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It is known that few characterization results of the logistic distribution were available 
before, although it is similar in shape to the normal one whose characteristic 
properties have been well investigated. Fortunately, in the last decade, several 
authors have made great progress in this topic. Some interesting characterization 
results of the logistic distribution have been developed recently. In this paper, we 
further provide some new results by the distributional equalities in terms of order 
statistics of the underlying distribution and the random exponential shifts. The 
characterization of the closely related Pareto type II distribution is also investigated.
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1. Introduction

The logistic distribution is similar to a normal distribution in shape [16] and has an explicit closed form, 
so it has some advantages in practical applications. As remarked by Kotz [13], few characterizations of the 
logistic distribution were available before, but recently, some interesting results have been developed. In this 
paper, we will further provide some more new results by properties of order statistics.

We first introduce some notations. Let X obey the distribution F , denoted by X ∼ F . Let {Xj}nj=1 be a 
random sample of size n from distribution F and denote the corresponding order statistics by X1,n ≤ X2,n ≤
· · · ≤ Xn,n. The distribution function of Xk,n is denoted by Fk,n. It is known that Fk,n is the composition 
of Bk,n−k+1 and F (see, e.g., [11]), where Bα,β is the beta distribution with parameters α, β > 0, namely,

Fk,n(x) = Bk,n−k+1(F (x)) = k

(
n

k

) F (x)∫
0

tk−1(1 − t)n−kdt, x ∈ R ≡ (−∞,∞), (1)
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Bα,β(u) = Γ(α + β)
Γ(α)Γ(β)

u∫
0

tα−1(1 − t)β−1dt, u ∈ [0, 1]. (2)

On the other hand, for Y ∼ G, we say that X is less than or equal to Y in the usual stochastic order, 
denoted by X ≤st Y , if F ≤ G, where F (x) = 1 − F (x) = Pr(X > x).

Let us start with an interesting simple example. Clearly, for general distribution F , we have X1,2 ≤st X

because F1,2 = 1 − F
2 ≥ F by (1). One possibility to adjust this “inequality” is to choose a nonnegative 

random variable Z, independent of X and Xj ’s, such that

X
d= X1,2 + Z (3)

or

X − Z
d= X1,2, (4)

where 
d= means equality in distribution. One might think that the solutions of the distributional equations 

(3) and (4) are the same, but this is not true in general, because the characteristic function of Z is not 
equal to the reciprocal of that of −Z, namely, E[eitZ ] �= (E[e−itZ ])−1, t ∈ R, in general. For example, if 
Z has the standard exponential distribution E , then the solution of (3) is a logistic distribution F (x) =
1/[1 + e−(x−μ)], x ∈ R, where μ ∈ R is a constant, while the solution of (4) is a negative (or reversed) 
exponential distribution F (x) = e(x−μ)/2, x ≤ μ, where μ ∈ R is a constant (see, e.g., [9,14,1], and note 
that the smoothness conditions on F therein are redundant due to Lemmas 1–3 below).

Throughout the paper, let U and ξ obey the uniform distribution U on [0, 1] and the standard exponential 
distribution E , respectively. Moreover, let {Uj}nj=1 and {U ′

j}nj=1 be two random samples of size n from U , 
and let {ξj}nj=1 and {ξ′j}nj=1 be two random samples of size n from E . All the above random variables X, 
U , ξ, Xj , Uj , U ′

j , ξj and ξ′j , j = 1, 2, . . . , n, are assumed to be independent from now on.
Mimicking the above characterization approaches (3) and (4), several authors have considered the general 

stochastic inequality Xk,n ≤st Xk+1,n and solved the distributional equations (a) Xk+1,n
d= Xk,n + aξ and 

(b) Xk,n
d= Xk+1,n − bξ, or, more generally, (c) Xk,n + aξ1

d= Xk+1,n − bξ2, where a and b are nonnegative 
constants. In particular, the equality

Xk,n + 1
n− k

ξ1
d= Xk+1,n − 1

k
ξ2

also characterizes the logistic distribution. (See [4,19,2,3] for equations arising from Xk,n ≤st Xk+r,n with 
1 ≤ r ≤ n − k.) Besides, the distributional equations arising from (a) X ≤st Xn,n, (b) X1,n ≤st Xn,n and 
(c) Xm,m ≤st Xn,n, where m < n, were investigated by Zykov and Nevzorov [20], Ananjevskii and Nevzorov 
[5] as well as Berred and Nevzorov [6], respectively.

