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CAUCHY TRANSFORMS ARISING FROM
HOMOMORPHIC CONDITIONAL EXPECTATIONS

PARAMETRIZE NONCOMMUTATIVE PICK
FUNCTIONS

J. E. PASCOE† AND RYAN TULLY-DOYLE

Abstract. Nevanlinna showed that Cauchy transforms of proba-
bility measures parametrize all functions from the upper half plane
into itself satisfying a certain asymptotic condition at infinity. We
show that the correspondence fails in general for the unbounded
case for somewhat trivial reasons; however, we show that in a
setting of “homomorphic” operator valued free probability that
Cauchy transforms of homomorphic conditional expectations pa-
rametrize noncommutative Pick functions.
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1. Introduction

Classically, R. Nevanlinna proved the following result.
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Theorem 1.1 (Nevanlinna [6]). Let Π denote the upper half plane. Let
f : Π → C. The function f is analytic, maps Π to Π and satisfies

lim inf
s→∞

sf(sz) = −z−1,

for all z ∈ Π, if and only if there exists a probability measure μ on R

such that

f(z) =

∫
R

1

t− z
dμ(t).

Thus, functions with positive imaginary part satisfying good asymp-
totics are parametrized by probability measures on the real line.

The quantity

f(z) =

∫
R

1

t− z
dμ(t),

occurring in Nevanlinna’s theorem is often referred to as the Cauchy
transform. Recent work by Anshelevich and Williams [3, 11, 12] has
explored the connection between distribution and function theory in
free probability in terms of the noncommutative Cauchy transform and
the related R-transform. The Cauchy transform and the R-transform
have served as a vibrant part of free probability, which is evidenced by
the large amount of recent work on the subject.

We resolve the correspondence between Cauchy transforms and the
class of functions on the upper half plane in the noncommutative con-
text of operator-valued free probability and free analysis.

1.1. The noncommutative context. Let B be a C∗-algebra. In
this manuscript, all C∗-algebras will be assumed to be unital. The
noncommutative space over B, denoted M(B), is the set of square
matrices over B, that is

M(B) =
∞⋃
n=1

Mn(B).

Next, the upper half plane over B, denoted Π(B), is given by

Π(B) = {X ∈ M(B)| Im X > 0}.
Here, we say a self-adjoint operator A > 0 if its spectrum is contained
in the positive reals and A ≥ 0 if A has spectrum contained in the
non-negative reals. Similarly, the closed upper half plane over B,
denoted Π(B), is

Π(B) = {X ∈ M(B)| Im X ≥ 0}.
For any D ⊂ M(B1), a noncommutative function f : D → M(B2)
is graded and respects intertwining maps. That is, f takes an n × n
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matrix over B1 to an n× n matrix over B2, and if ΓX = Y Γ for some
rectangular matrix Γ of scalars, then Γf(X) = f(Y )Γ. We denote the
set of noncommutative functions from D toR by Free(D,R). (For more
elaborate exposition regarding free analysis, see e.g. the comprehensive
presentation in [5]. Occasionally, the noncommutative space over B has
been referred to as the matrix universe over B and noncommutative
functions have sometimes been referred to as free functions by other
authors.)

We have adopted a vertical tensor notation to save space:
A⊗
B

rep-

resents the same object as A⊗ B.
In this noncommutative context, a noncommutative Pick func-

tion is just a noncommutative function f : Π(B1) → Π(B2).
Given:

(1) A C∗-algebra B,
(2) A C∗-algebra M unitally containing B, (Here by unitally con-

taining we mean that B is a subalgebra of M and the identity
in B is equal to the identity in M ,)

(3) An unbounded self-adjoint operator A affiliated to M, that is,
if M is a von Neumann algebra, an operator so that each of its
spectral projections are contained in M, otherwise, an operator

affiliated to some weak closure of M such that
(

A⊗
I

− Z
)−1

∈
M(M) for all z ∈ Π(B),

(4) A noncommutative conditional expectation E : M → B, that
is, E is a completely positive unital map satisfying E(b1mb2) =
b1E(m)b2 for all b1, b2 ∈ B and m ∈ M ,

we define the noncommutative Cauchy transform of A to be the
noncommutative function f : Π(B) → Π(B) given by the equation

f(Z) =
E⊗
id

((
A⊗
I

− Z
)−1

)
,

where id denotes the identity map on matrices.
The obvious analogue of Nevanlinna’s theorem would be that any

noncommutative function f : Π(B) → Π(B) satisfying

lim
s → +∞
s ∈ R

sf(sZ) = −Z−1

for all Z ∈ Π(B) would be given by a noncommutative Cauchy trans-
form arising from some M,E and A which could be constructed from
f.
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The obvious analogue of Nevanlinna’s theorem is shown to be false in
Subsection 1.3, and thus the ability to reconstruct an algebra, a condi-
tional expectation and an unbounded operator from a noncommutative
function f : Π(B) → Π(B) is resolved in the negative.

