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Let Q1, ..., Qq be q slowly moving hypersurfaces in Pn(C) of degree di which are 
located in N -subgeneral position. Let f be a meromorphic mapping from Cm into 
Pn(C) which is algebraically nondegenerate over the field generated by Qi’s. In this 
paper, we will prove that, for every ε > 0, there exists a positive integer M such 
that

|| (q − (N − n + 1)(n + 1) − ε)Tf (r) ≤
q∑

i=1

1
di

N [M ](r, f∗Qi) + o(Tf (r)).

Moreover, an explicit estimate for M is given. Our result is an extension of 
the previous second main theorems for meromorphic mappings and moving 
hypersurfaces.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Let f be a meromorphic mapping from Cm into Pn(C) with a reduced representation f̃ = (f0, ..., fn). 
For each meromorphic mapping a from Cm into Pn(C)∗, which is usually called a moving hyperplane, with 
a reduced representation ã = (a0, ..., an) such that (f̃ , ̃a) =

∑n
i=0 aifi �≡ 0, we denote by f∗a the zero divisor 

of (f̃ , ̃a). We see that f∗a is defined independently from the choices of f̃ and ã, and is called the intersecting 
divisor of f with a. We denote by N [M ](r, f∗a) or N [M ]

(f,a)(r) the counting function of f∗a (see Section 2 for 
the definitions). As usual, we denote by Tf(r) the characteristic function of f with respect to the hyperplane 
line bundle of Pn(C). The moving hyperplane a is said to be slow with respect to f if Ta(r) = o(Tf (r)) as 
r → +∞ excluding a finite Borel measures subset of [0; +∞).

Let {ai}qi=1 be moving hyperplanes of Pn(C) with reduce representations ãi = (ai0, . . . , ain). Let N ≥ n

and q ≥ N+1. We say that the family {ai}qi=1 is in N -subgeneral position if for every subset R ⊂ {1, 2, · · · , q}
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with the cardinality |R| = N + 1,

rankM{ãi | i ∈ R} = n + 1,

where M denotes the field consisting of all meromorphic functions on Cm. If they are in n-subgeneral 
position, we simply say that they are in general position. We also denote by K{ai}q

i=1
the smallest subfield 

of M, which contains C and all aij

aik
for aik �≡ 0.

In 1991, W. Stoll and M. Ru [12,13] proved the following second main theorem.

Theorem A (Cf. [12,13]). Let f : Cm −→ Pn(C) be a nonconstant meromorphic mapping. Let {ai}qi=1 be 
meromorphic mappings of Cm into Pn(C)∗ in general position such that ai are slow with respect to f and 
f is linearly nondegenerate over K{ai}q

i=1
. Then for every ε > 0,

|| (q − n− 1 − ε)Tf (r) ≤
q∑

i=1
N(r, f∗ai) + o(Tf (r)).

Here, by the notation “‖P” we mean that the assertion P holds for all r ∈ [0, ∞) excluding a Borel subset 
E of the interval [0, ∞) with 

∫
E
dr < ∞.

After that the above result of W. Stoll and M. Ru was reproved by M. Shirosaki [14] with a simpler 
proof. This second main theorem plays an important role in Nevanlinna theory, with many applications to 
Algebraic or Analytic geometry. We note that in the above result, the mapping f is assumed to be linearly 
nondegenerate over the field K{ai}q

i=1
. To treat the case where f may be degenerate, we need consider the 

case where the hyperplanes may be not in general position, but in subgeneral position. Thanks the notion of 
Nochka weights introduced by Nochka [5], D.D. Thai and S.D. Quang [15] gave the following second main 
theorem for the case where the family of hyperplanes is in subgeneral position.

Theorem B (Cf. [15]). Let f : Cm −→ Pn(C) be a nonconstant meromorphic mapping. Let {ai}qi=1 be 
meromorphic mappings of Cm into Pn(C)∗ in N -subgeneral position such that ai are slow with respect to 
f and f is linearly nondegenerate over K{ai}q

i=1
. Then for an arbitrary ε > 0,

|| (q − 2N + n− 1 − ε)Tf (r) ≤
q∑

i=1
N [M ](r, f∗ai) + o(Tf (r)),

where M is a positive integer (explicitly estimated).

A natural question here is “how to generalize these results to the case where hyperplanes are replaced by 
hypersurfaces”. By proposing a new technique (using a result of Corvaja and Zannier [2] on the dimension 
of spaces of homogeneous polynomials), in 2004, M. Ru [11] proved a second main theorem for algebraically 
nondegenerate meromorphic mappings into Pn(C) intersecting hypersurfaces in general position in Pn(C). 
He proved the following.

Theorem C (Cf. [11]). Let f : C → Pn(C) be an algebraically nondegenerate meromorphic mapping and let 
Q1, ..., Qq be q hypersurfaces in Pn(C) of degree di, in general position. Then, for every ε > 0,

|| (q − n− 1 − ε)Tf (r) ≤
q∑

i=1

1
di
N(r, f∗Qi) + o(Tf (r)).
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With the same assumptions, T.T.H. An and H.T. Phuong [1] improved the result of M. Ru by giving an 
explicit truncation level for counting functions. Recently, in [9] we have generalized the results of M. Ru 
and T.T.H. An–H.T. Phuong to the following.

Theorem D (Cf. [9]). Let f : Cm → Pn(C) be an algebraically nondegenerate meromorphic mapping and 
let Q1, ..., Qq be hypersurfaces in Pn(C) of degree di, in N -subgeneral position. Then, for every ε > 0,

|| (q − (N − n + 1)(n + 1) − ε)Tf (r) ≤
q∑

i=1

1
di
N

[M0−1]
Qi(f) (r) + o(Tf (r)),

where M0 is positive integer (explicitly estimated).

For the case of slowly moving hypersurfaces (see Section 2 for the definition), recently G. Dethloff and 
T.V. Tan [3] generalized the second main theorem of M. Ru to the following.

Theorem E (Dethloff–Tan [3]). Let f be a nonconstant meromorphic map of Cm into Pn(C). Let {Qi}qi=1
be a set of slowly (with respect to f) moving hypersurfaces in weakly general position with degQj = dj (1 ≤
i ≤ q). Assume that f is algebraically nondegenerate over K{Qi}q

i=1
. Then for any ε > 0 there exist positive 

integers Lj (j = 1, ...., q), depending only on n, ε and dj (j = 1, ..., q) in an explicit way such that

|| (q − n− 1 − ε)Tf (r) ≤
q∑

i=1

1
di
N

[Lj ]
Qi(f)(r) + o(Tf (r)).

Here, K{Qi} denotes the field generated by {Qi}qi=1 (see Section 2 for the definition).

Our purpose in this paper is to generalize all these above mentioned results to the case of moving 
hypersurfaces in subgeneral position. We will prove a second main theorem for meromorphic mappings 
into Pn(C) intersecting a family of moving hypersurfaces in subgeneral position with truncated counting 
functions. Namely, we will prove the following.

