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Reproducing pairs and Gabor systems at critical density

M. Speckbacher1,∗, P. Balazs1

Acoustics Research Institute, Austrian Academy of Sciences, Wohllebengasse 12-14,
1040 Vienna, Austria

Abstract

We use the concept of reproducing pairs to study Gabor systems at critical

density. First, we present a generalization of the Balian-Low theorem to the

reproducing pairs setting. Then, we prove our main result that there exists a

reproducing partner for the Gabor system of integer time-frequency shifts of the

Gaussian. In other words, the coefficients for this Gabor expansion of a square

integrable function can be calculated using inner products with an unstructured

family of vectors in L2(R). This solves one of the last few open questions for

this system.

MSC2010: 42C15; 42C40

Keywords: Gabor systems; reproducing pairs; critical density; Zak transform;
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1. Introduction

The main problem of Gabor analysis is to understand the conditions and ob-

structions on the family G(g,Λ) := {Tλ1
Mλ2

g}λ∈Λ ⊂ L2(R) to be a frame.

There exists, however, a great abundance of windows g and lattices Λ gener-

ating Gabor families which are, on the one hand, complete and, on the other

hand, violate at least one of the frame bounds. The well-known Balian-Low

theorem, for example, states that the window function of a Gabor frame at the
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critical density (Λ = aZ×a−1Z) cannot be well localized on the time-frequency

plane. In fact, there are many more properties of a window function that pre-

vent a system from being a Gabor frame, see [17] for an overview. It is therefore

reasonable to change perspective and apply approaches beyond frame theory to

understand Gabor families at critical density.

Several generalizations of frames, such as semi-frames or reproducing pairs

have been introduced. A reproducing pair [25] consists of two vector families

(not necessarily frames) instead of a single one that generates a bounded and

invertible analysis/synthesis process in a Hilbert space. Observe that, for Gabor

families, there is a conceptual similarity to weakly dual Gabor systems [14],

where the analysis/synthesis process is considered in terms of a Gelfand triplet.

The main goal of this paper is to investigate whether the obstructions for

Gabor frames at critical density still hold for reproducing pairs. That is, is there

a reproducing pair where one of the two families is a Gabor system generated

by a well localized window? First, we will consider the case of reproducing pairs

consisting of two Gabor systems and derive a Balian-Low like result. Then we

will turn our focus to the study of the Gabor family of integer time-frequency

shifts of the Gaussian ϕ, which is probably the most studied object in Gabor

analysis.

Already in 1932, von Neumann [26] claimed without proof that the system

G := {TkMlϕ}k,l∈Z is complete in L2(R). It was only in the 1970’s that Perelo-

mov [23], Bargmann et al. [7] and Bacry et al. [6] presented rigorous proofs of

completeness in the context of coherent states.

A second problem was formulated by Gabor [15] in 1946 when he asked if

there exists a linear coefficient map A : L2(R) → CZ×Z, such that the expansion

f =
∑
k,l∈Z

(Af)[k, l]TkMlϕ, (1)

converges for all f ∈ L2(R). The answer to this question is more subtle. Janssen

[19] showed that such a coefficient map exists. The coefficients, however, grow

polynomially and (1) converges only in the sense of tempered distributions.

As the Balian-Low theorem tells us that G cannot be a frame one might
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ask if there exists a dual window γ ∈ L2(R), such that (Af)[k, l] := 〈f, TkMlγ〉
yields (1) with weak convergence. The answer is ”no”. This can easily be seen

using Zak transform methods which yields that γ is given by Bastiaans’ dual

window [8], a bounded function that is not in Lp(R) for any 1 ≤ p < ∞. The

answer also follows from the Balian-Low like result that we will prove in Section

3 or from a result by Daubechies and Janssen [11].

In this paper, we will consider a problem which is intermediate to the second

and third question and that is yet unsolved: can the coefficient map A be

calculated using inner products with an unstructured family in L2(R), that is,

is there a system Ψ = {ψk,l}k,l∈Z, such that (Af)(k, l) = 〈f, ψk,l〉 with the series

(1) converging weakly?

We will use a characterization of reproducing pairs from [5] in our proof to

show our main result in Theorem 13: the existence of a reproducing partner

for G. This family of vectors however is totally unstructured and cannot have

a shift-invariant structure. Our result can be reformulated in several contexts.

For example, there is a dual system for the complete Bessel-sequence G, or there
is a family of vectors Ψ making (G,Ψ) a reproducing pair.

This paper is organized as follows. In Section 2 we present the basics of

reproducing pairs and Gabor theory needed in the course of this article. Section

3 is devoted reproducing pairs of two Gabor systems and a generalization of the

Balian-Low theorem. In Section 4 we investigate the existence of a reproducing

partner for the system G.

