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UPPER ESTIMATES OF CHRISTOFFEL FUNCTION ON CONVEX
DOMAINS

A. PRYMAK

Abstract. New upper bounds on the pointwise behaviour of Christoffel function on convex

domains in R
d are obtained. These estimates are established by explicitly constructing the

corresponding “needle”-like algebraic polynomials having small integral norm on the domain,

and are stated in terms of few easy-to-measure geometric characteristics of the location of the

point of interest in the domain. Sharpness of the results is shown and examples of applications

are given.

1. Introduction, results and remarks

For a compact setD ⊂ R
d with non-empty interior and a positive weight function w ∈ L1(D),

the associated Christoffel function is defined as

λn(D,w,x) =

(
N∑
k=1

ϕk(x)
2

)−1

, x ∈ D,

where Pn = Pn,d is the space of all real algebraic polynomials of total degree ≤ n in d vari-

ables, and {ϕk}Nk=1 is an orthonormal basis of Pn with respect to the inner product 〈f, g〉 =∫
D
f(y)g(y)w(y)dy. Equivalently, the Christoffel function can be defined through the following

extremal property:

(1.1) λn(D,w,x) = min
f∈Pn, |f(x)|=1

∫
D

f 2(y)w(y)dy, x ∈ D.

If w ≡ 1 is the uniform weight, we will write λn(D,x) = λn(D,w,x) and this quantity will be

of our primary interest. Christoffel functions play an extremely important role in the theory of

orthogonal polynomials and other areas of analysis.
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2 A. PRYMAK

It was established in [BDVM] (see also [X] for related results) that for centrally symmetric

positive continuous weight w on the unit ball in R
d one has

(1.2) lim
n→∞

λn(B
d, w,x)

(
n+ d

d

)
=

π
d+1
2 w(x)

√
1− |x|2

Γ(d+1
2
)

, |x| < 1,

where |x| = (x2
1 + · · · + x2

n)
1/2 is the Euclidean norm of x = (x1, . . . , xd), and Bd = {x ∈ R

d :

|x| ≤ 1}. This is an example of a typical result on computation of asymptotics of Christoffel

function, which usually establishes that

lim
n→∞

ndλn(D,w,x) = ρ(D,w,x)

and explicitly computes the limit function ρ(D,w,x) at interior points x ∈ D. When d = 1

this has been done for quite general weights on the segment (see, e.g. [T]), while for higher

dimensions only some special domains such as ball, simplex, cube have been covered for certain

classes of weights.

One of the difficulties for the higher dimensions is understanding the influence of geometry

of the domain on Christoffel function. In addition, there are usually no explicit expressions

available for orthonormal polynomial bases on domains admitting any reasonable generality. In

a recent important work [K] Kroo obtained sharp lower estimates on lim infn→∞ ndλn(D,w,x)

for certain general classes of convex and star-like domains. One of the main motivations for

the current work was the question whether an “extra” factor of log n could be removed in the

sharpness result [K, Theorem 2], which will be answered affirmatively in Section 3.

Rather than focusing on estimating the asymptotics of Christoffel function, we will be con-

cerned with its behavior, i.e., computation of λn(D,w,x) up to a constant factor as a function

of n and x. For example, it was established in [MT, (7.14)] that for doubling weights w on

[−1, 1] (in particular, for w ≡ 1) and any x ∈ [−1, 1]

(1.3)
1

c

∫
Ix

w(t)dt ≤ λn([−1, 1], w, x) ≤ c

∫
Ix

w(t)dt, Ix = [x− ρn(x), x+ ρn(x)] ∩ [−1, 1],

where ρn(x) = n−2+n−1
√
1− x2 and c depends on the doubling constant of w. The estimates of

behavior of Christoffel function are more useful in the sense that they allow to deduce bounds on

asymptotics (up to a constant) and, for example, to compute the order of minx∈D λn(D,x) as a

function of n, which is not possible to imply from typical results on asymptotics. The quantity

minx∈D λn(D,x) is crucial for Nikol’skii inequalities (see [DP]) and has other applications, for

instance, in analysis of least square approximation [CDL].



UPPER ESTIMATES OF CHRISTOFFEL FUNCTION ON CONVEX DOMAINS 3

For one dimension, as illustrated by (1.3), the quantity ρn(x) properly accounts for the

boundary effect. In [K], for the so-called Cα domains (where α reflects certain smoothness of

the boundary), it is shown how the distance to the boundary (defined in terms of Minkowski

functional) can be used for estimates of Christoffel function. In this paper, we work with

general convex bodies (convex compact sets with non-empty interior) without any smoothness

assumptions and show that apart from the distance to the boundary one can look at certain

measurements of the size of an appropriate hyperplane section of the body to obtain precise

upper bounds on Christoffel function.

In what follows, c, c0, c1, etc. denotes positive absolute constants, and c(·) denotes positive
constants depending only on parameters indicated in parentheses. These constants may be

different at different occurrences even if the same notation is used. We write A ≈ B if c0A ≤
B ≤ c1A for any values of variables that define the quantities A and B. We always assume

that n is a positive integer. By ∂D we denote the boundary of D and also set dist(x, Y ) :=

inf{|x− y| : y ∈ Y }.
Now let us state the main result for two dimensions.

Theorem 1.1. Suppose a planar convex body D is contained in a disc of radius R, and for some

x ∈ D \ ∂D and unit vector u ∈ R
2 there are r > 0 and t0 < 0 such that rB2 + x + t0u ⊂ D.

Let δ := max{t : x+ tu ∈ D} and li := max{t : x+ (−1)itv ∈ D}, i = 1, 2, where v is one of

the two unit vectors orthogonal to u. If δ ≥ σn−2, σ > 0, then

(1.4) λn(D,x) ≤ c(r, R, σ)n−2
√
min{l1l2, δ}.

Remark 1.2. Proof of Theorem 1.1 is constructive, i.e., following this proof and that of [DP,

Theorem 6.3], one can explicitly construct the polynomials of degree n with Pn(x) = 1 and

‖Pn‖2L2(D) ≤ c(r)n−2
√
min{l1l2, δ} (see (1.1)).

Remark 1.3. The constant in (1.4) depends on r as r → 0+ and does not depend on t0.

Alternatively, instead of requiring that rB2 + x+ t0u ⊂ D, one can define r as follows:

r = sup
y∈D∩{x+tu:t<0}

dist(y, ∂D).

Restriction δ ≥ σn−2 is not essential and was imposed only to simplify the statements of the

results (in particular, to allow writing n−1
√
δ rather than n−2 + n−1

√
δ). More precisely, the

next proposition shows that one can always step towards inside the domain by an order of n−2

leading to no change in the order of Christoffel function. We call D ⊂ R
d a star-like body in
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R
d (with respect to the origin), if D is a compact set with non-empty interior and tD ⊂ D for

any t ∈ [0, 1].

