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In this paper, we present a general comparison theorem for two divided differences 
of a three times differentiable function. This gives a unified treatment for 
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some special functions including gamma, psi and polygamma functions. As their 
consequences, we not only refine and generalize some important results, but also 
present simple and interesting alternative proofs of certain earlier results.

© 2018 Published by Elsevier Inc.

1. Introduction

The Euler’s gamma and psi (digamma) functions are defined for x > 0 by

Γ (x) =
∞∫
0

e−ttx−1dt, ψ (x) = Γ′ (x)
Γ (x) ,

respectively. The derivatives ψ′, ψ′′, ψ′′′, ... are known as polygamma functions.
Denote by ψn = (−1)n−1

ψ(n) for n ∈ N and ψ−1 = ln Γ, ψ0 = −ψ. Then ψn has some simple properties:

(P1) ψ′
n = −ψn+1 < 0 for n ≥ 0.

(P2) ψ′ is strictly completely monotonic on (0,∞), and so is ψn for n ≥ 0.
(P3) The sequence {ψn+1/ψn}n∈N is strictly increasing and concave.
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(P4) ψn/ψn+1 for n ∈ N is strictly increasing and convex on (0,∞).
(P5) ψn for n ∈ N is log-convex on (0,∞).
(P6) xψn+1/ψn for n ∈ N is strictly decreasing from (0,∞) onto (n, n + 1).
(P7) ψ2

n+1/ (ψnψn+2) is strictly decreasing from (0,∞) onto (n/ (n + 1) , (n + 1) / (n + 2)).

Properties (P3)–(P5) were proved in [41,47], (P6) is due to Alzer [4,5], while (P7) was showed in [41]. More 
properties of polygamma functions can be found in [2–6,41], [8, Theorem 2.7], [21,33,38,40].

Let f : I → R be (strictly) monotonic and a, b ∈ I. Then the so-called integral f -mean of a and b is 
defined as [16]

If (a, b) = f−1

(∫ b

a
f (x) dx
b− a

)
if a �= b and If (a, a) = a.

Elezović and Pečarić [16, Theorem 6] proved that for a, b > 0, Iψ′ (a, b) ≤ Iψ (a, b) and the function 
x �→ Iψ (x + a, x + b) − x is increasing concave with

lim
x→∞

(Iψ (x + a, x + b) − x) = a + b

2 .

And therefore, for a, b > 0 the double inequality

x + Iψ (a, b) < Iψ (x + a, x + b) < x + a + b

2

holds for x ≥ 0. Very recently, Yang and Zheng [47] further showed that for a, b > 0 with a �= b, the 
sequence {Iψn

(a, b)}n≥0 is strictly decreasing with limn→∞ Iψn
(a, b) = min (a, b), and the function x �→

Aψn
(x) = Iψn

(x + a, x + b) − x is strictly increasing from (−min (a, b) ,∞) onto (min (a, b) , (a + b) /2). 
And consequently, the double inequality

x + min (a, b) < Iψn
(x + a, x + b) < x + a + b

2

holds for all x > − min (a, b).
In [3, Theorem 2] Alzer established that for an integer n ≥ 0 and a real number s ∈ (0, 1), the double 

inequality

n!
(x + αn (s))n+1 <

ψn (x + s) − ψn (x + 1)
1 − s

<
n!

(x + βn (s))n+1 (1.1)

holds for all real numbers x > 0 with the best possible constants

αn (s) =
(
ψn (s) − ψn (1)

n! (1 − s)

)−1/(n+1)

and βn (s) = s

2 .

If let s → 1 then inequality (1.1) becomes as

n!
[x + αn (1)]n+1 <

∣∣∣ψ(n) (x + 1)
∣∣∣ < n!

[x + βn (1)]n+1 , (1.2)

where αn (1) =
(
n!/

∣∣ψ(n+1) (1)
∣∣)1/(n+1) and βn (1) = 1/2 are the best constants, which was proved in [21, 

Theorem 1] by Guo, Qi, Zhao and Luo.
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Inspired by these results, we put forward a problem: how to compare Iψn
(x + p, x + q) with

Iψn
(x + r, x + s) for fixed p, q, r, s ∈ R and any x > − min (p, q, r, s)? In other words, what are the conditions 

such that the comparison inequality

Iψn
(x + p, x + q) ≤ Iψn

(x + r, x + s) (1.3)

holds for all x > − min (p, q, r, s)?
We note that the comparison inequality (1.3), for (p− q) (r − s) �= 0 and n ≥ 0, is equivalent to

ψn−1 (x + p) − ψn−1 (x + q)
p− q

≤ ψn−1 (x + r) − ψn−1 (x + s)
r − s

,

where ψ−1 := ln Γ and ψ0 = −ψ. Now let φ : (a, b) → R be a differentiable function. For fixed p, q ∈ R with 
max (p, q) − min (p, q) < b − a, let Φp,q be defined on (a− min (p, q) , b− max (p, q)) by

Φp,q(x) =

⎧⎨
⎩

φ(x + p) − φ(x + q)
p− q

if p �= q,

φ′(x + p) if p = q.
(1.4)

Then such comparison problem mentioned above can be boiled down to determine those parameters p, q, r, s
such that the comparison inequality

Φp,q(x) ≤ Φr,s(x)

holds for all x ∈ (a− ρ, b− σ), where ρ = min (p, q, r, s) and σ = max (p, q, r, s). The main purpose of this 
paper is to answer such comparison problem. Our main result is stated as follows.

