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In this paper we study the quasilinear fully parabolic chemotaxis system with 
indirect signal production and logistic source: ut = ∇ · (D(u)∇u −S(u)∇v) + f(u), 
vt = Δv−a1v+b1w, wt = Δw−a2w+b2u, under homogeneous Neumann boundary 
conditions in a bounded and smooth domain Ω ⊂ Rn (n ≥ 1), where ai, bi > 0
(i = 1, 2), D, S ∈ C2([0, ∞)) and f : R → R is a smooth function generalizing 
the logistic source f(s) = b − μsr for all s ≥ 0 with b ≥ 0, μ > 0 and r ≥ 1. 
We obtain the global boundedness of solutions in four cases: (i) the self-diffusion 
dominates the cross-diffusion; (ii) the logistic source suppresses the cross-diffusion; 
(iii) the logistic dampening balances the cross-diffusion with μ > 0 suitably large; 
(iv) the self-diffusion and the logistic source both balance the cross-diffusion to some 
extent with μ > 0 arbitrary. As corollaries, we also consider the global boundedness 
of solutions for the quasilinear attraction-repulsion chemotaxis model with logistic 
source: ũt = ∇ · (D(ũ)∇ũ) − χ∇ · (ũ∇z) + ξ∇ · (ũ∇w̃) + f(ũ), zt = Δz − ρz + ηũ, 
w̃t = Δw̃ − δw̃ + γũ, where χ, η, ξ, γ, ρ, δ > 0.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

This paper is concerned with the quasilinear fully parabolic chemotaxis system with indirect signal 
production and logistic source:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut = ∇ · (D(u)∇u− S(u)∇v) + f(u), x ∈ Ω, t > 0,

vt = Δv − a1v + b1w, x ∈ Ω, t > 0,

wt = Δw − a2w + b2u, x ∈ Ω, t > 0,

∂νu = ∂νv = ∂νw = 0, x ∈ ∂Ω, t > 0,

(u(x, 0), v(x, 0), w(x, 0)) = (u0(x), v0(x), w0(x)), x ∈ Ω

(1.1)
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in a bounded and smooth domain Ω ⊂ Rn (n ≥ 1), where ai and bi (i = 1, 2) are positive constants, ∂ν
denotes the outer normal derivative on ∂Ω, and the initial data (u0, v0, w0) ∈ Cω(Ω̄) × [W 1,∞(Ω)]2 with 
0 < ω < 1 is nonnegative. The system (1.1) describes a biological process, known as chemotaxis, in which 
cells (with density u) migrate towards higher concentrations of a chemical signal v. This kind of aggregation 
of cells is reflected by the chemoattractive cross-diffusion term −∇ · (S(u)∇v) with the density-dependent 
sensitivity function S(u). But unlike the classical Keller-Segel model [12]

{
ut = Δu− χ∇ · (u∇v) + f(u), x ∈ Ω, t > 0,

vt = Δv − v + u, x ∈ Ω, t > 0
(1.2)

with χ > 0 and f ≡ 0, the signal production mechanism in (1.1) is indirect [6,8,26,27], that is, the chemoat-
tractant v is not produced by cells directly, but is governed by the quantity w arising from u. In addition, 
the term ∇ · (D(u)∇u) in (1.1) stands for the random self-diffusion of cells, and the inhomogeneity f(u)
represents the cell kinetic mechanism.

With regard to the chemotaxis model, the properties of solutions (e.g. the global existence or the finite-
time blow-up) depend on which of the cross-diffusion and the self-diffusion plays a dominated role in the 
system. In (1.2) with f ≡ 0, this can be characterized by the spatial dimension. More precisely, the solutions 
are always globally bounded for n = 1 [22]; when n = 2, a critical mass phenomenon occurs in the radially 
symmetric setting, meaning that the solutions remain globally bounded if 

∫
Ω u0 < 8π/χ [20] and there 

exist smooth initial data with 
∫
Ω u0 > 8π/χ such that the corresponding solutions blow up in finite time 

[7,19]; whereas in higher-dimensional balls, the finite-time blow-up solutions are constructed with any small 
mass [35]. Lately, a novel type of critical mass phenomenon for infinite-time blow-up of solutions has been 
identified for a parabolic-elliptic-ODE system with indirect signal production [26]. This makes us be aware 
that just the indirect signal production mechanism causes some unusual features of solutions concerning 
the blow-up or global existence, and can even lead to a distinct competition between the self-diffusion and 
the cross-diffusion. As expected, Fujie and Senba [6] proved for (1.1) with D ≡ 1, S(s) = χs, f ≡ 0 and 
ai = bi = 1 (i = 1, 2) that the solutions are globally bounded if n ≤ 3, or 