Proposition 1.4. If D is a star-like body in R
d, then for any point x ∈ D

λn(D,x) ≈ λn(D,μx), μ ∈ [1− c(d)n−2, 1],

where c(d) = 2−3−d/2 (recall that the constants in the equivalence notation “≈” are absolute).

The following theorem shows that the bound in Theorem 1.1 is sharp in the class of convex

bodies if we only use measurements δ and li, i = 1, 2. Let us remark that under the conditions

of Theorem 1.1 it is not hard to see that by convexity of D we always have

(1.5)
rδ

δ − t0
B2 + x ⊂ D, so li ≥ rδ

δ − t0
≥ r

2R
δ, i = 1, 2.

Theorem 1.5. For any positive l1, l2, δ with 10δ < l1, l2 < 1
10
, one can find a planar convex

body D and a point x ∈ D satisfying B2 ⊂ D ⊂ 4B2 and with u := x/|x| that δ = max{t :
x+ tu ∈ D} and li = max{t : x+(−1)itv ∈ D}, i = 1, 2, where v is one of the two unit vectors

orthogonal to u, and that for any n with δ > σn−2, σ > 0, the following inequality holds:

(1.6) λn(D,x) ≥ c(σ)n−2
√
min{l1l2, δ}.

Note that Theorem 1.1 is applicable for D and x from Theorem 1.5 with r = 1 and R = 4.

Remark 1.6. The converse (1.4) of (1.6) is true for any convex body. We believe that the class

of convex bodies for which (1.6) holds (for any x with δ > σn−2) is rather wide, however, that

it does not include all convex bodies. In other words, to compute the order of λn(D,x) for

arbitrary convexD, one must use more measurements than only δ and li, i = 1, 2. Alternatively,

one could restrict the class of considered bodies and impose some additional conditions apart

from convexity.

In R
2, a hyperplane section of a planar convex body is a segment, and along with a point on

this segment, such a configuration can be completely described by two parameters as we have

done with l1 and l2 above. For R
d, d > 2, a hyperplane section of a convex body in R

d is a

convex body in R
d−1, which makes things much more complicated. Nevertheless, simply the

(d−1)-volume of an appropriate hyperplane section of the body can be used for a quite precise

(as confirmed by examples and sharpness) upper bound on Christoffel function.

Let Volk(·) be the k-dimensional volume. Now we can state our main result for higher

dimensions.



UPPER ESTIMATES OF CHRISTOFFEL FUNCTION ON CONVEX DOMAINS 5

Theorem 1.7. Suppose a convex body D ⊂ R
d contains a ball of radius r and is contained in

a ball of radius R. For any x ∈ D \ ∂D, let u ∈ R
d be a unit vector such that for some ν ≥ 1

(1.7) δ := max{t : x+ tu ∈ D} ≤ νdist(x, ∂D)

and the hyperplane passing through x+δu with normal vector u is supporting to D. If δ ≥ σn−2,

σ > 0, then

(1.8) λn(D,x) ≤ c(d, r, R, ν, σ)n−dmin{
√
δ, δ1−d/2Vold−1({y ∈ D : (x− y) ⊥ u})}.

Remark 1.8. The required choice of u is always possible even with ν = 1, namely, when

δ = dist(x, ∂D) and u such that x + δu ∈ ∂D. Allowing ν > 1 gives more flexibility in the

choice of the direction u, for example of such application see the proof of Theorem 3.5.

Remark 1.9. Remark similar to Remark 1.2 holds about Theorem 1.7.

Remark 1.10. The main idea of the proofs of both of the main results Theorem 1.1 and Theo-

rem 1.7 relies on application of [DP, Theorem 6.3], which uses a parallelotop (an affine image

of the cube) containing the body. Informally, in geometric language, one seeks such a circum-

scribed parallelotop having small volume and one of the vertices close to the point where the

estimate of Christoffel function is sought. Our proofs describe an efficient way of constructing

the corresponding affine transform of the cube, and so provide a relief from the need to optimize

over a very large family of possible affine transforms for which [DP, Theorem 6.3] is applicable.

The common part of (1.4) and (1.8) is valid under somewhat milder hypothesis. Let us state

this separately as a lemma.

Lemma 1.11. Suppose a convex body D ⊂ R
d is contained in a ball of radius R. For any

x ∈ D \ ∂D, let u ∈ R
d be a unit vector such that

(1.9) δ := max{t : x+ tu ∈ D} ≤ νdist(x, ∂D)

for some ν ≥ 1. If δ ≥ σn−2, σ > 0, then

(1.10) λn(D,x) ≤ c(R, d, ν, σ)n−d
√
δ.

Remark 1.12. Note that under the conditions of Theorem 1.1, due to convexity of D (similarly

to (1.5)), we have δr
2R
B2 + x ⊂ D, hence δ ≤ 2R

r
dist(x, ∂D), implying (1.9). The requirements

in Theorem 1.7 are clearly stronger than those in Lemma 1.11.
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Remark 1.13. The inequality (1.10) can be considered a domain independent upper bound

on λn using only δ. It will be sharp near points where the boundary is sufficiently smooth,

see, e.g., Proposition 3.1 or Proposition 3.3. A domain independent lower bound is given

in [K, Theorem 4]. That lower bound is sharp in the opposite situation, say, near “corners” of

the domain or near vertices of polytopes.

Remark 1.14. Without modifications to the proofs, one can replace the condition (1.7) or (1.9)

with somewhat less demanding

δ ≤ νdist(x, ∂D ∩ {y ∈ D : (y − x) ⊥ u}).

Remark 1.15. For anisotropic convex domains D, it may be beneficial to apply Theorem 1.1 or

Theorem 1.7 not for D, but for T (D), where T is an affine transform satisfying Bd ⊂ T (D) ⊂
dBd. The existence of such T is guaranteed by John’s ellipsoid theorem [J], more precisely, T

can be chosen so that T−1(Bd) is the ellipsoid of maximum volume in D. It is straightforward

to track how Christoffel function changes after the affine transform of the domain, see (2.2).

Note, however, that (1.4) and (1.8) are not invariant under affine transforms.

Theorem 1.7 is sharp in the class of convex bodies if one only uses measurements δ and

Vold−1({y ∈ D : (y − x) ⊥ u} as the next result shows. Note that (1.7) implies that

δ
ν
Bd + x ⊂ D, so c(d, ν)δd−1 ≤ Vold−1({y ∈ D : (y − x) ⊥ u}).

Theorem 1.16. For any d ≥ 2 there exist positive constants β1 and β2 which depend only on

d such that for any positive δ and v with β1δ
d−1 < v < β2, one can find a convex body D ⊂ R

d

and x ∈ D satisfying Bd ⊂ D ⊂ 3Bd, δ = dist(x, ∂D), v = Vold−1{y ∈ D : (y − x) ⊥ u})
where u is a unit vector such that x + δu ∈ ∂D (so (1.7) is satisfied even with ν = 1 and

the hyperplane through x + δu with normal vector u is supporting to D), and for any n with

δ > σn−2, σ > 0, the following inequality holds:

λn(D,x) ≥ c(d, σ)n−d min{
√
δ, δ1−d/2v}.

