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We study locally compact groups for which the Fourier algebra coincides with the 
Rajchman algebra. In particular, we show that there exist uncountably many non-
compact groups with this property. Generalizing a result of Hewitt and Zuckerman, 
we show that no non-compact nilpotent group has this property, whereas non-
compact solvable groups with this property are known to exist. We provide several 
structural results on groups whose Fourier and Rajchman algebras coincide as well 
as new criteria for establishing this property. Finally, we study the relation between 
groups with completely reducible regular representation and groups whose Fourier 
and Rajchman algebras coincide. For unimodular groups with completely reducible 
regular representation, we show that the Fourier algebra may in general be strictly 
smaller than the Rajchman algebra.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Over the years there has been considerable interest in studying locally compact groups with completely 
reducible regular representation, that is, locally compact groups whose regular representation decomposes 
as a direct sum of irreducible representations (see [3–5,34,45]). By the Peter–Weyl theorem, compact groups 
are examples of such groups. It may come as a surprise that these are not the only ones. Indeed, in the 
abelian case it is an easy consequence of the Pontryagin duality theorem that the regular representation of 
a locally compact abelian group decomposes as a direct sum of irreducible representations if and only if the 
group is compact.

The study of locally compact groups with completely reducible (also called purely atomic) regular repre-
sentation is related to the study of certain function algebras associated with the groups. We now describe 
these algebras (see Section 2 for details).

For a locally compact group G, we let B(G) denote the Fourier–Stieltjes algebra consisting of the matrix 
coefficients of strongly continuous unitary representations of G. The Fourier algebra A(G) is the subalgebra 
of B(G) consisting of the matrix coefficients of the (left) regular representation. It is always the case 
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that A(G) ⊆ B(G) ∩C0(G), and often the inclusion is strict. Here C0(G) denotes the (complex) continuous 
functions on G vanishing at infinity. The Rajchman algebra B0(G), which is simply defined as the intersection

B0(G) = B(G) ∩ C0(G),

has recently gained renewed interest (see [15,22,24]). But already in 1966, Hewitt and Zuckerman [19] showed 
that for non-compact abelian groups G, A(G) �= B0(G). This generalized a result of Menchoff [35] from 
1916, who showed the same for G = Z.

The main objective of the current paper is to study the inclusion A(G) ⊆ B0(G) and in particular to 
study when this inclusion can or cannot be an equality:

A(G) = B0(G). (�)

In [28], it was shown that the minimal parabolic subgroups in real rank one simple Lie groups satisfy 
(�). This generalized a result of Khalil [21, p. 165] on the ax + b group. Our first contribution is to show 
that the results from [28] concerning minimal parabolic subgroups in real rank one simple Lie groups do not 
generalize to higher rank simple Lie groups. The is accomplished in Section 3 by showing that the minimal 
parabolic subgroup in SL(3, R) does not satisfy (�).

Non-compact groups which satisfy A(G) = B0(G) are generally viewed as exceptional, although several 
examples appeared recently in [28] and [41, Theorem 2.1]. Our second contribution is to show that there 
are many such groups. We prove the following.

Theorem 4.1. There exist uncountably many (non-isomorphic) second countable locally compact groups G
such that A(G) = B0(G) and G has no compact subgroups (apart from the trivial group).

Our next, and probably most substantial, contribution is of a more structural nature. All groups currently 
known to satisfy (�) match the conditions of [28, Theorem 4] (see Theorem 2.1 below). We show in this 
paper that there are also groups satisfying (�) that do not match the conditions of that theorem. At the 
same time, we study how the condition (�) behaves with respect to taking direct products of groups. It is 
not clear (at least to the author) if the condition (�) is preserved under taking direct products, although 
we suspect this to be the case. We are, however, able to prove that a finite direct product satisfies (�)
provided all the factors are among the groups for which (�) is currently known to hold. We investigate this 
in Sections 5–7. In particular, in Theorem 7.2 we provide a generalization of [28, Theorem 4].

In [12], Figà-Talamanca studied the Rajchman algebra in relation to having a completely reducible regular 
representation. He proved that if a unimodular group G satisfies (�), then the regular representation of G
is completely reducible. Subsequently, Baggett and Taylor generalized Figà-Talamanca’s result to include 
non-unimodular groups [5, Theorem 2.1]. They proved

Theorem ([5]). If A(G) = B0(G) for a second countable locally compact group G, then the regular represen-
tation of G is completely reducible.

At some point, people speculated that the converse of the above theorem should hold, that is, that all 
groups with completely reducible regular representation should satisfy (�). This is not the case, as was 
shown by Baggett and Taylor [4]. They discovered a non-unimodular group with completely reducible reg-
ular representation not satisfying (�). At the same time Baggett and Taylor suggested that the converse 
of the above theorem should hold for unimodular groups. Our third contribution is to provide an example 
of a unimodular group whose regular representation is completely reducible, but where (�) fails, thus sup-
plementing the example from [4] and answering (in the negative) the question about unimodularity raised 
there.
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Theorem 8.17. There exists a unimodular locally compact group G whose regular representation is completely 
reducible but nevertheless A(G) �= B0(G).

Our final contribution is a series of structural results in Section 9 which includes a generalization of the 
result of Hewitt and Zuckerman from abelian groups to nilpotent groups. We thus prove the following.

Theorem 9.7. If G is a nilpotent, locally compact group then A(G) �= B0(G) unless G is compact.

The above theorem cannot be generalized to solvable groups. Indeed, this follows e.g. from our Theo-
rem 4.1 or even much earlier work such as Khalil [21, p. 165] who showed that the ax + b group, which is 
non-compact and solvable, satisfies A(G) = B0(G).

The paper is organized as follows. Section 2 contains some preliminaries on the Fourier and Fourier–
Stieltjes algebras of locally compact groups. In Section 3, we show that the results from [28] concerning 
parabolic subgroups in real rank one simple Lie groups do not generalize to higher rank simple Lie groups. 
In Section 4, we exhibit uncountably many groups satisfying (�). Sections 5–7 contain the structural results 
mentioned above. In particular, Theorem 7.2 provides a generalization of [28, Theorem 4]. Section 8 contains 
our example of a unimodular locally compact group G whose regular representation is completely reducible 
but nevertheless A(G) �= B0(G). Section 9 contains several structural results. We end the paper with some 
remarks and questions.

2. Preliminaries

To avoid to much repetition we will use the following conventions (although we sometimes partly re-
peat assumptions for emphasis or clarity): By a group we mean a Hausdorff locally compact group. By a 
representation of a group we mean a strongly continuous, unitary representation.

Throughout, G will denote a locally compact group. The Fourier–Stieltjes algebra B(G) was introduced 
by Eymard in [11] to which we refer for details. The algebra B(G) can be described as the matrix coefficients 
of continuous unitary representations,

B(G) = {〈π(·)x, y〉 | π is a representation of G on Hπ and x, y ∈ Hπ}.

For a function ϕ ∈ B(G), the norm ‖ϕ‖B is defined as the infimum inf{‖x‖‖y‖}, where the infimum is taken 
over all representations (π, Hπ) and vectors x, y ∈ Hπ such that

ϕ(g) = 〈π(g)x, y〉, for all g ∈ G.

The infimum is attained. With pointwise multiplication B(G) is a unital Banach algebra. The (continuous) 
positive definite functions are precisely the functions ϕ of the form

ϕ(g) = 〈π(g)x, x〉, for all g ∈ G,

and the positive definite functions span B(G).
If Cc(G) denotes the continuous complex functions on G with compact support, then B(G) ∩Cc(G) is an 

ideal in B(G). Its closure in B(G) is the Fourier algebra A(G), which is a closed ideal in B(G). The Fourier 
algebra can also be described as the coefficient functions of the regular representation λ on L2(G),

A(G) = {〈λ(·)x, y〉 | x, y ∈ L2(G)}.

The norm ‖ ‖B majorizes the uniform norm, and therefore A(G) ⊆ C0(G). For the same reason, the 
Rajchman algebra B0(G) = B(G) ∩ C0(G) is also a closed ideal in B(G).
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The Rajchman algebra B0(G) is the linear span of the positive definite functions in B0(G). This can be 
seen from [11, Lemme 2.12], since B0(G) is a translation invariant subspace of B(G).