However, in an expanded “homomorphic” notion of conditional ex-
pectation, we show that self maps of the noncommutative upper half
plane satisfying good asymptotic conditions are parametrized by Cauchy
transforms.

1.2. Main result.

Definition 1.2. Let B, M be C∗-algebras. Let B̂ be a unital subalge-
bra of M. We define a homomorphic conditional expectation to
be a completely positive unital map E : M → B such that E|B̂ is a
homomorphism.

The name homomorphic conditional expectation is justified by the
following analogue of Tomiyama’s theorem [10].

Proposition 1.3 (Homomorphic Tomiyama’s theorem). If E : M →
B is a homomorphic conditional expectation over B, then for all b1, b2 ∈
B̂,

E(b1mb2) = E(b1)E(m)E(b2).

We prove the above proposition in Section 3

Definition 1.4. Let B, B̂ be C∗-algebras. We define a symmetric
dilation to be a completely positive map ψ : B → B̂ so that there
exists a ∗-homomorphism E : B̂ → B such that E ◦ ψ is the identity.

Our main result is as follows.

Theorem 1.5. Let f : Π(B) → Π(B) be a noncommutative function.
The following are equivalent

(1) For all Z ∈ Π(B),

lim
s → +∞
s ∈ R

sf(sZ) = −Z−1.

(2) There exist:
(a) A C∗-algebra M,

(b) A unital subalgebra of B̂ ⊆ M,
(c) An unbounded self-adjoint operator A affiliated to M,
(d) A homomorphic conditional expectation E : M → B,

(e) A symmetric dilation ψ : B → B̂ such that E ◦ ψ is the
identity,
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so that the function f can be written as

f(Z) =
E⊗
idn

[(
A⊗
In

− ψ
⊗
idn

(Z)
)−1

]
.

We note that Williams showed that the above theorem holds when
E is a conditional expectation and ψ is an identity map if we assume
additionally that f has some large analytic continuation at infinity cor-
responding to the classical compactly supported case [11]. Our result
also generalizes previous results in [9, Section 5]. In the language of
this paper, the representations established in the earlier setting held
for B = C

m.
We emphatically take the viewpoint that homomorphic conditional

expectations are what makes the Nevanlinna theorem work for non-
commutative Cauchy transforms– we leave to the reader whether or
not they generate any deeply interesting analogue of operator-valued
free probability. However, we view that our results suggest that either
(1) free noncommutative function theory is an incomplete method for
understanding free probability or (2) that theorems in free probability
should extend somewhat trivially to “homomorphic” operator valued
free probability.

1.3. Failure of the main result in the usual free probabilistic
case. We note that we cannot always reduce to the case where the
symmetric dilation ψ is the identity map and E is a bona fide condi-
tional expectation.

Take B = C
2, B̂ = C

3, and M = C ⊕ M2(C), where B̂ is natu-
rally included in M by the map (w1, w2, w3) →

(
w1,

[
w2 0
0 w3

])
. Define

ψ(z1, z2) = (z1, z2,
1
2
(z1 + z2)). Define E (w1, [

v11 v12
v21 v22 ]) = (w1, v11). Now

define A to be A = (0, [ 0 1
1 0 ]) .

Consider

f(Z) =
E⊗
idn

[(
A⊗
In

− ψ
⊗
idn

(Z)
)−1

]
.

