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1. Introduction

Let f be a meromorphic mapping from C™ into P"(C) with a reduced representation f = (fo, ..., fn)-
For each meromorphic mapping a from C™ into P"(C)*, which is usually called a moving hyperplane, with
a reduced representation @ = (ag, ..., a,) such that (f,a) = 31, a;f; # 0, we denote by f*a the zero divisor
of ( 1, a). We see that f*a is defined independently from the choices of f and @, and is called the intersecting
divisor of f with a. We denote by NMl(r, f*a) or N(f ])( ) the counting function of f*a (see Section 2 for
the definitions). As usual, we denote by T(r) the characteristic function of f with respect to the hyperplane
line bundle of P"(C). The moving hyperplane a is said to be slow with respect to f if T, (r) = o(T¢(r)) as
r — 400 excluding a finite Borel measures subset of [0; +00).

Let {a;}_; be moving hyperplanes of P"(C) with reduce representations a; = (ao, ..., a;n). Let N >n
and ¢ > N+1. We say that the family {a,}7_, is in N-subgeneral position if for every subset Rc{1,2,---,q}
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with the cardinality |[R| = N + 1,
rankap{a; |7 € R} =n+1,

where M denotes the field consisting of all meromorphic functions on C™. If they are in n-subgeneral
position, we simply say that they are in general position. We also denote by Ky,,32  the smallest subfield
of M, which contains C and all Z’i for a;; Z 0.

In 1991, W. Stoll and M. Ru [12,13] proved the following second main theorem.

Theorem A (Cf. [12,13]). Let f : C™ — P™(C) be a nonconstant meromorphic mapping. Let {a;}]_, be
meromorphic mappings of C™ into P™(C)* in general position such that a; are slow with respect to f and
[ is linearly nondegenerate over K, 1 . Then for every € >0,

I a=n=1=975(r) < J NG00 +olT5(r)

Here, by the notation “|P” we mean that the assertion P holds for all r € [0,00) excluding a Borel subset
E of the interval [0, 00) with [, dr < cc.

After that the above result of W. Stoll and M. Ru was reproved by M. Shirosaki [14] with a simpler
proof. This second main theorem plays an important role in Nevanlinna theory, with many applications to
Algebraic or Analytic geometry. We note that in the above result, the mapping f is assumed to be linearly
nondegenerate over the field KCr,,3a . To treat the case where f may be degenerate, we need consider the
case where the hyperplanes may be not in general position, but in subgeneral position. Thanks the notion of
Nochka weights introduced by Nochka [5], D.D. Thai and S.D. Quang [15] gave the following second main
theorem for the case where the family of hyperplanes is in subgeneral position.

Theorem B (Cf. [15]). Let f : C™ — P™(C) be a nonconstant meromorphic mapping. Let {a;}{_, be
meromorphic mappings of C™ into P™"(C)* in N-subgeneral position such that a; are slow with respect to
[ and f is linearly nondegenerate over Kq,ya_ . Then for an arbitrary € > 0,

| (g—2N+n—1—-eT¢(r) Z frag) + o(Ty(r)),

where M is a positive integer (explicitly estimated).

A natural question here is “how to generalize these results to the case where hyperplanes are replaced by
hypersurfaces”. By proposing a new technique (using a result of Corvaja and Zannier [2] on the dimension
of spaces of homogeneous polynomials), in 2004, M. Ru [11] proved a second main theorem for algebraically
nondegenerate meromorphic mappings into P”(C) intersecting hypersurfaces in general position in P™(C).
He proved the following.

Theorem C (Cf. [11]). Let f : C — P"(C) be an algebraically nondegenerate meromorphic mapping and let
Q1, ..., Qq be q hypersurfaces in P"(C) of degree d;, in general position. Then, for every ¢ > 0,

(a0 =1-0T5(0) 37 3N Q) + ol Ty(r)
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With the same assumptions, T.T.H. An and H.T. Phuong [1] improved the result of M. Ru by giving an
explicit truncation level for counting functions. Recently, in [9] we have generalized the results of M. Ru
and T.T.H. An—H.T. Phuong to the following.

Theorem D (Cf. [9]). Let f : C™ — P"(C) be an algebraically nondegenerate meromorphic mapping and
let Q1, ..., Qq be hypersurfaces in P™(C) of degree d;, in N -subgeneral position. Then, for every e > 0,

o= (¥ =m0 1) = OTH0) < 30 NG00 + o1y )

where My is positive integer (explicitly estimated).

For the case of slowly moving hypersurfaces (see Section 2 for the definition), recently G. Dethloff and
T.V. Tan [3] generalized the second main theorem of M. Ru to the following.

Theorem E (Dethloff-Tan [3]). Let f be a nonconstant meromorphic map of C™ into P™(C). Let {Q;}7_,
be a set of slowly (with respect to f) moving hypersurfaces in weakly general position with deg@; =d; (1 <
i < q). Assume that f is algebraically nondegenerate over Kiqiyo_,- Then for any € > 0 there exist positive
integers L; (j =1,....,q), depending only on n,e and d; (j =1,...,q) in an explicit way such that

Ha=n—1-Ts(r) < 37 TN () + oT5(r).