In this paper we will solve the distributional equations arising from stochastic inequalities: (i) Xk,n ≤st

Xk,n−1, (ii) Xk,n−1 ≤st Xk+1,n, (iii) Xk,n ≤st Xk,k, (iv) X1,k ≤st Xn−k+1,n, (v) Xk,n ≤st Xk,n−m, and (vi) 
Xm−k,n−k ≤st Xm,n.

To do this, some useful lemmas are given in the next section. The main characterization results are 
stated and proved in Sections 3 and 4. For simplicity, we first deal with the closely related Pareto type II 
distribution in Section 3, and then the logistic distribution in Section 4. Finally, we pose an open problem 
in Section 5.
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2. Lemmas

We need some lemmas in the sequel. Lemma 1(i) was given without proof in [15, p. 38], but has been 
ignored in the literature. We provide a proof here for completeness.

Lemma 1.

(i) Let Y and Z be two independent random variables. If Y has an absolutely continuous distribution, then 
so does Y + Z, regardless of the distribution of Z.

(ii) If, in addition to the assumptions in (i), both Y and Z are positive random variables, then the product 
Y Z has an absolutely continuous distribution.

Proof. Let F , G and H be the distributions of Y + Z, Y and Z, respectively. Then

F (x) =
∞∫

−∞

G(x− z)dH(z), x ∈ R.

Since G is absolutely continuous, we have that for each ε > 0, there exists a δ > 0 such that 
∑n

j=1[G(bj) −
G(aj)] < ε if 

∑n
j=1(bj − aj) < δ, where aj < bj ≤ aj+1 < bj+1, j = 1, 2, . . . , n − 1. This in turn implies that 

for the above {(aj , bj)}nj=1,

n∑
j=1

[F (bj) − F (aj)] =
∞∫

−∞

n∑
j=1

[G(bj − z) −G(aj − z)]dH(z) <
∞∫

−∞

ε dH(z) = ε.

Hence, part (i) is proved. To prove part (ii), we recall first that both the logarithmic and exponential 
functions are absolutely continuous, and that the composition preserves the property of absolute continuity. 
Then consider log(Y Z) = log Y + logZ and use part (i) to conclude that log(Y Z) has an absolutely 
continuous distribution, and hence so does Y Z. This completes the proof. �

It is known that the inverse function of an absolutely continuous function with positive derivative almost 
everywhere is not necessarily absolutely continuous. However, we have the following useful result.

Lemma 2. Let F be an absolutely continuous distribution on [0, 1] and F ′(x) = f(x) > 0 on (0, 1). Then the 
inverse function of F is itself an absolutely continuous distribution.

Proof. By the assumptions, F is a strictly increasing and continuous function from [0, 1] to [0, 1], so is its 
inverse function F−1. This implies that F−1 is a continuous distribution on [0, 1]. Moreover, d

dtF
−1(t) =

1/f(F−1(t)) is a positive measurable function on (0, 1) (see, e.g., [18, pp. 8–9]). By changing variables 
x = F−1(t), we have 

∫ 1
0 [ d

dtF
−1(t)]dt =

∫ 1
0 [1/f(x)] · f(x)dx = 1. Therefore, the distribution function F−1

has no singular part and is absolutely continuous. The proof is complete. �
Lemma 3. If the distribution Fk,n of order statistic Xk,n is absolutely continuous, then so is the underlying 
distribution F of X.

Proof. Recall (see (1)) that Fk,n(x) = Bk,n−k+1(F (x)), x ∈ R, where Bk,n−k+1, defined in (2), is the beta 
distribution Bα,β with parameters α = k and β = n − k + 1, and has a positive continuous density function 
on (0, 1). Therefore, F = B−1

k,n−k+1 ◦ Fk,n is absolutely continuous by Lemma 2. The proof is complete. �
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Lemma 4. Let 1 ≤ k < n. Then we have the following identities:

(i) Fk,n − Fk+1,n =
(
n

k

)
F kF

n−k,

(ii) Fk,n − Fk,n−1 =
(
n− 1
k − 1

)
F kF

n−k, and

(iii) Fk,n−1 − Fk+1,n =
(
n− 1
k

)
F kF

n−k.

Proof. For parts (i) and (ii), see, e.g., [8] as well as [7, p. 23], while part (iii) follows from parts (i) and (ii) 
and the identity:

(
n

k

)
=

(
n− 1
k − 1

)
+

(
n− 1
k

)
. �

Denote the left and the right extremities of F by �F and rF , respectively. It is known that if the absolutely 
continuous F satisfies the functional equation F ′(x) = F (x)(1 − F (x)), x ∈ (�F , rF ), then F is a logistic 
distribution. In the next lemma we extend this result.