∫
Ω u0 < (8π)2/χ in the four-

dimensional and radially symmetric case, whence it is plausible to think that here n = 4 is a threshold for 
distinguishing the blow-up or global existence of solutions. Furthermore, for the general quasilinear system 
(1.1) without growth source, when D, S ∈ C2([0, ∞)) generalize the prototypes D(s) = (1 + s)−α and 
S(s) = s(1 + s)β−1 with α, β ∈ R, the global boundedness of solutions was determined under the condition 
α + β < min{1 + 2/n, 4/n} [4]; whereas for the direct signal production system

{
ut = ∇ · (D(u)∇u− S(u)∇v) + f(u), x ∈ Ω, t > 0,

vt = Δv − v + u, x ∈ Ω, t > 0
(1.3)

with D and S prescribed as above and f ≡ 0, it was proved in [25,9] that the solutions are globally bounded 
if α + β < 2/n.

The indirect signal production mechanism can also give rise to different interactions of the cross-diffusion 
and the logistic source. It is well-known that an appropriate logistic dampening can prevent blow-up of 
solutions. Indeed, for f(s) = μs(1 − s) with μ > 0, it was shown in [23] that the solutions of (1.2) are 
globally bounded in dimension n = 2 regardless of the size of μ. Furthermore, if n ≥ 3 and Ω is convex, 
Winkler [33] indicated the global boundedness of solutions for general f satisfying f(s) ≤ b − μs2 for all 
s ≥ 0 with b ≥ 0 and μ > 0 properly large. Also, Zheng [37] obtained the global boundedness of solutions 
for f(s) = bs − μsr with b ≥ 0, μ > 0 and r > 2. Different from these results, it was proved in [8] for the 
indirect signal production chemotaxis system
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⎧⎪⎪⎨
⎪⎪⎩

ut = Δu−∇ · (u∇v) + μu(1 − u), x ∈ Ω, t > 0,

vt = Δv − v + w, x ∈ Ω, t > 0,

εwt + δw = u, x ∈ Ω, t > 0

that the solutions are always globally bounded in dimension n = 3 for arbitrary μ > 0, and for (1.1) with 
D ≡ 1 and S(s) = χs, equivalent to an attraction-repulsion model, it can be found from [29] that it is 
possible to ensure the global boundedness of solutions even though the logistic exponent is smaller than 
two. Now turn to the quasilinear problem with logistic source. For the quasilinear fully parabolic Keller-Segel 
system (1.3), considerable efforts have been made to investigate the global boundedness of solutions due 
to the inhibition of self-diffusion and logistic dampening to the cross-diffusion. See e.g. [3,37,38,30] and 
references therein. Assume for simplicity that D(s) = (1 +s)−α, S(s) = s(1 +s)β−1 for s ≥ 0 with α, β ∈ R, 
and f(s) = bs −μsr for s ≥ 0 with b ≥ 0, μ > 0 and r > 1. Then the solutions of (1.3) are globally bounded 
if

• α + β < 1 + min
{

(2r − n− 2)+
nr

,
1
n

}
− min

{
(n− 2)+

n
,
(n + 2 − 2r)+

n + 2

}
[37, 38, 30], or (1.4)

• r >
n + 2
n + 4(2β + α + 1) ≥ n + 2

n + 4(β + 2 + 2
n
− n + 2

nr
) and n + 2

2 ≤ r < n + 2 [30], or

r > 2β + α− 1 ≥ β + 1
n

and r ≥ n + 2 [30], or r > β + 1 [3, 37], or (1.5)

• r = β + 1 with μ > 0 large enough [37]. (1.6)

The aim of this paper is to extend the study for (1.3) to the indirect signal production system (1.1). Our 
results on global boundedness of solutions, compared with those for (1.3), actually exhibit different inter-
actions between the self-diffusion and the cross-diffusion/between the logistic source and the cross-diffusion 
(see Remark 1 (ii) below). And the existing methods for the direct signal production system don’t seem 
to be applicable to (1.1). Therefore, the proof adopted in the present paper involves some new ideas and 
techniques.