Theorem 1. Let p, q, r, s, a, b ∈ R with b − a > σ − ρ, where σ = max (p, q, r, s) and ρ = min (p, q, r, s). 
Assume that φ : (a, b) → R is a three times differentiable function satisfying that φ′′(x) > (<)0 and 
η(x) = φ′′′ (x) /φ′′ (x) is strictly monotonic for all x ∈ (a, b). Then for real c1, c2 ∈ (a− ρ, b− σ) with 
c2 > c1, the comparison inequality

Φp,q(x) ≤ Φr,s(x)

holds for all x ∈ [c1, c2] if and only if

Φp,q(c1) ≤ Φr,s(c1) and Φp,q(c2) ≤ Φr,s(c2). (1.5)

Letting f = φ′. Then Theorem 1 can be equivalently stated in the following form.

Theorem 2. Let p, q, r, s, a, b ∈ R with b − a > σ − ρ, where σ = max (p, q, r, s) and ρ = min (p, q, r, s). 
Assume that f : (a, b) → R is a two times differentiable function satisfying that both f and f ′′/f ′ are strictly 
monotonic for all x ∈ (a, b). Then for real c1, c2 ∈ (a− ρ, b− σ) with c2 > c1, the comparison inequality

If (x + p, x + q) ≤ If (x + r, x + s)

holds for all x ∈ [c1, c2] if and only if
{

If (c1 + p, c1 + q) ≤ If (c1 + r, c1 + s) ,
If (c2 + p, c2 + q) ≤ If (c2 + r, c2 + s) .
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Our second aim of this paper is to deal with the comparison inequality for psi and polygamma functions 
(1.3) by applying Theorem 1 or 2. We will prove the following

Theorem 3. Let p, q, r, s ∈ R and n ≥ 0 be an integer.

(i) The comparison inequality (1.3) holds for all x > − min (p, q, r, s) if and only if min (p, q) ≤ min (r, s)
and p + q ≤ r + s.

(ii) The comparison inequality (1.3) holds for all x > x0 ≥ − min (p, q, r, s) if and only if Iψn
(x0 + p,

x0 + q) ≤ Iψn
(x0 + r, x0 + s) and p + q ≤ r + s.

(iii) The comparison inequality (1.3) holds for all − min (p, q, r, s) < x < x0 if and only if min (p, q) ≤
min (r, s) and Iψn

(x0 + p, x0 + q) ≤ Iψn
(x0 + r, x0 + s).

Corollary 1. Let p, q, r, s ∈ R and n ≥ 0 be an integer. Then the equality

Iψn
(x + p, x + q) = Iψn

(x + r, x + s)

holds for all x > − min (p, q, r, s) if and only if min (p, q) = min (r, s) and max (p, q) = max (r, s).

The rest of this paper is organized as follows. In the next section, we prove Theorems 1 and 3 by means 
of three lemmas. In the last section, as a consequence of Theorem 3, a necessary and sufficient condition 
for a ratio of gamma functions to be logarithmically completely monotonic is presented, which unifies many 
known results. Moreover, by making use of Theorem 3, some monotonicity and inequalities involving gamma, 
psi and polygamma functions are reproved and extended.

2. Proofs of Theorems 1 and 3

2.1. Lemmas

To prove Theorem 1, we need the following lemmas.

Lemma 1. Let x1, x2, x3 ∈ [a, b] and φ be two times differentiable on [a, b]. Define that

[x1, x2;φ] : =

⎧⎨
⎩

φ(x1) − φ(x2)
x1 − x2

if x1 �= x2,

φ′(x2) if x1 = x2,
(2.1)

[x1, x2, x3;φ] : =

⎧⎪⎪⎨
⎪⎪⎩

[x1, x2;φ] − [x2, x3;φ]
x1 − x3

if x1 �= x3,

∂[x1, x2;φ]
∂x1

∣∣∣∣
x1=x3

if x1 = x3.
(2.2)

Then we have

(i) [x1, x2, x3; φ] are symmetric with respect to x1, x2 and x3, that is,

[x1, x2, x3;φ] = [x1, x3, x2;φ] = [x2, x3, x1;φ]

= [x2, x1, x3;φ] = [x3, x1, x2;φ] = [x3, x2, x1;φ];

(ii) [x1, x2, x3; φ] ≥ (≤)0 if and only if φ is convex (concave) on [a, b];
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(iii) (Mean value theorem) if φ is two times differentiable on [a, b] and x1, x2, x3 ∈ [a, b], then there is a ξ
between the smallest and the largest xi such that

[x1, x2, x3;φ] = φ′′(ξ)
2! . (2.3)

The following lemma will play an important role in the proof of Theorem 1.