Theorem 1.1. Let f be a nonconstant meromorphic map of Cm into Pn(C). Let {Qi}qi=1 be a family of slowly 
(with respect to f) moving hypersurfaces in weakly N -subgeneral position with degQi = di (1 ≤ i ≤ q). 
Assume that f is algebraically nondegenerate over K{Qi}q

i=1
. Then for any ε > 0, we have

|| (q − (N − n + 1)(n + 1) − ε)Tf (r) ≤
q∑

i=1

1
di
N

[Lj ]
Qi(f)(r) + o(Tf (r)),

where Lj = 1
dj
L0 and L0 is a positive number which is defined by:

L0 :=
(
L + n

n

)
p

(L+n
n

)((L+n
n

)
−1
)(q

n

)
−2

0 − 1

with L := (n + 1)d + 2(N − n + 1)(n + 1)3I(ε−1)d,

d := lcm(d1, . . . , dq)(the least common multiple of all di’s),

and p0 := [
(
L+n
n

)
(
(
L+n
n

)
− 1)

(
q
n

)
− 1

log(1 + ε
3(n+1)(N−n+1) )

]2.
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Here, by I(x) we denote the smallest integer which is not less than x. We see that, if the family of moving 
hypersurfaces is in general position, i.e., N = n, then our result will imply the second main theorem of G. 
Dethloff and T.V. Tan. Our idea to avoid using the Nochka weights here is that from every N +1 arbitrary 
moving hypersurfaces in weakly N -subgeneral position we will construct n + 1 new moving hypersurfaces 
in weakly general position (see Lemma 3.1).

Let Q be a moving hypersurface of Pn(C). We define the truncated defect of f with respect to Q by

δ
[L]
f (D) = 1 − lim inf

r→+∞
N [M ](r, f∗Q)

dTf (r) .

From the above theorem, we have the following defect relation for meromorphic mappings with a family of 
slowly moving hypersurfaces as follows.

Corollary 1.2. Let f be a nonconstant meromorphic map of Cm into Pn(C). Let {Qi}qi=1 be a family of slowly 
(with respect to f) moving hypersurfaces in weakly N -subgeneral position with degQj = dj (1 ≤ i ≤ q). 
Assume that f is algebraically nondegenerate over K{Qi}q

i=1
. Then we have

q∑
i=1

δ
[L0]
f (D) ≤ (N − n + 1)(n + 1).

2. Basic notions and auxiliary results from Nevanlinna theory

2.1. The first main theorem in Nevanlinna theory

We set ‖z‖ =
(
|z1|2 + · · · + |zm|2

)1/2 for z = (z1, . . . , zm) ∈ Cm and define

B(r) := {z ∈ Cm : ‖z‖ < r}, S(r) := {z ∈ Cm : ‖z‖ = r} (0 < r < ∞).

Define

vm−1(z) :=
(
ddc‖z‖2)m−1 and

σm(z) := dclog‖z‖2 ∧
(
ddclog‖z‖2)m−1 on Cm \ {0}.

Let F be a nonzero meromorphic function on a domain Ω in Cm. For a set α = (α1, ..., αm) of nonnegative 
integers, we set |α| = α1 + ... + αm and

DαF = ∂|α|F

∂α1z1...∂αmzm
.

We denote by ν0
F , ν

∞
F and νF the zero divisor, the pole divisor, and the divisor of the meromorphic function 

F respectively.
For a divisor ν on Cm and for a positive integer M or M = ∞, we set

ν[M ](z) = min {M,ν(z)},

n(t) =

⎧⎪⎪⎨
⎪⎪⎩

∫
|ν| ∩B(t)

ν(z)vm−1 if m ≥ 2,
∑

|z|≤t

ν(z) if m = 1.
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The counting function of ν is defined by

N(r, ν) =
r∫

1

n(t)
t2m−1 dt (1 < r < ∞).

Similarly, we define N(r, ν[M ]) and denote it by N [M ](r, ν).
Let ϕ : Cm −→ C be a meromorphic function. Define

Nϕ(r) = N(r, ν0
ϕ), N [M ]

ϕ (r) = N [M ](r, ν0
ϕ).

For brevity we will omit the character [M ] if M = ∞.
Let f : Cm −→ Pn(C) be a meromorphic mapping. For arbitrarily fixed homogeneous coordinates 

(w0 : · · · : wn) on Pn(C), we take a reduced representation f̃ = (f0, . . . , fn), which means that each fi is a 
holomorphic function on Cm and f(z) =

(
f0(z) : · · · : fn(z)

)
outside the analytic set I(f) = {f0 = · · · =

fn = 0} of codimension ≥ 2. Set ‖f̃‖ =
(
|f0|2 + · · ·+ |fn|2

)1/2. The characteristic function of f is defined by

Tf (r) =
∫

S(r)

log ‖f̃‖σm −
∫

S(1)

log ‖f̃‖σm.

Let ϕ be a nonzero meromorphic function on Cm, which are occasionally regarded as a meromorphic 
map into P1(C). The proximity function of ϕ is defined by

m(r, ϕ) :=
∫

S(r)

log max (|ϕ|, 1)σm.

The Nevanlinna’s characteristic function of ϕ is defined as follows

T (r, ϕ) := N 1
ϕ
(r) + m(r, ϕ).

Then

Tϕ(r) = T (r, ϕ) + O(1).

The function ϕ is said to be small (with respect to f) if || Tϕ(r) = o(Tf (r)).
We denote by M (resp. Kf ) the field of all meromorphic functions (resp. small meromorphic functions 

with respect to f) on Cm.

2.2. Family of moving hypersurfaces

We recall some following from [7,8].
Denote by HCm the ring of all holomorphic functions on Cm. Let Q be a homogeneous polynomial 

in HCm [x0, . . . , xn] of degree d ≥ 1. Denote by Q(z) the homogeneous polynomial over C obtained by 
substituting a specific point z ∈ Cm into the coefficients of Q. We also call a moving hypersurface in Pn(C)
each homogeneous polynomial Q ∈ HCm [x0, . . . , xn] such that the common zero set of all coefficients of Q
has codimension at least two.

Let Q be a moving hypersurface in Pn(C) of degree d ≥ 1 given by

Q(z) =
∑

aIω
I ,
I∈Td
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where Td = {(i0, ..., in) ∈ Nn+1
0 ; i0 + · · · + in = d}, aI ∈ HCm and ωI = ωi0

0 · · ·ωin
n . We consider the 

meromorphic mapping Q′ : Cm → PN (C), where N =
(
n+d
n

)
, given by

Q′(z) = (aI0(z) : · · · : aIN (z)) (Td = {I0, ..., IN}).

Here I0 < · · · < IN in the lexicographic ordering. By changing the homogeneous coordinates of Pn(C)
if necessary, we may assume that for each given moving hypersurface as above, aI0 �≡ 0 (note that I0 =
(0, . . . , 0, d) and aI0 is the coefficient of ωd

n). We set

Q̃ =
N∑
j=0

aIj
aI0

ωIj .