Here, K{q,y denotes the field generated by {Q;}{_, (see Section 2 for the definition).

Our purpose in this paper is to generalize all these above mentioned results to the case of moving
hypersurfaces in subgeneral position. We will prove a second main theorem for meromorphic mappings
into P™(C) intersecting a family of moving hypersurfaces in subgeneral position with truncated counting
functions. Namely, we will prove the following.

Theorem 1.1. Let f be a nonconstant meromorphic map of C™ into P™(C). Let {Q;}{_, be a family of slowly
(with respect to f) moving hypersurfaces in weakly N -subgeneral position with deg@; = d; (1 < i < q).
Assume that f is algebraically nondegenerate over Kq,ya_ . Then for any e > 0, we have

I (= (N —n+1)(n+1) - Ty(r) Zdi NED () + o(Ty (1)),

where Lj = %LO and Lo is a positive number which is defined by:
J

L L+n L+n 1 q _92
Loim ( +n)p[() ()@ -2 )
n
with L:= (n+1)d+2(N —n+1)(n+1)*I(e 1)d,
d = lem(dy, ..., dg) (the least common multiple of all d;’s),
G -0 -1

log(1 + srrmyiv—nrsy)

2.

and po:=|
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Here, by I(x) we denote the smallest integer which is not less than x. We see that, if the family of moving
hypersurfaces is in general position, i.e., N = n, then our result will imply the second main theorem of G.
Dethloff and T.V. Tan. Our idea to avoid using the Nochka weights here is that from every N + 1 arbitrary
moving hypersurfaces in weakly N-subgeneral position we will construct n + 1 new moving hypersurfaces
in weakly general position (see Lemma 3.1).

Let @ be a moving hypersurface of P™(C). We define the truncated defect of f with respect to @ by

[M] *
Ly g s N fFQ)
Oy (D) = 1= liminf =7 25—

From the above theorem, we have the following defect relation for meromorphic mappings with a family of
slowly moving hypersurfaces as follows.

Corollary 1.2. Let f be a nonconstant meromorphic map of C™ into P™(C). Let {Q;}{_; be a family of slowly
(with respect to f) moving hypersurfaces in weakly N -subgeneral position with deg@; = d; (1 < i < gq).
Assume that f is algebraically nondegenerate over Kiqyo_,- Then we have

Eq:(SW(D) <(N=n+1)(n+1).
=1

2. Basic notions and auxiliary results from Nevanlinna theory
2.1. The first main theorem in Nevanlinna theory
We set ||z]| = (Jz1]2 + -+ |Zm\2)1/2 for z = (z1,...,2m) € C™ and define
B(r):={z€C™": |zl <r}, S(r)={zeC™:|z|]|=r} (0<r<o0).
Define
Um—1(2) == (dclc||z||2)m_1 and
om(2) := d“log||z||* A (aldclogHzHQ)m_1 on C™\ {0}.

Let F be a nonzero meromorphic function on a domain  in C™. For a set a = (ay, ..., @y, ) of nonnegative
integers, we set |a| = a; + ... + ay;, and

olelFp

DF = ——n .
0%121...0%m 2,

We denote by /%, v%° and vr the zero divisor, the pole divisor, and the divisor of the meromorphic function
F respectively.
For a divisor ¥ on C™ and for a positive integer M or M = co, we set

VM) (2) = min {M, (=)},

v(2)Upm—1 it m>2,
n(t) = lv| NB(t)

> v(z) if m=1.

|z[<t
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The counting function of v is defined by

Similarly, we define N (r, v™]) and denote it by NIM(r, v).
Let ¢ : C"™ — C be a meromorphic function. Define

Ny(r) = N(r, ug), NLM](T) = NMI(r 0.

Yo

For brevity we will omit the character [M] if M = occ.

Let f : C™ — P"(C) be a meromorphic mapping. For arbitrarily fixed homogeneous coordinates
(wg : +-+: wy) on P*(C), we take a reduced representation f= (fo,- -+ fn), which means that each f; is a
holomorphic function on C™ and f(z) = (fo(2) : -+ : fu(2)) outside the analytic set I(f) = {fo = -+ =

fn = 0} of codimension > 2. Set || f|| = (| fo>+--+ |fn|2)1/2. The characteristic function of f is defined by

ﬂm=/mm%—/mmm.

S(r) S(1)

Let ¢ be a nonzero meromorphic function on C™, which are occasionally regarded as a meromorphic
map into P!(C). The proximity function of ¢ is defined by

mmww:/ﬁ%muuﬁﬁwm
S(r)

The Nevanlinna’s characteristic function of ¢ is defined as follows

T(r,p) := Ni(r) +m(r,e).

1
®

Then
Typ(r) =T(r,¢) + O(1).

The function ¢ is said to be small (with respect to f) if || T,,(r) = o(T¢(r)).
We denote by M (resp. Ky) the field of all meromorphic functions (resp. small meromorphic functions
with respect to f) on C™.

2.2. Family of moving hypersurfaces

We recall some following from [7,8].