We will use the notation Ĝ for the unitary dual of G. Thus, Ĝ consists of the irreducible representations 
of G up to unitary equivalence. When G is second countable, the space Ĝ is equipped with the Mackey 
Borel structure which turns Ĝ into a Borel space (see [32]).

The locally compact group G is of type I if every unitary representation of G generates a type I von 
Neumann algebra. Glimm [16] gave several equivalent formulations of the type I condition, which can also 
be found in [10, §9.1], [10, §9.5], and [13, Theorem 7.6]. We extract the following:

A locally compact group is of type I if and only if the image of its universal C∗-algebra under any 
irreducible representation contains the compact operators. When G is second countable, G is of type I if 
and only if the Mackey Borel structure on Ĝ is standard.

The following theorem is a useful tool to establish the equality A(G) = B0(G) for type I groups. We will 
rely on this theorem in Section 4, when we provide an uncountable family of non-compact groups G such 
that A(G) = B0(G).

Theorem 2.1 ([28]). Let G be a second countable locally compact group. Suppose G is of type I and satisfies 
the following condition:

I. There is a non-compact, closed subgroup H of G such that every irreducible unitary representation of G
is either trivial on H or is a subrepresentation of the left regular representation of G.

Then

A(G) = B0(G).

Conversely, to establish A(G) �= B0(G) is often easy, since there are already several results dealing with 
this problem. Here we want to mention two instances of such results.

A group is called an AR-group if its regular representation is completely reducible, that is, if it is a direct 
sum of irreducible representations. Recall that a second countable group G satisfying A(G) = B0(G) is an 
AR-group ([5, Theorem 2.1]).

A group G is an IN-group if it has a conjugation invariant neighborhood of the identity, that is, a 
neighborhood U of the identity such that gUg−1 = U for all g ∈ G. Taylor proved (see [44, p. 190]) that 
an IN-group which is also an AR-group has to be compact (and compact groups are both IN-groups and 
AR-groups).

Several examples of AR-groups were studied in [4,34]. The examples of non-compact groups with com-
pletely reducible regular representation given in [34] are totally disconnected and unimodular, whereas the 
examples in [4] are connected and non-unimodular. It is no coincidence that no one produced a connected, 
unimodular example. In fact, the following theorem of Baggett excludes the possibility. The theorem is more 
or less contained in [3] and was noted by Taylor in [45]. Combining the remark after [3, Proposition 1.2]
with [3, Theorem 2.3] one obtains the following.

Theorem 2.2 (Baggett). If a second countable locally compact group is connected, unimodular and has a 
completely reducible regular representation, then it is compact.

3. Parabolic subgroups in higher rank simple Lie groups

In [28], it was shown that the minimal parabolic subgroups in real rank one simple Lie groups satisfy 
(�). This generalized Khalil’s result on the ax + b group. In this section we show that the results from [28]
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concerning minimal parabolic subgroups in real rank one simple Lie groups do not generalize to higher rank 
simple Lie groups. The simple Lie group SL(3, R) has real rank two, and its minimal parabolic subgroup P
consists of the upper triangular matrices in SL(3, R) with positive diagonal entries,

P =
{(

λ a c
0 μ b
0 0 ν

)∣∣∣∣∣ a, b, c ∈ R, λ, μ, ν > 0, λμν = 1
}
.

We refer to [27, Section VII.7] and [26, Section V.5] for the theory of parabolic subgroups, but we also 
remark that the general theory is not used in this section, since we will work explicitly with the group P . 
We will prove that P does not satisfy (�). To do so, it suffices to prove that P has no discrete series, i.e., that 
the regular representation of P has no irreducible subrepresentations, cf. [5, Theorem 2.1]. The irreducible 
representations of P can be determined using the Mackey Machine just as in [33, Example 3]. The discrete 
series of P can be determined using [25, Corollary 11.1].

The group P is the semidirect product of the Heisenberg group N and the diagonal subgroup D,

N =
{(1 a c

0 1 b
0 0 1

)∣∣∣∣∣ a, b, c ∈ R

}
, D =

{(
λ 0 0
0 μ 0
0 0 ν

)∣∣∣∣∣ λ, μ, ν > 0, λμν = 1
}
.

To show that P has no discrete series, it suffices to show that orbits in N̂ under the dual action of D
with positive Plancherel measure have stabilizers without discrete series. The Plancherel measure on N̂ is 
supported on the infinite dimensional representations (see e.g. [13, p. 241]). It can be shown that the dual 
action of D on the infinite dimensional representations of N has two orbits and that the stabilizer in D of 
each orbit is {(

λ 0 0
0 λ−2 0
0 0 λ

)∣∣∣∣∣ λ > 0
}
.

Since the stabilizer is isomorphic to R+, and R+ has no discrete series, it follows from [25, Corollary 11.1]
that no irreducible representation of P is in the discrete series. We have thus proved the following.

Theorem 3.1. Let P be the minimal parabolic subgroup in SL(3, R). The regular representation of P has no 
irreducible subrepresentations. In particular, A(P ) �= B0(P ).

4. Uncountably many groups satisfying (�)

In this section we show that there exist uncountably many non-compact groups satisfying (�). Our family 
of examples consists of 4-dimensional, simply connected, solvable Lie groups. For each r ∈ R, define groups 
Hr and Gr by

Hr =
{(

ar b
0 a

)∣∣∣∣ a > 0, b ∈ R

}
,

Gr =
{(

ar b x
0 a y
0 0 1

)∣∣∣∣∣ a > 0, b, x, y ∈ R

}
.

Note that Gr 	 R2 � Hr, where Hr acts on R2 by matrix multiplication. The group Gr contains the 
Heisenberg group H and can also be viewed as a semidirect product H �R+ in an obvious way, where the 
group R+ then acts on H by dilations. The groups Gr were previously considered in [42] (with a different 
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parametrization), and it was shown in [42, Section 4] that when 0 ≤ r ≤ 2, the groups Gr are mutually 
non-isomorphic. We show here that the groups Gr satisfy (�) when r �= 0.

Theorem 4.1. The locally compact groups Gr, where 0 < r ≤ 2, are mutually non-isomorphic and satisfy 
A(Gr) = B0(Gr). Moreover, the only compact subgroup of Gr is the trivial group.

Proof. It is easy to see that Gr has no compact subgroups. Indeed, since H and R have no compact 
subgroups, neither does Gr = H �R. In order to show A(Gr) = B0(Gr) we will apply Theorem 2.1.

The dual of G can be determined using the Mackey Machine (see e.g. [13, Theorem 6.42] and [23, 
Chapter 4]). The dual action Hr � R̂2 of an element h ∈ Hr is easily identified, under the usual isomorphism 
R2 	 R̂2, as matrix multiplication by the inverse transpose of h, that is,(

x
y

)
�→
(

a−r 0
−ba−r−1 a−1

)(
x
y

)
,

and the orbits under the dual action of Hr are

O1 = {(x, y) | x > 0},

O2 = {(x, y) | x < 0},

O3 = {(0, y) | y > 0},

O4 = {(0, y) | y < 0},

O5 = {(0, 0)}.

Since there are only five orbits, the action Hr � R̂2 is certainly regular, and the Mackey Machine applies. The 
stabilizer in Hr of points from orbits O1 and O2 is trivial, and the corresponding irreducible representations 
of Gr (induced from an element of the orbit) are subrepresentations of the regular representation of Gr

(see e.g. [4]). We claim that the remaining irreducible representations of Gr are trivial on the non-compact 
subgroup

N1 =
{(1 0 x

0 1 0
0 0 1

)∣∣∣∣∣ x ∈ R

}
.

Note first that N1 is normal in Gr. A character ν ∈ R̂2 from one of the orbits O3 or O4 is trivial on N1. 
The stabilizer in Hr of ν is the group

Hν =
{(

1 b
0 1

)∣∣∣∣ b ∈ R

}
,

and the group R2 �Hν is also normal in Gr. An irreducible representation of Gr arising from the character 
ν is an induced representation of the form

π = IndGr

R2�Hν
(ν∗ ⊗ σ∗),

where ν∗ is the extension of ν to R2 �Hν obtained so ν∗ is trivial on Hν , and σ∗ is the extension of some 
σ ∈ Ĥν to R2 � Hν obtained so σ∗ is trivial on R2. Since ν∗ ⊗ σ∗ is trivial on N1, so is π (see e.g. [28, 
Lemma 11]).