Lemma 2. Suppose that (i) p, q, r, s ∈ R with p ≥ q, r ≥ s and (s − p)(q − r)(s − q)(r − p) �= 0; (ii) a, b ∈ R

with b −a > σ−ρ, where σ = max (p, r) and ρ = min (q, s); (iii) φ : (a, b) → R is a three times differentiable 
function satisfying that φ′′(x) > (<)0 and η(x) = φ′′′ (x) /φ′′ (x) is strictly monotonic for all x ∈ (a, b). 
Then the function

x �→ Q(x) = Φr,s(x) − Φr,p(x)
s− p

/
Φp,q(x) − Φp,r(x)

q − r
(2.4)

is strictly monotonic on I0 := (a− ρ, b− σ), where Φp,q(x) is defined by (1.4). More precisely, we have 
sgnQ′(x) = sgn (s− q) for x ∈ I0.

Proof. Without loss of generality, we assume that η(x) = φ′′′(x)/φ′′(x) is strictly monotonic increasing on 
(a, b). We prove this lemma stepwise.

Firstly, we use (2.2) to obtain

Φr,s(x) − Φr,p(x)
s− p

= [r + x, s + x, p + x;φ]

=

⎧⎪⎨
⎪⎩

[s + x, p + x;φ] − [r + x, p + x;φ]
s− r

if s �= r,

∂ [s + x, p + x;φ]
∂s

∣∣∣∣
s=r

if s = r

=

⎧⎪⎨
⎪⎩

Φs,p(x) − Φr,p(x)
s− r

if s �= r,

lims→r
Φs,p(x) − Φr,p(x)

s− r
if s = r.

Then Q(x) can be expressed as

Q(x) = [r + x, s + x, p + x;φ]
[p + x, q + x, r + x;φ] (2.5)

=

⎧⎪⎪⎨
⎪⎪⎩

Φs,p(x) − Φr,p(x)
s− r

/
Φq,p(x) − Φr,p(x)

q − r
if s �= r,

lim
s→r

[
Φs,p(x) − Φr,p(x)

s− r

/
Φq,p(x) − Φr,p(x)

q − r

]
if s = r.

(2.6)

From (2.5) we easily see that Q(x) is symmetric with respect to p and r, and so we can assume that 
p > r. Then σ = max(p, r) = p.

Secondly, we prove that

Q′(x)
Q(x) = (s− q) · [s + x, q + x, p + x;φ] · [h(s), h(r), h(q); g ◦ h−1], (2.7)

where h and g are defined on [min (q, s) , p] by
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h(t) : = Φt,p(x) =

⎧⎨
⎩

φ(t + x) − φ(p + x)
t− p

if t �= p,

φ′(p + x) if t = p,
(2.8)

g(t) : = Φ′
t,p(x) =

⎧⎨
⎩

φ′(t + x) − φ′(p + x)
t− p

if t �= p,

φ′′(p + x) if t = p,
(2.9)

respectively.
Indeed, for s �= r, applying logarithmic derivative yields

Q′(x)
Q(x) =

Φ′
s,p(x) − Φ′

r,p(x)
Φs,p(x) − Φr,p(x) −

Φ′
q,p(x) − Φ′

r,p(x)
Φq,p(x) − Φr,p(x)

= g(s) − g(r)
h(s) − h(r) − g(q) − g(r)

h(q) − h(r)

= [h(s) − h(q)] · 1
h(s) − h(q)

(
g(s) − g(r)
h(s) − h(r) − g(q) − g(r)

h(q) − h(r)

)
.

Using notations given by (2.1) and (2.2) give

h(s) − h(q) = Φs,p(x) − Φq,p(x) = [s + x, p + x;φ] − [q + x, p + x;φ]

= (s− q) [s + x, p + x;φ] − [q + x, p + x;φ]
(s + x) − (q + x)

= (s− q) [s + x, q + x, p + x;φ] .

On the other hand, in view of φ′′(x) > (<)0 we have that

h′(x) =
∫ x

p
(u− p)φ′′(u + x)du

(x− p)2 > (<)0 (2.10)

for x ∈ (min (q, s) , p), which implies that h(x) is strictly increasing (decreasing), and so h−1 exists and is 
strictly increasing (decreasing). Then, we get

1
h(s) − h(q)

[
g(s) − g(r)
h(s) − h(r) − g(q) − g(r)

h(q) − h(r)

]
= [h(s), h(r), h(q); g ◦ h−1],

which proves (2.7).
It is easy to verify that (2.7) is also true in the case of s = r.
Thirdly, we prove sgn (Q′(x)) = sgn (s− q) for x ∈ I0.
From (ii) of Lemma 1 and assumption φ′′(x) > (<)0 it follows that

Q(x) = [r + x, s + x, p + x;φ]
[p + x, q + x, r + x;φ] > 0 and [s + x, q + x, p + x;φ] > (<)0. (2.11)

If we prove that Q1(x) := [h(s), h(r), h(q); g◦h−1] > (<)0 for all x ∈ I0, then by (2.7) we have sgn (Q′(x)) =
sgn (s− q), and the proof is complete.