Denote by Hem the ring of all holomorphic functions on C™. Let ) be a homogeneous polynomial
in Hem[zg,...,x,] of degree d > 1. Denote by Q(z) the homogeneous polynomial over C obtained by
substituting a specific point z € C™ into the coefficients of Q). We also call a moving hypersurface in P"*(C)
each homogeneous polynomial @ € Hgem [z, ..., x,] such that the common zero set of all coefficients of @
has codimension at least two.

Let @Q be a moving hypersurface in P"(C) of degree d > 1 given by

Q(Z) = Z a1w17

IeTy
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where Ty = {(io,...,in) € NI s ig 4+ - + i, = d}, a; € Hom and w! = Wl ---wir. We consider the
meromorphic mapping Q' : C™ — P¥(C), where N = ("Zd)7 given by

Ql(z) = (a1, (2) : -~ tary (2)) (Ta = {lo, ..., In'}).

Here Iy < --- < Iy in the lexicographic ordering. By changing the homogeneous coordinates of P"(C)
if necessary, we may assume that for each given moving hypersurface as above, aj, # 0 (note that Iy =
(0,...,0,d) and ay, is the coefficient of w?). We set

—0 alo

The moving hypersurfaces @ is said to be “slow” (with respect to f) if || T/ (r) = o(Ty(r)). This is
equivalent to [T, (r) = o(T¢(r)) (V1 < j < N), i.e., Zﬁ € Ky.

ar,

Let {Q;}{_; be a family of moving hypersurfaces in P*(C), deg Q; = d;. Assume that

We denote by K(g,je_, the smallest subfield of M which contains C and all “” with a;; #Z 0. We say that
{Qi}_, are in Weakly N-subgeneral position (N > n) if there exists z € Cm such that all a;; (1 <i<gq,
I € 7) are holomorphic at z and for any 1 <ig < -+ < iy < ¢ the system of equations

{Qij(z)(wov'“awn) =0
0<j<N

has only the trivial solution w = (0,...,0) in C"*1. If {Q,;}._, is in weakly n-subgeneral position then we
say that it is in weakly general position.

2.3. Some theorems and lemmas

Let f be a nonconstant meromorphic map of C™ into P"(C). Denote by C; the set of all non-negative
functions h : C™\ A — [0, +00] C R, which are of the form

_ ol +--+1gl
lgis1] + - + gkl

where k,1 € N, g1,...., gi4r € K\ {0} and A C C™, which may depend on g1, ...., g1+, is an analytic subset
of codimension at least two. Then, for h € C; we have

/ log hoy, = o(Ty(r)).
S(r)

Lemma 2.1 (See [3]). Let {Q:}7—, be a set of homogeneous polynomials of degree d in K¢[zo,...,xp]. Then
there exists a function hy € C¢ such that, outside an analytic set of C™ of codimension at least two,

max }|Qz(f07 afn)' S hl“fHd

1€{0,...,n
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If, moreover, this set of homogeneous polynomials is in weakly general position, then there exists a nonzero
function hy € Cy such that, outside an analytic set of C™ of codimension at least two,

hollfI|* < max |Qi(fo, .y f)l-
1€{0,...,n}

yeeny

Lemma 2.2 (Lemma on logarithmic derivative, see [6]). Let f be a nonzero meromorphic function on C™.
Then

H m(r, Daf(f))_ Ollog* T(r, f)) (o € ZT).

Repeating the argument in (Prop. 4.5 [4]), we have the following.

Proposition 2.3 (See [/, Prop. 4.5]). Let ®1, ..., @ be meromorphic functions on C™ such that {®q, ..., P}
are linearly independent over C. Then there exists an admissible set

{Oéi = (Ozﬂ, ...,Oéim)}éc:l C ZT
with || = 3770 |eu] <i—1 (1 <@ < k) such that the following are satisfied:

(i) {DY®y,...,DY®y}E | is linearly independent over M, i.e., det (D*®;) # 0,
(ii) det(D (h®;))= h* - det(D*®;) for any nonzero meromorphzc function h on C™.

The next general form of second main theorem for hyperplanes is due to M. Ru [10].

Theorem 2.4 (See [10, Theorem 2.3]). Let f be a linearly nondegenerate meromorphic mapping of C™ in
P"(C) with a reduced representation f= (fos -, fn) and let Hy, .., Hy be q arbitrary hyperplanes in P™(C).
Then we have

/ maxlog H Hf” HH H < (n+1)T¢(r) = Nwa(g,)(r) +o(Ts(r)),

S(r) JEK J

where « is an admissible set with respect to f (as in Proposition 2.3) and the mazimum is taken over all
subsets K C {1,...,q} such that {H; ; j € K} is linearly independent.

We note that the original theorem of M. Ru states only for the case of holomorphic curves from C.
However its proof also is valid for the case of meromorphic mappings from C™ with a slight modification.
We have some following algebraic lemmas from [2,3]

Lemma 2.5 (See [2, Lemma 2.2]). Let A be a commutative ring and let {¢1,...,¢p} be a reqular sequence
in A, ie, fori=1,...,p,¢; is not a zero divisor of A/(¢1,...,pi—1). Denote by I the ideal in A generated
by ¢1,...,¢p. Suppose that for some q,q1,...,qn € A, we have an equation

h

. ¢;)p g = Z¢]11(T) .. ¢g)p(7") - qr,

r=1

where (j1(r), ..., Jp(r)) > (i1,...,4p) forr=1,...,h. Then q € I.
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Here, as throughout this paper, we use the lexicographic order on N. Namely,
(jl,...,jp) > (il,...,ip)
iff for some s € {1,...,p} we have j; = ¢; for | < s and js > is.