2. Preliminaries and notation

Throughout this paper we use the notation f(·) for functions on subsets of

Rd and c[·] for sequences on Zd. Moreover, f̂ or F(f) will denote the Fourier

transform using the convention

f̂ [k] =

∫[
− 1

2 ,
1
2

)d
f(ω)e−2πik·ωdω, k ∈ Zd,
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for functions f :
[− 1

2 ,
1
2

)d → C, and

ĉ(ω) =
∑
k∈Zd

c[k]e−2πik·ω, ω ∈
[
−1

2
,
1

2

)d

,

for sequences c : Zd → C.

2.1. Frames and semi-frames

Frames were introduced in 1952 by Duffin and Schaeffer [12] as a generalization

of orthonormal bases. A countable family of vectors {ψk}k∈I in a separable

Hilbert space H is called a frame if there exist constants A,B > 0 such that

A ‖f‖2 ≤
∑
k∈I

|〈f, ψk〉|2 ≤ B ‖f‖2 , ∀ f ∈ H. (2)

For a thorough introduction to frame theory, see [9]. Frame theory has proven

its usefulness in many different fields such as sampling theory [1] or theoretical

physics [2]. However, there exists a great reservoir of complete families that do

not satisfy both frame inequalities. We will see an example of this situation in

Section 2.3. Hence, several generalizations of frames such as reproducing pairs

(see Section 2.2) or semi-frames [3, 4], have been introduced. The basic idea

of semi-frames is to consider complete families {ψk}k∈I that only satisfy one of

the inequalities in (2). In particular, {ψk}k∈I is called a lower semi-frame if

A ‖f‖2 ≤
∑
k∈I

|〈f, ψk〉|2, ∀ f ∈ H, (3)

and is called an upper semi-frame if

0 <
∑
k∈I

|〈f, ψk〉|2 ≤ B ‖f‖2 , ∀ f ∈ H. (4)

An upper semi-frame is often also called a complete Bessel sequence. Many

results from frame theory can be extended to the setting of semi-frames.

The following Lemma can be found in [3, Lemma 2.5].

Lemma 1. Let Φ = {φk}k∈I be an upper semi-frame with bound B, and Ψ =

{ψk}k∈I be a family of vectors satisfying

〈f, g〉 =
∑
k∈I

〈f, φk〉〈ψk, g〉, ∀ f, g ∈ H,

then Ψ is a lower semi-frame with lower bound B−1.
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2.2. Reproducing pairs

The concept of reproducing pairs has been introduced recently in [25] and stud-

ied in more detail in [5]. The main idea is to omit both frame bounds and to

consider two vector families (instead of a single one) that generate a bounded

and boundedly invertible analysis/synthesis process.

Although the general definition in [5] is given with respect to arbitrary Borel

measures, we will only present the discrete setting here as we will exclusively

study discrete Gabor systems in this paper.

Definition 1. Let Ψ = {ψk}k∈I , Φ = {φk}k∈I be two families in H. The pair

(Ψ,Φ) is called a reproducing pair for H if the operator SΨ,Φ : H → H, weakly

defined by

〈SΨ,Φf, g〉 :=
∑
k∈I

〈f, ψk〉〈φk, g〉, (5)

is bounded and boundedly invertible.

Given a family Ψ, any system Φ for which (Ψ,Φ) is a reproducing pair is called

a reproducing partner for Ψ.

Remark 2. Please note that the results on discrete reproducing pairs in this

section can also be formulated if weak convergence of SΨ,Φ is replaced by norm

convergence. Our main result in Section 4 however relies on Janssen’s result

that the Gabor series of integer time-frequency shifts of the Gaussian window

can only be weakly convergent.

Let VΦ(I) be the space of all sequences ξ : I → C such that∣∣∣∑
k∈I

ξ[k]〈φk, g〉
∣∣∣ ≤ c ‖g‖ , ∀ g ∈ H.

In this case, the Riesz representation theorem guarantees that the synthesis

operator DΦ : VΦ(I) → H, weakly given by

〈DΦξ, g〉 =
∑
k∈I

ξ[k]〈φk, g〉,

is well-defined. By definition, VΦ(I) is the most general domain for which

the synthesis operator converges weakly. The proof of the following result can
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be found in [5, Theorem 4.1]. It answers the question of the existence of a

reproducing partner for a given family in a Hilbert space.

Theorem 3. Let Φ = {φk}k∈I ⊂ H be a family of vectors and {ek}k∈I be an

orthonormal basis for H. There exists another family Ψ, such that (Ψ,Φ) is a

reproducing pair if and only if

(i) RangeDφ = H and

(ii) there exists a family {ξk}k∈I ⊂ VΦ(I) such that

DΦξk =
∑
n∈I

ξk[n]φn = ek, ∀ k ∈ I, (6)

and ∑
k∈I

|ξk[n]|2 < ∞, ∀ n ∈ I. (7)

One instance of a reproducing partner Ψ = {ψk}k∈I (in general there exist more

than one) is then given by

ψn :=
∑
k∈I

ξk[n]ek.