Lemma 5. Let r, θ > 0, a ∈ [0, 1], and let F be an absolutely continuous distribution function satisfying 
xaF ′(x) = θF (x)(1 − F r(x)) for x ∈ (�F , rF ).

(i) If a = 1, then �F = 0, rF = +∞ and

F (x) =
(

λxrθ

1 + λxrθ

)1/r

, 0 ≤ x < ∞,

where λ is a positive constant.
(ii) If a ∈ [0, 1), then �F = −∞, rF = +∞ and

F (x) =
(

λ exp( rθ
1−ax

1−a)
1 + λ exp( rθ

1−ax
1−a)

)1/r

, −∞ < x < ∞,

where λ is a positive constant.

Proof. Define the increasing function G(x) = (1 − F r(x))−1 − 1 from (�F , rF ) onto (0, ∞). Then G′(x) =
rF r−1(x)F ′(x)(1 − F r(x))−2, and hence

xaG′(x) = rθG(x), x ∈ (�F , rF ).

(a) If a = 1, solving the above equation leads to G(x) = λxrθ, x ∈ (�F , rF ), for some constant λ > 0. On 
the other hand, we have, by the definition of G, that

F (x) =
(

G(x)
1 + G(x)

)1/r

=
(

λxrθ

1 + λxrθ

)1/r

, x ∈ (�F , rF ),

and hence, �F = 0 and rF = +∞, because F is a distribution function. This proves part (i).
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(b) If a ∈ [0, 1), we have instead G(x) = λ exp( rθ
1−ax

1−a), x ∈ (�F , rF ), for some constant λ > 0. The 
required result then follows from both the definition of the function G and the fact that F is a distribution 
function. The proof is complete. �

Some equalities (in distribution) of the next lemma are essentially due to [17, Lecture 3], but we provide 
here an alternative and possibly simpler proof.

Lemma 6. Let ξk,n (Uk,n, resp.) be the k-th smallest order statistic of a random sample of size n from the 
standard exponential distribution E (the uniform distribution U , resp.). Then the following statements are 
true.

(i) The Laplace transform of ξk,n is Lξk,n
(s) = n−k+1

n−k+1+s · n−k+2
n−k+2+s · · ·

n
n+s , s ≥ 0.

(ii) ξk,n
d=
∑k

j=1
1

n−j+1ξk−j+1, where 1 ≤ k ≤ n.

(iii) ξm,n
d= ξm−k,n−k + ξ′k,n, where 1 ≤ k < m ≤ n.

(iv) Un−k+1,n
d=
∏k

j=1 U
1/(n−j+1)
j , where 1 ≤ k ≤ n.

(v) Uk,n
d= Uk,m−1 · U ′

m,n, where 1 ≤ k < m ≤ n.

Proof. Recall that the distribution of ξk,n is Fξk,n
(x) = k

(
n

k

)∫ E(x)
0 tk−1(1 − t)n−kdt, x ≥ 0, where 

E(x) = Fξ(x) = 1 − e−x, x ≥ 0. Then the Laplace transform of ξk,n is

Lξk,n
(s) = E[e−sξk,n ] =

∞∫
0

e−sxdFξk,n
(x) = k

(
n

k

) ∞∫
0

e−(n−k+1+s)x(1 − e−x)k−1dx, s ≥ 0.

By integration by parts, it follows from the above integral that

Lξk,n
(s) = k

(
n

k

)
k − 1

n− k + 1 + s

∞∫
0

e−(n−k+2+s)x(1 − e−x)k−2dx = · · ·

= k

(
n

k

)
k − 1

n− k + 1 + s
· k − 2
n− k + 2 + s

· · · 1
n− 1 + s

·
∞∫
0

e−(n+s)xdx

= n− k + 1
n− k + 1 + s

· n− k + 2
n− k + 2 + s

· · · n− 1
n− 1 + s

· n

n + s
, s ≥ 0.

This proves part (i), which in turn implies parts (ii) and (iii) by the fact that E[e−s(ξ/k)] = k/(k+s), s ≥ 0. 
Part (iv) follows from part (ii) because Uj

d= exp(−ξk−j+1) and the order statistic Un−k+1,n
d= exp(−ξk,n). 

To prove part (v), we have Un−m+1,n
d= Un−m+1,n−k · U ′

n−k+1,n by using part (iii), and then reset k =
n −m + 1. The proof is complete. �
Lemma 7. Let Y obey the Pareto type II (or log-logistic) distribution G(y) = y/(1 + y), y ≥ 0. Let {Yj}nj=1, 
independent of U and {Uj}nj=1, be a random sample of size n from G. Then we have the following equalities 
in distribution:

(i) 1/Y d= Y and in general, 1/Yk,n
d= Yn−k+1,n, where 1 ≤ k ≤ n.