The moving hypersurfaces Q is said to be “slow” (with respect to f) if || TQ′(r) = o(Tf (r)). This is 
equivalent to ||T aIj

aI0

(r) = o(Tf (r)) (∀1 ≤ j ≤ N), i.e., aIj

aI0
∈ Kf .

Let {Qi}qi=1 be a family of moving hypersurfaces in Pn(C), degQi = di. Assume that

Qi =
∑
I∈Tdi

aiIω
I .

We denote by K{Qi}q
i=1

the smallest subfield of M which contains C and all aiI

aiJ
with aiJ �≡ 0. We say that 

{Qi}qi=1 are in weakly N -subgeneral position (N ≥ n) if there exists z ∈ Cm such that all aiI (1 ≤ i ≤ q,

I ∈ I) are holomorphic at z and for any 1 ≤ i0 < · · · < iN ≤ q the system of equations

{
Qij (z)(w0, . . . , wn) = 0

0 ≤ j ≤ N

has only the trivial solution w = (0, . . . , 0) in Cn+1. If {Qi}qi=1 is in weakly n-subgeneral position then we 
say that it is in weakly general position.

2.3. Some theorems and lemmas

Let f be a nonconstant meromorphic map of Cm into Pn(C). Denote by Cf the set of all non-negative 
functions h : Cm \A −→ [0, +∞] ⊂ R, which are of the form

h = |g1| + · · · + |gl|
|gl+1| + · · · + |gl+k|

,

where k, l ∈ N, g1, ...., gl+k ∈ Kf \{0} and A ⊂ Cm, which may depend on g1, ...., gl+k, is an analytic subset 
of codimension at least two. Then, for h ∈ Cf we have

∫
S(r)

log hσm = o(Tf (r)).

Lemma 2.1 (See [3]). Let {Qi}ni=0 be a set of homogeneous polynomials of degree d in Kf [x0, ..., xn]. Then 
there exists a function h1 ∈ Cf such that, outside an analytic set of Cm of codimension at least two,

max |Qi(f0, ..., fn)| ≤ h1‖f‖d.

i∈{0,...,n}
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If, moreover, this set of homogeneous polynomials is in weakly general position, then there exists a nonzero 
function h2 ∈ Cf such that, outside an analytic set of Cm of codimension at least two,

h2‖f‖d ≤ max
i∈{0,...,n}

|Qi(f0, ..., fn)|.

Lemma 2.2 (Lemma on logarithmic derivative, see [6]). Let f be a nonzero meromorphic function on Cm. 
Then

∣∣∣∣
∣∣∣∣ m

(
r,
Dα(f)

f

)
= O(log+ T (r, f)) (α ∈ Zm

+ ).

Repeating the argument in (Prop. 4.5 [4]), we have the following.

Proposition 2.3 (See [4, Prop. 4.5]). Let Φ1, ..., Φk be meromorphic functions on Cm such that {Φ1, ..., Φk}
are linearly independent over C. Then there exists an admissible set

{αi = (αi1, ..., αim)}ki=1 ⊂ Zm
+

with |αi| =
∑m

j=1 |αij | ≤ i − 1 (1 ≤ i ≤ k) such that the following are satisfied:

(i) {DαiΦ1, ..., DαiΦk}ki=1 is linearly independent over M, i.e., det (DαiΦj) �≡ 0,
(ii) det

(
Dαi(hΦj)

)
= hk · det

(
DαiΦj

)
for any nonzero meromorphic function h on Cm.

The next general form of second main theorem for hyperplanes is due to M. Ru [10].

Theorem 2.4 (See [10, Theorem 2.3]). Let f be a linearly nondegenerate meromorphic mapping of Cm in 
Pn(C) with a reduced representation f̃ = (f0, ..., fn) and let H1, .., Hq be q arbitrary hyperplanes in Pn(C). 
Then we have

||
∫

S(r)

max
K

log

⎛
⎝∏

j∈K

‖f̃‖.‖Hj‖
|Hj(f̃)|

σm

⎞
⎠ ≤ (n + 1)Tf (r) −NWα(fi)(r) + o(Tf (r)),

where α is an admissible set with respect to f̃ (as in Proposition 2.3) and the maximum is taken over all 
subsets K ⊂ {1, ..., q} such that {Hj ; j ∈ K} is linearly independent.

We note that the original theorem of M. Ru states only for the case of holomorphic curves from C. 
However its proof also is valid for the case of meromorphic mappings from Cm with a slight modification.

We have some following algebraic lemmas from [2,3]

Lemma 2.5 (See [2, Lemma 2.2]). Let A be a commutative ring and let {φ1, . . . , φp} be a regular sequence 
in A, i.e., for i = 1, . . . , p, φi is not a zero divisor of A/(φ1, . . . , φi−1). Denote by I the ideal in A generated 
by φ1, . . . , φp. Suppose that for some q, q1, . . . , qh ∈ A, we have an equation

φi1
1 · · ·φip

p · q =
h∑

r=1
φ
j1(r)
1 · · ·φjp(r)

p · qr,

where (j1(r), . . . , jp(r)) > (i1, . . . , ip) for r = 1, . . . , h. Then q ∈ I.
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Here, as throughout this paper, we use the lexicographic order on Np
0. Namely,

(j1, . . . , jp) > (i1, . . . , ip)

iff for some s ∈ {1, . . . , p} we have jl = il for l < s and js > is.

Lemma 2.6 (See [3, Lemma 3.2]). Let {Qi}qi=1 (q ≥ n + 1) be a set of homogeneous polynomials of common 
degree d ≥ 1 in Kf [x0, . . . , xn] in weakly general position. Then for any pairwise different 1 ≤ j0, . . . , jn ≤ q

the sequence {Qj0 , . . . , Qjn} of elements in K{Qi}[x0, . . . , xn] is a regular sequence, as well as all its subse-
quences.

3. Second main theorems for moving hypersurfaces

We first prove the following lemma.

Lemma 3.1. Let Q1, ..., QN+1 be homogeneous polynomials in Kf [x0, ..., xn] of the same degree d ≥ 1, in 
weakly N -subgeneral position. Then there exist n homogeneous polynomials P2, ..., Pn+1 in Kf [x0, ..., xn] of 
the forms

Pt =
N−n+t∑
j=2

ctjQj , ctj ∈ C, t = 2, ..., n + 1,

such that the family {P1, ..., Pn+1} is in weakly general position, where P1 = Q1.

Proof. We assume that Qi (1 ≤ i ≤ N + 1) has the following form

Qi =
∑
I∈Td

aiIω
I .