Remark 1.17. Our estimates of behavior of Christoffel function are valid and stated for the

uniform weight only. However, the implied bounds on asymptotics of Christoffel function can

be combined with the universality in the bulk results of [KL] to obtain upper bounds on

asymptotics of Christoffel function for positive continuous weights on the same domain.
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The titles of the following sections are self-explanatory. A reader not interested in the proofs

is encouraged to proceed directly to Section 3 for examples of applications of main results.

2. Tools and auxiliary results

We begin with two important ingredients used frequently in the proofs here. For two domains

satisfying D1 ⊂ D2 ⊂ R
d, by (1.1) one observes that

(2.1) λn(D1,x) ≤ λn(D2,x), x ∈ D2.

For an affine transform Tx = x0 +Ax of Rd, where x0 ∈ R
d and A is an n× n matrix, we will

write detT = detA. Unless specified otherwise, any affine transform below is assumed to be

non-degenerate, i.e., detT �= 0. From (1.1) it is straightforward to compute that

(2.2) λn(TD, Tx) = λn(D,x)| detT |, x ∈ D.

Although both (2.1) and (2.2) are directly applicable only for the uniform weight, they may

lead to asymptotic results for other weights (see Remark 1.17).

The crucial tool for upper bounds is [DP, Theorem 6.3] which we now restate as a lemma.

Lemma 2.1. Let D ⊂ R
d be a compact set, y = (y1, . . . , yd) ∈ [−1, 1]d, T be an affine

transformation of Rd such that D ⊂ T ([−1, 1]d) and Ty ∈ D. Then

λn(D, Ty) ≤ c| detT |ρn(y1)ρn(y2) . . . ρn(yd)

where c > 0 depends only on d, and ρn(y) = n−2 + n−1
√

1− y2.

To establish sharpness of our main results, the lower bound in the following relation will be

useful:

(2.3) λn(B
d,x) ≈ c(d, σ)n−d

√
1− |x|2, x ∈ (1− σn−2)Bd.

Note that the asymptotics given in (1.2) does not imply (2.3) as that asymptotic relation is

not known to be uniform. It is feasible that the methods of the proofs in [BDVM] or in [X]

can be used to obtain (2.3), however, such an approach would be very technical. Below we will

provide rather elementary proof of the lower bound on λn(B
d,x) in (2.3). This lower bound

can also be derived from the positive cubature formula [DX, Th. 6.3.3, p. 138] on the sphere

and the connection to the ball [DX, Ch. 11.1, p. 265]. The corresponding upper bound in (2.3)

immediately follows from Lemma 2.1 with T chosen to be the identity and y located on one of

the coordinate axes.
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Remark 2.2. If x is an interior point of a bounded D ⊂ R
d which is sufficiently far from the

boundary, namely, if rBd + x ⊂ D ⊂ RBd + x, then (2.1), (2.2) and (2.3) provide λn(D,x) ≈
c(d, r, R)n−d. Moreover, if D ⊂ R

d is a convex body containing a ball of radius r and contained

in a ball of radius R, then for δ = dist(x, ∂D) convexity implies δr
2R
Bd +x ⊂ D, so λn(D,x) ≈

c(δ, d, r, R)n−d.

Remark 2.3. Proof of [K, Theorem 1] uses the asymptotics (1.2). Instead, for the uniform

weight, one can use (2.3) and obtain a version of [K, Theorem 1] which bounds the behaviour

of Christoffel function rather than its asymptotics.

Proof of lower bound in (2.3). Due to rotation invariance of Bd, let us assume x = (1 −
δ, 0, . . . , 0) ∈ (1−σn−2)Bd. If δ ≥ 1/2, the required result follows from [DP, Theorem 4.1, (4.4)]

or from comparison with cube or simplex. Assuming δ < 1/2, consider any polynomial P ∈ Pn,d

satisfying P (x) = 1 and ‖P‖2
L2(Bd)

= λn(B
d,x). We need to show that ‖P‖2

L2(Bd)
≥ c(d)

√
δn−d.

Let M := ‖P‖L∞((1−δ/2)Bd) ≥ 1 which is attained at a point y ∈ (1− δ/2)Bd. We obtain

λn(B
d,y) = min

Q∈Pn,d,|Q(y)|=1
‖Q‖2L2(Bd) ≤

1

M2
‖P‖2L2(Bd) =

1

M2
λn(B

d,x),

so by [DP, Theorem 4.1, (4.3)] (or by forthcoming Lemma 2.4 yielding a somewhat larger

constant), (2.1) and (2.2), we conclude that

M2 ≤ λn(B
d,x)

λn(Bd,y)
≤ λn(B

d, (1− δ, 0, . . . , 0))

λn(Bd, (1− δ/2, 0, . . . , 0))

≤ λn(B
d, (1− δ, 0, . . . , 0))

λn(1/2Bd + (1/2, 0, . . . , 0), (1− δ/2, 0, . . . , 0))
= 2d.

Let

S := {(x1, . . . , xd) : |(x1, . . . , xd)| = 1, x1 ≥ cos(1/(2nM))}

be the spherical cap on the unit sphere centered at (1, 0, . . . , 0) of angle 1/(2nM). We claim

that

(2.4) P ((1− δ)z) ≥ 1

2
, z ∈ S.

Indeed, if (1 − δ)z �= x, let ω be the two dimensional circle which is the intersection of the

sphere of radius 1 − δ centered at the origin of Rd and the two dimensional plane through

the origin and the points x and (1 − δ)z. We can consider the restriction of P to ω as a

trigonometric polynomial of degree at most n. The derivative of P along ω is at most nM by
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Bernstein’s inequality. Since the angle between the vectors x and (1− δ)z is at most 1/(2nM)

and P (x) = 1, the required inequality (2.4) follows.

For arbitrary z ∈ S we now consider the segment {(1 − δ/2)tz : t ∈ [−1, 1]} ⊂ (1 − δ/2).

The univariate polynomial p(t) := P ((1− δ/2)tz) satisfies

p

(
1− δ

1− δ/2

)
≥ 1

2
and ‖p‖L∞[−1,1] ≤ M.

By Bernstein’s inequality,

|p′(t)| ≤ n√
1− t2

M ≤ 2nM√
δ

if |t| ≤ 1− δ/2

1− δ
,

so for the interval I of length
√
δ

8nM
having the right endpoint 1−δ/2

1−δ
, we have p(t) ≥ 1

4
when

t ∈ I. So,

P ((1− δ/2)tz) ≥ 1

4
, t ∈ I, z ∈ S,

and recalling that M2 ≤ 2d, it is not hard to see that the measure of {(1−δ/2)tz : t ∈ I, z ∈ S}
is at least c(d)

√
δn−d, which implies the required lower bound on ‖P‖2

L2(Bd)
. �

Now we will prove Proposition 1.4 and a lemma that can be of independent interest, as it

shows that the Christoffel function is nearly decreasing on rays towards the boundary of the

domain.