Now, by (iii) of Lemma 1, there is a ξ ∈ (α, β) such that

Q1(x) = [h(s), h(r), h(q); g ◦ h−1] = 1
2(g(h−1(y)))′′

∣∣∣∣ , (2.12)

y=ξ
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where

α = min [h (q) , h (r) , h (s)] and β = max [h (q) , h (r) , h (s)] . (2.13)

We claim that F (y) := g(h−1(y)) is convex (concave) on (α, β) if φ′′ > (<) 0. In fact, differentiation gives

F ′(y) = g′(t)
h′(t) , F ′′(y) =

(
g′(t)
h′(t)

)′ 1
h′(t) , (2.14)

where t = h−1(y). Note that for t ∈ (min (q, s) , p),

g′(t) =
∫ t

p
(u− p)φ′′′(u + x)du

(t− p)2 ,

which together with (2.10) yields

g′(t)
h′(t) =

∫ t

p
(u− p)φ′′′(u + x)du∫ t

p
(u− p)φ′′(u + x)du

. (2.15)

Then for t ∈ (min (q, s) , p), we obtain

(
g′(t)
h′(t)

)′
=

(t− p)φ′′′(t + x)
∫ t

p
(u− p)φ′′(u + x)du− (t− p)φ′′(t + x)

∫ t

p
(u− p)φ′′′(u + x)du(∫ t

p
(u− p)φ′′(u + x)du

)2

=
t∫

p

(t− p) (t− u) (u− p)φ′′(t + x)φ′′(u + x)φ
′′′(t + x)/φ′′(t + x) − φ′′′(u + x)/φ′′(u + x)

(t + x) − (u + x) du.

From φ′′(t) > (<)0 and assumption that η(t) = φ′′′(t)/φ′′(t) is strictly monotonic increasing on (a, b) it 
follows that (

g′(t)
h′(t)

)′
> 0 for all t ∈ (min (q, s) , p) . (2.16)

This in combination with h′(t) > (<)0 leads us to

F ′′(y) =
(
g′(t)
h′(t)

)′ 1
h′(t) > (<)0 for all t ∈ (min (q, s) , p) , (2.17)

where t = h−1(y).
We also have to show that h−1 (ξ) ∈ (min (q, s) , p). Since h−1 is strictly increasing (decreasing) if φ′′ >

(<) 0, ξ ∈ (α, β) together with (2.13) implies that

h−1 (ξ) ∈ (min (q, r, s) ,max (q, r, s)) = (min (q, s) ,max (q, r)) ⊂ (min (q, s) , p) .

Then from (2.12) we get that

Q1(x) = 1
2(g(h−1(y)))′′

∣∣∣∣
y=ξ

=
(
g′(t)
h′(t)

)′ 1
h′(t)

∣∣∣∣∣
t=h−1(ξ)

> (<)0, (2.18)

which completes the proof of this lemma. �
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2.2. Proof of Theorem 1

Now we are in a position to prove Theorem 1.

Proof of Theorem 1. The necessity is obvious, and we only need to prove the sufficiency.
Since p, q is symmetric, and so is r, s, we assume that p ≥ q, r ≥ s.
(i) In the case of (s − p)(q − r)(s − q)(r − p) = 0. For instance, if p = r, q �= s then

Φp,q(x) − Φr,s(x) = Φp,q(x) − Φp,s(x)

= (q − s)

φ(p + x) − φ(q + x)
p + x− (q + x) − φ(p + x) − φ(s + x)

p + x− (s + x)
q + x− (s + x)

= (q − s)[p + x, q + x, s + x;φ].

Suppose that Φp,q(c1) ≤ Φr,s(c1) and Φp,q(c2) ≤ Φr,s(c2). From [p + x, q + x, s + x; φ] > (<)0 due to 
φ′′(x) > (<)0 and

Φp,q(c1) − Φr,s(c1) = (q − s)[p + c1, q + c1, s + c1;φ] ≤ 0

it follows that q − s ≤ (≥) 0. This yields

Φp,q(x) − Φr,s(x) = (q − s)[p + x, q + x, s + x;φ] ≤ 0

for all x ∈ [c1, c2].
In a similar way, the desired result is also true in other cases.
(ii) In the case of (s − p)(q − r)(s − q)(r − p) �= 0. We have

Φp,q(x) − Φr,s(x) = [Φp,q(x) − Φp,r(x)] − [Φr,s(x) − Φr,p(x)]

= Φp,q(x) − Φp,r(x)
q − r

⎛
⎜⎜⎝q − r − (s− p)