By the definition of the weakly subgeneral position, there exists a point z0 ∈ Cm such that aiI is holomorphic 
at z0 for all i and I, and the following system of equations

Qi(z0)(ω0, ..., ωn) = 0, 1 ≤ i ≤ N + 1,

has only trivial solution (0, ..., 0). We may assume that Qi(z0) �≡ 0 for all 1 ≤ i ≤ N + 1.
For each homogeneous polynomials Q ∈ C[x0, ..., xn], we will denote by Q∗ the fixed hypersurface in 

Pn(C) defined by Q, i.e.,

Q∗ = {(ω0 : · · · : ωn) ∈ Pn(C) | Q(ω0, ..., ωn) = 0}.

Setting P1 = Q1, we will show that

dim
(

t⋂
i=1

Q∗
i (z0)

)
≤ N − t, t = N − n + 2, ..., N + 1, (3.2)

where dim ∅ = −∞. In fact, suppose that (3.2) does not hold. Then there exists an index t ∈ {N − n +
2, ..., N + 1} such that dim

(⋂t
i=1 Q

∗
i (z0)

)
≥ N − t + 1. This implies that

dim
(

N+1⋂
i=1

Q∗
i (z0)

)
≥ N − t + 1 − (N + 1 − t) = 0.

This contradicts that 
(⋂N+1

Q∗
i (z0)

)
= ∅. Hence the inequality (3.2) must be hold.
i=1
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Step 1. We will construct P2 as follows. For each irreducible component Γ of dimension n − 1 of Q∗
1(z0), 

we put

V1Γ = {c = (c2, ..., cN−n+2) ∈ CN−n+1 ; Γ ⊂ Q∗
c(z0), where Qc =

N−n+2∑
j=2

cjQj}.

Then V1Γ is a linear subspace of CN−n+1. Since dim
(⋂N−n+2

i=1 Q∗
i (z0)

)
≤ n − 2, there exists i ∈ {2, ..., N −

n + 2} such that Γ �⊂ Q∗
i (z0). This implies that V1Γ is a proper linear subspace of CN−n+1. Since the set of 

irreducible components of dimension n − 1 of Q∗
1(z0) is at most countable,

CN−n+1 \
⋃
Γ
V1Γ �= ∅.

Hence, there exists (c12, ..., c1(N−n+2)) ∈ CN−n+1 such that

Γ �⊂ P ∗
2 (z0)

for all irreducible components of dimension n −1 of Q∗
1(z0), where P2 =

∑N−n+2
j=2 c1jQj . This clearly implies 

that dim (P ∗
1 (z0) ∩ P ∗

2 (z0)) ≤ n − 2.
Step 2. For each irreducible component Γ′ of dimension n − 2 of (P ∗

1 (z0) ∩ P ∗
2 (z0)), put

V2Γ′ = {c = (c2, ..., cN−n+3) ∈ CN−n+2 ; Γ ⊂ Q∗
c(z0), where Qc =

N−n+3∑
j=2

cjQj}.

Hence, V2Γ′ is a linear subspace of CN−n+2. Since dim
(⋂N−n+3

i=1 Q∗
i (z0)

)
≤ n − 3, there exists i, (2 ≤ i ≤

N − n + 3) such that Γ′ �⊂ Q∗
i (z0). This implies that V2Γ′ is a proper linear subspace of CN−n+2. Since the 

set of irreducible components of dimension n − 2 of (P ∗
1 (z0) ∩ P ∗

2 (z0)) is at most countable,

CN−n+2 \
⋃
Γ′

V2Γ′ �= ∅.

Then, there exists (c22, ..., c2(N−n+3)) ∈ CN−n+2 such that

Γ′ �⊂ P ∗
3 (z0)

for all irreducible components of dimension n − 2 of P ∗
1 (z0) ∩P ∗

2 (z0), where P3 =
∑N−n+3

j=2 c2jQj . It is clear 
that dim (P ∗

1 (z0) ∩ P ∗
2 (z0) ∩ P ∗

3 (z0)) ≤ n − 3.
Repeating again the above step, after the n-th step we get the hypersurfaces P2, ..., Pn+1 satisfying that

dim

⎛
⎝ t⋂

j=1
P ∗
j (z0)

⎞
⎠ ≤ n− t, t = 2, . . . , n + 1.

In particular, 
(⋂n+1

j=1 P ∗
j (z0)

)
= ∅. This yields that P1, ..., Pn+1 are in weakly general position. We complete 

the proof of the lemma. �
Proof of Theorem 1.1. Replacing Qi by Qd/di

i if necessary with the note that

1
N [L0](r, f∗Q

d/di

i ) ≤ 1
N [Lj ](r, f∗Qi),
d di
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we may assume that all hypersurfaces Qi (1 ≤ i ≤ q) are of the same degree d. We may also assume that 
q > (N − n + 1)(n + 1).

Consider a reduced representation f̃ = (f0, . . . , fn) : C → Cn+1 of f . We also note that

N
[L0]
Qi(f̃)(r) = N

[L0]
Q̃(f̃)(r) + o(Tf (r)).

Then without loss of generality we may assume that Qi ∈ Kf [x0, ..., xn].
We set

I = {(i1, ..., iN+1) ; 1 ≤ ij ≤ q, ij �= it ∀j �= t}.

For each I = (i1, ..., iN+1) ∈ I, we denote by PI1, ..., PI(n+1) the hypersurfaces obtained in Lemma 3.1 with 
respect to the family of hypersurfaces {Qi1 , ..., QiN+1}. It is easy to see that there exists a positive function 
h ∈ Cf such that

|PIt(ω)| ≤ h max
1≤j≤N+1−n+t

|Qij (ω)|,

for all I ∈ I and ω = (ω0, ..., ωn) ∈ Cn+1.
For a fixed point z ∈ Cm \

⋃q
i=1 Qi(f̃)−1({0, ∞}). We may assume that

|Qi1(f̃)(z)| ≤ |Qi2(f̃)(z)| ≤ · · · ≤ |Qiq (f̃)(z)|.

Let I = (i1, ..., iN+1). Since PI1, . . . , PI(n+1) are in weakly general position, there exist functions g0, g ∈ Cf , 
which may be chosen independent of I and z, such that

‖f̃(z)‖d ≤ g0(z) max
1≤j≤n+1

|PIj(f̃)(z)| ≤ g(z)|QiN+1(f̃)(z)|.

Therefore, we have

q∏
i=1

‖f̃(z)‖d
|Qi(f̃)(z)|

≤ gq−N (z)
N∏
j=1

‖f̃(z)‖d
|Qij (f̃)(z)|

≤ gq−N (z)hn−1(z) ‖f̃(z)‖Nd(∏N−n+1
j=2 |Qij (f̃)(z)|

)
·
∏n

j=1 |PIj(f̃)(z)|

≤ gq−N (z)hn−1(z) ‖f̃(z)‖Nd

|PI1(f̃)(z)|N−n+1 ·
∏n

j=2 |PIj(f̃)(z)|

≤ gq−N (z)hn−1(z)ζ(N−n)(n−1)(z) ‖f̃(z)‖Nd+(N−n)(n−1)d∏n
j=1 |PIj(f̃)(z)|N−n+1

,

where I = (i1, ..., iN+1) and ζ is a function in Cf , which is chosen common for all I ∈ I, such that

|PIj(z)(ω)| ≤ ζ(z)‖ω‖d, ∀ω = (ω0, ..., ωn) ∈ Cn+1.