Main results. To precisely formulate the main results of this paper, we suppose that the diffusivity D ∈
C2([0, ∞)) and the density-dependent sensitivity S ∈ C2([0, ∞)) with S(0) = 0 satisfy

D(s) ≥ a0(s + 1)−α, 0 ≤ S(s) ≤ b0(s + 1)β for all s ≥ 0, (1.7)

where a0, b0 > 0 and α, β ∈ R are constants. Also, the logistic source f : R → R is smooth and fulfills 
f(0) ≥ 0 as well as

f(s) ≤ b− μsr for all s ≥ 0 with some b ≥ 0, μ > 0 and r ≥ 1. (1.8)

Under these hypotheses, we shall firstly assert the global boundedness of solutions when the cross-diffusion 
is dominated by the self-diffusion and the logistic source, respectively.

Theorem 1. Let f be given as in (1.8). If D and S satisfy (1.7) with

α + β < 1 + 2
n
− min

{
(n− 2)+

n
,
(n + 2 − 2r)+

n + 2

}
, (1.9)

then for any nonnegative (u0, v0, w0) ∈ Cω(Ω̄) × [W 1,∞(Ω)]2 with 0 < ω < 1, the problem (1.1) possesses a 
globally bounded and classical solution (u, v, w).
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Theorem 2. Assume that D and S fulfill (1.7). If (1.8) is valid for f with

r > β + min
{

(n− 2)+
n

,
(n + 2 − 2β)+

n + 4

}
, (1.10)

then the solution (u, v, w) of (1.1), corresponding to the nonnegative initial data (u0, v0, w0) ∈ Cω(Ω̄) ×
[W 1,∞(Ω)]2 with 0 < ω < 1, is global and remains bounded in time.

Remark 1. (i) The conditions (1.9) and (1.10) can be specifically described as

α + β <

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1 + 2
n

when n ≤ 2, or n ≥ 3 and r ≥ n + 2
2 ,

4
n

when n ≥ 3 and 1 ≤ r ≤ n + 2
n

,

2
n

+ 2r
n + 2 when n + 2

n
≤ r <

n + 2
2

(1.11)

and

r >

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

β when n ≤ 2, or n ≥ 3 and β ≥ n + 2
2 ,

β + n− 2
n

when n ≥ 3 and β ≤ 4
n
,

(β + 1)(n + 2)
n + 4 when 4

n
≤ β <

n + 2
2 .

(1.12)

Recall that the solutions of the quasilinear system (1.1) without logistic source are globally bounded if 
α + β < min{1 + 2/n, 4/n} [4]. Also, it is clear that 2/n + 2r/(n + 2) > 4/n when (n + 2)/n < r ≤
(β + 1)(n + 2)/(n + 4) < (n + 2)/2. Therefore, due to the contribution of logistic kinetics, a larger range for 
α + β is allowed in (1.1) to ensure the global boundedness of solutions.

(ii) The restrictions of the self-diffusion and the logistic source in (1.1), in contrast to (1.3), are weakened 
since (1.4) and (1.5) are stronger than (1.9) and (1.10), respectively. Indeed, the former is trivial, while the 
latter (or equivalently, (1.5) ⇒ (1.12)) can be easily derived by just noticing that if

r >
n + 2
n + 4(β + 2 + 2

n
− n + 2

nr
) and n + 2

2 ≤ r < n + 2,

then β < n + 2, and so

r >
n + 2
n + 4(β + 2 + 2

n
− n + 2

nr
) > β.

Secondly, we will see that if the logistic dampening balances the cross-diffusion with the coefficient μ > 0
suitably large, then the solutions are globally bounded.

Theorem 3. Suppose that D and S satisfy (1.7), and that (1.8) holds for f with

r = β + min
{

(n− 2)+
n

,
(n + 2 − 2β)+

n + 4

}
and 4

n
≤ β <

n + 2
2 . (1.13)

Then for any m∗ > 0, there exists μ∗ > 0, relying on m∗, b0, ai, bi (i = 1, 2), b, r, n and Ω, such that for 
any nonnegative (u0, v0, w0) ∈ Cω(Ω̄) × [W 1,∞(Ω)]2 (0 < ω < 1) fulfilling
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(a) ‖u0‖Lr(Ω) ≤ m∗ and ‖w0‖W 1,∞(Ω) ≤ m∗ with r ≤ 2, or
(b) ‖u0‖L1(Ω) ≤ m∗ and ‖w0‖W 2,r(Ω) ≤ m∗ with r > 2, w0 ∈ W 2,r(Ω) and ∂νw0|∂Ω = 0,

the solution of (1.1) is globally bounded provided that μ > μ∗.