Lemma 2.4. Let D be a star-like body in R
d. If x ∈ D and 0 < μ < 1, then

λn(D,x) ≤ μ−dλn(D,μx).

Proof. By (2.1) and (2.2), λn(D,x) ≤ λn(μ
−1D,x) = μ−dλn(D,μx). �

Proof of Proposition 1.4. The required upper bound of λn(D,x) is immediate by Lemma 2.4

(an absolute constant in the bound can be verified by computations), so it remains to prove

the lower bound. Let P ∈ Pn,d be such that P (x) = 1 and λn(D,x) = ‖P‖2L2(D). Take

I := {tx : t ∈ [1/2, 1]}, and let M := ‖P‖L∞(I) ≥ 1 be attained at a point y ∈ I. Since

λn(D,y) = min
Q∈Pn,d,|Q(y)|=1

‖Q‖2L2(D) ≤
1

M2
‖P‖2L2(D) =

1

M2
λn(D,x),

by Lemma 2.4 and choice of I, we obtain M2 ≤ 2d. Applying Markov’s inequality to P on I,

we get that P (μx) ≥ 1/2 for any μ ∈ [1− (8Mn2)−1, 1] ⊃ [1− c(d)n−2, 1], so

λn(D,μx) = min
Q∈Pn,d,|Q(μx)|=1

‖Q‖2L2(D) ≤
1

(P (μx))2
‖P‖2L2(D) ≤ 4λn(D,x),

and the required lower bound on λn(D,x) is established. �
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3. Applications and examples

First we illustrate what is the behavior of Christoffel function when the boundary is suffi-

ciently smooth.

Proposition 3.1. Suppose D ⊂ R
d is a convex body for which ∂D is a (d− 1)-dimensional C2

submanifold in R
d (in the sense of differential geometry). For any interior point x ∈ D, let

δ := dist(x, ∂D). If σn−2 < δ < 1, σ > 0, then

λn(D,x) ≈ c(D, σ)n−d
√
δ.

Proof. The upper estimate of λn(D,x) is guaranteed by Lemma 1.11 (even without C2 assump-

tion). The lower estimate follows from (2.1) and (2.3) by considering an inscribed ball of radius

c(D) tangent to ∂D at the point (x+ δBd) ∩ ∂D, which exists due to C2 smoothness. �

Crucial for the lower bound in Proposition 3.1 is the property that a ball of a fixed radius “rolls

freely” inside D. One can refer to [W] for further discussion of this property and alternative

equivalent conditions on ∂D.

The second example was, in fact, the main motivation for this work. It is concerned with

estimating the behaviour of Christoffel function for the unit balls in lα metric, 1 < α < 2,

which serve as examples of bodies that are “between” the smooth C2 case of a ball (α = 2) and

the non-smooth case of a polytope (α = 1). Namely, we denote (for Euclidean balls we have

Bd = Bd
2)

Bd
α := {(x1, . . . , xd) : |x1|α + · · ·+ |xd|α ≤ 1}, 1 ≤ α < ∞.

As a simple application of Theorem 1.7, we show that the extra logarithmic factor in [K,

Theorem 2] can be removed.

Corollary 3.2. Suppose 1 ≤ α ≤ 2, and let γ(α, d) = 1
2
+ (d−1)(2−α)

2α
. If σn−2 < δ < 1, σ > 0,

then

λn(B
d
α, (1− δ, 0, . . . , 0)) ≤ c(d, α, σ)n−dδγ(α,d).

Proof. We will apply Theorem 1.7. Since 1√
d
Bd ⊂ Bd

1 ⊂ Bd
α ⊂ Bd, we can take r = 1√

d
and

R = 1. With δ̃ := (1−(1−δ)α)1/α ≈ c(α)δ1/α, for x = (1−δ, 0, . . . , 0) we have δ = dist(x, ∂Bd
α)

and u = (1, 0, . . . , 0) clearly satisfies (1.7) and the other required condition. The hyperplane

section {y ∈ D : (y − x) ⊥ x} is exactly δ̃Bd−1
α , which has (d − 1)-volume c(d, α)δ(d−1)/α.

Therefore, by (1.8),

λn(D,x) ≤ c(d, α, σ)n−dδ1−d/2δ(d−1)/α = c(d, α, σ)δγ(d,α).
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�

Matching asymptotic lower bound for the so called Cα domains (which include Bd
α) was

established in [K, Theorem 1]. The lower bound of [K, Theorem 1] provides a “worst-case”

exponent γ(d, α) for Cα domains, which is sharp on the segment joining the origin and the

“most singular” points such as (1, 0, . . . , 0) for Bd
α. The actual behavior of Christoffel function

in other locations of the domain can be very different. In particular, near the points where the

boundary is smooth, we can get the exponent corresponding to α = 2. Let us illustrate this

pointwise phenomenon for the diagonal direction of B2
α, 1 ≤ α ≤ 2.

Proposition 3.3. For any 1 ≤ α ≤ 2, let x = (2−1/α, 2−1/α) (which belongs to ∂B2
α). If

σn−2 < δ < 1/2, σ > 0, then

λn(B
2
α, (1− δ)x) ≈ c(α, σ)n−2

√
δ.

Proof. The upper estimate of λn(B
2
α, (1 − δ)x) is immediate by Theorem 1.1 (or simply by

Lemma 1.11). For the lower estimate, inscribe a disc of radius c(α) into B2
α tangent to the

boundary at x with the center on the line x1 = x2, and use (2.1) and (2.3). We hope the reader

will forgive us the omission of technical details here. �

It would be interesting to compute the actual pointwise behavior of λn(B
2
α,x) for arbitrary

x.

Conjecture 3.4. For any 1 < α < 2, any x ∈ B2
α, let δ := dist(x, ∂B2

α) and li := max{t :
x + (−1)itv ∈ B2

α}, i = 1, 2, where u is such that x + δu ∈ ∂D and v is one of the two unit

vectors orthogonal to u. If δ > σn−2, σ > 0, then

(3.1) λn(B
2
α,x) ≈ c(α, σ)n−2

√
l1l2.

The upper bound of λn(B
2
α,x) in (3.1) is valid by Theorem 1.1 (one can show that min{l1l2, δ} ≈

c(α)l1l2 using circumscribed discs), so it only remains to establish the lower bound. We also

believe that l1 ≈ c(α)l2 in these settings.

There are some domains which do not properly fall into the proposed Cα classification of [K].