The above inequality implies that

log
q∏

i=1

‖f̃(z)‖d
|Qi(f̃)(z)|

≤ log(gq−Nhn−1ζ(N−n)(n−1))(z) + (N − n + 1) log ‖f̃(z)‖nd∏n
j=1 |PIj(f̃)(z)|

. (3.3)
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Now, for each non-negative integer L, we denote by VL the vector space (over K{Qi}) consisting of all ho-
mogeneous polynomials of degree L in K{Qi}[x0, . . . , xn] and the zero polynomial. Denote by (PI1, . . . , PIn)
the ideal in K{Qi}[x0, . . . , xn] generated by PI1, . . . , PIn.

Lemma 3.4 (See [1, Lemma 5], [3, Proposition 3.3]). Let {Pi}qi=1 (q ≥ n + 1) be a set of homogeneous 
polynomials of common degree d ≥ 1 in Kf [x0, . . . , xn] in weakly general position. Then for any nonnegative 
integer N and for any J := {j1, . . . , jn} ⊂ {1, . . . , q}, the dimension of the vector space VL

(Pj1 ,...,Pjn )∩VL
is 

equal to the number of n-tuples (s1, . . . , sn) ∈ Nn
0 such that s1 + · · · + sn ≤ L and 0 ≤ s1, . . . , sn ≤ d − 1. 

In particular, for all L ≥ n(d − 1), we have

dim VL

(Pj1 , . . . , Pjn) ∩ VL
= dn.

For each positive integer L divisible by d and for each (i) = (i1, . . . , in) ∈ Nn
0 with σ(i) =

∑n
s=1 is ≤ L

d , 
we set

W I
(i) =

∑
(j)=(j1,...,jn)≥(i)

P j1
I1 · · ·P

jn
In · VL−dσ(j).

It is clear that W I
(0,...,0) = VL and W I

(i) ⊃ W I
(j) if (i) < (j) in the lexicographic ordering. Hence, W I

(i) is a 
filtration of VL.

Let (i) = (i1, . . . , in), (i′) = (i′1, . . . , i′n) ∈ Nn
0 . Suppose that (i′) follows (i) in the lexicographic ordering. 

We consider the following vector space homomorphism

ϕ : γ ∈ VL−dσ(i) �→ [P i1
I1 · · ·P

in
Inγ] ∈

W I
(i)

W I
(i′)

,

where [P i1
I1 · · ·P

in
Inγ] is the equivalent class in 

W I
(i)

W I
(i′)

containing P i1
I1 · · ·P

in
Inγ. We see that ϕ is surjective. We 

will show that kerϕ is equal to (PI1, . . . , PIn) ∩ VL−dσ(i).
In fact, for any γ ∈ kerϕ, we have

P i1
I1 · · ·P

in
Inγ =

∑
(j)=(j1,...,jn)≥(i′)

P j1
I1 · · ·P

jn
Inγj

=
∑

(j)=(j1,...,jn)>(i)

P j1
I1 · · ·P

jn
Inγj,

where γj ∈ VL−dσ(j). By Lemma 2.5 and Lemma 2.6, we have γ ∈ (PI1, . . . , PIn). Then

kerϕ ⊂ (PI1, . . . , PIn) ∩ VL−dσ(i).

Conversely, for any γ ∈ (PI1, . . . , PIn) ∩ VL−dσ(i), (γ �= 0), we have

γ =
n∑

s=1
PIshs, hs ∈ VL−d(σ(i)+1).

It implies that

ϕ(γ) =
n∑

[P i1
I1 · · ·P

is−1
Is−1P

is+1
Is P is+1

Is+1 · · ·P
in
Inhs].
s=1
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It is clear that P i1
I1 · · ·P

is−1
Is−1P

is+1
Is P is+1

Is+1 · · ·P
in
Inhs ∈ W I

(i′), and hence ϕ(γ) = 0, i.e., γ ∈ kerϕ. Therefore, we 
have

kerϕ = (PI1, . . . , PIn) ∩ VL−dσ(i).

This yields that

dim
W I

(i)

W I
(i′)

= dim
VL−dσ(i)

(PI1, . . . , PIn) ∩ VL−dσ(i)
. (3.5)

Fix a number L large enough (chosen later). Set u = uL := dimVL =
(
L+n
n

)
. We assume that

VL = W I
(i1) ⊃ W I

(i2) ⊃ · · · ⊃ W I
(iK),

where W I
(is+1) follows W I

(is) in the ordering and (iK) = (Ld , 0, . . . , 0). It is easy to see that K is the number 
of n-tuples (i1, . . . , in) with ij ≥ 0 and i1 + · · · + in ≤ L

d . Then we have

K =
(L

d + n

n

)
.

For each k ∈ {1, . . . , K − 1} we set mI
k = dim W I

(ik)

W I
(ik+1)

, and set mI
K = 1. Then by Lemma 3.6, mI

k does not 

depend on {PI1, . . . , PIn} and k, but on σ(ik). Hence, we set mk = mI
k. We also note that

mk = dn (3.6)

for all k with L − dσ(ik) ≥ nd (it is equivalent to σ(ik) ≤
L

d
− n).

From the above filtration, we may choose a basis {ψI
1 , · · · , ψI

u} of VL such that

{ψu−(ms+···+mK)+1, . . . , ψ
I
u}

is a basis of W I
(is). For each k ∈ {1, . . . , K} and l ∈ {u − (mk + · · ·+mK) + 1, . . . , u − (mk+1 + · · ·+mK)}, 

we may write

ψI
l = P i1k

I1 · · ·P ink

In hl, where (i1k, . . . , ink) = (ik), hl ∈ W I
L−dσ(ik).

Then we have

|ψI
l (f̃)(z)| ≤ |PI1(f̃)(z)|i1k · · · |PIn(f̃)(z)|ink |hl(f̃)(z)|

≤ cl|PI1(f̃)(z)|i1k · · · |PIn(f̃)(z)|ink‖f̃(z)‖L−dσ(ik)

= cl

(
|PI1(f̃)(z)|
‖f̃(z)‖d

)i1k

· · ·
(
|PIn(f̃)(z)|
‖f̃(z)‖d

)ink

‖f̃(z)‖L,

where cl ∈ Cf , which does not depend on f and z. Taking the product the both sides of the above inequalities 
over all l and then taking logarithms, we obtain

log
u∏

l=1

|ψI
l (f̃)(z)| ≤

K∑
k=1

mk

(
i1k log |PI1(f̃)(z)|

‖f̃(z)‖d
+ · · · + ink log |PIn(f̃)(z)|

‖f̃(z)‖d

)

+ uL log ‖f̃(z)‖ + log cI(z),

(3.7)

where cI =
∏q

cl ∈ Cf , which does not depend on f and z.
l=1



616 Si Duc Quang / J. Math. Anal. Appl. 465 (2018) 604–623
For each integer l (0 ≤ l ≤ L
d ), we set m(l) = mk, where k is an index such that σ(ik) = l. Since mk only 

depends on σ(ik), the above definition of m(l) is well defined. We see that

K∑
k=1

mkisk =
L
d∑

l=0

∑
k|σ(ik)=l

m(l)isk =
L
d∑

l=0

m(l)
∑

k|σ(ik)=l

isk.