(ii) Yk,n−1
d= Yk,n/U

1/(n−k), where 1 ≤ k ≤ n − 1.
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(iii) Yk,n−m
d= Yk,n/Un−k−m+1,n−k, where 1 ≤ k ≤ n −m.

(iv) Yk,n−1
d= Yk+1,n · U1/k, where 1 ≤ k ≤ n − 1.

(v) Ym−k,n−k
d= Ym,n · Um−k,m−1, where 2 ≤ k + 1 ≤ m ≤ n.

Proof. It is easy to check part (i). To prove the remaining parts, recall that the distribution of Yk,n

is Gk,n(y) = k

(
n

k

)∫ G(y)
0 tk−1(1 − t)n−kdt, y ≥ 0. Then we have H(y) ≡ Pr(Yk,n/U

1/(n−k) ≤ y) =
∫ 1
0 Gk,n(yu1/(n−k))du. By changing variables,

H(y) =
1∫

0

Gk,n(yt)dtn−k = (n− k)
1∫

0

Gk,n(yt)tn−k−1dt, y ≥ 0.

Therefore, Gk,n−1 = H iff, by differentiation,

(
1

1 + y

)n

=
1∫

0

n

(
1

1 + yt

)n+1

tn−1dt, y ≥ 0,

which is, however, a special case of the well-known identity

(
1

1 + y

)β1

= Γ(β1 + β2)
Γ(β1)Γ(β2)

1∫
0

(
1

1 + yt

)β1+β2

tβ1−1(1 − t)β2−1dt, y ≥ 0

(see [10, p. 314]). This proves part (ii). Part (iii) follows from part (ii) by iteration and Lemma 6(iv), while 

part (iv) follows from either parts (i) and (ii) (letting k∗ = n −k) or Lemma 8(iii) below because Y
d= exp(X)

and U
d= exp(−ξ). Finally, we prove part (v) by using part (iv), iteration and Lemma 6(iv) again. The proof 

is complete. �
Lemma 8. Let X obey the standard logistic distribution F (x) = 1/[1 + exp(−x)], x ∈ R. Then we have the 
following equalities in distribution:

(i) Xk,n−1
d= Xk,n + 1

n−k ξ, where 1 ≤ k ≤ n − 1.
(ii) Xk,n−m

d= Xk,n + ξm,n−k, where 1 ≤ k ≤ n −m.
(iii) Xk,n−1

d= Xk+1,n − 1
k ξ, where 1 ≤ k ≤ n − 1.

(iv) Xm−k,n−k
d= Xm,n − ξk,m−1, where 2 ≤ k + 1 ≤ m ≤ n.

Proof. The results follow from Lemma 7 by noting that (a) X d= log Y , (b) ξ d= − logU and (c) − logUk,n
d=

ξn−k+1,n for all 1 ≤ k ≤ n. The proof is complete. �
For the proof of the next lemma, see [14, Lemma 5].

Lemma 9. Let f and g be two functions real analytic and strictly monotone in [0, ∞). Assume that for each 
n ≥ 1, the n-th derivatives f (n) and g(n) are strictly monotone in some interval [0, δn). Let {xn}∞n=1 be a 
sequence of positive real numbers converging to zero. If f(xn) = g(xn), n = 1, 2, . . ., then f = g.
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3. Characterizations of the Pareto type II distribution

We start with the Pareto type II distribution which is easier to handle, and recall that the uniform order 
statistic Uk,n ∼ Bk,n−k+1.

Theorem 1. Let Y ∼ G be a positive random variable and let 1 ≤ k ≤ n −1 be fixed integers. Let Y1, Y2, . . . , Yn

be n independent copies of Y , and let U , independent of {Yi}ni=1, be a random variable with uniform distri-
bution on [0, 1]. Then the distributional equality

Yk,n−1
d= Yk,n/U

1/(n−k) (5)

holds iff G is a Pareto distribution G(y) = λy/(1 + λy), y ≥ 0, where λ > 0 is a constant.

Proof. The sufficiency part follows from Lemma 7(ii) because (λY )�,m
d= λY�,m for λ > 0 and for all 

1 ≤ � ≤ m. To prove the necessity part, we note, by Lemma 1(ii), that the distribution Gk,n−1 of Yk,n−1 is 
absolutely continuous, and so is G by Lemmas 2 and 3. Rewrite (5) as

Gk,n−1(y) =
1∫

0

Gk,n(yu1/(n−k))du, y ≥ 0.