One such example is half-ball in R
3

B3
+ := {(x1, x2, x3) ∈ B3 : x3 ≥ 0}
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for which the behaviour of the Christoffel function on the “rim” {(x1, x2, 0) : x
2
1 + x2

2 = 1} was

found in [DP, Section 9]. Below we make a “diagonal step” inside the domain from the rim and

compute the order of the Christoffel function.

Theorem 3.5. If σn−2 < μ < 1/3, σ > 0, then

λn(B
3
+, (1− μ, 0, μ/4)) ≈ c(σ)n−3μ.

Proof. We begin with the upper bound for which Theorem 1.7 will be used. Clearly, we can

take r = 1/2 and R = 1. With x = (1 − μ, 0, μ/4), we can choose u = 4√
17
(1, 0,−1

4
), then

δ =
√
17
4
μ and the two dimensional plane through x + δu = (1, 0, 0) with normal vector u is

supporting to B3
+. It is easy to see that

dist(x, ∂B3
+) = min{μ/4, 1− |x|} = μ/4,

so (1.7) holds. All the conditions of Theorem 1.7 are fulfilled. With V (D,x) := {y ∈ D :

(y − x) ⊥ x}, the required bound follows from (1.8) if we show that Vol2(V (D,x)) ≤ cμ3/2.

If (x, y) are Cartesian coordinates in the two dimensional plane containing V (D,x) chosen so

that x has the coordinates (x, y) = (0, 0), x-axis is parallel to x2 axis and y-axis points in the

positive direction of x3 axis (upwards), then it is not hard to see that in this new coordinate

system

V (D,x) ⊂
[
−
√

17
8
μ,

√
17
8
μ

]
× [−

√
17
16

μ,
√
17μ],

which immediately implies Vol2(V (D,x)) ≤ cμ3/2, and we are done with the upper estimate.

For the lower bound, we note that it was established in the proof of [DP, Lemma 9.6] that

the affine transform

T (x1, x2, x3) =

(
1− 1 + μ− x1

2
,
x2

8
,

√
3μ

10
x3 +

1 + μ− x1

8

)
satisfies TB3 ⊂ B3

+ and | detT | ≥
√
3μ

160
(when 0 < μ < 1/3). Therefore, by (2.1), (2.2) and (2.3),

λn(B
3
+, (1− μ, 0, μ/4)) = λn(B

3
+, T (1− μ, 0, 0)) ≥ λn(T (B

3), T (1− μ, 0, 0))

= | detT |λn(B
3, (1− μ, 0, 0)) ≥ c(σ)

√
μ · n−3√μ = c(σ)n−3μ.

�

Remark 3.6. Theorem 3.5 can be generalized to higher dimensions using the same technique.
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4. Proofs of the main results

Proof of Lemma 1.11. We can assume D ⊂ RBd, x = (a, 0, . . . , 0), u = (1, 0, . . . , 0). Let

w = (w1, . . . , wd), w1 ≥ 0, be the unit normal vector of a supporting hyperplane κ to D at

(a+ δ, 0, . . . , 0). Using (t1, . . . , td) as coordinates, the equation of κ is

(t1 − a− δ)w1 + t2w2 + · · ·+ tdwd = 0.

The condition dist(x, ∂D) ≥ δ
ν
means that δ

ν
Bd + x ⊂ D, so from the above equation, for any

(t2, . . . , td) ∈ δ
ν
Bd−1, we must have δw1 ≥ t2w2 + · · · + tdwd. Choose tj =

δ
ν
wj for j ≥ 2, then

δw1 ≥ δ
ν
(1 − w2

1) ≥ δ
ν
(1 − w1), so w1 ≥ 1

ν+1
. The affine transform T (z1, . . . , zd) = (t1, . . . , td)

defined by

t1 =
(a+ δ + Rd

w1
)z1 + a+ δ − Rd

w1

2
− R

w1

(w2z2 + · · ·+ wdzd),

tj = Rzj, j ≥ 2,

maps the hyperplanes zj = ±1 to the hyperplanes tj = ±R, j ≥ 2, the hyperplane z1 = 1 to κ

and the hyperplane z1 = −1 to the hyperplane(
t1 +

Rd

w1

)
w1 + t2w2 + · · ·+ tdwd = 0,

which does not intersect [−R,R]d (as |wj| ≤ 1). Therefore,

D ⊂ (RBd) ∩ {(t1, . . . , td) : (t1 − a− δ)w1 + t2w2 + · · ·+ tdwd ≤ 0} ⊂ T ([−1, 1]d).

As | detT | = Rd−1(a+ δ+ Rd
w1
)/2 < c(R, d, ν), with (y1, . . . , yd) = T−1(a, 0, . . . , 0) one computes

that 1− y1 =
2w1δ
Rd

< 2
Rd

δ and yj = 0, j ≥ 2, so by Lemma 2.1,

λn(D,x) ≤ c| detT |ρn(y1) . . . ρn(yd) ≤ c(R, d, ν)n1−dρn(1− 2
Rd

δ) ≤ c(R, d, ν, σ)n−d
√
δ,

where in the last step δ > σn−2 was used. �

Proof of Theorem 1.1. In view of Lemma 1.11 and Remark 1.12, we only need to establish that

(4.1) λn(D,x) ≤ c(r, R, σ)n−2
√

l1l2.

Using (2.2) and applying a translation and a rotation, if necessary, we can assume that x =

(0, a), u = (0, 1), v = (1, 0), rB2 ⊂ D ⊂ 2RB2, so (0, a + δ) ∈ ∂D, ((−1)ili, a) ∈ ∂D,

i = 1, 2. Further, we can assume that li < r for both i = 1, 2, as otherwise by (1.5) we

have l1l2 ≥ c(r, R)δ and (4.1) follows from (1.10). Let qi, i = 1, 2, be the line passing through

((−1)ili, a) and (0, a+δ). Denote by ri, i = 1, 2, the line through ((−1)ir, 0) and ((−1)ili, a). For
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a line q not containing the origin, we denote by q+ the half-plane bounded by q and containing

the origin. Since (±r, 0) ∈ D and D is convex, we have

D ⊂ q+1 ∪ (r+1 ∩ q+2 ) and D ⊂ q+2 ∪ (r+2 ∩ q+1 ).

Therefore, if Pi is the point of intersection of ri and q3−i (note that due to li < r this point Pi is

located in the (3−i)-th quadrant), while si is the line through Pi parallel to qi, i = 1, 2, we obtain

D ⊂ s+1 ∩ s+2 . Now we begin construction of an appropriate affine map T : (z1, z2) �→ (x, y)

with intention to apply Lemma 2.1. We require that T is such that the lines s1 and s2 are the

images of the lines z1 = 1 and z2 = 1 under T , respectively. Next we choose ti, i = 1, 2, as the

line parallel to si such that ti is supporting to D and the origin is between ti and si. Now T

will be uniquely defined, if, in addition to the above condition regarding si, we demand that ti

is the image of the line zi = −1 under T , i = 1, 2.