Note that, by the symmetry (i1, . . . , in) → (iσ(1), . . . , iσ(n)) with σ ∈ S(n), 
∑

k|σ(ik)=l isk does not depend 
on s. We set

A :=
K∑

k=1

mkisk, which is independent of s and I.

Hence, (3.7) gives

log
u∏

l=1

|ψI
l (f̃)(z)| ≤ A

(
log

n∏
i=1

|PIi(f̃)(z)|
‖f̃(z)‖d

)
+ uL log ‖f̃(z)‖ + log cI(z),

i.e.,

A

(
log

n∏
i=1

‖f̃(z)‖d
|PIi(f̃)(z)|

)
≤ log

u∏
l=1

‖f̃(z)‖L
|ψI

l (f̃)(z)|
+ log cI(z).

Set c0 = gq−Nhn−1ζ(N−n)(n−1)∏
I(1 + c

(N−n+1)/A
I ) ∈ Cf . Combining the above inequality with (3.3), we 

obtain that

log
q∏

i=1

‖f̃(z)‖d
|Qi(f̃)(z)|

≤ N − n + 1
A

log
u∏

l=1

‖f̃(z)‖L
|ψI

l (f̃)(z)|
+ log c0. (3.8)

We now write

ψI
l =

∑
J∈TL

cIlJx
J ∈ VL, cIlJ ∈ K{Qi},

where TL is the set of all (n +1)-tuples J = (i0, . . . , in) with 
∑n

s=0 js = L, xJ = xj0
0 · · ·xjn

n and l ∈ {1, . . . , u}. 
For each l, we fix an index JI

l ∈ J such that cI
lJI

l
�≡ 0. Define

μI
lJ = cIlJ

cI
lJI

l

, J ∈ TL.

Set Φ = {μI
lJ ; I ⊂ {1, . . . , q}, �I = n, 1 ≤ l ≤ M, J ∈ TL}. Note that 1 ∈ Φ. Let B = �Φ. We see that 

B ≤ u
(
q
n

)
(
(
L+n
n

)
− 1) =

(
L+n
n

)
(
(
L+n
n

)
− 1)

(
q
n

)
. For each positive integer l, we denote by L(Φ(l)) the linear 

span over C of the set

Φ(l) = {γ1 · · · γl; γi ∈ Φ}.

It is easy to see that

dimL(Φ(l)) ≤ �Φ(l) ≤
(
B + l − 1

)
.

B − 1
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We may choose a positive integer p such that

p ≤ p0 := [ B − 1
log(1 + ε

3(n+1)(N−n+1) )
]2 and dimL(Φ(p + 1))

dimL(Φ(p)) ≤ 1 + ε

3(n + 1)(N − n + 1) .

Indeed, if dimL(Φ(p + 1))
dimL(Φ(p)) > 1 + ε

3(n + 1)(N − n + 1) for all p ≤ p0, we have

dimL(Φ(p0 + 1)) ≥ (1 + ε

3(n + 1)(N − n + 1))p0 .

Therefore, we have

log(1 + ε

3(n + 1)(N − n + 1)) ≤ log dimL(Φ(p0 + 1))
p0

≤
log
(
B+p0
B−1

)
p0

= 1
p0

log
B−1∏
i=1

p0 + i + 1
i

<
(B − 1) log(p0 + 2)

p0

≤ B − 1
√
p0

≤
(B − 1) log(1 + ε

3(n+1)(N−n+1) )
B − 1

= log(1 + ε

3(n + 1)(N − n + 1)).

This is a contradiction.
We fix a positive integer p satisfying the above condition. Put s = dimL(Φ(p)) and t = dimL(Φ(p + 1)). 

Let {b1, . . . , bt} be an C-basis of L(Φ(p + 1)) such that {b1, . . . , bs} be a C-basis of L(Φ(p)).
For each l ∈ {1, . . . , u}, we set

ψ̃I
l =

∑
J∈TL

μI
lJx

I .

For each J ∈ TL, we consider homogeneous polynomials φJ(x0, . . . , xn) = xJ . Let F be a meromorphic 
mapping of Cm into Ptu−1(C) with a reduced representation F̃ = (hbiφJ(f̃))1≤i≤t,J∈TL

, where h is a 
nonzero meromorphic function on Cm. We see that

|| Nh(r) + N1/h(r) = o(Tf (r)).

Since f is assumed to be algebraically nondegenerate over K{Qi}, F is linearly nondegenerate over C. We 
see that there exist nonzero functions c1, c2 ∈ Cf such that

c1|h|.‖f̃‖L ≤ ‖F̃‖ ≤ c2|h|.‖f̃‖L.

For each l ∈ {1, . . . , u}, 1 ≤ i ≤ s, we consider the linear form LI
il in xJ such that

hbiψ̃
I
l (f̃) = LI

il(F̃ ).

Since f is algebraically nondegenerate over K{Qi}, it is easy to see that {biψ̃I
l (f̃); 1 ≤ i ≤ s, 1 ≤ l ≤ M}

is linearly independent over C, and so is {LI
il(F̃ ); 1 ≤ i ≤ s, 1 ≤ l ≤ u}. This yields that {LI

il; 1 ≤ i ≤ s,

1 ≤ l ≤ u} is linearly independent over C.
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For every point z which is not neither zero nor pole of any hbiψI
l (f̃), we also see that

s log
u∏

l=1

‖f̃(z)‖L
|ψI

l (f̃)(z)|
= log

∏
1≤l≤u

1≤i≤s

‖F̃ (z)‖
|hbiψI

l (f̃)(z)|
+ log c3(z)

= log
∏

1≤l≤u

1≤i≤s

‖F̃ (z)‖ · ‖LI
il‖

|LI
il(F̃ )(z)|

+ log c4(z),

where c3, c4 are nonzero functions in Cf , not depend on f and I, but on {Qi}qi=1. Combining this inequality 
and (3.8), we obtain that

log
q∏

i=1

‖f̃(z)‖d
|Qi(f̃)(z)|

≤ N − n + 1
sA

⎛
⎜⎝max

I
log

∏
1≤l≤u

1≤i≤s

‖F̃ (z)‖ · ‖LI
il‖

|LI
il(F̃ )(z)|

+ log c4(z)

⎞
⎟⎠+ log c0(z), (3.9)

for all z outside an analytic subset of Cm.
Since F̃ is linearly nondegenerate over C, there exists an admissible set α = (αiJ )1≤i≤t

J∈TL

with αiJ ∈ Zm
+ , 

‖αiJ‖ ≤ tu − 1, such that

Wα(hbiφ̃J(f̃)) = det
(
Dαi′J′ (hbiφ̃J(f̃))

)
�≡ 0.