Lemma 2.6 (See [3, Lemma 3.2]). Let {Q;}{_; (¢ > n+1) be a set of homogeneous polynomials of common

degree d > 1 in K¢z, ..., xy,] in weakly general position. Then for any pairwise different 1 < jo,...,Jn < q
the sequence {Qj,, ..., Q;,} of elements in K¢g,y[%o, ..., %] is a regular sequence, as well as all its subse-
quences.

3. Second main theorems for moving hypersurfaces
We first prove the following lemma.

Lemma 3.1. Let Q1,...,Qn+1 be homogeneous polynomials in Kylxo,...,xs] of the same degree d > 1, in
weakly N-subgeneral position. Then there exist n homogeneous polynomials Ps, ..., Poy1 in K¢[zo, ..., zyn] of
the forms

N—n+t

P, = Z Cthj, Ctj € C, t=2,...,n+1,
j=2

such that the family {P1, ..., Pny1} is in weakly general position, where Py = Q1.

Proof. We assume that @; (1 <i < N + 1) has the following form

Qi = Z ajrw’.

IeTy

By the definition of the weakly subgeneral position, there exists a point zg € C™ such that a;; is holomorphic
at zg for all 7 and I, and the following system of equations

Qi(zo)(wo, ...,wn) =0,1<i<N+1,

has only trivial solution (0, ...,0). We may assume that Q;(z9) Z0 forall 1 <i < N + 1.
For each homogeneous polynomials @ € Clxo, ..., Z,], we will denote by Q* the fixed hypersurface in
P (C) defined by Q, i.e.,

Q" ={(wo:":1wy) € PYC) | Qwo,...,wn) = 0}.
Setting P, = 1, we will show that
t
dim <ﬂQ;‘(zo)> <N—t, t=N-n+2,..,N+1, (3.2)
i=1

where dim ) = —oo. In fact, suppose that (3.2) does not hold. Then there exists an index ¢t € {N —n +
2,...,N + 1} such that dim (ﬂ:zl Qf(zo)) > N — t + 1. This implies that

N+1
dim<ﬂ Q;‘(zo)> >N—t+1—(N+1—t)=0.

i=1

This contradicts that (ﬂf\il Qr (zo)) = (). Hence the inequality (3.2) must be hold.
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Step 1. We will construct Ps as follows. For each irreducible component I" of dimension n — 1 of Q7 (zo),
we put

N—n+2
Vir = {c=(c2,-,eN-nt2) € CV7"1 T C Qi(20), where Q. = Z cjQj}

j=2
Then Vir is a linear subspace of CN~"*1. Since dim (ﬂf\:"” Qr (zo)) < n—2, there exists i € {2,...,N —

n + 2} such that ' ¢ Q7 (z). This implies that Vir is a proper linear subspace of C¥ ="+, Since the set of
irreducible components of dimension n — 1 of Q7 (z0) is at most countable,

CN—n-‘rl \UX/IF 7£ @
r

Hence, there exists (ci2, ..., C1(N—n+2)) € CN-7+1 guch that

I' ¢ P5(20)

N—n+2

for all irreducible components of dimension n—1 of Q7 (2¢), where P, = ijz

that dim (P (20) N Py (20)) <n — 2.
Step 2. For each irreducible component T' of dimension n — 2 of (P;(29) N Py (20)), put

c1;®;. This clearly implies

N—n+3

Vorr = {C = (CQ, ~~-7CN7n+3) € CN_n+2 ; I C Qz(20)7 where Qc = Z Cij}.
=2

?

N —n + 3) such that IV ¢ Q7 (z0). This implies that Vorv is a proper linear subspace of CN~"*2. Since the
set of irreducible components of dimension n — 2 of (P (z9) N P (29)) is at most countable,

Hence, Vo is a linear subspace of CN "2, Since dim (ﬂi\:l”Jrg Q’F(zo)) < n — 3, there exists i, (2 < i <

CN 72\ U Var: # 0.

Ind

Then, there exists (ca2, ..., Co(N—n+3)) € CN—n+2 guch that

" ¢ P (20)

n+

for all irreducible components of dimension n — 2 of P;(z9) N Py (z0), where P3 = Z;V:_Q 3 c2;Q;. It is clear

that dim (P;(z0) NP5 (20) N Ps(20)) < n—3.
Repeating again the above step, after the n-th step we get the hypersurfaces P, ..., P,11 satisfying that
t
dim ﬂPf(zO) <n-—t, t=2,...,n+1.

Jj=1

In particular, (ﬂ?;l P (zo)) = (. This yields that P, ..., P11 are in weakly general position. We complete
the proof of the lemma. O

Proof of Theorem 1.1. Replacing @; by Q?/ i if necessary with the note that

1 . 1
SN Qi) < N Q).
i
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we may assume that all hypersurfaces Q; (1 < i < ¢) are of the same degree d. We may also assume that
g>(N-n+1)(n+1).
Consider a reduced representation f = (fo,..., fn) : C — C"*! of f. We also note that

Noiip 1) = NG (r) + o(Ty(r).

