green Formula holds:∫

Ω

Dh(x, v)h(x, v)dxdv = (1 − α)
∫
R+

v

2h
2(1, v)dv −

∫
R−

v

2h
2(0, v)dv.

Proof. We argue by density. Let h ∈ W 2
0,α(Ω) then in virtue of Lemma 3.4 there is (hn)n∈N ⊂ C∞

c (Ω) ∩
W 2

0,α(Ω) such that ‖hn − h‖W 2
0,α

→
n→+∞

0. Using the boundary conditions and a Green Formula (that is 
valid for regular functions) we have for all n ∈ N,∫

Ω

Dhn(x, v)hn(x, v)dxdv = (1 − α)
∫
R+

v

2h
2
n(1, v)dv −

∫
R−

v

2h
2
n(0, v)dv.

By standard arguments, it is easy to see that

1∫
0

∫
R

Dhn(x, v)hn(x, v)dxdv →
n→+∞

1∫
0

∫
R

Dh(x, v)h(x, v)dxdv.

Then the sequences 

⎛
⎝ ∫

R+

v

2h
2
n(1, v)dv

⎞
⎠

n∈N

and 

⎛
⎝ ∫

R−

v

2h
2
n(0, v)dv

⎞
⎠

n∈N

are bounded and converge (up to 

an extraction). Lastly, we can show that the trace operators

γ0 : h ∈ C∞
c (Ω) ∩W 2

0,α(Ω) �→ h(0, .) ∈ L2(R−, |v|dv),

γ1 : h ∈ C∞
c (Ω) ∩W 2

0,α(Ω) �→ h(1, .) ∈ L2(R+, |v|dv)
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extend both continuously to W 2
0,α(Ω). This finally enables us to pass to the limit at both side of the previous 

equality so that the formula holds. �
Lemma 3.6. For all h ∈ W 2

0,α(Ω) and for all ψ ∈ W 2(Ω) such that ψ(0, v < 0) = 0 and ψ(1, v > 0) =√
αψ(1, −v) a.e. we have,

∫
Ω

Dh(x, v)ψ(x, v)dxdv = −
∫
Ω

h(x, v)Dψ(x, v)dxdv.

3.2. Proof of the main result

We prove the main result by checking that the Hille–Yosida’s Theorem applies (see [6, p. 105] for a precise 
statement). The Hilbert space H = L2

|ve|−
1
2
(0, 1) × L2(Ω) × L2(0, 1) is equipped with the inner product

(U1, U2)H := 1
[f∞

e ] (w1, w2)L2

|ve|−
1
2

(0,1) + (h1, h2)L2(Ω) + (E1, E2)L2(0,1),

for all U1 := (w1, h1, E1), U2 := (w2, h2, E2) in H. We introduce the unbounded operator A : D(A) ⊂
H → H defined by:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

AU :=

⎛
⎜⎜⎜⎜⎜⎝

ve∂xw − [f∞
e ]veE

Dh + Ev
√

f∞
e

−

⎛
⎝w +

∫
R

v
√

f∞
e hdv

⎞
⎠

⎞
⎟⎟⎟⎟⎟⎠ ,

∀U :=

⎛
⎜⎜⎝

w

h

E

⎞
⎟⎟⎠ ∈ D(A) = H1

|ve|
1
2 ,0

(0, 1) ×W 2
0,α(Ω) × L2(0, 1).

We are going to check the assumptions of the Hille–Yosida’s Theorem. For precise definitions we refer 
the reader to Appendix B.

Lemma 3.7. The unbounded operator A : D(A) ⊂ H → H has the following properties:

a) It is dissipative, in the sense that (AU, U)H ≥ 0.
b) D(A) is dense in H.

Proof. a) We prove that A is dissipative. Let U :=

⎛
⎜⎝ w

h

E

⎞
⎟⎠ ∈ D(A). We compute

(AU,U)H = 1
[f∞

e ] (ve∂xw − [f∞
e ]veE,w)L2

|ve|−
1
2

(0,1)︸ ︷︷ ︸
:=I1

+
(
Dh + Ev

√
f∞
e , h

)
L2(Ω)︸ ︷︷ ︸
:=I2
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−

⎛
⎝w +

∫
R

hv
√

f∞
e dv,E

⎞
⎠

L2(0,1)︸ ︷︷ ︸
:=I3

.