By changing variables t = yu1/(n−k), we have

Gk,n−1(y) = (n− k)y−(n−k)
y∫

0

Gk,n(t)tn−k−1dt, y > 0.

Taking differentiation leads to

yG′
k,n−1(y) = (n− k)[Gk,n(y) −Gk,n−1(y)], y > 0. (6)

With the help of (1) and Lemma 4(ii), (6) is equivalent to

yG′(y) = G(y)[1 −G(y)], y ∈ (�G, rG).

Finally, Lemma 5(i) with r = θ = 1 completes the proof. �
Corollary 1. Under the same assumptions of Theorem 1, the distributional equality Yk,n−1

d= Yk,n/U
1/α

holds for some α > 0, iff G is a Pareto distribution with G(y) = 1/[1 + λyα/(n−k)], y ≥ 0, where λ is a 
positive constant.

Proof. Consider Y ′
i = Y

α/(n−k)
i for i = 1, 2, . . .. Then Y ′

k,n = Y
α/(n−k)
k,n , and apply Theorem 1 to the case: 

Y ′
k,n−1

d= Y ′
k,n/U

1/(n−k). �
Corollary 2. Under the same assumptions of Theorem 1, the distributional equality

Yk,n−1
d= Yk+1,n · U1/k

holds iff G is a Pareto distribution G(y) = λy/(1 + λy), y ≥ 0, where λ > 0 is a constant.
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Proof. The sufficiency part is a consequence of Lemma 7(iv). To prove the necessity part, denote Y ∗ = 1/Y . 
Then Y ∗

�,m = (1/Y )�,m
d= 1/Ym−�+1,m for all 1 ≤ � ≤ m. By assumptions, we have the equality 1/Yk,n−1

d=
1/Yk+1,n · 1/U1/k, or, equivalently, Y ∗

n−k,n−1
d= Y ∗

n−k,n · 1/U1/(n−(n−k)). It follows from Theorem 1 (letting 
k∗ = n − k) that Y ∗ has a Pareto distribution G∗(y) = λ∗y/(1 + λ∗y), y ≥ 0, for some constant λ∗ > 0. 
This in turn implies that Y has the Pareto distribution G(y) = λy/(1 + λy), y ≥ 0, where λ = 1/λ∗. We 

can prove the last claim directly, or by using Lemma 7(i), because λ∗Y
∗ d= 1/(λ∗Y

∗) = Y/λ∗ having the 
standard Pareto type II distribution. The proof is complete. �
Theorem 2. Let Y ∼ G be a positive random variable and let 1 ≤ k ≤ n −1 be fixed integers. Let Y1, Y2, . . . , Yn

be n independent copies of Y , and let B, independent of {Yi}ni=1, be a random variable having beta distribu-
tion Bα,β with parameters α = 1 and β = n − k, that is, FB(u) = 1 − (1 −u)n−k, u ∈ [0, 1]. Assume further 
that limy→0+ G(y)/y = λ > 0. Then the distributional equality

Yk,k
d= Yk,n/B (7)

holds iff G is the Pareto distribution G(y) = λy/(1 + λy), y ≥ 0.

Proof. The sufficiency part follows from Lemma 7(iii) with n −m = k and the fact B d= U1,n−k. To prove 
the necessity part, we note first that G is absolutely continuous by Lemmas 1–3, and then rewrite (7) as 
the functional equation:

Gk(y) =
1∫

0

G(yu)∫
0

k

(
n

k

)
tk−1(1 − t)n−kdtdFB(u), y ≥ 0. (8)

Now, it suffices to prove that the solution of equation (7) is unique under the smoothness condition on the 
distribution. Namely, if the absolutely continuous distribution F on (0, ∞) satisfies limy→0+ F (y)/y = λ > 0
and

F k(y) =
1∫

0

F (yu)∫
0

k

(
n

k

)
tk−1(1 − t)n−kdtdFB(u), y ≥ 0, (9)

then we will prove that F = G. From (8) and (9) it follows that

|F k(y) −Gk(y)| ≤ 1
E[Bk]

1∫
0

|F k(yu) −Gk(yu)|dFB(u), y ≥ 0, (10)

where E[Bk] = 1/ 

(
n

k

)
. Define the bounded function

g(y) =
∣∣∣∣F k(y) −Gk(y)

yk

∣∣∣∣ , y > 0, and g(0) = lim
y→0+

g(y) = 0,

and the increasing function

h(y) = sup g(t), y > 0, and h(0) = lim
y→0+

h(y) = 0.