Then without loss of generality we may assume that Q; € Ky[zo, ..., z,).
We set

T ={(i1,-int1) ;1 < iy < qi5 # iy Vj # t}

For each I = (i1, ...,in41) € Z, we denote by Pry, ..., Pr(n41) the hypersurfaces obtained in Lemma 3.1 with
respect to the family of hypersurfaces {Q;,, ..., Qiy,, }. It is easy to see that there exists a positive function
h € Cy such that

P, <h ;s
Pr(@) <h _ max 1)

for all I € Z and w = (wp, ...,wy,) € C™FL.
For a fixed point z € C™ \ U, Qi(f)~*({0,00}). We may assume that

Qi (N < 1Qi, (/)(2)] < -+ <1Qi, (N(2)I-

Let I = (i1,...,in11). Since Pry, ..., Pr,41) are in weakly general position, there exist functions go, g € Cy,
which may be chosen independent of I and z, such that

IF ()" < g0(2) Jnax [ Pr;(f )] < 9(2)|Qiy. ()(2)].

Therefore, we have

N - o, Ty I
1; o < Wl GE
<gq7N(z)hn71(z) ” (Z)HNd _
- (TS 1Qs (D) T 1P (D)
L1

< g1 (A" (2)

[P (f)(2) Nt TT s [P (D) (2)]
||f( )||Nd+(N7n)(n71)d

< g N ()" ()¢ D (Z)H P (F)(2)|N-n+1

where I = (41,...,in41) and ( is a function in Cy, which is chosen common for all I € Z, such that
|Prj(2)(@)] < ¢()l|w]|?, Vo = (wo, .. wn) € CMHL

The above inequality implies that

1 ||f(Z)||d q—Njin—1,(N—n)(n—1) Hf(z)”nd
lo ————<lo h z N —n lo — . .
el L0 iy = Bl e 1T T TR
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Now, for each non-negative integer L, we denote by Vi, the vector space (over Kyq,}) consisting of all ho-
mogeneous polynomials of degree L in Kyq,}[zo,. .., 2,] and the zero polynomial. Denote by (Pr1, ..., Pry)
the ideal in Ktq,3[zo0,. .., 2n] generated by Pri, ..., Pry,.

Lemma 3.4 (See [1, Lemma 5], [3, Proposition 3.3]). Let {P;}!_, (¢ > n+ 1) be a set of homogeneous

polynomials of common degree d > 1 in Ky[xo, ..., x,] in weakly general position. Then for any nonnegative
integer N and for any J := {j1,...,dnt C {1,...,q}, the dimension of the vector space (PVW is
J1 Jn

equal to the number of n-tuples (si1,...,8n) € N such that s1+ -+, < L and 0 < s1,...,8, < d— 1.
In particular, for all L > n(d — 1), we have
Vi

dim =d".
(le,...,Pjn) Nnvy

For each positive integer L divisible by d and for each (i) = (i1,...,i,) € N§ with o(i) = Y1, is < %,

s=1
we set

Wi = Z Pl Pl Vi_doG)-
(j):(]1a7]n)2(i)

It is clear that W(Io,.u,o) =V and W(Ii) D Wé) if (i) < (j) in the lexicographic ordering. Hence, W(Ii) is a
filtration of V..

Let (i) = (é1,...,1n), (i) = (i}, ...,4,,) € N§. Suppose that (i’) follows (i) in the lexicographic ordering.
We consider the following vector space homomorphism

Wi
. , i
©:vE€Vi_gouy = [Pri---Piiv] € W
i)
where [Pﬁ e PIi:ﬂ] is the equivalent class in ‘YVVE_‘) containing Pﬁ e PIifﬂ. We see that ¢ is surjective. We

)
will show that ker ¢ is equal to (Pr1, ..., Prn) N VL _do(i)-

In fact, for any v € ker ¢, we have
Pi---Ppy= > Ph--Pho

= Z PIJi Pjn n Vi
@) =(15dn)> (1)
where v; € Vi,_4,(j)- By Lemma 2.5 and Lemma 2.6, we have v € (Pry, ..., Prn). Then
ker o C (Pr1,-- s Pra) N Vi_gogi)-
Conversely, for any v € (Pr1, ..., Prn) N Vi_ds@), (v # 0), we have
V= ZPIshsa hs € Vi_a(o(i)+1)-
s=1

It implies that

) ig— Qs is+1 in
(10<’Y) = Z[PIi PIS iP +1PISII PInhS]'
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It is clear that Pﬁ P};?Pl HP}SE PZ"h € W(1 " and hence () =0, i.e., v € ker . Therefore, we

have
ker = (Pr1,. .., Prn) N Vi_ao()-

This yields that

Wi Vi aoi
(i) — dim L—do(i)