Please bear in mind that summation in equation (6) is with respect to n ∈ I
for fixed k ∈ I while it is the reversed situation in equation (7). The conditions

(i) and (ii) can be interpreted in several ways. First, Property (i) ensures the

existence of a linear operator A : H → VΦ(I) satisfying f = DΦA(f), for every

f ∈ H. For an example of a complete system that does not satisfy (i), see [5,

Section 6.2.3]. Property (ii) guarantees that A(f) can be calculated by taking

inner products of f with another family Ψ ⊂ H.

Second, (i) and (ii) guarantee that {ξk}k∈I is an orthonormal basis for its

closed linear span with respect to the inner product 〈ξ, η〉Φ := 〈DΦξ,DΦη〉.
The second condition of (ii) then assures that this space is a reproducing kernel

Hilbert space.
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2.3. Gabor analysis

Let λ = (x, ω) ∈ R2 be a point on the time-frequency plane. A time-frequency

shift of a function g by λ is given by

π(λ)g(t) := TxMωg(t) = e2πiω(t−x)g(t− x),

where translation operator is given by Txf(t) := f(t − x) and the modulation

operator by Mωf(t) = e2πiωtg(t). The short-time Fourier transform Vg of a

function f is defined by

Vgf(λ) := 〈f, π(λ)g〉.

A Gabor system is a discrete family of functions generated by time-frequency

shifts of a single window function g ∈ L2(R), i.e.,

G(g,Λ) := {π(λ)g}λ∈Λ,

where Λ is a discrete subset of R2. Given a, b > 0, the Gabor system generated

by a rectangular lattice is

G(g, a, b) := {π(an, bm)g}n,m∈Z.

The product (ab)−1 is called the density or redundancy of the Gabor system. If

G(g, a, b) is a frame, then ab ≤ 1 necessarily holds, see [16, Corollary 7.5.1]. The

case ab = 1 is called the critical density case. Since this paper is concerned with

Gabor systems at the critical density and the analysis can always be reduced to

a = b = 1, we will write G(g) := G(g, 1, 1) and gn,m := TnMmg in order to keep

notation simple.

The Balian-Low theorem states that, at the critical density, there are no

Gabor frames using a window which is well-localized both in time and frequency,

see for example [16, Chapter 8.4].

Theorem 4 (Amalgam Balian-Low Theorem). Let ab = 1 and assume

that the Gabor system G(g, a, b) is a frame. Then both g /∈ W0(R) and ĝ /∈
W0(R), where

W0(R) := {f ∈ C(R) :
∑
n∈Z

ess supx∈[0,1] |f(x+ n)| < ∞}.
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This obstruction motivates our approach to use reproducing pair methods to

study Gabor systems at critical density that are generated by a well localized

window. First, we will investigate if it is possible to choose a second Gabor

system as the reproducing partner. Such a family necessarily satisfies the lower

but not the upper frame bound by Lemma 1. Since any well localized window

function generates a Gabor Bessel family [16, Section 6.2], it therefore follows

that the second window function cannot be well localized. Second, we will use

Theorem 3 to prove the existence of unstructured reproducing partners.

The analysis of the conditions of Theorem 3 heavily depends on the particu-

lar window function. Thus, we will focus on the system of integer time-frequency

shift (a = b = 1) of the normalized Gaussian

ϕσ(t) = (2/σ)1/4e−πt2/σ.

However, we are convinced that the recipe for our proof also works for other

window functions. As in [20, Section 2.2] we will assume that σ = 1 and use

the notation ϕ := ϕ1 and G := G(ϕ).

We end this introduction to Gabor systems by defining the modulation

spaces Mp
s . Let vs(x, ω) := (1 + |x| + |ω|)s, s > 0, and g be some nonzero

Schwartz function. Then Mp
s is

Mp
s :=

{
f ∈ L2(R) : Vgf · vs ∈ Lp(R2)

}
.

In particular, the spaces M1
s are commonly seen as the appropriate class of

window functions for Gabor analysis. For an overview on modulation spaces,

see [13, 16].

3. A Balian-Low like theorem for reproducing pairs

The Zak transform of a function f is given by the function Zf on R2 defined by

Zf(x, ω) :=
∑
k∈Z

f(x− k)e2πiωk,

with convergence of the series depending the class of functions that contain

f . For example, if f ∈ L2(R), then Zf is almost everywhere well-defined and
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converges in L2
(
[0, 1]2

)
. In the following, we list some of the most important

properties of Z. An extensive description can be found for example in [16,

Chapter 8]. It is easy to see that Zf is periodic in the second variable and

quasiperiodic in the first variable. That is, for k, l ∈ Z one has

Zf(x+ k, ω + l) = e2πikωZf(x, ω).