Irreducible representations of Gr arising from the trivial character in O5 are precisely those that factorize 
to representations of Hr, and these are clearly trivial on N1.
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Note that all stabilizer subgroups of the action Hr � R2 are of type I, so that [33, Theorem 9.3] implies 
that Gr is also of type I.

We have now verified the conditions of Theorem 2.1 and may conclude A(Gr) = B0(Gr). �
Remark 4.2. It is also true that the groups Hr satisfy A(Hr) = B0(Hr), except when r = 1. However, the 
groups Hr are all isomorphic, when r �= 1. Indeed, Hr is then a non-abelian, simply connected Lie group of 
dimension 2, and it is well-known that there is only one such group, because there is only one non-abelian 
Lie algebra of dimension 2. The group Hr is isomorphic to the ax + b group studied by Khalil.

Remark 4.3. In [28, Theorem 2], the group Gr with r = −1 was also shown to satisfy A(Gr) = B0(Gr). 
This group is isomorphic to G1/2 (see [42, Section 4]).

5. Direct products

In this section we study how the property (�) behaves under direct products. Recall that, for a second 
countable locally compact group G of type I, the following condition is sufficient to conclude A(G) = B0(G)
(see Theorem 2.1).

I. There is a non-compact, closed subgroup H of G such that every irreducible unitary representation of 
G is either trivial on H or is a subrepresentation of the left regular representation of G.

The main result here is twofold: Firstly, we show by an example that Condition I is in general not necessary 
in order to conclude (�) and not stable under products. Secondly, we introduce a weaker Condition II which 
is stable under products and still sufficient to conclude A(G) = B0(G). The proof of the latter will be given 
in Section 7.

We start out with an example showing that Condition I is not stable under products (Example 5.2 below). 
First, let us recall the Kronecker product of representations. For i = 1, 2, let Gi be a locally compact group 
and let πi be a unitary representation of Gi. The Kronecker product (also called the external or outer tensor 
product) is the unitary representation π1 × π2 of G1 ×G2 defined by

(π1 × π2)(g1, g2) = π1(g1) ⊗ π2(g2), g1 ∈ G1, g2 ∈ G2.

For a locally compact group G, recall that λG denotes the regular representation of G on L2(G). The 
following is well-known.

Lemma 5.1. Let G1 and G2 be locally compact groups, and consider their direct product G1 ×G2.

(1) The regular representation λG1×G2 is unitarily equivalent to λG1 × λG2 .
(2) If at least one of G1 and G2 are of type I, then (π1, π2) �→ π1×π2 defines a bijection Ĝ1×Ĝ2 → ̂G1 ×G2.
(3) The group G1 ×G2 is of type I if and only if both G1 and G2 are of type I.

Proof. (1) The unitary operator L2(G1) ⊗L2(G2) → L2(G1×G2) sending f⊗g to f×g intertwines λG1×G2

and λG1 × λG2 .
(2) This can for instance be found in [13, Theorem 7.25].
(3) It is clear that quotients of type I groups are again of type I. The converse, that direct products of 

type I groups are of type I, can be found in [31, p. 200] in the case of second countable groups. We also 
provide an alternative proof of this.

The universal C∗-algebra of a group G is denoted C∗(G). Recall that there is a natural correspondence 
between irreducible representations of G and of C∗(G). To see that G1 ×G2 is of type I, recall that a group 
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is of type I if and only if the image of its universal C∗-algebra under any irreducible representation contains 
the compact operators (see [10, §9.1]).

For a Hilbert space H, let K(H) denote the compact operators on H. If πi is an irreducible representation 
of Gi on the Hilbert space Hi, then π1 × π2(C∗(G1 ×G2)) contains the algebraic tensor product K(H1) ⊗
K(H2), since G1 and G2 are of type I. Since this algebraic tensor product is dense in the K(H1 ⊗H2), and 
since the image of a representation of a C∗-algebra is closed, this shows that π1 × π2(C∗(G1 × G2)) also 
contains K(H1 ⊗H2).

By the first part, every irreducible representation of C∗(G1 ×G2) is of the form π1 × π2, where πi ∈ Ĝi, 
so this shows that G1 ×G2 is of type I. �
Example 5.2. As an example, to show that Condition I is not stable under forming direct products, consider 
the ax + b group,

G =
{(

a b
0 1

)∣∣∣∣ a > 0, b ∈ R

}
.

The unitary dual Ĝ is well-known (see e.g. [13, Section 6.7]). It consists of two infinite dimensional rep-
resentations π+ and π− contained in the regular representation λG and a family of characters χt (t ∈ R) 
where χt(a, b) = ait. Each of these characters annihilate the non-compact subgroup

H =
{(

1 b
0 1

)∣∣∣∣ b ∈ R

}
.

Clearly, Condition I is satisfied for the group G.
Consider now the group G × G. The irreducible representations χt × π+ have non-compact kernels 

contained in G × {1}, whereas the irreducible representations π+ × χt have non-compact kernels contained 
in {1} × G. Therefore none of these representations are subrepresentations of the regular representation 
λG×G of G × G. However, it also shows that there is no common non-compact subgroup contained in the 
intersection of the kernels of irreducible representations not contained in the left regular representation 
λG×G. This shows that Condition I is not satisfied for the group G ×G, even though Condition I is satisfied 
for each of the factors.

It turns out that the group G ×G nevertheless still satisfies (�). We will return to this in Example 7.3. 
The idea is to weaken Condition I in Theorem 2.1 and therefore improve the theorem. We thus introduce 
Condition II for a locally compact group G:

II. There is a countable family H of non-compact closed subgroups of G such that each irreducible uni-
tary representation of G is either trivial on some H ∈ H or is a subrepresentation of the left regular 
representation of G.

Clearly, Condition II is weaker then Condition I. We will prove in Theorem 7.2 that, for second countable 
locally compact groups G of type I, Condition II is still sufficient to conclude A(G) = B0(G).

The important difference between Condition I and Condition II is that Condition II is preserved under 
direct products (of type I groups), as the following proposition shows.

Proposition 5.3. Let G1 and G2 be type I groups satisfying Condition II. Then G1 × G2 is of type I and 
satisfies Condition II.

Proof. Set G = G1 ×G2. For i = 1, 2 let Hi be a countable family of non-compact closed subgroups of Gi

such that every irreducible representation of Gi is either trivial on some H ∈ Hi or is a subrepresentation 
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of the regular representation of Gi. Define H as the collection of the groups H1 × {1} and {1} ×H2 where 
H1 ∈ H1 and H2 ∈ H2. Clearly, H is countable, and every group in H is non-compact and closed in G. 
From Lemma 5.1, every irreducible representation of G is of the form π1 × π2 where πi is an irreducible 
representation of Gi (i = 1, 2). If πi is a subrepresentation of λGi

for both i = 1, 2, then by Lemma 5.1, π
is a subrepresentation of λG = λG1 × λG2 . Otherwise, π1 (say) is trivial on some H1 ∈ H1 and π is trivial 
on H1 × {1} ∈ H. �
6. Coefficient spaces

The purpose of this section is to prove the following claim, which will be used in the proof of Theorem 7.2
(or more precisely Lemma 7.1): if a sum of positive definite functions vanishes at infinity then each summand 
also vanishes at infinity. We feel it is natural to study this problem in the context of von Neumann algebras.

Let M be a von Neumann algebra with predual M∗. For a subset I ⊆ M , define the annihilator of I
inside M∗ to be

I⊥ = {ϕ ∈ M∗ | ϕ(x) = 0 for every x ∈ I}.

Proposition 6.1. Let π : M → N be a surjective, normal ∗-homomorphism between von Neumann algebras 
M and N . The map N∗ → M∗ defined by ψ �→ ψ ◦ π is an isometric isomorphism of N∗ onto (kerπ)⊥.

Proof. Let I = kerπ denote the kernel of π. Any normal functional ψ ∈ N∗ induces a normal functional 
ψ ◦ π ∈ M∗ that annihilates I. Since π maps the closed unit ball of M onto that of N , it is clear that 
‖ψ ◦ π‖ = ‖ψ‖.

Conversely, any functional ϕ ∈ M∗ that annihilates I induces a well-defined functional ϕ̄ on N given by 
ϕ̄(π(x)) = ϕ(x), where x ∈ M . It is clear that ϕ̄ ◦ π = ϕ, so to finish the proof, we just need to show that 
ϕ̄ is normal, i.e., that ϕ̄ ∈ N∗.