We can compute I1 and I2 by an integration by parts so that we obtain:

I1 =
1∫

0

(−∂xw(x) + [f∞
e ]E(x))w(x)dx = w2(0)

2 + [f∞
e ]

1∫
0

E(x)w(x)dx,

I2 =
1∫

0

∫
R

(
Dh(x, v) + E(x)v

√
f∞
e (x, v)

)
h(x, v)dxdv

= (1 − α)
∫
R+

vh2(1, v)
2 dv −

∫
R−

vh2(0, v)
2 dv +

∫
Ω

E(x)v
√

f∞
e (x, v)h(x, v)dxdv,

I3 =
1∫

0

E(x)w(x)dx +
∫
Ω

E(x)v
√

f∞
e (x, v)h(x, v)dxdv.

Collecting all terms together, we finally deduce

(AU,U)H = 1
[f∞

e ]
w2(0)

2 + (1 − α)
∫
R+

vh2(1, v)
2 dv −

∫
R−

vh2(0, v)
2 dv ≥ 0.

b) The fact that D(A) is dense in H is a consequence of Lemmas 3.2 and 3.3. �
Lemma 3.8. The unbounded operator I + A : D(A) ⊂ H → H is such that R(I + A) = H.

Proof. We are going to apply Proposition Appendix B.2. Of course, D(A) is dense in H as we have already 
proven. Since H is a Hilbert space, by the Riesz representation theorem, we can identify H with its dual, 
namely H ′ ∼= H so that the adjoint operator of I + A is the unbounded operator (I + A)∗ : D(A∗) ⊂ H →
D(A)′ defined by:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(I + A)∗U := U + A∗U with A∗U :=

⎛
⎜⎜⎜⎜⎜⎝

−ve∂xw + [f∞
e ]veE

−Dh−Ev
√

f∞
e⎛

⎝w +
∫
R

v
√
f∞
e hdv

⎞
⎠

⎞
⎟⎟⎟⎟⎟⎠ ,

∀U :=

⎛
⎜⎜⎝

w

h

E

⎞
⎟⎟⎠ ∈ D(A∗) = {u ∈ H1

v
1
2
e

(0, 1) s.t. u(0) = 0}×

{h ∈ W 2(Ω) s.t. h(0, v < 0) = 0 and h(1, v > 0) =
√
αh(1,−v)} × L2(0, 1).

Of course, D(A∗) is also dense in H. This enables to prove that I + A is closed (see [6, Proposition II.16, 
p. 28]). Lastly, straightforward integrations by parts allow us to prove that A∗ is also dissipative which in 
the end turns out to be sufficient to prove that

((I + A)∗U,U) = ‖U‖2
H + (A∗U,U)H ≥ ‖U‖2

H .
H
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Therefore a Cauchy–Schwarz inequality yields ‖(I+A)∗U‖H ≥ ‖U‖H . Therefore Proposition Appendix B.2
applies, it concludes the proof. �

The proof of the main result is now straightforward. Combining Lemmas 3.7 and 3.8 we can apply 

the Hille–Yosida theorem. For all (w0
e , h

0
e, E

0) ∈ D(A) there is a unique 

⎛
⎜⎝we

he

E

⎞
⎟⎠ ∈ C0([0, +∞); D(A)) ∩

C1([0, +∞), H) such that

d

dt

⎛
⎜⎝we

he

E

⎞
⎟⎠ + A

⎛
⎜⎝we

he

E

⎞
⎟⎠ =

⎛
⎜⎝ 0

0
0

⎞
⎟⎠

with ⎛
⎜⎝ w(0, .)

h(0, ., .)
E(0, .)

⎞
⎟⎠ =

⎛
⎜⎝ w0

e

h0
e

E0

⎞
⎟⎠ .