W(Ii,) (Pris- - Prn) O Vi_ao(@)

dim

Fix a number L large enough (chosen later). Set u = uy, := dim V;, = (*}™). We assume that

where W(Iisﬂ) follows W(Iis) in the ordering and (ix) = (£,0, 0). It is easy to see that K is the number
of n-tuples (i1,...,%,) with i; > 0 and 41 +--- + i, < %. Then we have
L
K=(47M).
n
For each k € {1,..., K — 1} we set m!, = dim WW('“ and set m%, = 1. Then by Lemma 3.6, m{ does not
(g41)
depend on {Pp1,. .., Pr,} and k, but on o(ix). Hence, we set mj = mi. We also note that
myg = dar (3.6)
. . o . . L
for all k with L — do(ix) > nd (it is equivalent to o (i) < i n).
From the above filtration, we may choose a basis {1{,--- 91} of V such that

{wu—(ms+~--+mx)+17 s ’1/)11!}

is a basis ofW(IiS). Foreach k€ {1,...,K}andl € {u— (mp+---+mg)+1,...,u— (mpy1+---+mg)},
we may write

o = Pji* - Plnthy, where (i, ..y ink) = (k) € W00,

Then we have

ink

Wi (A& < 1P (D1 |Pra(H ()] [hu(F) (2)]
<cl|P11(f( )|11k. |Pln(f)( >|'Lnk||f( )HL do(ix)

)
o (DN (P DEN g
< 1 ()14 ) ( | £(2)]| > £ ()1

where ¢; € Cy, which does not depend on f and z. Taking the product the both sides of the above inequalities
over all [ and then taking logarithms, we obtain

u K ~ ~
. o i o PRDEL L PG
mgmm”§§k<WMW@w+ +“mnmw)

+uLlog||f(2)] +loger(2),

where ¢; =[], & € Cy, which does not depend on f and z.
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For each integer [ (0 <1 < L), we set m(l) = my, where k is an index such that o(ij) = [. Since my, only
depends on o (i), the above definition of m(l) is well defined. We see that

k=1 1=0 klo(ix)=! 1=0 Elo(ix)=l
Note that, by the symmetry (i1,...,in) = (io(1), - -, lo(n)) With o € S(n), Zk‘a(ik):l isx does not depend
on s. We set
A= Z myisk, which is independent of s and 1.
k=1
Hence, (3.7) gives

o8 [T 104 ()(2)] < (ngI' i >+uzdog|f@»|+mgcxzx
=1 i=1

T e N L C L
Aognfmﬁw0<lﬂlwﬂmw+lg“’

Set cg = g4~ Npt¢N=I (=D T (1 + C§N7n+1)/A) € Cy. Combining the above inequality with (3.3), we
obtain that

@I N=n+1 0 IFEI
I ~ 1 —— " 1] . 3.8
%H Q)= 1ol s (38)

We now write

I I ..J I
wl = Z Cl.]fE € VL, clJ S K{Q7}7
JETL

where 77, is the set of all (n+1)-tuples J = (ig, ..., i,) with > o_, js = L, 2/ = xg‘) coexdrandl € {1,...,u}.
For each I, we fix an index J; € J such that ¢/, # 0. Define
<1

iy = » JeTL
lJI
Set ® = {uf,;;I Cc {1,...,q},41 = n,1 <1 < M,J € T}. Note that 1 € ®. Let B = #®. We see that
B<u(O)((*) = 1) = (*I")((5™) = 1)(%). For each positive integer I, we denote by £(®(l)) the linear

span over C of the set

Q) = {77 € P}

B+1-1
B-1 )

It is easy to see that

dim £(2(1)) < $®(1)

IA
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We may choose a positive integer p such that

B-1 9 dim L(®(p+ 1)) €
p<po:= - and - <1+ .
. dim L(®(p+1)) €
<
Indeed, if dim £(0 () >1+ St DN —n 1 1) for all p < pg, we have
dim £(®(po + 1)) > (1 + < yPo

3(n+1)(N—n+1)

Therefore, we have

. 1 B+po
log(1 + € ) < log dim L(®(po + 1)) < og (5 %)
3n+1)(N—n+1) Do Do
B— .
:ilogH1p0+l+1<(B_1)log(p0+2)
Po i Po
_B-1_ (B =1 log(1 + sprmyi—nsm)
= h B—1
= log(1 + < ).

3(n+1)(N—-n+1)

This is a contradiction.

We fix a positive integer p satisfying the above condition. Put s = dim £(®(p)) and ¢t = dim L(P(p+ 1)).
Let {b1,...,b:} be an C-basis of L(®(p + 1)) such that {b,...,bs} be a C-basis of L(®(p)).

For each I € {1,...,u}, we set

71 I I
Y = Z HygT .
JETL
For each J € Tz, we consider homogeneous polynomials ¢(zo,...,2,) = 7. Let F be a meromorphic

mapping of C™ into P*™~1(C) with a reduced representation F' = (hb;¢s(f))i<i<t.se7y,, Where h is a
nonzero meromorphic function on C™. We see that

|| Nn(r) + Nijp(r) = o(Ty(r)).