0≤t≤y
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By (10), we see that

g(y) ≤
1∫

0

g(uy)dH(u), y ≥ 0, (11)

where H(u) = (1/E[Bk]) 
∫ u

0 tkdFB(t), u ∈ [0, 1]. Now, by (11) and the definition of the increasing function 
h, we have

h(y) ≤
1∫

0

h(uy)dH(u) ≤ h(y)
1∫

0

dH(u) = h(y), y ≥ 0.

This in turn implies that h is a constant function and hence h(y) = 0, y ≥ 0, because h(0) = h(0+) = 0. 
Consequently, g(y) = 0, y ≥ 0, and F = G. The proof is complete. �

The next result is the counterpart of Theorem 2 for the minimum order statistics.

Corollary 3. Under the same setting in Theorem 2 with the condition on G replaced by limy→0+ G(1/y)/y =
1/λ > 0 (equivalently, limy→+∞ yG(y) = 1/λ > 0), the distributional equality Y1,k

d= Yn−k+1,n · B holds iff 
G is the Pareto distribution G(y) = λy/(1 + λy), y ≥ 0.

Proof. Use Lemma 7(v), Theorem 2 and the fact (1/Y )�,m
d= 1/Ym−�+1,m for all 1 ≤ � ≤ m. �

We now further extend Theorem 2 under some stronger smoothness conditions.

Theorem 3. Let Y ∼ G be a positive random variable and let n, m, k be three fixed positive integers with 
1 ≤ k ≤ n − m. Let Y1, Y2, . . . , Yn be n independent copies of Y , and let B1, independent of {Yi}ni=1, be 
a random variable having beta distribution Bα,β with parameters α = n −m − k + 1 and β = m. Assume 
further that the distribution function G satisfies the following conditions:

(i) G is real analytic and strictly increasing in [0, ∞) and for each i ≥ 1, its i-th derivative G(i) is strictly 
monotone in some interval [0, δi).

(ii) limy→0+ [Gk(y) − (λy)k]/(λy)k+1 = −k for some positive constant λ.

Then the distributional equality

Yk,n−m
d= Yk,n/B1 (12)

holds iff G is the Pareto distribution G(y) = λy/(1 + λy), y ≥ 0.

Proof. The sufficiency part follows from Lemma 7(iii) and the fact B1
d= Un−m−k+1,n−k. To prove the 

necessity part, we note first that G is absolutely continuous as before, and then we rewrite (12) as the 
functional equation:

Gk,n−m(y) =
1∫
Gk,n(yu)dFB1(u), y ≥ 0. (13)
0
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Now, it suffices to prove that the solution of equation (12) is unique under the smoothness condition on the 
distribution. Namely, if the absolutely continuous distribution F on (0, ∞) satisfies the above conditions (i) 
and (ii) and

Fk,n−m(y) =
1∫

0

Fk,n(yu)dFB1(u), y ≥ 0, (14)

then we will prove that F = G.
Define the increasing function H(y) = max{F (y), G(y)}, y ≥ 0. From (1) it follows that for any a > 0

and 0 ≤ y ≤ a,

|Fk,n−m(y) −Gk,n−m(y)| = k

(
n−m

k

)∣∣∣∣∣∣∣
F (y)∫

G(y)

tk−1(1 − t)n−m−kdt

∣∣∣∣∣∣∣
≥ k

(
n−m

k

)
(1 −H(y))n−m−k 1

k

∣∣F k(y) −Gk(y)
∣∣

≥
(
n−m

k

)
(1 −H(a))n−m−k

∣∣F k(y) −Gk(y)
∣∣ . (15)

On the other hand, we have

|Fk,n(y) −Gk,n(y)| ≤
(
n

k

)∣∣F k(y) −Gk(y)
∣∣ , y ≥ 0. (16)

Combing (12)–(16) leads to
(
n−m

k

)
(1 −H(a))n−m−k

∣∣F k(y) −Gk(y)
∣∣ ≤ |Fk,n−m(y) −Gk,n−m(y)|

≤
1∫

0

|Fk,n(yu) −Gk,n(yu)| dFB1(y) ≤
(
n

k

) 1∫
0

∣∣F k(yu) −Gk(yu)
∣∣ dFB1(y). (17)

Define the bounded increasing function

h(y) = sup
0<t≤y

∣∣∣∣F k(t) −Gk(t)
tk+1

∣∣∣∣ , y > 0, and h(0) = lim
y→0+

h(y) = 0.