The boundary conditions are included in the space D(A) so that they are satisfied by the solution. The 
solution also satisfies for all times 0 ≤ t ≤ t′ the inequality

∥∥∥∥∥∥∥
⎛
⎜⎝we(t′, ., .)

he(t′, ., .)
E(t′, .)

⎞
⎟⎠
∥∥∥∥∥∥∥

2

H

≤

∥∥∥∥∥∥∥
⎛
⎜⎝we(t, ., .)

he(t, ., .)
E(t, ., .)

⎞
⎟⎠
∥∥∥∥∥∥∥

2

H

which re-writes in terms of the energy E(t′) ≤ E(t). It also implies the stability with respect to perturbation. 
Indeed, for any ε > 0, it suffices to choose (w0

e , h
0
e, E

0) such that E(0) < ε to get that E(t) < ε for all times 
t ≥ 0.

Appendix A. On the regularity of ηe

We want to explain why we have worked on the flux variable we rather than on the density number ηe. 
First notice that one has the following imbedding

H1
|ve|

1
2 ,0

(0, 1) ↪→ C0[0, 1]

which implies that we(t, .) ∈ C0[0, 1] for all t ≥ 0. The boundary condition on we therefore makes sense. As 
far as the electron density ηe is concerned, we now observe that because 1

ve
∈ L1(0, 1) one has

ηe ∈ C0 ([0,+∞);C0[0, 1) ∩ L1(0, 1)
)
∩ C1 ([0,+∞);L1(0, 1)

)
,

and ηe =
x→1−

o( 1
ve

). However, it is not clear whether ηe can be extended by continuity at x = 1. In fact, 
we cannot expect any more integrability on the spatial derivative of ηe and thus the notion of boundary 
condition at x = 1 is not obvious. To illustrate this lack of regularity, a simple calculation shows that

ve∂xηe = ∂xwe −
v′ewe in D′(0, 1).

ve
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The first term at the right hand side of the equality belongs to L1(0, 1) while the second term does not:

∀t ≥ 0 ∀x ∈ (0, 1) |v
′
e(x)
ve(x)we(t, x)| ≥ min

x∈[0,1]
|we(t, x)||v

′
e(x)
ve(x) |,

and 

1∫
0

|v
′
e(x)
ve(x) |dx = +∞. This lack of integrability of ∂xηe is inherent in the nature of the functional 

space H1
|ve|

1
2 ,0

(0, 1). For instance, we can show that a function of the form w : x ∈ [0, 1] �→ (1 − x)s

belongs to H1
|ve|

1
2 ,0

(0, 1) if and only if s > 1
4 . The quotient η := w

ve
has the following behavior η(x) ∼

x→1−

−(1−x)s−
1
2

ν with s − 1
2 > −1

4 . Then for 1
4 < s < 1

2 we have lim
x→1−

η(x) = −∞ and η ∈ L1(0, 1) but ∂xη /∈
L1(0, 1).

Appendix B. Reminder on linear evolution equation in infinite dimension

Definition Appendix B.1. Let H be a Hilbert space and A : D(A) ⊂ H → H an unbounded linear operator. 
We say that A is dissipative if

(Av, v)H ≥ 0 ∀v ∈ D(A),

A is maximal dissipative if moreover R(I + A) = H.

We recall a result that characterizes surjective operators.

Proposition Appendix B.2 ([6] Theorem II.19 page 30). Let A : D(A) ⊂ H → H be an unbounded linear 
operator, closed with D(A) dense in H. Then

R(A) = H ⇔ ∃C ≥ 0 such that ‖v‖H′ ≤ C‖A∗v‖H′ ∀v ∈ D(A∗),

where A∗ is the adjoint-operator of A and H ′ is the dual space of H.

Theorem Appendix B.3 (Hille–Yosida). Let A be a maximal monotone operator in a Hilbert space H. Then 
for all u0 ∈ D(A) there is a unique u ∈ C1([0, +∞); H) ∩ C0([0, +∞); D(A)) solution of the problem:

{
du
dt + Au = 0 on [0,+∞)
u(0) = u0.

Moreover, one has

‖u(t)‖H ≤ ‖u0‖ and ‖du
dt

(t)‖H ≤ ‖Au0‖H for all t ≥ 0.
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