Moreover, Z : L2(R) → L2
(
[0, 1]2

)
is a unitary operator. Regularity of a func-

tion is preserved by the Zak transform. To be more precise, if f ∈ W0(R), then

Zf ∈ C(R2) and f ∈ S(R) if and only if Zf ∈ C∞(R2). The most important

property of the Zak transform in the context of Gabor analysis is, however, that

it diagonalizes the Gabor frame operator. For a = b = 1 and f, g, γ ∈ L2(R), it

holds that

Z(Sg,γf) = Zg · Zγ · Zf. (8)

Hence, (G(g), G(γ)) is a reproducing pair if and only if

0 < m ≤ |Zg · Zγ| ≤ M < ∞, almost everywhere, (9)

and Sg,γ = I if and only if Zg · Zγ = 1 almost everywhere.

There is a close connection to Gabor Schauder bases. Heil and Powell [18,

Theorem 5.10] have shown that G(g) is a Gabor Schauder basis if and only if

there exists C > 0 such that for any intervals I, J ⊂ R one has

1

|I|2|J |2 ·
∫
I×J

|Zg(x, ω)|2dxdω ·
∫
I×J

1

|Zg(x, ω)|2 dxdω ≤ C.

In particular, any Schauder basis G(g) and its dual basis G(γ) form a reproduc-

ing pair.

In the same article [18] the authors show that the two windows of a Gabor

Schauder basis and its dual cannot both be well localized. This naturally leads

to the question if at least one of the two windows of a Gabor reproducing pair

can be well localized.

Example 1. Let us try to ”trick” the Amalgam Balian-Low theorem by con-

structing a reproducing pair using window functions g, γ such that g, ĝ ∈ W0(R),

9



Figure 1: Plot of the functions g (left) and γ (right) in Example 1. The solid (resp. dashed)

line shows the real (resp. imaginary) part of the functions g and γ.1

that is, g is well localized on the time-frequency plane. Observe that γ is then

necessarily badly localized. Define ϑ(t) := t1/4(1− t)1/4, t ∈ [0, 1]. Then define

g by

Zg(x, ω) := e2πix·(ωmod 1)ϑ(ωmod 1),

then Zg is quasiperiodic in x, periodic in ω and continuous on R2. Moreover,

g ∈ W0(R) by [18, Theorem 6.1 (b)], ĝ(ω) = ϑ(ω) · χ[0,1](ω) ∈ W0(R) and

γ := Z−1(1/Zg) ∈ L2(R). Hence,
(
G(g), G(γ)

)
is a reproducing pair.

However, it turns out that even rather mild decay conditions on the time-

frequency distribution of the windows exclude the possibility of reproducing

pairs using two Gabor systems. Daubechies and Janssen [11] obtained a first

result in this direction.

Theorem 5. Let
(
G(g), G(γ)

)
be a reproducing pair, then neither g ∈ M2

2 nor

γ ∈ M2
2 .

In this paper we will show a similar result where we replace the modulation

space M2
2 by M1

1 . Note that this is a new result as neither space embeds into

the other.

1In the spirit of reproducible research we provide a Matlab/Octave script at https://www.
kfs.oeaw.ac.at/doc/RepPairGabor/rep_pair_gabor.m which generates the plots of Figure 1.
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The following Proposition is a simple consequence of Janssen’s characteriza-

tion of the modulation space M1 via the Zak transform [22].

Proposition 6. If s ∈ N0 and f ∈ M1
s , then Zf ∈ Cs(R2).

Proof: Let f ∈ M1
s and g1, g2 ∈ M1

s be such that Zg1 and Zg2 have no common

zeros. Adapting the argument of [22, Theorem 4.1] yields that Zf ·Zgn, n = 1, 2,

can be expressed by an Fourier series

(Zf · Zgn)(x, ω) =
∑
k,l∈Z

cn(k, l)e
2πikx/a+2πialω, n = 1, 2,

with coefficients {cn(k, l)}k,l∈Z ∈ �1vs(Z
2). Hence, if |β| = β1 + β2 ≤ s, then

{kβ1 lβ2cn(k, l)}k,l∈Z ∈ �1(Z2) which in turn implies that the Fourier series of

the derivative

Dβ(Zf · Zgn)(x, ω) =
∑
k,l∈Z

(2πi)|β|(k/a)β1(al)β2cn(k, l)e
2πikx/a+2πialω,

converges absolutely for all |β| ≤ s. Hence Zf · Zgn ∈ Cs(R2) for n = 1, 2.

We may choose g1, g2 to be Schwartz functions, which guarantees that Zgn ∈
C∞(R2). Finally, as Zg1 and Zg2 have no common zeros, it follows that Zf ∈
Cs(R2). �

Lemma 7. Let F ∈ L2
(
[0, 1]2

)
be Lipschitz and assume that there exists z∗ ∈

[0, 1]2 with F (z∗) = 0. Then 1/F /∈ L2
(
[0, 1]2

)
.

Proof: Let L be the Lipschitz constant of F . Then since F (z∗) = 0,

|F (z)|2 ≤ L2‖z − z∗‖2, ∀z ∈ Bδ(z
∗).