Φr,s(x) − Φr,p(x)
s− p

Φp,q(x) − Φp,r(x)
q − r

⎞
⎟⎟⎠

:= [p + x, q + x, r + x;φ]P (x), (2.19)

where

P (x) = (q − r) − (s− p)Q(x), (2.20)

here Q (x) is defined by (2.4).
Suppose that Φp,q(c1) ≤ Φr,s(c1) and Φp,q(c2) ≤ Φr,s(c2). Due to φ′′(x) > (<)0, so is [p + x, q + x,

r + x; φ] > (<)0, we have P (c1) ≤ (≥)0 and P (c2) ≤ (≥)0. As shown in Lemma 2, P is strictly monotonic 
on I0, then we arrive at P (x) ≤ (≥)0 for all x ∈ [c1, c2]. From this it follows that

Φp,q(x) − Φr,s(x) = [p + x, q + x, r + x;φ]P (x) ≤ 0

for all x ∈ [c1, c2], which completes the proof. �
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2.3. Proof of Theorem 3

Proof of Theorem 3. (i) By properties of ψn (P1) and (P4), for each integer n ≥ 0, we have that ψ′
n =

−ψn+1 < 0 and ψ′′
n/ψ

′
n = −ψn+2/ψn+1 is strictly increasing on (0,∞). Then, by Theorem 2, to prove 

comparison inequality (1.3) holds for all x > −ρ = − min (p, q, r, s), it suffices to check that Dn (−ρ+) ≤ 0
and Dn (∞) ≤ 0 if and only if min (p, q) ≤ min (r, s) and p + q ≤ r + s, where

Dn (x) = Iψn
(x + p, x + q) − Iψn

(x + r, x + s) .

It has been shown in [47, Theorem 1.3],

lim
x→− min(p,q)

(Iψn
(x + p, x + q) − x) = min (p, q) ,

lim
x→∞

(Iψn
(x + p, x + q) − x) = p + q

2 ,

so we have

lim
x→−ρ

Dn (x) = lim
x→−ρ

(Iψn
(x + p, x + q) − x) − lim

x→−ρ
(Iψn

(x + r, x + s) − x)

=
{

−Iψn
(r − ρ, s− ρ) < 0 if ρ = min (p, q) ,

Iψn
(p− ρ, q − ρ) > 0 if ρ = min (r, s) ,

lim
x→∞

Dn (x) = lim
x→∞

(Iψn
(x + p, x + q) − x) − lim

x→∞
(Iψn

(x + r, x + s) − x)

= p + q

2 − r + s

2 ,

which prove the first assertion of this theorem.
(ii) Similarly, the necessary and sufficient conditions for the comparison inequality (1.3) to hold for all 

x > x0 > −ρ are Dn (x0) ≤ 0 and Dn (∞) ≤ 0, that is, Iψn
(x0 + p, x0 + q) ≤ Iψn

(x0 + r, x0 + s) and 
p + q ≤ r + s.

(iii) In the same way, the comparison inequality (1.3) holds for all − min (p, q, r, s) < x < x0 if and only if 
Dn (−ρ+) ≤ 0 and Dn (x0) ≤ 0, which in turn if and only if min (p, q) ≤ min (r, s) and Iψn

(x0 + p, x0 + q) ≤
Iψn

(x0 + r, x0 + s).
The proof is done. �

3. Consequences and remarks

3.1. Complete monotonicity of ratios of gamma functions

Recall that a function f is said to be completely monotonic on an interval I if f has derivatives of 
all orders on I and (−1)n (f (x))(n) ≥ 0 for x ∈ I and n ≥ 0 (see [11,39]). A positive function f is called 
logarithmically completely monotonic on an interval I if f has derivatives of all orders on I and its logarithm 
ln f satisfies (−1)n (ln f (x))(n) ≥ 0 for all n ∈ N on I (see [7,30]). For convenience, we denote respectively 
the sets of the completely monotonic functions and the logarithmically completely monotonic functions on 
I by C [I] and L [I].

There is one classical paper [23] involving (logarithmically) complete monotonicity of the ratio of two 
gamma functions, which was presented by Ismail, Lorch and Muldoon in 1986. Since then, this topic has 
attracted the attention and interest of many scholars, who published a number of results including improve-
ments, generalizations by different ideals and methods (see [12,20,23,24,28,29,31–35,37,43,44,47]).
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In this subsection, we will use Theorem 3 to establish necessary and sufficient conditions for the ratio of 
two gamma functions to be completely monotonic, which unify and generalize known results given in [33, 
Theorem 1], [12,23], [32, Theorem 1], [43].

Proposition 1. For p, q, r, s ∈ R, ρ = min (p, q, r, s), let the function gp,q be defined on (−ρ,∞) by

gp,q (x) =
(

Γ (x + p)
Γ (x + q)

)1/(p−q)

if p �= q and gp,p (x) = expψ (x + p) . (3.1)

Then ln (gp,q/gr,s) is completely monotonic on (−ρ,∞) if and only if min (r, s) ≤ min (p, q) and r+s ≤ p +q.