Since f is assumed to be algebraically nondegenerate over Kyq,), F' is linearly nondegenerate over C. We
see that there exist nonzero functions ci,c2 € Cy such that

alpl-IFIF < 1| < calhl[IFII".
For each I € {1,...,u},1 <4 < s, we consider the linear form Lfl in 27 such that
hbiady (f) = Liy(F).
Since f is algebraically nondegenerate over Kyq,3, it is easy to see that {bﬂ[)ll(f), 1<i<s1<I< M}

is linearly independent over C, and so is {L}(F);1 < i < 5,1 <[ < u}. This yields that {L];1 <i < s,
1 <1 < u} is linearly independent over C.
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For every point z which is not neither zero nor pole of any hb;{ ( f), we also see that

1 Wl (F)(2)| hbd ()] 1
’ Og[l;[l W}l (f)( glyzu W)ﬂﬁl f )l + OgC3( )
1<i<s

where c3, ¢4 are nonzero functions in Cy, not depend on f and I, but on {Q;}{_,. Combining this inequality
and (3.8), we obtain that

17 (=) < Nontl IE )] - 1L
log | I 3 maxlog I | P T L logey(2) |+ log co(2), (3.9)
f sA eien | LL(F)(2)]
1<i<s

for all z outside an analytic subset of C™.
Since F is linearly nondegenerate over C, there exists an admissible set o = (cvjs)1<i<, With oy € VAR

JeTL
lleis|| < tu — 1, such that
W (hbiy (f)) = det (D7 (hbids(f))) # 0
By Theorem 2.4, we have
1 ”F H < tuT — N, : o F T 3.10
max 0g H < tuTr(r) W“(hbi¢J(f))(r) + o(Tr(r)). (3.10)
1S5 )l
S(T) 15i<s
Integrating both sides of (3.9) and using (3.10), we obtain that
q
tu(N —n+1) N-n+1
qdTy(r) =Y N(r, f*Q;) < ————Tr(r) = ———— Ny (npa, (7 (")
; SA A Nwembids () (3.11)

+o(Tr(r) + Ty (r)).

We now estimate the quantity > ¢, N(r, f*Q;) — %Nwa(hbi&,(f))(r)' Fix a point zo € C™ \ I(f).
Without lose of generality, we may assume that

Vo, (20) Z - 2 Vg, (7 (20) 2 - Z v,y (20)-

First, we recall that

Qi(x) = Z aigzl e KioiylTo, - 20l

JeTa

Let T= (- ,trg, ) (k€ {l,...,q},J € Tq) be a family of variables and

=Y Tya' €ZT,a], i=1,...,q.
JETa
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For each ordered subset I = (iy,...,ixy4+1) C {1,...,q}, we denote by R; € Z[T)] the resultant of {Q7 };c;.
Then there exist a positive integer A (common for all I) and polynomials b]; (0 < i < n,j € I) in Z[T, z],
which are zero or homogeneous in x with degree of A — d such that

) Ry = Z?)LQ? forallie {1,...,q},
jel

and Ry = }?I(. o, akg,...) 0. We see that Ry € K. Set
bl =bL((. - ajs,...), (o, .. mn)).

Then we have

£ R =Y bi(HQ;(f) foralli € {0,...,n}.

JET
This implies that
VR 2 WIVG,(f) T SO0 V(-
We set R = [];cq1,. 1 Br € Kiq,}- It is easy to see that

Vb{j(f) 2 O(Iﬁi}ll/aw),

and the left hand side of this inequality is only depend on {@Q; }. Then it implies that there exists a constant c,
which depends only on {Q;}, such that

minvg, s <vRp— cr}rﬂn}l Vays»

jel

for each ordered subset I C {1,...,q} with 7 = N + 1.
Now, we let I = {1,...., N+ 1} Cc {1,...,q}. Then

vQ,(f)(20) < vr(20) — cmin Vap, (%0), J=N+1,..,q.
Also it is easy to see that

VQN,n+i(f)(ZO) <vp,(20),

and hence
u— u—1 .
VQN—n+i(f)(ZO) N Vngi]#»i(f)(ZO) < vrp(20) — Vl[f‘n ](ZO)’ =250
Therefore,
! [tu—1] [tu—1]
_ u—
D (v 0) = i) (o)) < (N =1+ Dlvg,p an) = vy o)

+ Z(Vp”(f) (ZO) - V}[:};?f%)] (ZO)) + (q - N)VQN+1(f)(ZO)

=2
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n

<N -n+1)Y (vp,,j(20) - Vl[iz?;)](zo)) (3.12)

i=1

+ (¢ = N)(vr(20) — eminva,, (20))-

Take linear forms h{l inz’/,1<l<u,s+1<i<t, J e T suchthat {Li[l; 1<i<u,1<i< S}U{h{l; 1<
I <wu,s+1 <1<t} is linearly independent over C. Moreover, we easily see that

Vi (hbid s () (70) = Viva (L1, (F),....n1, (7)) (%0)

> (vee (o) = vl 2 (0)

1<i<u
1<i<s

() — 3.13
> (mmagn (20 = Vil () 19

1<i<u
1<i<s

o . [tu—1] . 00
2 (vt o) = v ) = € 128X, Vil (20).
125,

v

Y

v

where C' is a positive constant, which is chosen independently of I, since there are only finite ordered
subset I.
Now for integers x,y, we easily see that

max{0,z +y — L} > max{0,2 — L} + min{0, y}.