More concretely, including C
2 as diagonal matrices in M2(C) and C

3

and C⊕M2(C) as similarly naturally included in M3(C), let

A =
[
0 0 0
0 0 1
0 1 0

]
, E(m) =

[
1 0
0 1
0 0

]∗
m

[
1 0
0 1
0 0

]
,

ψ(z1, z2) =
[
1 0 0
0 0 0
0 0 1/2

]
z1 +

[
0 0 0
0 1 0
0 0 1/2

]
z2.
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Then f is given by the formula

f(Z) =
[
1 0
0 1
0 0

]∗ [ −Z1 0 0
0 −Z2 1

0 1 −Z1+Z2
2

]−1 [
1 0
0 1
0 0

]

=

[
−Z−1

1 0

0 −
(
Z2−(Z1+Z2

2 )
−1)−1

]
.

One can show, using the above concrete matricial representations,
that for (z1, z2) ∈ C

2,

f(z1, z2) = (−z−1
1 ,−z−1

2 (1− 2(z1 + z2)
−1z−1

2 )−1).

Now we observe that

(1.1) f(z1, z2) = (−z−1
1 , 0) +

∑
k

(0,−z−1
2 2k[z2(z1 + z2)]

−k).

If we could choose Ẽ a conditional expectation and ψ̃ to be the iden-
tity, the homogeneous terms in the above expansion would be polyno-
mials in z−1

1 and z−1
2 but, evidently, they are not.

Suppose we had such a realization for f,

f(Z) =
Ẽ⊗
idn

[(
Ã⊗
In

− Z
)−1

]
.

In the case where Ã is bounded, we have the following asymptotic
expansion at infinity,

(1.2) f(Z) =
∑
k

Ẽ⊗
idn

[
Z−1

(
Ã⊗
In

Z−1
)k

]
.

Noting that

Z =
P⊗
Z1

+
1−P
⊗
Z2

where P is the projection (1, 0) ∈ B = C
2, we see

Z−1 =
P⊗

Z−1
1

+
1−P
⊗

Z−1
2

.

Therefore, the terms is Equation (1.2) must be homogeneous polyno-
mials in Z−1

1 and Z−1
2 , contradicting the expansion given in Equation

(1.1).
In the case where Ã is unbounded, it a perhaps somewhat involved

exercise to show that the homogenous terms in Equation (1.2) are well
defined, but the same logic applies. (Essentially, one needs to show

that a certain map Ê(x) = E(AxA) is well defined.) The exercise fits
into the so-called extended HVMS calculus developed in [7], and thus
we now give a more formal verification of our counterexample based on
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that. Restricting f to scalars, representing all C∗-algebras involved as
operators, and E as conjugation by an isometry, when we consider the
second coordinate of f, call it g, it is of the form

g(z1, z2) =
〈
(Ã− zP )α, α

〉
where P is a projection, zP = z1P + z2(1 − P ) and α is a vector.
However, by Equation (1.1) we know that

g(z1, z2) = z−1
2 +−z−2

2

(
z1 + z2

2

)−1

+ o(‖(z−1
1 , z−1

2 )‖3).

Having an expansion to order 3 of this form implies z−1
P Az−1

P α is a well-
defined vector valued function when z1 and z2 have positive imaginary
part by the extended HVMS calculus [7, Theorem 2.3]. (That is, z−1

P α
is in the domain of A for all z where z−1

P is defined. In fact, a careful
calculation gives that z−1

P α = z−1
2 α.) Noting that P is a projection

gives that z−1
P = z−1

1 P + z−1
2 (1− P ). So, in fact, z−1

P Az−1
P α is a vector

valued polynomial, which would imply that −z−2
2 ( z1+z2

2
)−1 is a homo-

geneous polynomial in z−1
1 and z−1

2 by the extended HVMS calculus
[7, Theorem 2.4], which is untrue. (In the language of [7], the veracity
of our counterexample follows from the fact that the function is in the
intermediate Löwner class L2− but not in the Löwner class L2. In some
sense, our current example is constructed by appending the example
in [7, Section 4] to some other function.)

2. Proof of the main result

We now prove our main theorem, Theorem 1.5.
The ball over B, denoted Ball(B), is the set of contractive matrices

over B, that is,

Ball(B) = {X ∈ M(B)| ‖X‖ < 1}.
Similarly, the right half plane over B, denoted RHP(B), is

RHP(B) = {X ∈ M(B)|Re X ≥ 0}.
In [8], the following was proved.