Then from the inequality (17) it follows that for any a > 0,

(
n−m

k

)
(1 −H(a))n−m−kh(y) ≤

(
n

k

) 1∫
0

h(yu)uk+1dFB1(y)

≤
(
n

k

)
h(y)

1∫
0

uk+1dFB1(u) =
(
n

k

)
h(y)E[Bk+1

1 ], 0 ≤ y ≤ a. (18)

Recall that E[Bk
1 ] =

(
n−m

k

)
/ 

(
n

k

)
. Then rewrite the inequality (18) as follows:
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E[Bk
1 ](1 −H(a))n−m−kh(y) ≤ h(y)E[Bk+1

1 ], 0 ≤ y ≤ a, a > 0. (19)

We claim that there exists a y0 > 0 such that h(y0) = 0. Otherwise, we have, by (19),

E[Bk
1 ](1 −H(a))n−m−k ≤ E[Bk+1

1 ], ∀ a > 0,

which in turn implies, by letting a → 0+, that E[Bk
1 ] ≤ E[Bk+1

1 ], a contradiction. Therefore, h(y0) = 0 for 
some y0 > 0 and hence F (y) = G(y) for y ∈ [0, y0]. By Lemma 9 and the assumptions on F and G, we 
conclude that F = G. The proof is complete. �
Corollary 4. Let Y ∼ G be a positive random variable and let n, m, k be three fixed positive integers with 
k + 1 ≤ m ≤ n. Let Y1, Y2, . . . , Yn be n independent copies of Y , and let B2, independent of {Yi}ni=1, be a 
random variable having beta distribution Bα,β with parameters α = m − k and β = k. Assume further that 
the distribution function G∗ of 1/Y satisfies the following conditions:

(i) G∗ is real analytic and strictly increasing in [0, ∞) and for each i ≥ 1, its i-th derivative G(i)
∗ is strictly 

monotone in some interval [0, δi).
(ii) limy→0+ [Gk∗∗ (y) − (y/λ)k∗ ]/(y/λ)k∗+1 = −k∗ for some positive constant λ, where k∗ = n −m + 1.

Then the distributional equality Ym−k,n−k
d= Ym,n ·B2 holds iff G is the Pareto distribution G(y) = λy/(1 +

λy), y ≥ 0.

Proof. Use Lemma 7(v), Theorem 3 and the fact (1/Y )�,m
d= 1/Ym−�+1,m for all 1 ≤ � ≤ m. �

In summary, for a positive random variable Y ∼ G, we have the following characteristic properties of the 
Pareto distribution G(y) = λy/(1 + λy), y ≥ 0, where λ is a positive constant (compare with Lemma 7).

1. Yk,n−1
d= Yk,n/U

1/(n−k).
2. Yk,n−1

d= Yk+1,n · U1/k.
3. Yk,k

d= Yk,n/B (equivalently, Yk,k
d= Yk,n/U1,n−k).

4. Y1,k
d= Yn−k+1,n ·B (equivalently, Y1,k

d= Yn−k+1,n · U1,n−k).
5. Yk,n−m

d= Yk,n/B1 (equivalently, Yk,n−m
d= Yk,n/Un−m−k+1,n−k).

6. Ym−k,n−k
d= Ym,n ·B2 (equivalently, Ym−k,n−k

d= Ym,n · Um−k,m−1).

Here, the random variables U ∼ U , B ∼ B1,n−k, B1 ∼ Bn−m−k+1,m, B2 ∼ Bm−k,k, and on the RHS of 
each equality, the two random variables are independent.

4. Characterizations of the logistic distribution

We are now ready to provide characterization results of the logistic distribution.

Theorem 4. Let X ∼ F and let 1 ≤ k ≤ n − 1 be fixed integers. Then the distributional equality

Xk,n−1
d= Xk,n + 1

n− k
ξ

holds iff F is a logistic distribution F (x) = 1/[1 + e−(x−μ)], x ∈ R, where μ ∈ R is a constant.
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Proof. Take Yi = exp(Xi), U = exp(−ξ) and λ = e−μ. Then the result follows immediately from Theo-
rem 1. �
Corollary 5. Let X ∼ F , α > 0 and let 1 ≤ k ≤ n − 1 be fixed integers. Then the distributional equality 

Xk,n−1
d= Xk,n + 1

αξ holds iff F is a logistic distribution F (x) = 1/{1 + e−[α/(n−k)](x−μ)}, x ∈ R, where 
μ ∈ R is a constant.

Corollary 6. Let X ∼ F , α > 0 and let 1 ≤ k ≤ n − 1 be fixed integers. Then the distributional equality

Xk,n−1
d= Xk+1,n − 1

α
ξ (20)

holds iff F is a logistic distribution F (x) = 1/[1 + e−(α/k)(x−μ)], x ∈ R, where μ ∈ R is a constant.