We show that ker ϕ̄ is weak∗ closed, which certainly implies normality of ϕ̄. By the Krein–Smulian 
theorem (see [8, 12.6]), we need only show that ker ϕ̄ ∩ BN is weak∗ closed, where BN denotes the closed 
unit ball of N .

It is clear that ker ϕ̄ = π(kerϕ). Also, π maps the closed unit ball BM in M surjectively onto the closed 
unit ball BN in N . So

ker ϕ̄ ∩BN = π(kerϕ) ∩ π(BM ) = π(kerϕ ∩BM ).

The set kerϕ is weak∗ closed, as ϕ is normal. The unit ball BM is weak∗ compact (Banach–Alaoglu’s 
theorem), so by normality of π we conclude that ker ϕ̄∩BN is weak∗ compact and hence weak∗ closed. This 
completes the proof. �

Let C∗(G)∗∗ denote the enveloping von Neumann algebra of the universal group C∗-algebra C∗(G) of G.
Let (π, Hπ) be a unitary representation of G which we also view as a representation of C∗(G). We denote 

the image π(C∗(G)) by C∗
π(G) and its weak operator closure by VNπ(G).

Then there is unique normal representation π̃ : C∗(G)∗∗ → B(Hπ) extending π and such that 
π̃(C∗(G)∗∗) = VNπ(G). The kernel of π̃ is a weak∗ closed ideal in C∗(G)∗∗.

Generalizing Eymard’s definition of the Fourier algebra [11], Arsac introduced the coefficient space Aπ

of a representation (π, Hπ) in [1,2]. When λ is the regular representation, Aλ is the Fourier algebra. In 
general, the coefficient space Aπ is defined as the norm closed subspace of B(G) generated by the coefficient 
functions of π, i.e., generated by the functions

g �→ 〈π(g)x, y〉 (g ∈ G),
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where x, y ∈ Hπ. The space Aπ can be identified with the predual of the von Neumann algebra VNπ(G) by

〈π(f), ϕ〉 =
∫
G

ϕ(g)f(g)dg

for ϕ ∈ Aπ and f ∈ L1(G).

Proposition 6.2. Let G be a locally compact group with a unitary representation π. If (ϕn)n∈N is a sequence 
of positive definite functions on G such that 

∑
n ϕn ∈ Aπ, then ϕn ∈ Aπ for every n.

Proof. The representation π extends to a normal representation π̃ : C∗(G)∗∗ → VNπ(G). Let I denote the 
kernel of π̃ inside C∗(G)∗∗. Then

I⊥ = {ϕ ∈ B(G) | 〈x, ϕ〉 = 0 for every x ∈ I}.

Proposition 6.1 identifies VNπ(G)∗ 	 I⊥. We also have the identification of VNπ(G)∗ with the subset Aπ

in B(G). Examining the definitions, one checks that the corresponding identification Aπ 	 I⊥ is merely 
equality Aπ = I⊥. Being a C∗-algebra, I is the linear span of its positive elements, and we may also write

Aπ = {ϕ ∈ B(G) | 〈x, ϕ〉 = 0 for every positive x ∈ I}.

Let x ∈ I be a positive operator. As ϕn is positive definite, we have 〈x, ϕn〉 ≥ 0. Now, if 
∑

n ϕn ∈ Aπ, 
then 

∑
n〈x, ϕn〉 = 〈x, 

∑
n ϕn〉 = 0, and we must have 〈x, ϕn〉 = 0 for every n. It follows that ϕn ∈ Aπ for 

every n. �
7. Improving Theorem 2.1

As we saw in Section 5, Theorem 2.1 does not suffice to establish (�) for groups such as G ×G, when G is 
the ax + b group. The current section rectifies this problem by establishing an improvement of Theorem 2.1.

Lemma 7.1. Let G be a locally compact group. Suppose every unitary representation π of G is a sum 
 ⊕σ1⊕
σ2 ⊕ · · · , where each σj is trivial on some non-compact, closed subgroup Hj and 
 is a subrepresentation of 
a multiple of the regular representation. Then A(G) = B0(G).

Proof. Let ϕ ∈ B(G) be a positive definite function, and suppose ϕ ∈ C0(G). We can write ϕ in the form 
ϕ(g) = 〈π(g)x, x〉 for some representation (π, Hπ) and a vector x ∈ Hπ. We split the representation π as 
a sum π = 
 ⊕ σ1 ⊕ σ2 ⊕ · · · , according to the assumption. We split ϕ = ϕ0 + ϕ1 + ϕ2 + · · · accordingly, 
where ϕ0 is a coefficient of 
 and ϕj is a coefficient of σj (j ≥ 1).

As 
 is a subrepresentation of a multiple of the regular representation, ϕ0 ∈ A(G). In particular, ϕ0 ∈
C0(G). It follows that 

∑
j≥1 ϕj ∈ C0(G). We claim that ϕj ∈ C0(G) for every j ≥ 1.

In [22, Proposition 2.2], Jolissaint shows that B0(G) is the coefficient space Aπ0 of the so-called 
C0-enveloping representation π0 of G. The claim is therefore a special case of Proposition 6.2.

Since σj is trivial on the non-compact, closed subgroup Hj, ϕj must be constant on cosets of Hj. As 
these cosets are all closed and non-compact, and since we have just argued that ϕj ∈ C0(G), we must in 
fact have ϕj = 0 for every j. In conclusion, ϕ = ϕ0 ∈ A(G).

In general, any ϕ ∈ B0(G) is a linear combination of positive definite functions in C0(G) (see [22, 
Proposition 2.1]). We have just shown that each of these positive definite functions must belong to A(G), 
and therefore also ϕ ∈ A(G). This proves the inclusion B0(G) ⊆ A(G), and the proof is complete. �
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Theorem 7.2. Let G be a second countable locally compact group. Suppose G is of type I and satisfies the 
following condition:

II. There is a countable family H of non-compact closed subgroups of G such that each irreducible uni-
tary representation of G is either trivial on some H ∈ H or is a subrepresentation of the left regular 
representation of G.

Then

A(G) = B0(G).

Proof. We enumerate the groups in H as H = {H1, H2, . . .}. Since G is of type I, the unitary dual Ĝ is a 
standard Borel space.

First, we show that the left regular representation λ of G is completely reducible. Since λ acts on a 
separable Hilbert space and G is of type I, we may write λ as a direct integral,

λ =
⊕∫

Ĝ

mππ dν(π),

where ν is a Borel measure on Ĝ and mπ ∈ {1, 2, . . . , ∞} (see [13, Theorem 7.40]). Let

Aj = {π ∈ Ĝ | π(h) = 1 for all h ∈ Hj}.

It is routine to verify that Aj ⊆ Ĝ is a Borel set for the Mackey Borel structure. Since λ has no subrepre-
sentation which is trivial on a non-compact subgroup, each Aj must be a ν-null set. Let B = Ĝ \

⋃∞
j=1 Aj . 

Then

λ =
⊕∫

B

mππ dν(π).

We note that if π ∈ B, then by assumption π is a subrepresentation of λ. It follows (e.g. from [28, Corollary 6]) 
that B is countable. Hence λ is the direct sum:

λ =
⊕
π∈B

mππ.

Next, let σ be an arbitrary unitary representation of G. We will show that σ decomposes as σ = 
 ⊕
(⊕

j σj

)
, 

where 
 is contained in a multiple of the regular representation of G and σj is trivial on Hj ∈ H. By 
Lemma 7.1, this will prove our theorem.

We reduce to the separable case: Since σ is direct sum of cyclic representations, we might as well assume 
that σ is cyclic. As G is second countable, σ then represents G on a separable Hilbert space.

Then we may disintegrate σ,

σ =
⊕∫

Ĝ

nππ dμ(π),

where μ is a Borel measure on Ĝ and nπ ∈ {1, 2, . . . , ∞}. Let
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S1 = {π ∈ Ĝ | π(h) = 1 for all h ∈ H1},

Sj+1 = {π ∈ Ĝ | π(h) = 1 for all h ∈ Hj+1} \
j⋃

i=1
Si,

and let R = Ĝ \
⋃∞

j=1 Sj , so that we have a partition (into Borel sets)

Ĝ = R ∪ S1 ∪ S2 ∪ · · · .

It follows from our assumptions that R ⊆ B. If we define

σj =
⊕∫

Sj

nππ dμ(π), 
 =
⊕∫

R

nππ dμ(π),

then we have

σ = 
⊕

⎛⎝ ∞⊕
j=1

σj

⎞⎠ .