Hence, 1/F /∈ L2
(
[0, 1]2

)
, as 1/|F (z)|2 ≥ L−2‖z − z∗‖−2 on Bδ(z

∗). �

Corollary 8. Let
(
G(g), G(γ)

)
be a reproducing pair. Then both g /∈ M1

1 and

γ /∈ M1
1 .
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Proof: Assume without loss of generality that g ∈ M1
1 . Then Zg ∈ C1(R2) by

Proposition 6. Also |Zγ| ≥ m/|Zg| by (9), and there exists z∗ ∈ [0, 1]2 such

that Zg(z∗) = 0 by [16, Lemma 8.4.2]. However, Zγ /∈ L2
(
[0, 1]2

)
by Lemma 7

and consequently γ /∈ L2(R), a contradiction. �

4. In quest of a reproducing partner for G

For the rest of this paper, we focus on the study of G, the Gabor system gener-

ated by integer time-frequency shifts of the Gaussian. As already mentioned in

the introduction, G is a complete Bessel family but not a frame. By Corollary

8, there is no dual Gabor system for G. We will use Theorem 3 to show that the

expansion coefficients can be calculated via inner products. Finally, we show

that any reproducing partner for G cannot have a shift-invariant structure in

the time or frequency domain.

4.1. The range of DG

Condition (i) in Theorem 3 is satisfied. This is a consequence of [19, Theorem

4.7], which states that for every f ∈ S ′(R) there exists a sequence ξ such that f =∑
n,m∈Z

ξ[n,m]TnMmϕ with convergence in the sense of tempered distributions.

Consequently, the series converges weakly for every f ∈ L2(R) by the density

of S(R) in L2(R). Hence, RangeDG = L2(R).

In order to verify condition (ii), that is, that there exists {ξk,l}(k,l)∈Z2 such

that DGξk,l = ek,l and
∑

k,l∈Z
|ξk,l[n,m]|2 < ∞ for all (n,m) ∈ Z2, we need

some auxiliary results.

4.2. Solving DGξ = ek,l

Lemma 9. Let γ ∈ L2(R). The sequence ξ0 solves DGξ = γ (weakly in L2)

if and only if Sk,lξ0 solves DGξ = γk,l (weakly in L2), where Sk,l denotes the

index-shift operator

Sk,lc[n,m] := c[n− k,m− l].

12



Proof: Let ξ0 be a (weak) solution to DGξ = γ. Then it holds that

γk,l = TkMlγ = TkMl(DGξ0) = TkMl

( ∑
n,m∈Z

ξ0[n,m]TnMmϕ
)

=
∑

n,m∈Z

ξ0[n,m]Tk+nMl+mϕ =
∑

n,m∈Z

ξ0[n− k,m− l]TnMmϕ

=
∑

n,m∈Z

(Sk,lξ0)[n,m]TnMmϕ = DG(Sk,lξ0).

The reversed implication follows with the same argument. �

Hence, in order to find all solutions of DGξ = γk,l, it remains to find one

particular weak solution of DGξ = γ and to characterize the kernel of DG in

VG(Z2).

4.2.1. Characterizing the kernel of DG

In this section, we will see that any weak solution of DGξ = 0 is given by a

two-dimensional polynomial evaluated on Z2 times an oscillating sign factor.

This result can already be found in [19, Section 3.5 - 3.7].

As G is complete in L2(R) it follows that ξ ∈ KerDG if and only if 〈DGξ, ϕn,m〉 =
0 for every (n,m) ∈ Z2. The left-hand side of this equation can be rewritten as

〈DGξ, ϕn,m〉 =
∑
k,l∈Z

ξ[k, l]〈TkMlϕ, TnMmϕ〉 =
∑
k,l∈Z

ξ[k, l]〈Tk−nMl−mϕ, ϕ〉

=
∑
k,l∈Z

ξ[k, l]ϑ[n− k,m− l] = (ξ ∗ ϑ)[n,m],

where

ϑ[n,m] := 〈T−nM−mϕ, ϕ〉.

Lemma 1.5.2 in [16] shows that

ϑ[n,m] = (−1)nme−π(n2+m2)/2.

If ξ ∗ ϑ = 0, then ξ̂ · ϑ̂ = 0 holds at least in the sense of periodic distributions.

Hence, we intend to characterize those periodic distributions Λ such that Λ·Θ =

0, where Θ := ϑ̂. The function Θ can be expressed analytically as

Θ(ω) =
∑

n,m∈Z

(−1)nme−π(n2+m2)/2e−2πi(nω1+mω2) (10)

13



= θ3(πω1, e
−π/2) · θ3(2πω2, e

−2π) + θ4(πω1, e
−π/2) · θ2(2πω2, e

−2π),

where ω ∈ [0, 1)2 and θk denotes the k-th Jacobi theta function, see for example

[27]. This function has been studied in [19, Theorem 3.5]. We will state the

results in the following Lemma.