It yields that

L L
Vorpa(2) = VL, (2) 2 v, (2) = v (2) = 33 (2), (3.14)
for every nonzero meromorphic functions @1, ps. If let zy,..., 25, be k1 non-negative integers and let
Y1,-- -, Yk, D€ ko negative integers, then we have the following estimate

max{0,zy + -+ o, +y1 +--- +yr, — L}

k‘l k2
> Z max{0,2; — L} + Z min{0, y; }
i=1 i=1

k1 k2
= Z(max{(), x; — L} + min{0, 2;}) + Z(max{o, y; — L} + min{0,y;}).
i=1 i=1
This yields that
k
L 00
M1, 0 () VL, (2) 2 D 04(2) = v4l(0) =50 (3.15)

for any meromorphic functions ¢; (1 < i < k).
Foreach 1 <l <wu,1 <i< s we have
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where (i1x, ..., ink) = Ix, b € Vi_go(,) and by is independent of f. Now using (3.14) and (3.15), we have

o _ [tu—1] ] . [tu—1] .
qu{l(f)(zo) Van () (20) = v " P;;'k(f)(zo) v ;LlP]k(f)(Z) VclleI (20)

. tu—1
> lek(l/p”(f)(zo) - VLIJ(J;%(Z())) —c n];%x Va,,(20),
j=1 ’

where ¢; is a constant, which depends only on {Q;},t and L. Summing-up both sides of the above inequalities
overall 1 <i<wu,1<1<s, weget

n K
o [tufl] _
1;<:u(ngl(f)<ZO) w[ (f) -_1Skz_1mkljk Ve (zo) VPIj(f)(ZO)) ca II;?]XV@J-J(ZO)
1<0<s =
n
tu—1
= Asz; Vp,,(f)(20) = ! ](f;(zo)) — cpmax Va,,(20), (3.16)
=

where ¢; is a constant, which depends only on {Q;},t and L.
Combining (3.13) and (3.16), we get

n
[tu—1]

Ve (nbida (7)) (70) = As z;( Py (7 (20) = Vpy, () (0)) — camax vy, (20) = € max vii, (2o).
=

Combining (3.12) and this inequality, we obtain

N—-n+1
A, Yweds (i) (#0)

2 3 0,5 (20) ~ gy (o)) = (N =t 1)la = N)(va(0)

N—-n+1
As

+ ¢ max vg,, (20)) —

o0
max (ca max Vo, (20) +C max vy, (20))-

Integrating both sides of the above inequality, we obtain that

N-n+1 a ftu_1)
= Nwewig, (" Z Na.p(r) = Ny, ) (1) +o(T¢ (7).

From this inequality and (3.11) with a note that Tr(r) = LTy (r) + o(Ts(r)), we have

tuL(N —n+1 1 -1
- = — Nt~ . 1
(g R = 3 N 5@ + olTy(r) (317)
Now we give some estimates for A, ¢ and s. For each I, = (i1g,...,ink) With o(ix) < % —n, we set

I n
Z-('n,Jrl)lc = E —n—- le
s=1

Since the number of nonnegative integer p-tuples with summation < T is equal to the number of nonnegative
integer (p + 1)-tuples with summation exactly equal to T' € Z, which is (T:”), and since the sum below is

independent of s, we have
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n+1

Y ombiaz Y mhia=-tr Y Yia

<L,n s=1

o(in)<% o(in)<L—n o(ix

(5N (L a
_n+1.<n).<g_n>_d (nJrl)'

we have

Now, for every positive number z € [0, m],
ni

(3.18)

1
Sl—l—nm—&—zﬁxSl—I—(n—i—l)x.
i=2

We chose L = (n+1)d + 2(N —n + 1)(n + 1)3I(e~1)d. Then L is divisible by d and we have

(n+1)d (n+1)d U (3.19)

L—(n+1)d 2(N-n+1)(n+1)3Ie1)d = 2(n+1)2

Therefore, using (3.18) and (3.19) we have

ul (L
dA dn+1( i )

L- (L+1) (L+n) (L—nd)-(L—(n—1)d)--L
1-2. / 1-2---(n+1)

n L+ "
~(n+1) Hm<(n+l)(m)
n (n+1)2d
=(n+1) (1+T1)d> <(n+1) <1+ 2(Nn+1)(n+1)31(51)d>

(n+1)3d
s+ Dt N o S s o

Then we have

tul g4 < Yn+1+
dAs =V T3+ (N —n+1)

)
2(N—-n+1)
€ € €
< 1 3.20
S SN D) 3Nt D) 6N —n+ 1) (8:20)

n+1+4+

N—-n+1

Combining (3.17) and (3.20), we get

—_

Z_N[w Uir, £*Qi) + o(Ty (r)). (3.21)

(q—(N—n+1)(n+1)—e) Tf(r g

Here we note that:

o L:i=(n+1)d+2(N—-n+1)(n+1)>3I(e')d,

B-1 r< [(L:n)«L:n)—n(g)—l :
log(1 + m) log(1 + WN—”H))
o tu—1< (B By 1 < (BBl < (LG)p((fi")((L:")fn(i)ﬂ 1= L,

)

* Po:=
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By these estimates and by (3.21), we obtain

g = (N —n+ 1)+ 1) = OTp(r) < 32 SN0 72Q0) + o(Ty ().
i=1

The theorem is proved. O
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