By construction, σj is trivial on Hj . As R is countable, the integral defining 
 is actually a direct sum, so 
that 
 is a subrepresentation of ⊕

π∈R

nππ

which in turn is a subrepresentation of λ ⊕ λ ⊕ · · · . Hence 
 is a subrepresentation of a multiple of λ. 
Lemma 7.1 completes the proof, showing that A(G) = B0(G). �
Example 7.3. With Theorem 7.2 at our disposal, we can now finish Example 5.2 and show that the direct 
product of the ax + b group with itself satisfies (�). In fact, since the ax + b group is of type I and satisfies 
Condition I, then by Proposition 5.3 the direct product of the ax + b group with itself is of type I and 
satisfies Condition II, and this is sufficient to conclude (�).

Remark 7.4. In Theorem 7.2, one can not replace the countable family H by an uncountable family: With 
G = R, every irreducible representation of G (i.e. every character) has a non-compact kernel. However, 
A(G) �= B0(G).

8. A unimodular AR-group not satisfying (�)

In [4] Baggett and Taylor gave an example of a connected AR-group not satisfying (�). Their example is 
the non-unimodular group R2 � GL(2, R)+, where GL(2, R)+ denotes the 2 × 2 real matrices with positive 
determinant. At the same time they suggested that there might not be any examples of unimodular AR-
groups not satisfying (�). However, as we shall see in Theorem 8.17 below, it is possible to find an example 
of a (disconnected) unimodular AR-group not satisfying (�). According to Theorem 2.2 it is not possible 
to produce an example which is both connected and unimodular. It is probably not surprising that our 
example is found among the totally disconnected groups. Our example is inspired by [4], and one can think 
of our example as the totally disconnected version of the example from [4].

Throughout, p will denote a fixed prime. Let Zp denote the p-adic integers and Qp the p-adic field, which 
is the field of fractions of Zp. A good and elementary introduction to p-adic numbers is given in [40]. Another 
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reference is [47, Chapter 1-2]. For x ∈ Qp let |x|p denote the p-adic norm of x. Then Zp = {x ∈ Qp | |x|p ≤ 1}
and the p-adic units are Z∗

p = {x ∈ Qp | |x|p = 1}. We assume that the Haar measure μ on Qp is normalized 
such that μ(Zp) = 1. Let Q2

p be the p-adic plane equipped with the Haar measure arising as the product 
measure of the Haar measure on Qp. We will use μ to denote Haar measure on Qp and on the plane Q2

p.
Let UL(2, Qp) denote the closed subgroup of GL(2, Qp) consisting of matrices whose determinant is a 

p-adic unit, that is, an element of Z∗
p. The example we are after is the group

G = Q2
p � UL(2,Qp),

where UL(2, Qp) acts on Q2
p by matrix multiplication. We first establish unimodularity.

Lemma 8.1. The group Q2
p � UL(2, Qp) is unimodular.

Proof. The determinant map UL(2, Qp) → Z∗
p is a surjective homomorphism with kernel the special linear 

group SL(2, Qp). Since SL(2, Qp) is its own commutator group and since Z∗
p is compact, it follows that 

SL(2, Qp) and Z∗
p are totally unimodular in the sense that any continuous homomorphism into R is triv-

ial. Therefore UL(2, Qp) is totally unimodular. Since Q2
p is unimodular, it follows that Q2

p � UL(2, Qp) is 
unimodular (see [37, p. 89]). �

As the next step, we analyze the unitary dual of G and prove that G is an AR-group. The unitary dual 
of G can be determined using the Mackey Machine (see e.g. [13, Theorem 6.42] and [23, Chapter 4]). Let 
N = Q2

p. It is easily verified that the dual action of UL(2, Qp) on N̂ is under the usual isomorphism N̂ 	 Q2
p

given by g.y = (gt)−1y for g ∈ UL(2, Qp) and y ∈ Q2
p. Given any point (y1, y2) ∈ Q2

p with (y1, y2) �= (0, 0)
it is a simple matter to check that the matrix

σ

(
y1

y2

)
=
(

y2
y1

y2
1+y2

2
−y1

y2
y2
1+y2

2

)
(8.2)

belongs to UL(2, Qp) and (under the dual action) sends (0, 1) to (y1, y2). We conclude that UL(2, Q2
p) acts 

transitively on N̂ \ {0}. Thus, the dual action UL(2, Q2
p) � N̂ has only two orbits, {0} and Q2

p \ {0}. In 
particular, UL(2, Qp) acts regularly on N .

The first orbit {0} gives rise to the representations in Ĝ that annihilate N , and these representations are 
naturally identified with the unitary dual of UL(2, Qp).

We denote the second orbit Q2
p \{0} by O and choose as a representative of the O the element ν = (0, 1). 

The stabilizer in UL(2, Qp) of ν is

Hν =
{(

a b
0 1

)∣∣∣∣ b ∈ Qp, a ∈ Z∗
p

}
.

Note that Hν is isomorphic to the Fell group Qp � Z∗
p. We extend ν ∈ N̂ to a character ν∗ defined on 

Gν = NHν by letting ν∗ be trivial on Hν . The remaining irreducible representations of G are then of the 
form

IndG
Gν

(ν∗ ⊗ (
 ◦ q)), (8.3)

where 
 ∈ Ĥν and q : Gν → Hν is the quotient map. The regular representation λG of G is

λG =
⊕
N

⊕
j∈Z

IndG
Gν

(ν∗ ⊗ (
j ◦ q)), (8.4)
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where (
j)j∈Z denotes the irreducible representations of Hν that occur as subrepresentations of the regular 
representation of Hν (see e.g. [46]). We thus have the following.

Lemma 8.5. The regular representation of the group Q2
p � UL(2, Qp) is completely reducible.

From now on we will only need to consider one representation of the form (8.3), namely where 
 is the 
trivial representation of Hν . We thus consider the irreducible representation π = IndG

Gν
ν∗.

Below we will need an explicit formula for π. There are several equivalent ways to express induced 
representations. We have chosen to follow [23, Realization III, p. 79] since it suits our needs well. This 
expression coincides with the one given in [13, p. 155].

We shall make the following obvious identifications

G/Gν 	 O 	 Q2
p \ {0}.

Note that the Haar measure on Q2
p restricted to the orbit O is invariant under the action of UL(2, Qp). Indeed, 

an endomorphism of Q2
p scales the Haar measure by its determinant (see e.g. [47, p. 7]). Let σ : G/Gν → G

be the continuous section of the quotient map G → G/Gν defined in (8.2). Then σ(y).ν = y when y ∈ O. 
If we let

β(g, y) = σ(y)−1gσ(g−1.y),

then the representation π acts on the space L2(G/Gν) = L2(O) = L2(Q2
p) as

(πgf)(y) = ν∗(β(g, y))f(g−1.y), g ∈ G, f ∈ L2(O), y ∈ O. (8.6)

From now on, let f be the characteristic function of the compact set C = Zp × Zp, and let

ψ(g) = 〈π(g)f, f〉.

Then ψ lies in B(G) by definition. We claim that ψ /∈ A(G). If ψ ∈ A(G), then there would exist h ∈ L2(G)
such that

ψ(g) = 〈λG(g)h, h〉 for all g ∈ G.

As π is irreducible, f is a cyclic vector for π, and the restriction of λG to the cyclic subspace of L2(G)
spanned by h would then be equivalent to π. However, we see from the decomposition (8.4) of λG that π is 
not a subrepresentation of λG. We conclude that ψ /∈ A(G).

Next, we aim to show that ψ vanishes at infinity. This will be completed in Proposition 8.16. Put

ϕ(m) = μ(mC ∩ C) for m ∈ UL(2,Qp).

To show that ψ ∈ C0(G) we first prove the following essential lemma.

Lemma 8.7. The function ϕ : UL(2, Qp) → [0, 1] vanishes at infinity.

Proof. Fix ε > 0. Consider the compact set SK ⊆ UL(2, Qp) where K = GL(2, Zp) and

S =
{(

a b
0 d

)
∈ UL(2,Qp)

∣∣∣∣|a|p ≤ ε−1, |d|p ≤ ε−1, |b|p ≤ ε−1
}
.