Lemma 10. Set ω0 := (1/2, 1/2). The function Θ ∈ C∞([0, 1]2) has the fol-

lowing properties:

(i) Θ(ω) ≥ 0, ∀ ω ∈ [0, 1)2,

(ii) Θ(ω) = 0 if and only if ω = ω0,

(iii) D(2,0)Θ(ω0) = D(0,2)Θ(ω0) > 0.

A particular consequence of Lemma 10 is that any periodic distribution Λ sat-

isfying Λ ·Θ = 0 is supported on {ω0}. Thus, by [24, Theorem 6.25] there exists

N ∈ N0 and coefficients cα ∈ C, α ∈ N2
0, such that

Λ =
∑

|α|≤N

cαD
αδω0 , (11)

Applying the inverse Fourier transform to Λ immediately shows the following

result.

Corollary 11. Every sequence p ∈ KerDG can be written as

p[n,m] = (−1)n+m
∑

|α|≤N

cα · nα1mα2 .

4.2.2. Calculation of ξ0

We choose the orthonormal basis {en,m}n,m∈Z in Theorem 3 to be the Gabor

system G(χ) with χ := χ[−1/2,1/2], the characteristic function for the interval

[−1/2, 1/2]. By Lemma 9 it remains to find a weak solution of DGξ = χ.

A first attempt in finding the expansion coefficients for G can be found in

[8]. In this paper, Bastiaans constructed a window that yields the expansion
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coefficients for a dense subspace of L2(R), see also [21, Section 4.4]. Bastiaans’

dual window [8] is analytically given by

ψ(t) = Cψ eπt
2 ∑
n>|t|−1/2

(−1)ne−π(n+1/2)2 , (12)

for some constant Cψ > 0. The function ψ defined as ψ := Z−1(1/Z(ϕ)) has

the property that ψ is bounded but not contained in Lp(R) for any 1 ≤ p < ∞.

That is, ψ ∈ L∞(R)\Lp(R).

In [21, Section 4.4] Janssen showed the following result: If f ∈ L1(R) and

for every fixed l ∈ Z the expression 〈f, TkMlψ〉 converges to zero as |k| → ∞,

then the following series converges in the sense of tempered distributions

f =
∑
k,l∈Z

〈f, TkMlψ〉TkMlϕ. (13)

We will prove that this result implies that (13) holds on a dense subspace of

L2(R) with weak convergence in L2(R).

Lemma 12. For every function f ∈ M, where

M :=
{
f ∈ L2(R) : f =

∑
k,l∈Z

c[k, l]TkMlχ, ‖c‖1 < ∞
}
,

equation (13) holds weakly in L2(R). In particular, ξ0[k, l] := 〈χ, TkMlψ〉 is a

weak solution of DGξ = χ.

Proof: Recall that G(χ) is an orthonormal basis. Let f ∈ M, then f ∈ L1(R)∩
L2(R) because

‖f‖1 ≤
∑
k,l∈Z

|c[k, l]|‖TkMlχ‖1 = ‖c‖1 and ‖f‖22 =
∑
k,l∈Z

|c[k, l]|2 ≤ ‖c‖21.

15



If k �= 0, then

|〈χ, TkMlψ〉| ≤
∫ 1/2

−1/2

|ψ(t− k)|dt ≤ C

∫ 1/2

−1/2

eπ(t−k)2dt
∑
n≥|k|

e−π(n+1/2)2

= C

∫ 1/2

−1/2

eπ(t−|k|)2−π(|k|+1/2)2dt
∑
n≥|k|

e−π(n+1/2)2+π(|k|+1/2)2

≤ C

∫ 1/2

−1/2

eπ(t
2−1/4−|k|(2t+1))dt ≤ C

∫ 1/2

−1/2

e−π|k|(2t+1)dt

=
C

2π|k| (1− e−2π|k|) ≤ C

2π(1 + |k|) ,

where we have used that eπt
2

is even and that t2 − 1/4 < 0 on (−1/2, 1/2).

Observe that the constant C is independent of k since

∑
n≥|k|

e−π(n+1/2)2+π(|k|+1/2)2 =
∑
n≥0

e−π(n+|k|+1/2)2+π(|k|+1/2)2

=
∑
n≥0

e−π(n2+2n|k|+n) ≤
∑
n≥0

e−π(n2+n) = C < ∞.

Let now f =
∑

n,m c[n,m]TnMmχ with c ∈ �1(Z2). By Young’s inequality for

convolutions and the previous calculations we obtain

∑
k∈Z

|〈f, TkMlψ〉|2 =
∑
k∈Z

∣∣∣ ∑
n,m∈Z

c[n,m]〈χ, Tk−nMl−mψ〉
∣∣∣2

≤ C
∑
k∈Z

( ∑
n,m∈Z

|c[n,m]|(1 + |k − n|)−1
)2

= C
∑
k∈Z

(∑
n∈Z

( ∑
m∈Z

c[n,m]
)
(1 + |k − n|)−1

)2

≤ C‖c‖21
∑
k∈Z

(1 + |k|)−2 < ∞.