Proof. Use Corollary 5 and the fact that X�,m
d= −(−X)m−�+1,m for all 1 ≤ � ≤ m. �

The counterpart of (20), namely, Xk+1,n
d= Xk,n−1+ 1

αξ, and the two-sided case: Xk,n+aξ1
d= Xk,n−1+bξ2

(see Corollary 5), where α, a, b > 0, were investigated by Wesołowski and Ahsanullah [19]. All the solutions 
of these two equations are exponential distributions.

The next result improves and extends Theorem 6 of [14] by an approach different from the previous 
method of intensively monotone operator [12].

Theorem 5. Let 1 ≤ k ≤ n − 1 be fixed integers. Assume that X ∼ F satisfies limx→−∞ F (x)/ex = e−μ for 
some constant μ ∈ R. Then the distributional equality

Xk,k
d= Xk,n + ξn−k,n−k

holds iff F is the logistic distribution F (x) = 1/[1 + e−(x−μ)], x ∈ R.

Proof. The sufficiency part follows from Lemma 8(ii), while the necessity part is a consequence of Theo-
rem 2. �

The next result is the counterpart of Theorem 5 for the minimum order statistics.

Corollary 7. Let 1 ≤ k ≤ n − 1 be fixed integers. Assume that X ∼ F satisfies limx→−∞ F (−x)/ex = eμ for 
some constant μ ∈ R. Then the distributional equality

X1,k
d= Xn−k+1,n − ξn−k,n−k

holds iff F is the logistic distribution F (x) = 1/[1 + e−(x−μ)], x ∈ R.

Proof. Use Lemma 8(iv), Theorem 5 and the fact X�,m
d= −(−X)m−�+1,m for all 1 ≤ � ≤ m. �

Using Theorem 3 and Lemma 8(ii), we further extend Theorem 5 to the following.

Theorem 6. Let n, m, k be three fixed positive integers with 1 ≤ k ≤ n − m and let X ∼ F satisfy 
limx→−∞[e−k(x−μ)F k(x) − 1]/ex−μ = −k for some constant μ ∈ R. Assume further that the distribu-
tion function G of exp(X1) is real analytic and strictly increasing in [0, ∞) and that for each i ≥ 1, its i-th 
derivative G(i) is strictly monotone in some interval [0, δi). Then the distributional equality
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Xk,n−m
d= Xk,n + ξm,n−k

holds iff F is the logistic distribution F (x) = 1/[1 + e−(x−μ)], x ∈ R.

As before, Theorem 6 and Lemma 8(iv) together lead to the following.

Corollary 8. Let n, m, k be three fixed positive integers with k + 1 ≤ m ≤ n and let X ∼ F satisfy 
limx→−∞[e−k∗(x+μ)(F (−x))k∗ − 1]/ex+μ = −k∗ for some constant μ ∈ R, where k∗ = n − m + 1. As-
sume further that the distribution function G∗ of exp(−X1) is real analytic and strictly increasing in [0, ∞)
and that for each i ≥ 1, its i-th derivative G(i)

∗ is strictly monotone in some interval [0, δi). Then the 
distributional equality

Xm−k,n−k
d= Xm,n − ξk,m−1 (21)

holds iff F is the logistic distribution F (x) = 1/[1 + e−(x−μ)], x ∈ R.

In summary, for a random variable X ∼ F , we have the following characteristic properties of the logistic 
distribution F (x) = 1/[1 + e−(x−μ)], x ∈ R (compare with Lemma 8). Here, μ ∈ R, ξ ∼ E , and on the RHS 
of each equality, the two random variables are independent.

1. Xk,n−1
d= Xk,n + 1

n−k ξ.
2. Xk,n−1

d= Xk+1,n − 1
k ξ.

3. Xk,k
d= Xk,n + ξn−k,n−k.

4. X1,k
d= Xn−k+1,n − ξn−k,n−k.

5. Xk,n−m
d= Xk,n + ξm,n−k.

6. Xm−k,n−k
d= Xm,n − ξk,m−1.

5. Open problem

Finally, we would like to pose the following problem in which part (i) is the counterpart of (21) for 
exponential distribution, and in part (ii), the first two cases, m = k + 1, k + 2, have been solved by AlZaid 
and Ahsanullah [4] and Ahsanullah et al. [2].

Problem. Let X ∼ F and let 1 ≤ k < m ≤ n be fixed integers. Then solve the general distributional 
equations: (i) Xm,n

d= Xm−k,n−k + ξk,n and (ii) Xm,n
d= Xk,n + ξm−k,n−k.
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