We claim that if m /∈ SK then |ϕ(m)| ≤ 2ε.
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Note first that KC = C. Since by the Iwasawa decomposition any m ∈ UL(2, Qp) may be written as 
m = bk where b is upper triangular and k ∈ K (see e.g. [6, Proposition 4.5.2]), and

μ(mC ∩ C) = μ(bC ∩ C)

we may assume that m is upper triangular,

m =
(
a b
0 d

)
.

We will show that if m /∈ S then |ϕ(m)| ≤ 2ε.
In the rest of the proof we abbreviate |x|p by |x| and we let log = logp. For j ∈ Z, define sets

Nj = {x ∈ Qp | |x| = pj},

Kj = {x ∈ Qp | |x| ≤ pj} = {0} ∪
⋃
i≤j

Nj .

Note that

Kj =
p−1�
i=0

i + Kj−1,

so it follows by induction and left invariance of μ that

μ(Kj) = pjμ(K0) = pj . (8.8)

If we write Nijkl = m(Ni ×Nj) ∩ (Nk ×Nl) then we have

μ(mC ∩ C) =
∑

i,j,k,l≤0

μ(Nijkl). (8.9)

Suppose (x, y) ∈ Ni ×Nj . As m(x, y) = (ax + by, dy), we see that if m(x, y) ∈ Nk ×Nl then |dy| = pl. From 
this we see that pj |d| = pl so that j = l − log |d|. In other words,

Nijkl �= ∅ =⇒ j = l − log |d|. (8.10)

In (8.9) we get using (8.10)

μ(mC ∩ C) =
∑

i,k,l≤0

μ(Ni,l−log |d|,k,l) ≤ μ(m(K0 ×K− log |d|))

= μ(K0 ×K− log |d|) = μ(K− log |d|) = |d|−1.

Since | det g| = 1 we further have log |a| + log |d| = 0. It follows from this and (8.10) that

Nijkl �= ∅ =⇒ l = j − log |a|, (8.11)

and as above we deduce

μ(mC ∩ C) =
∑

i,j,k≤0

μ(Ni,j,k,j−log |a|) ≤ μ(K− log |a|) = |a|−1.
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We have thus have

μ(mC ∩ C) ≤ min{|a|−1, |d|−1},

and if b = 0 this proves |ϕ(m)| ≤ ε. We may thus suppose b �= 0. We will then prove

μ(mC ∩ C) ≤ 2 min{|a|−1, |b|−1, |d|−1}. (8.12)

The proof of (8.12) is similar to the above, but it is a bit more involved. The following partial converse 
of the ultrametric property is easy to verify. For x, y ∈ Qp we have

|x + y|p < max{|x|p, |y|p} =⇒ |x|p = |y|p. (8.13)

Suppose again (x, y) ∈ Ni × Nj . As m(x, y) = (ax + by, dy), we see that if m(x, y) ∈ Nk × Nl then 
|ax + by| = pk. Using (8.13) we see that

k = max{i + log |a|, j + log |b|} or i + log |a| = j + log |b|.

It follows that

i ≤ − log |a|, j ≤ − log |b| or i + log |a| = j + log |b|. (8.14)

Hence if Nijkl �= ∅ then (8.14) holds. We now estimate (8.9) in two parts according to (8.14). The first part, 
where the equalities i ≤ − log |a| and j ≤ − log |b| hold, is∑

i,j,k,l≤0
i≤− log |a|
j≤− log |b|

μ(Nijkl) ≤ μ(K− log |b|) = |b|−1.

The second part is estimated as follows. If i + log |a| = j + log |b|, then

l = j − log |a| = i− log |b|

and thus ∑
i,j,k,l≤0

l=i−log |b|

μ(Nijkl) ≤
∑

i,j,k≤0

μ(Ni,j,k,i−log |b|) ≤ |b|−1.

Putting things together we find that

μ(mC ∩ C) ≤ 2|b|−1.

We have now established (8.12), and the proof is complete. �
For use in the proof of Proposition 8.16, we record the following elementary fact (see [36, Section §45]).

Lemma 8.15. If X is a locally compact Hausdorff space and L ⊆ C0(X) is compact (in the uniform topology) 
then the functions in L vanish uniformly at infinity. In other words, for each ε > 0 exists a compact set 
K ⊆ X such that |f(x)| < ε whenever f ∈ L and x ∈ X \K.

Proposition 8.16. The function ψ vanishes at infinity.
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Proof. Let ε > 0 be given. Write g ∈ G as g = xm with x ∈ Q2
p and m ∈ UL(2, Qp). Using (8.6) we compute

|ψ(g)| =

∣∣∣∣∣∣
∫
O

(πgf)(y)f(y) dμ(y)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∫
O

ν∗(β(g, y))f(g−1.y)f(y) dμ(y)

∣∣∣∣∣∣
≤
∫
O

|f(g−1.y)f(y)| dμ(y)

= μ(g.C ∩ C) = ϕ((mt)−1).

By Lemma 8.7 there is a compact set Ω ⊆ UL(2, Qp) such that |ψ(g)| < ε if g = xm ∈ G and m /∈ Ω. We 
still need to take of the variable x. Note that

ν∗(β(g, y)) = ν(σ(y)−1xσ(y))ν∗(σ(y)−1mσ(g−1.y))

= (σ(y).ν)(x)ν∗(σ(y)−1mσ(m−1.y))

= 〈x, y〉ν∗(β(m, y)).

If we define

Fm(y) = ν∗(β(m, y))f(m−1.y)f(y)

then Fm ∈ L1(Q2
p). The Fourier transform F̂m satisfies

∣∣∣F̂m(x)
∣∣∣ = ∣∣∣∣∫ Fm(y)〈x, y〉 dy

∣∣∣∣ = |ψ(xm)|.

The Fourier transform F̂m vanishes at infinity by the usual Riemann–Lebesgue lemma, and the Fourier 
transform is continuous L1(Q2

p) → C0(Q2
p).

We claim that m �→ Fm is continuous UL(2, Qp) → L1(Q2
p). Indeed, as ν∗, β, and f are continuous, Fmn

→
Fm pointwise if mn → m for a sequence (mn) in UL(2, Qp), and the integrable function f dominates the 
sequence (Fmn

). An application of Lebesgue’s Dominated Convergence Theorem then gives the continuity 
of m �→ Fm.

The set {F̂m | m ∈ Ω} is a compact subset of C0(Q2
p). By Lemma 8.15 there exists a compact set A ⊆ Q2

p

such that |ψ(x, m)| < ε whenever m ∈ Ω and x /∈ A. Thus if (x, m) ∈ G \ (A × Ω) then |ψ(x, m)| < ε. This 
proves that ψ vanishes at infinity. �

Since we have produced an element ψ in B0(G) not belonging to A(G) we have proved the following.

Theorem 8.17. Let G = Q2
p � UL(2, Qp). Then G is a unimodular AR-group such that A(G) �= B0(G).

We end this section by discussing how the groups R2 � GL(2, R)+ and Q2
p � UL(2, Qp) fail to meet the 

criterion in Theorem 2.1. This is relevant for obtaining a better understanding of the difference between 
AR-groups and groups satisfying (�).

In both cases, the irreducible representations can be found and analyzed using Mackey’s theory. The 
situation is particularly easy, since the groups under consideration are semidirect products G = N � H, 
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where H acts regularly on the abelian normal subgroup N . The dual action H � N̂ has precisely two 
orbits: {0} and N̂ \ {0}. Irreducible representations of G coming from the orbit {0} are trivial on N and 
thus do not contribute to the regular representation.

The stabilizer Hν in H of a point ν ∈ N̂ \ {0} in the second orbit is a group isomorphic to an ax + b

group, R �R+ in the first case and Qp�Z∗
p in the second case. Since such groups are AR-groups, it follows 

rather easily that G is an AR-group (see [4]). However, the irreducible representations of G arising from the 
non-zero orbit come in two flavors depending on which irreducible representation of the stabilizer subgroup 
Hν is used in the induction procedure. If a representation from the discrete series of Hν is used, then the 
induced representation will also be in the discrete series of G (see [25, Corollary 11.1]). However, if instead 
a character of Hν is used, then the induced representation on G will neither be in the discrete series nor 
have non-compact kernel (in fact such a representation is faithful). This phenomenon explains, at least 
intuitively, why G is an AR-group which does not satisfy A(G) = B0(G).