Remark 2. Note that 4/n ≤ β < (n + 2)/2 implies here r = (β + 1)(n + 2)/(n + 4) ∈ [(n + 2)/n, (n + 2)/2)
with n ≥ 3.

In the case that the self-diffusion and the logistic source both balance the cross-diffusion, viz.

α + β = 1 + 2
n
− min

{
(n− 2)+

n
,
(n + 2 − 2r)+

n + 2

}
and

r = β + min
{

(n− 2)+
n

,
(n + 2 − 2β)+

n + 4

}
,

we find that with the additional restriction β = 4/n = 1 (and so r = 3/2 and α = 0), the solutions of (1.1)
are globally bounded regardless of the size of parameter μ > 0. This reads as follows.

Theorem 4. Let n = 4. Assume that D and S obey (1.7) with α = 0 and β = 1, and that f satisfies (1.8)
with r = 3/2. Then for any nonnegative initial data, (1.1) admits a globally bounded solution.

Attraction-repulsion problem. As a by-product of Theorems 1–4, we can further consider the following 
quasilinear fully parabolic attraction-repulsion chemotaxis model [18,24]

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ũt = ∇ · (D(ũ)∇ũ) − χ∇ · (ũ∇z) + ξ∇ · (ũ∇w̃) + f(ũ), x ∈ Ω, t > 0,

zt = Δz − ρz + ηũ, x ∈ Ω, t > 0,

w̃t = Δw̃ − δw̃ + γũ, x ∈ Ω, t > 0,

∂ν ũ = ∂νz = ∂νw̃ = 0, x ∈ ∂Ω, t > 0,

(ũ(x, 0), z(x, 0), w̃(x, 0)) = (ũ0(x), z0(x), w̃0(x)), x ∈ Ω

(1.14)

in the case that the repulsion cancels the attraction (i.e. χη = ξγ), where χ, η, ξ, γ, ρ and δ are positive 
constants. Indeed, define

ṽ(x, t) := χz(x, t) − ξw̃(x, t).

Then (ũ, ̃v, w̃) solves the system like (1.1)

⎧⎪⎪⎨
⎪⎪⎩

ũt = ∇ · (D(ũ)∇ũ− ũ∇ṽ) + f(ũ), x ∈ Ω, t > 0,

ṽt = Δṽ − ρṽ + ξ(δ − ρ)w̃, x ∈ Ω, t > 0,

w̃t = Δw̃ − δw̃ + γũ, x ∈ Ω, t > 0

(1.15)

since χη = ξγ.
A striking feature of the attraction-repulsion chemotaxis model is the positive effect of repulsion on 

the global boundedness of solutions when the repulsion prevails over (i.e. ξγ − χη > 0) or cancels (viz. 
ξγ − χη = 0) the attraction, and related research can be found in [10,11,15–17]. For instance, under the 
case that f ≡ 0, for any initial data, the semilinear version of (1.14) (that is, D ≡ 1) has a unique globally 
bounded and classical solution if n = 1 [11,17], or n = 2 and ξγ ≥ χη [10,15,16], or n = 3 with ξγ = χη [15], 
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and thus any blow-up is excluded with the help of repulsion even if n = 2 or 3. Moreover, when ξγ = χη, 
there is a critical mass phenomenon in dimension n = 4 [6], as the one of the two-dimensional Keller-Segel 
system (1.2) with f ≡ 0. So far, few works genuinely concern the contribution of repulsion in the general 
quasilinear system (1.14). In [4], assuming that ξγ = χη, f ≡ 0 and D(s) ≥ c0(s + 1)M−1 for all s ≥ 0 with 
c0 > 0 and M ∈ R, Ding and Wang established the boundedness for (1.14) under the subcritical condition 
M > max{2 − 4/n, 1 − 2/n}. When the repulsion is absent from (1.14), it is known that the solutions are 
globally bounded if M > 2 −2/n (cf. [25,9]). Accordingly, the result of [4] shows that the repulsion in (1.14)
actually benefits the boundedness of solutions with the restrictions to the random self-diffusion weakened.