Proof. For (p− q) (r − s) �= 0, we have

ln gp,q (x)
gr,s (x) = ln Γ (x + p) − ln Γ (x + q)

p− q
− ln Γ (x + r) − ln Γ (x + s)

r − s

=
∫ p

q
ψ (x + t) dt
p− q

−
∫ r

s
ψ (x + t) dt
r − s

.

Differentiation yields that for n ≥ 0,

(−1)n
(

ln gp,q (x)
gr,s (x)

)(n)

= (−1)n
(∫ p

q
ψ(n) (x + t) dt

p− q
−

∫ r

s
ψ(n) (x + t) dt

r − s

)

= −
∫ p

q
ψn (x + t) dt
p− q

+
∫ r

s
ψn (x + t) dt
r − s

= −ψn [Iψn
(x + p, x + q)] + ψn [Iψn

(x + r, x + s)] ,

which is obviously true for (p− q) (r − s) = 0.
Due to ψn is strictly decreasing on (0,∞), the inequality

−ψn (Iψn
(x + p, x + q)) + ψn (Iψn

(x + r, x + s)) ≥ 0

holds for x > −ρ is equivalent to

Iψn
(x + r, x + s) ≤ Iψn

(x + p, x + q) for x > −ρ,

which, by Theorem 3, is in turn equivalent to min (r, s) ≤ min (p, q) and r + s ≤ p + q, that is, the desired 
assertion holds true.

This completes the proof. �
Let us define

Hp,q,r (x) :=
(

gp,q (x)
gr,r+1 (x)

)p−q

= (x + r)q−p Γ (x + p)
Γ (x + q) .

Then

1
Hp,q,r (x) =

(
gr,r+1 (x)
gp,q (x)

)p−q

= (x + r)p−q Γ (x + q)
Γ (x + p) .

By Proposition 1, we have immediately
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Corollary 2. Let p, q, r ∈ R with p > q and ρ = min (q, r). Then

(i) lnHp,q,r ∈ C [(−ρ,∞)] if and only if r ≤ min ((p + q − 1) /2, q);
(ii) − lnHp,q,r ∈ C [(−ρ,∞)] if and only if r ≥ max ((p + q − 1) /2, q).

Remark 1. Recently, Yang and Chu [43] showed that ln (gp,q/gr,r+1) ∈ C [(−ρ,∞)] if and only if 2r ≤
p + q − max (|p− q|, 1), while ln (gr,r+1/gp,q) ∈ C [(−ρ,∞)] if and only if 2r ≥ p + q − min (|p− q|, 1). It is 
easy to check that

{r ≤ min [(p + q − 1) /2,min (p, q)]} = {2r ≤ p + q − max (|p− q|, 1)} ,
{r ≥ max [(p + q − 1) /2,min (p, q)]} = {2r ≥ p + q − min (|p− q|, 1)} .

Also, these are equivalent to Qi’s Theorem 1 in [32], [33], and generalize Ismail, Lorch and Muldoon’s 
Theorem 1 in [23] and Bustoz and Ismail’s Theorem 3 in [12, Theorem 3].

Remark 2. Recently, Mortici, Cristea and Luin [27, Theorems 1 and 2] proved that

− ln
[
x2

(
Γ (x + 1/3)
Γ (x + 1)

)3
]
∈ C [(0,∞)] and − ln

[
x

(
Γ (x + 2/3)
Γ (x + 1)

)3
]
∈ C [(0,∞)] .

Chen [13, Theorem 1] showed that for a, b > 0,

ln Γ (x + 1)
(x + a)2/3 Γ (x + 1/3)

∈ C [(0,∞)] if and only if a ≤ 1
6 ,

ln Γ (x + 1)
(x + b)1/3 Γ (x + 2/3)

∈ C [(0,∞)] if and only if b ≤ 1
3 .

Clearly, Mortici et al.’s results are special cases of Theorem 1 given in [23] by Ismail, Lorch and Muldoon. 
While Chen’s results are immediate consequences of Theorem 3 in [12] proved by Bustoz and Ismail.

For s = r, the function gp,q/gr,r can be expressed as

gp,q (x)
gr,r (x) =

⎧⎪⎨
⎪⎩

1
exp [ψ (x + r)]

(
Γ (x + p)
Γ (x + q)

)1/(p−q)

if p �= q,

eψ(x+p)−ψ(x+r) if p = q.

As a direct consequence of Proposition 1 we immediately get the following

Corollary 3. Let p, q, r ∈ R and ρ = min (p, q, r). Then ln (gp,q/gr,r) ∈ C [(−ρ,∞)] if and only if r ≤
min (p, q), while ln (gr,r/gp,q) ∈ C [(−ρ,∞)] if and only if r ≥ (p + q) /2.

Remark 3. The above corollary slightly improves Qi and Guo’s Theorem 1 in [34]. An alternative proof of 
this corollary can see [47].

Putting (p, q) = (a + b, a) and (r, s) = (b + c, c) yield

ga+b,a (x)
gb+c,c (x) =

[
Γ (x + a + b) Γ (x + c)
Γ (x + a) Γ (x + b + c)

]1/b

.