Let ϕ be the angle between the lines q1 and q2 which does not contain the y-axis. Using (1.5),

we have

ϕ = arctan
δ

l1
+ arctan

δ

l2
≤ 2 arctan c(r, R) ≤ π − c(r, R)

and as arctan x > x
2H

for 0 < x < H,

ϕ = arctan
δ

l1
+ arctan

δ

l2
> c(r, R)

(
δ

l1
+

δ

l2

)
,

therefore,

(4.2) sinϕ ≥ c(r, R)

(
δ

l1
+

δ

l2

)
.

As l2 < r, the line r2 has negative slope, and the x-coordinate of P2 is less than l2. Hence,

as the slope of q1 is δ
l1
, we use (1.5) to estimate that

|P2 − (0, a+ δ)| < l2

√
δ2 + l21
l1

< c(r, R)l2.

So the distance from (0, a + δ) to the line s2 is less than c(r, R)l2 sinϕ. The distance from

(0, a) to s2 is less than δ + c(r, R)l2 sinϕ < c(r, R)l2 sinϕ, where (4.2) was used. By similar

arguments, the distance from (0, a) to s1 is at most c(r, R)l1 sinϕ.

Now it is clear that the distance between the parallel lines si and ti is at least 2r (as rB2 ⊂
D ⊂ T ([−1, 1]2)) and at most c(R) (as (0, a) ∈ D and li < 2R), i = 1, 2. Hence,

| detT | = Vol2(T([−1, 1]2))

Vol2([−1, 1]2)
≤ c(R)

sinϕ
.
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Defining (y1, y2) = T−1(0, a), the bounds for the distances from (0, a) to s1 and to s2 imply

1− yi ≤ c(r, R)li sinϕ, i = 1, 2.

Since δ > σn−2,

ρn(yi) ≤ ρn (1− c(r, R)li sinϕ) ≤ c(r, R, σ)n−1
√

li sinϕ.

We are ready to apply Lemma 2.1 and obtain (4.1). Indeed, using the above inequalities,

λn(D,x) ≤ c| detT |ρn(y1)ρn(y2) ≤ c(r, R, σ)
1

sinϕ
n−2

√
l1 sinϕ

√
l2 sinϕ = c(r, R, σ)n−2

√
l1l2,

which completes the proof of the theorem. �

Proof of Theorem 1.7. Due to Lemma 1.11 and Remark 1.12, we only need to show that

λn(D,x) ≤ c(d, r, R, ν, σ)n−dδ1−d/2Vold−1(V (D,x)),

where V (D,x) := {y ∈ D : (x − y) ⊥ u}. We assume that D ⊂ RBd, x = (a, 0, . . . , 0),

u = (1, 0, . . . , 0) and y := (a+δ, 0, . . . , 0) ∈ ∂D while the hyperplane {(x1, . . . , xd) : x1 = a+δ}
is supporting to D at y. In these settings, V (D,x) = {(x1, . . . , xd) ∈ D : x1 = a}.
Before proceeding, we need some preliminaries. A (d − 1)-simplex is the closed convex hull

of d points (vertices) not all lying in a (d − 2)-dimensional plane. It has d facets ((d − 2)-

dimensional faces), each facet is a (d − 2)-simplex. The centroid of a (d − 1)-simplex S with

vertices z1, . . . , zd is z := 1
d
(z1 + · · · + zd). Since zj = 1

d−1

∑
i�=j(−(d − 1)(zi − z) + z),

the image of S under the homothety with coefficient −(d − 1) with respect to z is a simplex

S ′ = −(d − 1)(S − z) + z containing S such that every vertex zj of S belongs to (and is

the centroid of) the facet of S ′ which is parallel to the facet of S not containing zj. Another

property we need is that for any point z′ ∈ S the homothety of S with coefficient 2 with respect

to z′ is contained in the homothety of S with coefficient d+ 1 with respect to z, i.e., that

(4.3) 2(S − z′) + z′ ⊂ (d+ 1)(S − z) + z.

Indeed, for any w ∈ S we can write w =
∑

i αizi while z
′ =

∑
i βizi, where αi, βi, i = 1, . . . , d,

are non-negative and
∑

i αi =
∑

i βi = 1. Then

2w − z′ + dz

d+ 1
=

d∑
i=1

2αi − βi + 1

d+ 1
zi

is a convex combination of zi, thus, it belongs to S and (4.3) is proved.
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Let S be a (d − 1)-simplex of largest (d − 1) volume contained in V (D,x). Let z be the

centroid of S. Due to maximality of the (d − 1) volume, the homothety of S with coefficient

−(d − 1) with respect to z, i.e., the simplex S1 = −(d − 1)(S − z) + z contains V (D,x).

Indeed, assuming to the contrary that a point z′ of V (D,x) is outside of S1, we can find a

(d− 2)-dimensional plane τ containing a facet of S1 such that S and z′ are separated by τ . By

what was established above, τ contains one vertex of S and the remaining d − 1 vertices of S

belong to a (d− 2)-dimensional plane τ ′ parallel to τ . Due to separation, the distance from the

point S ∩ τ to τ ′ is less than the distance from z′ to τ ′. Therefore, the simplex with vertices z′

and d− 1 vertices of S belonging to τ ′ will have a larger volume than S and will be contained

in V (D,x), contradiction.

The inclusions S ⊂ V (D,x) ⊂ S1 imply Vold−1(V (D,x)) ≈ c(d)Vold−1(S). Consider the

“corner” K1 = {(1− t)y+ tv : t ≥ 0, v ∈ S1} with “vertex” y consisting of all rays originating

at y and passing through points of S1. Alternatively, K1 is the intersection of d half-spaces

containing the origin and determined by the hyperplanes which pass through y and a facet of

S1. We claim that

(4.4) D ∩ {(x1, . . . , xd) : x1 ≤ a} ⊂ K1.

Indeed, if w = (w1, . . . , wd) ∈ D, w1 ≤ a, then y+ t(w−y) ∈ V (D,x) ⊂ S1, where t =
δ

a+δ−w1
,

so w ∈ K1.

Let P (x1, . . . , xd) := (x2, . . . , xd) be the orthogonal projection along the first coordinate. Set

S2 := (d+ 1)(S1 − z) + z. Now we claim that

(4.5) P ({(x1, . . . , xd) ∈ D : a ≤ x1 ≤ a+ δ}) ⊂ P (S2).

We argue similarly to the proof of the previous inclusion, but now use (a− δ, 0, . . . , 0) ∈ D and

convexity. So if w = (w1, . . . , wd) ∈ D, a ≤ w1 ≤ a+ δ, then

(1− t)(a− δ, 0, . . . , 0) + tw ∈ V (D,x) ⊂ S1,

with t = δ
δ+w1−a

∈ [1
2
, 1]. Therefore, P (w) ∈ P (2S1) ⊂ P (S2), where we used P (x) = 0 ∈ P (S1)

and (4.3).