By Theorem 2.4, we have

∣∣∣∣∣∣ ∫
S(r)

max
I

⎧⎪⎨
⎪⎩log

∏
1≤l≤u

1≤i≤s

‖F̃ (z)‖ · ‖LI
il‖

|LI
il(F̃ )(z)|

⎫⎪⎬
⎪⎭ ≤ tuTF (r) −NWα(hbiφ̃J (f̃))(r) + o(TF (r)). (3.10)

Integrating both sides of (3.9) and using (3.10), we obtain that

qdTf (r) −
q∑

i=1
N(r, f∗Qi) ≤

tu(N − n + 1)
sA

TF (r) − N − n + 1
sA

NWα(hbiφ̃J (f̃))(r)

+ o(TF (r) + Tf (r)).

(3.11)

We now estimate the quantity 
∑q

i=1 N(r, f∗Qi) − N−n+1
sA NWα(hbiφ̃J (f̃))(r). Fix a point z0 ∈ Cm \ I(f). 

Without lose of generality, we may assume that

νQ1(f̃)(z0) ≥ · · · ≥ νQN (f̃)(z0) ≥ · · · ≥ νQq(f̃)(z0).

First, we recall that

Qi(x) =
∑
J∈Td

aiJx
I ∈ K{Qi}[x0, . . . , xn].

Let T = (· · · , tkJ , · · · ) (k ∈ {1, . . . , q}, J ∈ Td) be a family of variables and

QT
i =

∑
TiJx

I ∈ Z[T, x], i = 1, . . . , q.

J∈Td
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For each ordered subset I = (i1, ..., iN+1) ⊂ {1, . . . , q}, we denote by R̃I ∈ Z[T ] the resultant of {QT
i }i∈I . 

Then there exist a positive integer λ (common for all I) and polynomials b̃Iij (0 ≤ i ≤ n, j ∈ I) in Z[T, x], 
which are zero or homogeneous in x with degree of λ − d such that

xλ
i · R̃I =

∑
j∈I

b̃IijQ
T
j for all i ∈ {1, . . . , q},

and RI = R̃I(. . . , akJ , . . .) �≡ 0. We see that RI ∈ Kf . Set

bIij = b̃Iij((. . . , ajJ , . . .), (x0, . . . , xn)).

Then we have

fλ
i ·RI =

∑
j∈I

bIij(f̃)Qj(f̃) for all i ∈ {0, . . . , n}.

This implies that

νRI
≥ min

j∈I
νQj(f̃) + min

0≤i≤n,j∈I
νbIij(f̃).

We set R =
∏

I⊂{1,...,q} RI ∈ K{Qi}. It is easy to see that

νbIij(f̃) ≥ O(min
k,J

νakJ
),

and the left hand side of this inequality is only depend on {Qi}. Then it implies that there exists a constant c, 
which depends only on {Qi}, such that

min
j∈I

νQj(f) ≤ νR − cmin
k,J

νakJ
,

for each ordered subset I ⊂ {1, . . . , q} with �I = N + 1.
Now, we let I = {1, ..., N + 1} ⊂ {1, . . . , q}. Then

νQj(f)(z0) ≤ νR(z0) − cmin
k,J

νakJ
(z0), j = N + 1, ..., q.

Also it is easy to see that

νQN−n+i(f̃)(z0) ≤ νPIi
(z0),

and hence

νQN−n+i(f̃)(z0) − ν
[tu−1]
QN−n+i(f̃)(z0) ≤ νPIi

(z0) − ν
[tu−1]
PIi

(z0), i = 2, ..., n.

Therefore,

q∑
i=1

(νQi(f̃)(z0) − ν
[tu−1]
Qi(f̃) (z0)) ≤ (N − n + 1)(νQ1(f̃)(z0) − ν

[tu−1]
Q1(f̃) (z0))

+
n∑

(νPIi(f̃)(z0) − ν
[tu−1]
PIi(f̃)(z0)) + (q −N)νQN+1(f̃)(z0)
i=2



620 Si Duc Quang / J. Math. Anal. Appl. 465 (2018) 604–623
≤ (N − n + 1)
n∑

i=1
(νPIi(f̃)(z0) − ν

[tu−1]
PIi(f̃)(z0)) (3.12)

+ (q −N)(νR(z0) − cmin
k,J

νakJ
(z0)).

Take linear forms hI
il in xJ , 1 ≤ l ≤ u, s +1 ≤ i ≤ t, J ∈ TL such that {LI

il; 1 ≤ l ≤ u, 1 ≤ i ≤ s} ∪{hI
il; 1 ≤

l ≤ u, s + 1 ≤ i ≤ t} is linearly independent over C. Moreover, we easily see that

νWα(hbiφ̃J (f̃))(z0) = νWα(LI
il(F̃ ),...,hI

il(F̃ ))(z0)

≥
∑

1≤l≤u

1≤i≤s

(
νLI

il(F̃ )(z0) − ν
[tu−1]
LI

il(F̃ )(z0)
)

≥
∑

1≤l≤u

1≤i≤s

(
νhbiψ̃I

il(f̃)(z0) − ν
[tu−1]
hbiψ̃I

il(f̃)(z0)
)

≥
∑

1≤l≤u

1≤i≤s

(
νψ̃I

il(f̃)(z0) − ν
[tu−1]
ψ̃I

il(f̃) (z0)
)
− C max

1≤i≤s
ν∞hbi(z0),

(3.13)

where C is a positive constant, which is chosen independently of I, since there are only finite ordered 
subset I.

Now for integers x, y, we easily see that

max{0, x + y − L} ≥ max{0, x− L} + min{0, y}.

It yields that

νϕ1ϕ2(z) − ν[L]
ϕ1ϕ2

(z) ≥ νϕ1(z) − ν[L]
ϕ1

(z) − ν∞ϕ2
(z), (3.14)

for every nonzero meromorphic functions ϕ1, ϕ2. If let x1, . . . , xk1 be k1 non-negative integers and let 
y1, . . . , yk2 be k2 negative integers, then we have the following estimate

max{0, x1 + · · · + xk1 + y1 + · · · + yk2 − L}

≥
k1∑
i=1

max{0, xi − L} +
k2∑
i=1

min{0, yi}

=
k1∑
i=1

(max{0, xi − L} + min{0, xi}) +
k2∑
i=1

(max{0, yi − L} + min{0, yi}).