Application of Proposition 1 gives a generalization of Theorem 6 in [12] (see also [24, Lemma 1]).



Z. Yang, J.-F. Tian / J. Math. Anal. Appl. 464 (2018) 580–595 591
Corollary 4. Let a, c ∈ R and b ≥ 0. Then the function

x �→ Γ (x + a + b) Γ (x + c)
Γ (x + a) Γ (x + b + c) ∈ L [(−min (a, c) ,∞)] (3.2)

if and only if a ≥ c. In particular, if a ≥ c = 0, then the function

x �→ Γ (x) Γ (x + a + b)
Γ (x + a) Γ (x + b) ∈ L [(0,∞)] .

Remark 4. The function (3.2) is a generalization of Gurland’s ratio defined by

T (x, y) = Γ (x) Γ (y)
Γ ((x + y) /2)2

, x, y > 0, (3.3)

which appeared in Gurland’s paper [22] in 1956. See [12], [18], [24], for more information on Gurland’s ratio.

3.2. Monotonicity and inequalities for gamma, psi and polygamma functions

There are various monotonicity results and bounds for gamma, psi and polygamma functions, see for 
example, Alzer [2], [5], Batir [9], [10], Chen [14], [15], Guo and Qi [19], [21], [36], Mortici [25], [26], Yang 
and Chu [42], [48], Yang and Tian [45], [46]. The aim of this subsection is to utilize Theorem 3 to prove or 
reprove some monotonicity and inequalities for gamma, psi and polygamma functions.

Corollary 5. Let p, q ∈ R with p > q. Then for n ∈ N the double inequalities

r1 ≤
(

Γ (x + p)
Γ (x + q)

)1/(p−q)

− x ≤ r2, (3.4)

r1 ≤
[

(−1)n−1 (p− q) (n− 1)!
ψ(n−1) (x + p) − ψ(n−1) (x + q)

]−1/n

− x ≤ r2 (3.5)

hold for all x > −q if and only if r1 ≤ min ((p + q − 1) /2, q) and r2 ≥ max ((p + q − 1) /2, q).

Proof. Taking (r, s) = (r1, r1 + 1) in Theorem 3, we see that for n ≥ 0, the comparison inequality

Iψn
(x + p, x + q) ≥ Iψn

(x + r1, x + r1 + 1) ,

or equivalently,

− ln Γ (x + p) − ln Γ (x + q)
p− q

≤ − ln Γ (x + r1 + 1) − ln Γ (x + r1)
r1 + 1 − r1

, (3.6)

(−1)n−1 ψ(n−1) (x + p) − ψ(n−1) (x + q)
p− q

≤ (−1)n−1 ψ(n−1) (x + r1 + 1) − ψ(n−1) (x + r1)
r1 + 1 − r1

(3.7)

hold for all x > − min (q, r1) if and only if p + q ≥ 2r1 + 1 and min (p, q) ≥ min (r1, r1 + 1), i.e. r1 ≤
min ((p + q − 1) /2, q). By the recurrence formulas Γ (x + 1) = xΓ (x) and

ψ(n−1)(x + 1) − ψ(n−1)(x) = (−1)n−1 (n− 1)!
xn

[1, p. 260], inequalities (3.6) and (3.7) are in turn equivalent to the first ones of (3.4) and (3.5), respectively.
The second ones of (3.4) and (3.5) can be proved in a similar way. �
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Remark 5. Inequalities (3.4) and (3.5) are in fact a consequence of Theorem 3 in [12]. In [17, Theorem 1], 
Elezović, Giordano and Pečarić further showed that the function

Gp,q (x) =
(

Γ (x + p)
Γ (x + q)

)1/(p−q)

− x if p �= q and Gp,p (x) = exp [ψ (x + p)] − x (3.8)

is either convex and decreasing for |p− q| < 1 or concave and increasing for |p− q| < 1. Alzer [3, Theorem 2]
proved that the function

P [n]
p,q (x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
(−1)n−1 (p− q) (n− 1)!

ψ(n−1) (x + p) − ψ(n−1) (x + q)

)1/n

− x if p �= q,

(
(−1)n−1 (n− 1)!

ψ(n) (x + p)

)1/n

− x if p = q

(3.9)

is decreasing on (0,∞) in the case of (p, q) = (1, s) with s ∈ (0, 1). In fact, using Theorem 3 we can give a 
simple and interesting proof of the monotonicity of Gp,q, and extend Alzer’s result.

Proposition 2. Let p, q ∈ R with p > q and n ∈ N. Then both the functions x �→ Gp,q (x), P [n]
p,q (x) are increas-

ing from (−q,∞) onto (q, (p + q − 1) /2) if p − q > 1, and decreasing from (−q,∞) onto ((p + q − 1) /2, q)
if p − q < 1.