9. Structural results and nilpotent groups

This section is devoted to the study of how the condition (�) behaves under various group constructions 
(passing to subgroups, taking quotients, etc.). As an application, we provide a proof that (�) never holds 
for non-compact nilpotent groups (see Theorems 9.7).

The condition (�) does not behave well under most group constructions, as can be seen from the known 
examples. For instance, the ax + b group R � R+ satisfies (�), whereas both the closed normal subgroup 
R and the quotient R+ do not satisfy (�). Concerning quotient groups, we however have the following easy 
but useful lemma.

Lemma 9.1. Let G be a locally compact group with a compact normal subgroup K. If A(G) = B0(G) then 
also A(G/K) = B0(G/K).

Proof. Suppose A(G) = B0(G) and let ϕ ∈ B0(G/K) be given. Composing with the quotient map π : G →
G/K, we obtain the function ϕ ◦ π in B0(G) = A(G). Since ϕ ◦ π is obviously constant on K-cosets, it 
follows from [11, (2.26) and (3.25)] that ϕ ∈ A(G/K). This finishes the proof. �

We suspect that the converse of Lemma 9.1 is also true.
We now turn to subgroups. Let G be locally compact group with a closed subgroup H. Following [24], 

we say that H is B0-extending in G provided that every function in B0(H) has an extension to a function 
in B0(G). In other words, H is B0-extending if the restriction map B0(G) → B0(H) is surjective. For 
example, it is obvious that open subgroups are B0-extending. It was proved in [15, Theorem 4.3] that if 
G is a SIN-group (if the identity admits a basis of conjugation invariant neighborhoods) then any closed 
subgroup is B0-extending.

Lemma 9.2. Let G be a locally compact group such that A(G) = B0(G), and let H be a closed subgroup of G. 
Then A(H) = B0(H) if and only if H is B0-extending.

Proof. Every element of A(G) restricts to an element of A(H), that is, ϕ ∈ A(G) implies ϕ|H ∈ A(H). 
Moreover, Herz’ restriction theorem [17, Theorem 1b] says that every element of A(H) is of the form ϕ|H
for some ϕ ∈ A(H). It is now trivial to show that A(H) = B0(H) if and only if H is B0-extending. �

The following was shown by Ghandehari in [15, Theorem 4.4] and [14, Theorem 3.3.5]. A proof of (2) 
can also be found in [30, p. 99] with the additional remark that the proof given there works equally well 
without changes for functions vanishing at infinity.
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Theorem 9.3 (Ghandehari). Let G be a locally compact group. The following subgroups are B0-extending:

(1) any open subgroup of G;
(2) the identity component of G;
(3) the center of G.

Corollary 9.4. Let G be a locally compact group with an open subgroup H.
If A(G) = B0(G), then A(H) = B0(H).
If H is moreover cocompact (i.e. has finite index in G), then A(H) = B0(H) implies A(G) = B0(G).

Proof. The first half is a direct consequence of the previous lemma and theorem.
Suppose conversely that H has finite index and A(H) = B0(H). For a function ψ ∈ A(H) define ψ0 as 

the function on G which coincides with ψ on H and is zero on the complement of H in G. Then ψ0 ∈ A(G)
(see e.g. [11, (3.21)]).

Choose representatives s1, . . . , sn ∈ G for the left cosets G/H. For a function f defined on G and an 
element x ∈ G, let Lxf denote the function Lxf(y) = f(x−1y). Let ϕ ∈ B0(G) be given. Then Ls−1

i
ϕ ∈

B0(G) and (Ls−1
i
ϕ)|H ∈ B0(H) = A(H). Hence, if we set

ϕi = Lsi(((Ls−1
i
ϕ)|H)0)

we have ϕi ∈ A(G). Finally, it is easy to check that ϕ =
∑

i ϕi ∈ A(G). This shows B0(G) ⊆ A(G) and 
completes the proof. �
Corollary 9.5. Let G be a locally compact group such that A(G) = B0(G). If G0 denotes its connected 
component of the identity then A(G0) = B0(G0). In particular, G0 is either compact or non-unimodular.

Proof. The first part is immediate from the lemma and theorem above. Since G0 is connected, the second 
part is almost an immediate consequence of Baggett’s theorem (Theorem 2.2) together with [5, Theorem 2.1], 
except that we have not assumed G to be second countable.

Since G0 is connected, it is also σ-compact. By the Kakutani–Kodaira Theorem (see [18, Theorem 8.7]) 
there is a compact normal subgroup K
G0 such that G0/K is second countable and of course still connected. 
By Lemma 9.1 we also have A(G0/K) = B0(G0/K), so Baggett’s theorem now implies that G0/K is either 
compact or non-unimodular, and hence the same is true for G0 (see e.g. [37, p. 91]). �
Corollary 9.6. A locally compact group G satisfying A(G) = B0(G) has compact center.

Proof. From the lemma and theorem above, one can deduce A(Z) = B0(Z), where Z denotes the center 
of G. Since the center is abelian, it follows (e.g. from [19, Theorem 5.6]) that Z is compact. �

One can give a different proof of Corollary 9.6 using ideas of Kaniuth, Lau, and Ülger from [24, Exam-
ple 2.6.(4)] together with the fact that the Gelfand spectrum of A(G) is simply G (see [11, Théorème 3.34]).

As already mentioned and used, it was shown by Hewitt and Zuckerman in [19, Theorem 5.6] that abelian 
groups satisfying (�) are compact. We show below how to extend their result to nilpotent groups. The proof 
relies on several of the previous results.

Theorem 9.7. If G is a nilpotent, locally compact group then A(G) �= B0(G) unless G is compact.

Proof. Let G be a nilpotent, locally compact group and suppose A(G) = B0(G). We show that G is compact. 
We use induction on the nilpotency length, that is, the length of an upper central series. If the nilpotency 
length is zero, then G is the trivial group, and there is nothing to prove.
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Suppose the nilpotency length n is a least one, and let Z denote the center of G. By Theorem 9.6, Z
is compact. It therefore follows from Lemma 9.1 that A(G/Z) = B0(G/Z). The group G/Z has nilpotency 
length n − 1. Hence, by the induction hypothesis, G/Z is compact. As Z was also compact, we conclude 
that G itself is compact. �

It is clear from Khalil’s result [21, p. 165] on the ax +b group and also from Theorem 4.1 that one cannot 
extend Theorem 9.7 to solvable groups.

For the case of connected groups, let us point out that the above theorem is direct consequences of 
Baggett’s theorem (Theorem 2.2). Indeed, nilpotent groups are always unimodular. But in fact, connected 
nilpotent groups satisfying (�) are even abelian. This can be seen from Theorem 9.7 together with the fact 
that compact connected solvable groups are abelian (see e.g. [20, Proposition 9.4]). Hence the theorem is 
mostly interesting for totally disconnected, nilpotent groups.

Let us remark that an alternative proof of Theorem 9.7 can be given using the recent paper [24] combined 
with a classical result of Leptin. Indeed, since nilpotent groups are amenable, the Fourier algebra of any 
nilpotent group has a bounded approximate unit (see [29]). It is now clear from [24, Theorem 5.4] that the 
Fourier algebra and Rajchman algebra of a non-compact locally compact nilpotent group cannot coincide.

We now provide an example of a group, where Theorem 9.7 applies. Of course, we are mostly interested in 
an example, which is not already covered by previously known results. Since nilpotent groups are unimodular, 
we will give examples of groups which are not almost connected. Due to Taylor’s result on IN-groups [44, 
p. 190], our examples will also not be IN-groups.

Example 9.8. Consider the Heisenberg group over the p-adic field Qp,

H =
{(1 x z

0 1 y
0 0 1

)∣∣∣∣∣ x, y, z ∈ Qp

}
.

The group is two-step nilpotent and totally disconnected. That the group is not an IN-group can been seen 
as follows. Let U be a compact neighborhood of the identity in H. We use the notation

H(x, y, z) =
(1 x z

0 1 y
0 0 1

)
.