This yields that

ν∏k
i=1 ϕi

(z) − ν
[L]∏k

i=1 ϕi
(z) ≥

k∑
i=1

(νϕi
(z) − ν[L]

ϕi
(z) − ν∞ϕi

(z)), (3.15)

for any meromorphic functions ϕi (1 ≤ i ≤ k).
For each 1 ≤ l ≤ u, 1 ≤ i ≤ s we have

ψ̃I
l (f̃) = 1

cI
lJI

l

n∏
j=1

P
ijk
Ij (f̃)hl(f̃),
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where (i1k, . . . , ink) = Ik, hl ∈ VL−dσ(ik) and hl is independent of f . Now using (3.14) and (3.15), we have

νψ̃I
il(f̃)(z0) − ν

[tu−1]
ψ̃I

il(f̃) (z0) ≥ ν∏n
j=1 P

ijk
Ij (f̃)

(z0) − ν
[tu−1]∏n

j=1 P
ijk
Ij (f̃)

(z0) − νcI
lJI

l

(z0)

≥
n∑

j=1
ijk(νPIj(f̃)(z0) − ν

[tu−1]
PIj(f̃)(z0)) − c1 max

j,J
νajJ

(z0),

where c1 is a constant, which depends only on {Qi}, t and L. Summing-up both sides of the above inequalities 
over all 1 ≤ i ≤ u, 1 ≤ l ≤ s, we get

∑
1≤i≤u

1≤l≤s

(νψ̃I
il(f̃)(z0) − ν

[tu−1]
ψ̃I

il(f̃) (z0)) ≥
n∑

j=1
s

K∑
k=1

mI
kijk(νPIj(f̃)(z0) − ν

[tu−1]
PIj(f̃)(z0)) − c2 max

j,J
νajJ

(z0)

= As

n∑
j=1

(νPIj(f̃)(z0) − ν
[tu−1]
PIj(f̃)(z0)) − c2 max

j,J
νajJ

(z0), (3.16)

where c2 is a constant, which depends only on {Qi}, t and L.
Combining (3.13) and (3.16), we get

νWα(hbiφ̃J (f̃))(z0) ≥ As
n∑

j=1
(νPIj(f̃)(z0) − ν

[tu−1]
PIj(f̃)(z0)) − c2 max

j,J
νajJ

(z0) − C max
1≤i≤s

ν∞hbi(z0).

Combining (3.12) and this inequality, we obtain

N − n + 1
As

νWα(biφ̃J (f̃))(z0)

≥
q∑

i=1
(νQi(f̃)(z0) − ν

[tu−1]
Qi(f̃) (z0)) − (N − n + 1)(q −N)(νR(z0)

+ c max
1≤k≤q

νakJk
(z0)) −

N − n + 1
As

(c2 max
j,J

νajJ
(z0) + C max

1≤i≤s
ν∞hbi(z0)).

Integrating both sides of the above inequality, we obtain that

|| N − n + 1
As

NWα(hbiφ̃J (f̃))(r) ≥
q∑

i=1
(NQi(f̃)(r) −N

[tu−1]
Qi(f̃) (r)) + o(Tf (r)).

From this inequality and (3.11) with a note that TF (r) = LTf (r) + o(Tf (r)), we have

|| (q − tuL(N − n + 1)
dAs

)Tf (r) ≤
q∑

i=1

1
d
N [tu−1](r, f∗Qi) + o(Tf (r)). (3.17)

Now we give some estimates for A, t and s. For each Ik = (i1k, . . . , ink) with σ(ik) ≤ L
d − n, we set

i(n+1)k = L

d
− n−

n∑
s=1

is.

Since the number of nonnegative integer p-tuples with summation ≤ T is equal to the number of nonnegative 
integer (p + 1)-tuples with summation exactly equal to T ∈ Z, which is 

(
T+n
n

)
, and since the sum below is 

independent of s, we have



622 Si Duc Quang / J. Math. Anal. Appl. 465 (2018) 604–623
A =
∑

σ(ik)≤L
d

mI
kisk ≥

∑
σ(ik)≤L

d −n

mI
kisk = dn

n + 1
∑

σ(ik)≤L
d −n

n+1∑
s=1

isk

= dn

n + 1 ·
(L

d

n

)
·
(
L

d
− n

)
= dn

( L
d

n + 1

)
.

Now, for every positive number x ∈ [0, 1
(n+1)2 ], we have

(1 + x)n = 1 + nx +
n∑

i=2

(
n

i

)
xi ≤ 1 + nx +

n∑
i=2

ni

i!(n + 1)2i−2x

≤ 1 + nx +
n∑

i=2

1
i!x ≤ 1 + (n + 1)x.

(3.18)

We chose L = (n + 1)d + 2(N − n + 1)(n + 1)3I(ε−1)d. Then L is divisible by d and we have

(n + 1)d
L− (n + 1)d = (n + 1)d

2(N − n + 1)(n + 1)3I(ε−1)d ≤ 1
2(n + 1)2 . (3.19)

Therefore, using (3.18) and (3.19) we have

uL

dA
≤

(
L+n
n

)
L

dn+1
( L

d
n+1
) = L · (L + 1) · · · (L + n)

1 · 2 · · ·n
/ (L− nd) · (L− (n− 1)d) · · ·L

1 · 2 · · · (n + 1)

= (n + 1)
n∏

i=1

L + i

L− (n− i + 1)d < (n + 1)
( L

L− (n + 1)d
)n

= (n + 1)
(

1 + (n + 1)d
L− (n + 1)d

)n

< (n + 1)
(

1 + (n + 1)2d
2(N − n + 1)(n + 1)3I(ε−1)d

)

≤ (n + 1) + (n + 1)3d
2(n + 1)3(N − n + 1)ε−1 ≤ n + 1 + ε

2(N − n + 1) .

Then we have

tuL

dAs
≤ (1 + ε

3(n + 1)(N − n + 1))(n + 1 + ε

2(N − n + 1))

≤ n + 1 + ε

2(N − n + 1) + ε

3(N − n + 1) + ε

6(N − n + 1)

= n + 1 + ε

N − n + 1 .

(3.20)

Combining (3.17) and (3.20), we get

(q − (N − n + 1)(n + 1) − ε)Tf (r) ≤
q∑

i=1

1
d
N [tu−1](r, f∗Qi) + o(Tf (r)). (3.21)

Here we note that:

• L := (n + 1)d + 2(N − n + 1)(n + 1)3I(ε−1)d,

• p0 :=
[

B − 1
log(1 + ε

3(n+1)(N−n+1) )

]2

≤
[(

L+n
n

)
(
(
L+n
n

)
− 1)

(
q
n

)
− 1

log(1 + ε
3(n+1)(N−n+1) )

]2

,

• tu − 1 ≤
(
L+n
)(

B+p
)
− 1 ≤

(
L+n
)
pB−1 − 1 ≤

(
L+n
)
p
(L+n

n

)
(
(L+n

n

)
−1)

(q
n

)
−2

0 − 1 = L0.
n B−1 n n
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By these estimates and by (3.21), we obtain

|| (q − (N − n + 1)(n + 1) − ε)Tf (r) ≤
q∑

i=1

1
d
N [L0](r, f∗Qi) + o(Tf (r)).

The theorem is proved. �
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