This estimate finally implies that for each fixed l ∈ Z, we have |〈f, TkMlψ〉| → 0,

as |k| → ∞. �

Let us investigate the behavior of ξ0 in more detail. We will use the notations

g(t) := Cψe
πt2 , with Cψ being the constant from (12),

Gk :=
∑
n≥0

(−1)ne−π(n2+2|k|n+n+1/4),
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and μk(t) := (−1)ke−π|k|Gke
−2πkt. It holds that

ξ0[k, l] = 〈γ, TkMlψ〉 = Cψ

∫ 1/2

−1/2

eπ(t−k)2e−2πiltdt
∑
n≥|k|

(−1)ne−π(n+1/2)2

= Cψ

∫ 1/2

−1/2

eπt
2

e−2πkte−2πiltdt
∑
n≥|k|

(−1)ne−π(n+1/2)2eπk
2

= Cψ

∫ 1/2

−1/2

eπt
2

e−2πkte−2πiltdt
∑
n≥0

(−1)n+ke−π(n2+2|k|n+|k|+n+1/4)

= Cψ(−1)ke−π|k|Gk

∫ 1/2

−1/2

eπt
2

e−2πkte−2πiltdt

=

∫ 1/2

−1/2

g(t)μk(t)e
−2πiltdt = ĝ · μk[l]. (14)

For k = 0, the Fourier transform of μ0 is given by

μ̂0[l] = G0δ0[l]. (15)

If k �= 0, then

μ̂0[l] = (−1)ke−π|k|Gk

∫ 1/2

−1/2

e−2π(k+il)tdt

=
(−1)k+1e−π|k|Gk

2π(k + il)
(e−π(k+il) − eπ(k+il))

=
(−1)l+k+1

2π(k + il)
(e−π(|k|+k) − e−π(|k|−k))Gk

=
(−1)l+k

2π(k + il)
sgn(k)(1− e−2π|k|)Gk

=
(−1)l+k

2π(k + il)
Hk, (16)

where Hk := sgn(k)(1− e−2π|k|)Gk. Observe that Hk → ±e−π/4 as k → ±∞.

4.3. Existence of reproducing partners

We are now ready to state and prove our main result.

Theorem 13. There exists a system Ψ making (Ψ,G) a reproducing pair. In

other words, there exists a dual system for the complete Bessel sequence G.

Proof: Set

ξk,l = Sk,lξ0 + pk,l, (17)
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where pk,l is a particular choice from KerDG which we will specify later in the

proof. Then DGξk,l = γk,l. Let us assume that there exist a reproducing partner

for G. By Theorem 3, we can choose {ξk,l}k,l∈Z in such a way that

∑
k,l∈Z

∣∣ξk,l[n,m]
∣∣2 < ∞, ∀ n,m ∈ Z. (18)

Recall that, by Corollary 11, there is some N ∈ N0 such that pk,l is given by

pk,l[n,m] = (−1)n+m
∑

|α|≤N

cα[k, l] · nα1mα2 .

In the following we will choose N = 0 for every (k, l) ∈ Z2, that is, pk,l[n,m] =

(−1)n+mc[k, l]. Since we assume that equation (18) holds, we can apply Parse-

val’s formula to the summation with respect to l ∈ Z. Using equation (14), this

yields

∑
l∈Z

∣∣ξk,l[n,m]
∣∣2 =

∑
l∈Z

∣∣Sk,lξ0[n,m] + pk,l[n,m]
∣∣2

=
∑
l∈Z

∣∣ξ0[n− k,m− l] + pk,l[n,m]
∣∣2

=
∑
l∈Z

∣∣∣F(g · μn−k)[m− l] + (−1)n+mc[k, l]
∣∣∣2

=

∫ 1/2

−1/2

∣∣∣Mm(g · μn−k)(−ω) + (−1)n+mF−1(c[k, ·])(ω)
∣∣∣2dω

≤ |g(1/2)|2
∫ 1/2

−1/2

∣∣∣Mmμn−k(−ω) + (−1)n+m(F−1(c[k, ·])/g)(ω)
∣∣∣2dω

= C
∑
l∈Z

∣∣∣F(μn−k)[m− l] + (−1)n+mF(F−1(c[k, ·])/g)[l]∣∣∣2 =: (∗).