As Qp is non-discrete, there is y �= 0 such that H(0, y, 0) ∈ U . By compactness, there is C ≥ 0 such that 
H(x, y, z) ∈ U =⇒ |z|p ≤ C, where | |p denotes the p-adic norm. Now,

H(x, 0, 0)H(0, y, 0)H(x, 0, 0)−1 = H(0, y, xy) /∈ U

if x is chosen such that and |x|p > C/|y|p. Thus, U is not invariant.
One could argue that H has non-compact center, and therefore already Theorem 9.6 shows that (�) does 

not hold for H. An example, which in addition has compact center, can be constructed as follows.
Consider the diagonal embedding Z[ 1p ] ↪→ R × Qp. This is a discrete embedding, and the quotient 

Sp = (R × Qp)/Z[ 1p ] is the compact p-adic solenoid (see [40, p. 58]). Let G be the quotient of the group T
consisting of upper-triangular 4 × 4-matrices with entries in R × Qp and 1 on the diagonal by the central 
subgroup T0 defined as

T0 =

⎧⎪⎨⎪⎩
⎛⎜⎝1 0 0 z

0 1 0 0
0 0 1 0

⎞⎟⎠
∣∣∣∣∣∣∣ z ∈ Z[ 1p ]

⎫⎪⎬⎪⎭ .
0 0 0 1
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G = T/T0 =

⎧⎪⎨⎪⎩
⎛⎜⎝1 ∗ ∗ z

0 1 ∗ ∗
0 0 1 ∗
0 0 0 1

⎞⎟⎠
∣∣∣∣∣∣∣ ∗ ∈ R×Qp, z ∈ Sp

⎫⎪⎬⎪⎭ .

Then one may check that G is three-step nilpotent with compact center

Z(G) =

⎧⎪⎨⎪⎩
⎛⎜⎝1 0 0 z

0 1 0 0
0 0 1 0
0 0 0 1

⎞⎟⎠
∣∣∣∣∣∣∣ z ∈ Sp

⎫⎪⎬⎪⎭ .

The computation

⎛⎜⎝1 0 0 0
1 x 0

1 0
1

⎞⎟⎠
⎛⎜⎝1 0 0 0

1 0 0
1 y

1

⎞⎟⎠
⎛⎜⎝1 0 0 0

1 x 0
1 0

1

⎞⎟⎠
−1

=

⎛⎜⎝1 0 0 0
1 0 xy

1 y
1

⎞⎟⎠
and the same argument as for the two-step nilpotent group above shows that G is not an IN-group. The 
group G is of course far from being connected, since Qp is totally disconnected. By Theorem 9.7, one has 
A(G) �= B0(G).

The reason, why our first two-step nilpotent example was not a genuine example where Theorem 9.7 was 
applicable (because the group had non-compact center), is explained by the following proposition.

Proposition 9.9. Any two-step nilpotent group which is not an IN-group has non-compact center.

Proof. Assume G is a two-step nilpotent group with center Z. Then G/Z is an abelian group and hence an 
IN-group. Since one can easily show that compact extensions of IN-groups are IN-groups, it follows that if 
Z is compact, then G is an IN-group. �

At this point, we shift the focus to AR-groups for a while, that is, to groups whose regular representation 
is completely reducible. The following lemma is parallel to Lemma 9.1.

Lemma 9.10. Let G be a locally compact group with a compact normal subgroup K. If G has completely 
reducible regular representation, then so does G/K.

Proof. First note that G is an AR-group if and only if VN(G) =
⊕

i∈I B(Hi) for some Hilbert spaces Hi. 
Here, the direct sum means the von Neumann algebra direct sum which consists of all sequences (Ti) with 
Ti ∈ B(Hi) such that supi ‖Ti‖ < ∞.

According to [11, (3.25)], the von Neumann algebra VN(G/K) is a quotient of VN(G). Since each B(Hi)
is a factor, it follows that VN(G/K) =

⊕
i∈J B(Hi) for some subset J ⊆ I, and consequently G/K is an 

AR-group. �
As a first application of the lemma, let us mention that Baggett’s theorem also holds without the second 

countability assumption.

Theorem 9.11 (Baggett). If a locally compact group G is connected, unimodular and has a completely re-
ducible regular representation, then G is compact.

Proof. Since the group G is connected, it is σ-compact. By the Kakutani–Kodaira Theorem (see [18, The-
orem 8.7]) there is a compact normal subgroup K 
 G such that G/K is second countable and of course 
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still connected. By the lemma, the group G/K also has a completely reducible regular representation. The 
group G/K is also unimodular (see e.g. [37, p. 91]). Hence G/K is compact by Baggett’s theorem. It follows 
that G itself is also compact. �

In view of [5], the following also gives a different proof of (and improves) Corollary 9.6 – at least for 
second countable groups.

Theorem 9.12. A locally compact AR-group has compact center.

Proof. Let G be an AR-group. We claim that its center Z is also an AR-group. Let λG and λZ be the 
regular representations of G and Z, respectively. It is well-known that the map λZ(z) �→ λG(z) extends 
to a ∗-isomorphism between VN(Z) and the von Neumann subalgebra of VN(G) generated by {λG(z) |
z ∈ Z} (see e.g. the proof of [43, Theorem 6] or use Herz’ restriction theorem). In other words, the regular 
representation of Z and the representation λG|Z to Z of the regular representation of G are quasi-equivalent. 
It therefore suffices to show that λG|Z is completely reducible.

Write the regular representation λG =
⊕

i∈I πi as a direct sum of irreducible representations πi. Let Hi

denote the Hilbert space of πi. From Schur’s lemma we know that πi(Z) is contained in the scalar multiples 
of the identity 1Hi

. In other words, there is a character χi ∈ Ẑ such that πi|Z 	 χi ⊗ 1Hi
. We therefore 

have

λG|Z =
⊕
i

πi|Z =
⊕
i

dim Hi⊕
j=1

χi

which shows that Z is an AR-group. Since the only abelian AR-groups are compact, the proof is com-
plete. �

The following improves Theorem 9.7.

Theorem 9.13. A nilpotent, locally compact group with completely reducible regular representation is compact.

Proof. The proof is completely analogous to the proof of Theorem 9.7. �
10. Some questions

All examples so far of second countable groups satisfying (�) match the conditions of Theorem 7.2. In 
particular all such groups are of type I. It would be interesting to find other examples. There are non-type I 
groups with completely reducible regular representation (see [4]).

Question 1. Do there exist groups G not of type I satisfying A(G) = B0(G)?

Related to Section 5, the following natural question was left open.

Question 2. If G1 and G2 are two groups each satisfying (�), does the direct product G1 ×G2 satisfy (�)?

Recall that a locally compact group G is amenable if there is a left invariant mean on L∞(G). It is 
well-known that amenability is equivalent to the existence of a sequence positive definite functions in Cc(G)
that converges to 1 uniformly on compact subsets of G. Another characterization of amenability is the 
existence of a bounded approximate unit in the Fourier algebra A(G).

All examples so far of groups satisfying (�) are build from compact groups and solvable groups as 
semidirect products. In particular all such groups are amenable.
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Question 3. Do there exist non-amenable groups G satisfying (�)?

We should remark that there exist non-amenable AR-groups. An example was given in [4], and the group 
Q2

p�UL(2, Qp) studied in Section 8 is also such an example. That the group Q2
p�UL(2, Qp) is non-amenable 

follows for instance from [39, 14.9].
We show below that for groups satisfying (�), amenability is equivalent to the Haagerup property (see 

Proposition 10.1). Recall that a group has the Haagerup property [7] if there is a net of positive definite 
functions ϕn : G → C such that ϕn ∈ C0(G) and ϕn → 1 uniformly on compact subsets of G as n → ∞.

Proposition 10.1. Let G be a locally compact group satisfying A(G) = B0(G). Then G is amenable if and 
only if G has the Haagerup property.

Proof. Amenable groups always have the Haagerup property so we only prove the converse. Assume G has 
the Haagerup property. Then there is a net of positive definite functions ϕn : G → C such that ϕn ∈ C0(G)
and ϕn → 1 uniformly on compact subsets of G as n → ∞. One can assume that ϕn(1) = 1 for all n. Since 
A(G) = B0(G), the functions ϕn belong to A(G). From [38, Lemma 10.3] (see also [9, Proposition 5.1]) 
follows that ϕn is a bounded approximate identity in A(G). Thus, G is amenable by [29].

Alternative proof: This is based on [22]. If G satisfies A(G) = B0(G), then the regular representation 
λ and the enveloping C0-representation, denoted π0, are quasi-equivalent. In particular, they are weakly 
equivalent so that C∗

λ(G) = C∗
π0

(G). Thus,

G is amenable ⇐⇒ C∗(G) = C∗
λ(G)

⇐⇒ C∗(G) = C∗
π0

(G)

⇐⇒ G has the Haagerup property. �
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