Next we define the corner

K2 = {(1− t)(a+ 2δ, 0, . . . , 0) + t(v + (δ, 0, . . . , 0)) : t ≥ 0, v ∈ S2}.
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We claim that K1 ⊂ K2. Indeed, consider any point (1 − t)(a + δ, 0, . . . , 0) + tv of K1, where

t ≥ 0 and v ∈ S1. Then
t

t+1
P (v) ∈ P (S1) ⊂ P (S2) due to 0 ∈ P (S1), so

(1− t)(a+ δ, 0, . . . , 0) + tv = (1− (t+ 1))(a+ 2δ, 0, . . . , 0) + (1 + t)( t
t+1

v + (δ, 0, . . . , 0)) ∈ K2.

We also have [a, a + δ] × P (S2) ⊂ K2, which is clearly seen from the definition of K2 with

t ∈ [1, 2]. In summary, due to (4.4), (4.5) and the fact that D ⊂ {(x1, . . . , xd) : x1 ≤ a+ δ}, we
conclude that D ⊂ K2.

Now we define an affine mapping T of Rd so that the hyperplanes zi = 1, i = 1, . . . , d, are

mapped into the hyperplanes defining K2, while the hyperplanes zi = −1 are mapped into the

hyperplanes supporting to D so that D ⊂ T ([−1, 1]d) (this is possible since we established that

D ⊂ K2 while D is bounded). Note that the distance from x = (a, 0, . . . , 0) to any of the

hyperplanes T ({zi = 1}) is at most the distance from x to (a + 2δ, 0, . . . , 0) = T (1, . . . , 1) ∈
T ({zi = 1}), which is 2δ. Recalling that D contains a ball of radius r, we see that the

distance between the hyperplanes T ({zi = 1}) and T ({zi = −1}) is at least 2r. Therefore, if

(y1, . . . , yd) = T−1(x), we have 1− yi ≤ δ
r
, i = 1, . . . , d. Also, since D is contained in a ball of

radius R, we obtain that the distance between the hyperplanes T ({zi = 1}) and T ({zi = −1})
is at most 2R + 2δ ≤ c(R).

Now our goal is to estimate | detT |. Denote S3 := T ([−1, 1]d) ∩ {x1 = a} = K2 ∩ {x1 =

a} and A := Vold−1(S3) = 2d−1Vold−1(S2) ≈ c(d)Vold−1(V (D,x)). We also need Vi :=

Vold−1(T ([−1, 1]d ∩ {zi = 1})) the (d − 1)-volumes of the facets of T ([−1, 1]d) and V :=

Vold(T [−1, 1]d). Now the fact that the distance between the hyperplanes T ({zi = 1}) and

T ({zi = −1}) is at most c(R) can be written as V
Vi

≤ c(R). Let x̃ := (a + 2δ, 0, . . . , 0) =

T (1, . . . , 1), and let xi be the vertex of S3 which does not belong to T ({zi = 1}), while x̃i

be the vertex of T ([−1, 1]d) on the line joining x̃ and xi different from x̃, i = 1, . . . , d. Set

αi :=
|x̃−x̃i|
|x̃−xi| . Using conv(·) to denote the closed convex hull, we have

V = d! Vold(conv({x̃, x̃1, . . . , x̃d})) = d! Vold(conv({x̃,x1, . . . ,xd}))
d∏

i=1

αi

= 2(d− 1)! δA
d∏

i=1

αi,
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and similarly

Vj = (d− 1)! Vold−1(conv({x̃, x̃1, . . . , x̃d} \ {x̃j}))
= (d− 1)! Vold−1(conv({x̃,x1, . . . ,xd} \ {xj}))

∏
i�=j

αi,

so

(4.6) c(R) ≥ V

Vj

=
2δAαj

Vold−1(conv({x̃,x1, . . . ,xd} \ {xj})) .

Note that the orthogonal projection of conv({x̃,x1, . . . ,xd}\{xj}) onto {x1 = a} is conv({x,x1, . . . ,xd}\
{xj}). Recall that δ

ν
Bd + x ⊂ D, hence, δ

ν
Bd−1 ⊂ S3, so the distance from x to the (d − 2)

dimensional plane containing conv({x1, . . . ,xd} \ {xj}) is at least δ
ν
. The distance between x

and x̃ is 2δ, so we have that the angle between the hyperplane containing {x̃,x1, . . . ,xd}\{xj}
and the hyperplane containing {x,x1, . . . ,xd} \ {xj} is at most arctan ν

2
, so the cosine of this

angle is at least cos(arctan ν
2
) =: c̃ > 0. Thus, continuing (4.6), we have

c(R)δAαj ≤ Vold−1(conv({x̃,x1, . . . ,xd} \ {xj}))

≤ Vold−1(conv({x,x1, . . . ,xd} \ {xj}))
c̃

≤ A

c̃
.

Finally,

| detT | = V

2d
= c(d)δA

d∏
i=1

αi ≤ c(R, d, ν)δA
d∏

i=1

1

δ
≤ c(R, d, ν)δ1−dVold−1(V (D,x)),

so

λn(D,x) ≤ c| detT |
d∏

j=1

ρn(yj) ≤ c(d, r, R, ν, σ)Vold−1(V (D,x))δ1−d
(
n−1

√
δ
)d

= c(d, r, R, ν, σ)n−dδ1−d/2Vold−1(V (D,x)),

which concludes the proof. �

5. Sharpness

Proof of Theorem 1.5. First we treat the case l1l2 ≤ δ. For this case, it is sufficient to assume

that 10δ < l1, l2 <
5
4
, which clearly implies δ < 1.

Let x and y be Cartesian coordinates in R
2. Set Q = (2 − δ, 0). Assuming that l2 ≥ l1, for

0 ≤ α ≤ 1, let Q1 and Q2 be the two points of intersection of the line x = −αy + 2 − δ with
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the circle x2 + y2 = 4. Suppose that −m1 < 0 < m2 are the y coordinates of Q1 and Q2. It is

straightforward that

m1,2 =

√
4α2 + 4δ − δ2 ∓ α(2− δ)

1 + α2
,

m1m2 = δ(4− δ), and using 0 < δ < 1 and 0 ≤ α ≤ 1, we estimate that

α +
√
δ ≤

√
4α2 + 4δ − δ2 + α(2− δ) ≤ 4(α +

√
δ),

which leads to
3

4
≤ m1

δ
α+

√
δ

≤ 4 and
1

2
≤ m2

α +
√
δ
≤ 4.

We want to choose α so that l2/l1 = m2/m1. Note that if α = 0 then m2/m1 = 1, and that

the quotient m2/m1 depends on α continuously. We have l2/l1 ≥ 1 and in the other direction

l2/l1 < (5/4)/(10δ) = 1/(8δ). If α = 1, then m2/m1 ≥ 1/(8δ) which is bigger than l2/l1.