(19)

If k �= n it follows by equation (16) that

(∗) = C
∑
l∈Z

∣∣∣ (−1)n+k+l+mHn−k

2π(n− k + i(m− l))
+ (−1)n+mF(F−1(c[k, ·])/g)[l]∣∣∣2

=
C

4π2

∑
l∈Z

∣∣Hn−k − β[k, l] · (1− n+im
k+il

)∣∣2
(n− k)2 + (m− l)2

, (20)

where

β[k, l] := 2π(−1)k+lF(F−1(c[k, ·])/g)[l] · (k + il).
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If k = n, then by (15) and (19) we get the estimate

∑
l∈Z

∣∣ξn,l[n,m]
∣∣2 ≤ C

∑
l∈Z

|G0δ0[m− l]− 2π−1(−1)m+lβ[n, l]/(n+ il)|2. (21)

Set c0,l := 0 for every l ∈ Z and

c[k, l] := (2π)−1sgn(k)e−π/4 · F(F−1(hk) · g)[l], if k �= 0,

where hk[l] := (−1)k+l(k + il)−1. Then β[k, l] = sgn(k)e−π/4 and therefore the

right hand side of equation (21) converges for every (n,m) ∈ Z2. Moreover, we

have ∑
k,l∈Z

k �=n

∣∣ξk,l[n,m]
∣∣2

≤ C
∑
k,l∈Z

k �=n

∣∣Hk−n − sgn(k)e−π/4
∣∣2

(n− k)2 + (m− l)2
+

e−π/4 · (1− δ0[k]) · (n2 +m2)

(k2 + l2) · ((n− k)2 + (m− l)2
) .

It is easy to see that summing up only the second terms yields a finite expression

and the sum over the first terms can be estimated as follows

∑
k,l∈Z

k �=n

∣∣Hk−n − sgn(k)e−π/4
∣∣2

(n− k)2 + (m− l)2
≤

∑
k∈Z

k �=n

∣∣Hk−n − sgn(k)e−π/4
∣∣2 ∑

l∈Z

1

1 + l2
,

which is finite for every (n,m) ∈ Z2. All in all, we have shown that (18) holds

for every (n,m) ∈ Z2. This concludes the proof. �

4.4. Non-existence of shift-invariant reproducing partners

We conclude this paper by showing that any reproducing partner for G is nec-

essarily unstructured in the sense that it cannot be written as a shift-invariant

system in time or in frequency. For more information on shift-invariant systems

see for example [10, Chapter 8].

Proposition 14. There exists no shift-invariant dual system for G, that is,

any reproducing partner Ψ for G cannot be written as ψn,m = Tnψm or ψn,m =

Mmψn.
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Proof: Let us write ψn,m as a Gabor expansion with respect to the orthonormal

basis G(χ). If we assume that ψn,m = Tnψm, then

ψ0,m = T0ψm = T−nψn,m =
∑
k,l∈Z

ξk,l[n,m]Tk−nMlχ

=
∑
k,l∈Z

ξk+n,l[n,m]TkMlχ,

which implies that ξk,l[0,m] = ξk+n,l[n,m], for all (n,m, k, l) ∈ Z4. Using (17),

ξk+n,l[n,m] = Sk+n,lξ0[n,m] + pk+n,l[n,m]

= ξ0[−k,m− l] + pk+n,l[n,m] = Sk,lξ0[0,m] + pk+n,l[n,m],

it follows that

pk,l[0,m] = pk+n,l[n,m], ∀ n,m, k, l ∈ Z. (22)

In the following, we set c0 := c0,0 and let α, β ∈ N2
0. By Corollary 11 and

equation (22), one has

(−1)m
∑

|β|≤N
β1=0

cβ [k, l] ·mβ2 = (−1)n+m
∑

|α|≤N

cα[k + n, l] · nα1mα2 .

Setting k = s− n, m = 0 then yields

c0[s− n, l] = (−1)n
∑

|α|≤N
α2=0

cα[s, l] · nα1 .

If there exists (s, l) ∈ Z2, such that

∑
|α|≤N
α2=0

cα[s, l] · nα1 �= 0 for some n ∈ Z, (23)

then either |c0[s− n, l]| → ∞ as |n| → ∞, or c0[s− n, l] = (−1)nc0[s, l] �= 0 for

all n ∈ Z, which implies |c0[·, l]| ≡ C > 0. As |ξ0[k, l]| → 0 for |(k, l)| → ∞, we

obtain for both cases that

∑
k,l∈Z

|ξk,l[0, 0]|2 = ∞. (24)
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If there exist no (s, l) ∈ Z2, such that equation (23) holds, then pk,l[0, 0] ≡ 0

and consequently ξk,l[0, 0] = ξ0[−k,−l]. Hence, (24) holds and ψ0,0 is not well

defined.

An analogous argument can be used to show that ψn,m cannot be given by

Mmψn. �

5. Conclusion

It appears that the obstructions to Gabor frames as portrayed for example in [17]

are preserved if one leaves the setup of frame theory and considers reproducing

pairs consisting of two Gabor families instead. Already minor decay conditions

on the window functions exclude the possibility to form reproducing pairs.

We have seen that the concept of reproducing pairs provides new insights on

complete vector systems. In particular, the characterization given in Theorem

3 has proven to be a useful tool for different vector families, see also [5].

Here, we used Theorem 3 to show the existence of dual systems for the

system of integer time-frequency shifts of the Gaussian. The crucial point in

our argument is to estimate the behaviour of ξ0 and choose appropriate elements

of the kernel ofDG . We believe that the same recipe will work for other windows,

like the Hermite functions.
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