Theorem 2.1 ([8]). Let h : Ball(B1) → RHP(B2) be a noncommuta-
tive function. Then there exists:

(1) A C∗-algebra M unitally containing B1,
(2) A completely positive linear (not necessarily unital) map R :

M → B2,
(3) A unitary U ∈ M,
(4) A bounded self-adjoint operator T,
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such that

(2.1) h(X) =
iT⊗
In

+
R⊗
idn

[(
I +

U⊗
In

X
)(

I − U⊗
In

X
)−1

]
.

We note that although the statement in [8, Corollary 3.6] assumes
an exactness hypothesis on B1, recent advances in Agler model theory
by Ball, Marx and Vinnikov in the preprint [4, Corollary 3.2] give the
full result by [8, Lemma 3.3].

We use Theorem 2.1 to show the following Nevanlinna representation
via a Hilbert space geometric derivation.

Theorem 2.2. Let f : Π(B1) → Π(B2) be a noncommutative function.
The following are equivalent

(1)
lim inf

s → +∞
s ∈ R

|isf(is)| < ∞.

(2) There exists:
(a) A C∗-algebra M,
(b) An unbounded self-adjoint operator A affiliated to M,
(c) A completely positive unital map ψ : B1 → M,
(d) A completely positive map R : M → B2,
so that the function f can be written as

f(Z) =
R⊗
idn

[(
A⊗
In

− ψ
⊗
idn

(Z)
)−1

]
.

Proof. Without loss of generality, all C∗-algebras will be assumed to
be given as unitally contained subalgebras of bounded operators on a
Hilbert space for the duration of the proof.

We adopt the technique used in the proof of a general Nevanlinna
types theorem as in [2, 9].

Let f be as in the statement of the Theorem. By concretely realizing
Theorem 2.1, we can instantiate a Herglotz function h which satisfies
ih((Z + i)−1(Z − i)) = f(Z)− T for some self-adjoint T . By Theorem
2.1, h can be written concretely as

h(Λ) =
V ∗
⊗
I

(
L⊗
I

− Λ
)−1 ( L⊗

I
+ Λ

)
V⊗
I
.

(Here we have concretely written R(x) = V ∗xV and used a resolvent
of the form (L−X)−1(L+X) instead of (1−UX)−1(1+UX) to agree
with [2, 1]. However, L is still a unitary. If fact, the algebra will show
that L = U∗. Here, we use the word concrete to emphasize that we are
treating everything as an operator.)
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Let

f(Z)− T⊗
I

= i
V ∗
⊗
I

(
L⊗
I

− (Z + i)−1(Z − i)
)−1 ( L⊗

I
+ (Z + i)−1(Z − i)

)
V⊗
I
.

One can show as an elementary exercise in the spectral theorem that
every vector of the form V w is in the domain of the normal inverse
(1 − L)−1. That is, 1 − L is a normal operator, so its inverse is well-
defined on the orthogonal complement of its kernel.) Notably, this
reduces to an exercise in measure theory and manipulation of classical
Herglotz integrals.

Lemma 2.3. Any vector of the form V w is in the domain of the normal
inverse of (1 − L)−1. Namely, the range of V is perpendicular to the
kernel of 1− L.

Proof. Consider our function

f(Z)− T⊗
I

= i
V ∗
⊗
I

(
L⊗
I

− (Z + i)−1(Z − i)
)−1 ( L⊗

I
+ (Z + i)−1(Z − i)

)
V⊗
I
.

Evaluate at Z = is.

f(is)− T = iV ∗ (L− (is+ i)−1(is− i)
)−1 (

L+ (is+ i)−1(is− i)
)
V.

So, since L is unitary and thus normal, evaluating w∗(f(is) − T )w
gives, via the the spectral theorem,

w∗(f(is)− T )w = iw∗V ∗ (L− (is+ i)−1(is− i)
)−1 (

L+ (is+ i)−1(is− i)
)
V w

= i

∫
T

ω + (is+ i)−1(is− i)

ω − (is+ i)−1(is− i)
dμV w(ω)

= i

∫
T

ω(s+ 1) + (s− 1)

ω(s+ 1)− (s− 1)
dμV w(ω).

Note that the condition

lim inf
s → +∞
s ∈ R

|isf(is)| < ∞.

implies a fortiori that

lim inf
s → +∞
s ∈ R

sIm f(is) < ∞.
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So, consider

sIm w∗f(is)w = sIm w∗(f(is)− T )w

= sIm i

∫
T

ω(s+ 1) + (s− 1)

ω(s+ 1)− (s− 1)
dμV w(ω)

=

∫
T

s2

s2 + 1− (s2 − 1)Re ω
dμV w(ω).