Therefore, by continuity, the required choice of α ∈ [0, 1] is possible.

Consider the affine transform

T (x, y) = (x+ αy, μy), where μ =
l1
m1

=
l2
m2

=

√
l1l2

m1m2

=

√
l1l2

δ(4− δ)
.

Such T leaves any point on the x axis unchanged (in particular, T (Q) = Q and T (2, 0) = (2, 0)),

satisfies |T (Qi) − Q| = li, i = 1, 2, and that the line joining T (Q1) and T (Q2) is vertical. In

other words, δ(T (2B2),x) = δ and li(T (2B
2),x) = li, i = 1, 2. Further, by (2.3), λn(2B

2, Q) ≈
c(σ)n−2

√
δ, hence, as | detT | = μ ≈

√
l1l2
δ
, due to (2.2), we have λn(T (2B

2), Q) ≈ c(σ)n−2
√
l1l2.

As μ ≤ 1/
√
3 (recall that we assume l1l2 ≤ δ) and 0 ≤ α ≤ 1, one can see that T (2B2) ⊂ 4B2.

So, we could take T (2B2) as the required D, but it may not be true that B2 ⊂ T (2B2). To

achieve that, we let D be the closed convex hull of T (B2) and B2 (Christoffel function will

not decrease due to (2.1)). We would like to verify that our measurements δ, l1 and l2 do not

change, i.e., that all three points T (2, 0), T (Q1), T (Q2) (which clearly belong to the boundary

of T (2B2)) are on the boundary of D. Note that the half-planes defined by the supporting lines

to 2B2 at (2, 0) and Qi, i = 1, 2, and containing 2B2 are given by the inequalities

(5.1) x ≤ 2 and x
√
4−m2

i ∓ ymi ≤ 4, i = 1, 2,

respectively. Therefore, it is enough to show that if T (x, y) ∈ B2, then x and y satisfy (5.1).

If T (x, y) ∈ B2, then (x + αy)2 + μ2y2 ≤ 1, in particular, x ≤ |αy| + 1 and |y| ≤ 1
μ
. We have

(recall that li > δ/10, i = 1, 2)

(5.2) |ymi| ≤ mi

μ
=

m1m2

l3−i

≤ 4δ

l3−i

≤ 2

5
, i = 1, 2,
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and

(5.3) |αy| ≤ α

μ
<

α +
√
δ

μ
≤ 2m2

μ
≤ 4

5
.

Now (5.1) readily follow from x ≤ |αy| + 1, (5.2) and (5.3). We verified that D satisfies all

the required conditions (also note that λn(D,x) ≥ λn(T (2B
2),x)), which completes the case

l1l2 ≤ δ.

For the case l1l2 > δ, we first construct the required body D as in the case l1l2 ≤ δ but

for parameters (δ̄, l̄1, l̄2) = (δ, l1, δ/l1). It is straightforward that 10δ < l1, l2 < 1
10

implies

10δ̄ < l̄1, l̄2 <
5
4
. Note that the line joining T (Q1) and T (Q2) is parallel to the supporting line

to D at T (1, 0) (both are vertical). Choosing point Q3 on the ray from T (Q) to T (Q2) on the

distance l2 > δ/l1 from T (Q) and taking D as the closed convex hull of Q3 and D completes

the proof. �

Proof of Theorem 1.16. We will choose large enough β1 > 0 and small enough β2 > 0 satisfying

(β2/β1)
1

d−1 < 1/2 (which guarantees δ < 1/2) and certain additional conditions later in the

proof.

Take x = (2 − δ, 0, . . . , 0), where 0 < δ < 1/2. Note that 2Bd restricted to the hyperplane

x1 = 2− δ is
√

δ(4− δ)Bd−1, so if we let

(5.4) μ =
v

1
d−1√

δ(4− δ)(Vold−1(Bd−1))
1

d−1

, then Vold−1

(
μ
√

δ(4− δ)Bd−1,x)
)
= v.

First we consider the case μ ≤ 1. Then v
1

d−1 ≤ c(d)
√
δ, and min{δ1−d/2v,

√
δ} ≈ c(d)δ1−d/2v.

Define

T (x1, . . . , xd) := (x1, μx2, . . . , μxd),

then Vold−1(V (T (2Bd),x)) = v. Also, as x1 axis is unchanged under T , and we can take

u = (1, 0, . . . , 0) to have that x + δu ∈ ∂T (2Bd) and the hyperplane through x + δu with

normal vector u is supporting to T (2Bd). By (2.3), λn(2B
d,x) ≈ c(d, σ)n−d

√
δ, so, as | detT | =

μd−1 ≈ c(d)vδ−(d−1)/2, due to (2.2), we have λn(T (2B
d),x) ≈ c(d, σ)n−dδ1−d/2v. Since μ ≤ 1,

we have T (2Bd) ⊂ 2Bd. We define the desired D as the convex hull of the unit ball Bd and

T (2Bd), then Bd ⊂ D ⊂ 3Bd, the properties of δ and u do not change, and by (2.1) we have

λn(D,x) ≥ λn(T (2B
d),x). It remains to show that

(5.5) {y ∈ T (2Bd) : (y − x) ⊥ u} = {y ∈ D : (y − x) ⊥ u}.
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It is enough to restrict our attention to two dimensions since D and T (2Bd) are invariant under

rotation about x1 axis. Straightforward computations show that the tangent line (in the first

two dimensions) to T (2Bd) at (x1, x2) = (2 − δ, μ
√

δ(4− δ)) has the slope μ −2+δ√
δ(4−δ)

< 0 and

intersects the vertical line x1 = 1 at

x2 = μ

(
(2− δ)(1− δ)√

δ(4− δ)
+
√

δ(4− δ)

)
≥ cμ√

δ
≥ c(d)β

1
d−1

1 ≥ 1,

where we choose β1 to be sufficiently large. In other words, we established that this line is

above the unit disc, which implies (5.5).

For the remaining case μ > 1, we have v
1

d−1 ≥ c(d)
√
δ, so min{δ1−d/2v,

√
δ} ≈ c(d)

√
δ. Take

D to be the convex hull of 2Bd and the (d− 1)-sphere

{(x1, . . . , xd) : x1 = 2− δ, x2
2 + · · ·+ x2

d = μ2δ(4− δ)}.

As in the previous case, we have dist(x, ∂T (2Bd)) = δ and the choice u = (1, 0, . . . , 0) satisfies

the required properties. Further, by (5.4), Vold−1({y ∈ D : (y − x) ⊥ u}) = v, and

Bd ⊂ 2Bd ⊂ D ⊂
√

(2− δ)2 + μ2δ(4− δ)Bd ⊂ 3Bd

if we choose β2 < Vold−1(B
d−1). Now (2.1) and (2.3) yield the required λn(D,x) ≥ λn(2B

d,x) ≈
c(d, σ)

√
δ. �
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