Proof. By asymptotic formulas [1, pp. 257–260, (6.141), (6.147), (6.3.18), (6.4.11)], we easily verify that

Gp,q

(
−q+) = P [n]

p,q

(
−q+) = q and Gp,q (∞) = P [n]

p,q (∞) = p + q − 1
2 ,

and hence

sup
x>−q

Gp,q (x) = sup
x>−q

P [n]
p,q (x) =

⎧⎨
⎩

p + q − 1
2 if p− q > 1,

q if p− q < 1,

inf
x>−q

Gp,q (x) = inf
x>−q

P [n]
p,q (x) =

⎧⎨
⎩

q if p− q > 1,
p + q − 1

2 if p− q < 1.

Now, suppose that p − q > 1. By Theorem 3 inequality (3.6), or equivalently,

r1 ≤ exp ln Γ (x + p) − ln Γ (x + q)
p− q

− x = Gp,q (x)

holds for x > x0 > − min (p, q, r1) if and only if

(p, q, r1) ∈ {p + q ≥ 2r1 + 1, Iψ0 (x + p, x + q) ≥ Iψ0 (x + r1, x + r1 + 1)}

=
{
r1 ≤ p + q − 1

2 , r1 ≤ exp ln Γ (x0 + p) − ln Γ (x0 + q)
p− q

− x0 = Gp,q (x0)
}
.

Due to supx>−q Gp,q (x) = (p + q − 1) /2 if p − q > 1, Therefore, the inequality r1 ≤ Gp,q (x) holds for 
all x > x0 > − min (p, q, r1) if and only if (p, q, r1) ∈ {r1 ≤ Gp,q (x0)}. When r1 = Gp,q (x0), we have 
Gp,q (x0) ≤ Gp,q (x), which, in view of arbitrariness of x0, indicates that x �→ Gp,q is increasing on (−q,∞)
if p − q > 1. Similarly, we can show that Gp,q is decreasing on (−q,∞) if p − q < 1.
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In the same way, the function x �→ P
[n]
p,q (x) is increasing (decreasing) on (−q,∞) if p − q > (< 1).

Thus we complete the proof. �
Application of the monotonicity of x �→ P

[n]
p,q (x) on (−min (p, q) ,∞) gives a generalization of Alzer’s 

inequality (1.1).

Corollary 6. Let p, q > 0 with p > q and n ∈ N. Then the double inequality

(n− 1)!
(x + r2)n

< (−1)n−1 ψ(n−1) (x + p) − ψ(n−1) (x + q)
p− q

<
(n− 1)!
(x + r1)n

(3.10)

holds for x > 0 if p − q > 1 with the best constants r1 = cn (p, q) and r2 = (p + q − 1) /2, where

cn (p, q) =
(

(−1)n−1 (p− q) (n− 1)!
ψ(n−1) (p) − ψ(n−1) (q)

)1/n

if p �= q and cn (q, q) =
(

(−1)n−1 (n− 1)!
ψ(n) (q)

)1/n

.

Inequality (3.10) reverse for x > − min (0, (p + q − 1) /2) if p − q < 1.

Using Theorem 3, we can also give an alternative proof of the increasing property of x �→ Aψn
(x) =

Iψn
(x + p, x + q) − x.

Proposition 3. Let p, q ∈ R with p > q and n ≥ 0 be an integer. Then the double inequality

r1 ≤ Aψn
(x) = Iψn

(x + p, x + q) − x ≤ r2, (3.11)

holds for all x > − min (p, q) if and only if r1 ≤ min (p, q) and r2 ≥ (p + q) /2. Furthermore, the function 
x �→ Aψn

(x) is increasing from (−min (p, q) ,∞) onto (min (p, q) , (p + q) /2).

Proof. Taking (r, s) = (r1, r1) in Theorem 3, we see that for n ≥ 0, the comparison inequality

Iψn
(x + p, x + q) ≥ Iψn

(x + r1, x + r1) = x + r1, (3.12)

or equivalently,

r1 ≤ Iψn
(x + p, x + q) − x = Aψn

(x)

holds for all x > − min (p, q, r1) if and only if p + q ≥ 2r1 and min (p, q) ≥ min (r1, r1), i.e. r1 ≤ min (p, q). 
Analogously, the right hand side inequality in (3.11) holds for all x > − min (p, q, r2) if and only if r2 ≥
(p + q) /2.

These together with Aψn
(−ρ+) = min (p, q) and Aψn

(∞) = (p + q) /2, proved in [47, Theorem 1.3], yield 
infx>−ρ Aψn

(x) = min (p, q) and supx>−ρ Aψn
(x) = (p + q) /2, where ρ = min (p, q).

On the other hand, by Theorem 3 inequality (3.12), or equivalently, r1 ≤ Aψn
(x) holds for x > x0 >

− min (p, q, r1) if and only if

(p, q, r1) ∈ {p + q ≥ 2r1 and r1 ≤ Aψn
(x0)} = {r1 ≤ Aψn

(x0)} .

Thus when r1 = Aψn
(x0) we have Aψn

(x0) ≤ Aψn
(x) for x > x0. This shows that x �→ Aψn

(x) is increasing 
on (−min (p, q) ,∞), which completes the proof. �
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