As s goes to infinity, noting that the integrand is monotone increasing
in s, by monotone convergence theorem

∫
T

1

1− Re ω
dμV w(ω) = lim inf

s→∞
sIm w∗f(is)w < ∞.

Since

∫
T

1

1− Re ω
dμV w(ω) =

∫
T

2

|1− ω|2dμV w(ω),

we are done, because V w is the domain of f(L) if and only if |f |2 is
integrable with respect to dμV w. �

Straightforward algebra gives

f(Z)− T⊗
I

= i
V ∗
⊗
I

(
L⊗
I

− (Z + i)−1(Z − i)
)−1 ( L⊗

I
+ (Z + i)−1(Z − i)

)
V⊗
I

= i
V ∗
⊗
I

(
(Z + i)

L⊗
I

− (Z − i)
)−1 (

(Z + i)
L⊗
I

+ (Z − i)
)

V⊗
I

= i
V ∗
⊗
I

(
Z

L−I
⊗
I

+ i
L+I
⊗
I

)−1 (
Z

L+I
⊗
I

− i
L−I
⊗
I

)
V⊗
I
.

Decompose L into blocks acting on ker 1− L and ker(1− L)⊥ as

L =
[
1 0
0 L0

]
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so that ker 1 − L0 is trivial. Multiply through on the left by I =[
1 0
0 (1−L0)−1

] [
1 0
0 1−L0

]
. We get

i
V ∗
⊗
I

[
1 0
0 (1−L0)−1

]

⊗
I

[
1 0
0 1−L0

]

⊗
I

(
Z

(L−I)
⊗
I

+
i(L+I)

⊗
I

)−1 (
Z

(L+I)
⊗
I

− i(L−i)
⊗
I

)
V⊗
I

= i
V ∗
⊗
I

[
1 0
0 (1−L0)−1

]

⊗
I

(
Z

(L−I)
⊗
I

[
1 0
0 (1−L0)−1

]

⊗
I

+
i(L+I)

⊗
I

[
1 0
0 (1−L0)−1

]

⊗
I

)−1

×
(
Z

(L+I)
⊗
I

− i(L−i)
⊗
I

)
V⊗
I

= i
V ∗
⊗
I

[
1 0
0 (1−L0)−1

]

⊗
I

(
Z

[ 0 0
0 −1 ]
⊗
I

+
i
[
2 0
0 (1+L0)(1−L0)−1

]

⊗
I

)−1 (
Z

(L+I)
⊗
I

− i(L−I)
⊗
I

)
V⊗
I

= i
V ∗
⊗
I

[
1 0
0 (1−L0)−1

]

⊗
I

(
Z

[ 0 0
0 −1 ]
⊗
I

+
i
[
2 0
0 (1+L0)(1−L0)−1

]

⊗
I

)−1

×
(
Z

[
2 0
0 L0+1

]

⊗
I

− i
[
0 0
0 L0−I

]

⊗
I

)
V⊗
I

The operator

A = i
1 + L0

1− L0

is a densely defined self-adjoint unbounded operator since L0 has no
kernel.

Since we are only interested in
V ∗
⊗
I

M(Z)
V⊗
I
, (where M(Z) is the

apparently unwieldy quantity between
V ∗
⊗
I

and
V⊗
I

) the upper trian-

gular form of

(
Z

[ 0 0
0 −1 ]
⊗
I

+
i
[
2 0
0 (1+L0)(1−L0)−1

]

⊗
I

)−1

and the structure of V , namely that V is perpendicular to the kernel
of 1 − L , gives that the relevant operator is the (2,2) block. Then
compress Z to

ψ
⊗
id

(Z) = Zψ =
P⊗
I
Z

P ∗
⊗
I

where P is the projection onto the perp of the kernel of I − L. Then
our resolvent has the form
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f(Z)− T⊗
I

=
V ∗(I−L0)−1

⊗
I

(
A⊗
I

− Zψ

)−1 (
iZψ

(L0+I)
⊗
I

+
(L0−I)

⊗
I

)
V⊗
I

=
V ∗(I−L0)−1

⊗
I

(
A⊗
I

− Zψ

)−1 (
iZψ

(L0+I)(I−L0)−1

⊗
I

+ I
)

(I−L0)V
⊗
I

=
V ∗(I−L0)−1

⊗
I

(
A⊗
I

− Zψ

)−1 (
Zψ

A⊗
I

+ I
)

(I−L0)V
⊗
I

=
V ∗(I−L0)−1

⊗
I

(
A⊗
I

− Zψ

)−1 (
Zψ

A⊗
I

− A2

⊗
I

+
A2

⊗
I

+ I
)

(I−L0)V
⊗
I

=
V ∗(I−L0)−1

⊗
I

(
A⊗
I

− Zψ

)−1 [(
Zψ − A⊗

I
)

A⊗
I

+ (
A2

⊗
I

+ I
)]

(I−L0)V
⊗
I

=
V ∗(I−L0)−1A(I−L0)V

⊗
I

+
V (I−L0)−1

⊗
I

(
A⊗
I

− Zψ

)−1 ( A2

⊗
I

+ I
)

(I−L0)V
⊗
I

=
V ∗AV⊗

I
+

V ∗(I−L0)−1

⊗
I

(
A⊗
I

− Zψ

)−1 ( A2

⊗
I

+ I
)

(I−L0)V
⊗
I

=
V ∗AV⊗

I
+

V ∗(I−L0)−1

⊗
I

(
A⊗
I

− Zψ

)−1 (I−L∗
0)

−1V
⊗
I

.

Now, the asymptotic condition implies that the constant terms must
vanish, so

f(Z) =
V ∗(I−L)−1

⊗
I

(
A⊗
I

− Zψ

)−1 (I−L∗)−1V
⊗
I

.

Defining a new R(x) = V ∗(I − L)−1x(I − L∗)−1V and ψ to be as
above, we are done with our construction.

�

The main result Theorem 1.5 now follows by noting that

E(−ψ(Z)−1) = lim
s → +∞
s ∈ R

sf(sZ) = −Z−1.

So we see that

E(ψ(Z)−1) = Z−1.

One can show that

E(ψ(H1) . . . ψ(Hk)) = H1 . . . Hk,

by taking Z = Ik+1−H, whereH hasH1, . . . , Hk on the upper diagonal.

Lemma 2.4.

E(ψ(H1) . . . ψ(Hk)) = H1 . . . Hk.
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Proof. Note

(I −H)−1 =
∞∑
i=0

H i,

and
E⊗
id

(
ψ
⊗
id

(I −H)−1
)
=

∞∑
i=0

E⊗
id

([
ψ
⊗
id

(H)
]i)

.

So we obtain that
E⊗
id

([
ψ
⊗
id

(H)
]k)

= Hk. Evaluating at

H =

( 0 H1

... ...
0 Hk

0

)

and looking at the block (1, k + 1) entry gives the claim. �

Now, we obtain the necessary homomorphic properties by letting B̂
be the algebra generated the range of ψ, so we are done.

3. Proof of the homomorphic Tomiyama’s theorem

We now prove our analog of Tomiyama’s theorem for homomorphic
conditional expectations. We restate the homomorphic Tomiyama’s
theorem here for clarity.

Proposition 3.1 (Homomorphic Tomiyama’s theorem). If E : M →
B is a homomorphic conditional expectation over B, then for all b1, b2 ∈
B̂,

E(b1mb2) = E(b1)E(m)E(b2).

Proof. Our proof follows Tomiyama’s original method in [10].
Suppose E is a homomorphic conditional expectation. Without

loss of generality, assume all C∗-algebras involved are weakly closed.
(That is, we can extend everything with the Stinespring theorem.)

It is sufficient to show that for any projection e in B̂ we have that
E(em) = E(e)E(m).

Let e be a projection in B̂. Let x be a positive element of M. Note
that

E(exe) ≤ E(e‖x‖e) = ‖x‖E(e).

So, since E(e) is a projection by the homomorphic property,

E(exe) = E(e)E(exe)E(e).

Now with a general element m ∈ M,

0 ≤ (
1 0
0 1−E(e)

)
E ( 1 me

em∗ emm∗e )
(
1 0
0 1−E(e)

)
=

(
1 E(m∗e)(1−E(e))

(1−E(e))E(em) 0

)
,
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and so

(1− E(e))E(em) = 0.

Thus, E(em) = E(e)E(em) = E(e)E(em) + E(e)E((1 − e)m) =
E(e)E(m) and we are done. �
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