The repulsion mechanism can also relax the growth restrictions of logistic type to ensure the global 
boundedness of solutions. On this point, very recently, Wang et al. [29] proved, for the problem (1.14) with 
D ≡ 1 and f satisfying (1.8), that when ξγ = χη, the solution is globally bounded if

n ≤ 3, or r > rn := min
{
n + 2

4 ,
n
√
n2 + 6n + 17 − n2 − 3n + 4

4

}
with n ≥ 2. (1.16)

Hence, owing to the effect of repulsion, the exponent r is allowed to take values less than 2 such that 
the solution remains uniformly bounded in time. The similar discussions for the semilinear parabolic-elliptic 
counterpart of (1.14) can be available [13]. Observe that in (1.16), r > r4 = 3/2 when n = 4. By analogy with 
the boundedness results of (1.2) with logistic source, it can be expected for the semilinear version of (1.14)
that when the repulsion cancels the attraction and f fulfills (1.8) with r = 3/2, the solutions are always 
globally bounded in dimension n = 4, just as the assertion given in the classical two-dimensional Keller-Segel 
model (1.2) with logistic source bearing quadratic degradation. This conjecture has been confirmed in [14]
for the parabolic-elliptic problem. Unfortunately, for the fully parabolic system, it has to be left open there.

As the proof of Theorems 1–4 in Sections 3 and 4 will show, the results among them can easily be carried 
over to (1.15) even if the coefficient ξ(δ−ρ) in the second equation is nonpositive. Therefore, we immediately 
obtain the following global boundedness of solutions for the quasilinear system (1.14) with logistic source.

Corollary 1. Let χη = ξγ, and assume that D and f are restricted as in (1.7) and (1.8), respectively. If

α <
2
n
− min

{
(n− 2)+

n
,
(n + 2 − 2r)+

n + 2

}
, or r > 1 + min

{
(n− 2)+

n
,

n

n + 4

}
,

then for any nonnegative (ũ0, z0, w̃0) ∈ Cω(Ω̄) × [W 1,∞(Ω)]2 with 0 < ω < 1, the problem (1.14) possesses 
a globally bounded and classical solution (ũ, z, w̃).

Remark 3. From this corollary, we get, for (1.14) with D ≡ 1 and f satisfying (1.8), that when χη = ξγ, 
the solutions are globally bounded if n ≤ 3, or r > 2(n + 2)/(n + 4) and n ≥ 4. This improves the result 
obtained in [29].

Corollary 2. Under the conditions of Corollary 1, if

r = 2(n + 2)
n + 4 with n ≥ 4,

then for any m∗ > 0, there exists μ∗ = μ∗(m∗, ξ, γ, ρ, δ, b, n, Ω) > 0 such that for any nonnegative 
(ũ0, z0, w̃0) ∈ Cω(Ω̄) × [W 1,∞(Ω)]2 (0 < ω < 1) with ‖ũ0‖Lr(Ω) ≤ m∗ and ‖w̃0‖W 1,∞(Ω) ≤ m∗, the so-
lution of (1.14) is globally bounded provided that μ > μ∗.

Corollary 3. Under the conditions of Corollary 1, if α = 0 and r = 3/2 with n = 4, then for any nonnegative 
initial data, (1.14) has a globally bounded solution.
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Remark 4. This corollary entails for the semilinear version of (1.14) (i.e. D ≡ 1) that when χη = ξγ and f
fulfills (1.8) with r = 3/2, the solutions are always globally bounded in dimension n = 4, and thereby solves 
the open problem left in [14].

Ideas of proof for Theorems 1–4. In order to obtain the global boundedness of solutions to a chemotaxis 
system, based upon the Moser-type iteration, it is sufficient to establish the Lp-boundedness of the density 
u for large p. An effective analysis used in the derivation for the Lp-bound of u is tracking the time evolution 
for the coupled energy of the density and the signal (cf. e.g. [25,33]). Unfortunately, such approach is limited 
in the present problem (1.1). Alternatively, we estimate the integral 

∫
Ω up separately by constructing an 

absorptive differential inequality for t 
→
∫
Ω up. Roughly, testing the first equation in (1.1) with p(u + 1)p−1

and integrating by parts, we get (Lemma 4.2)

d

dt

∫
Ω

(u + 1)p ≤ −p(p− 1)a0

∫
Ω

(u + 1)p−α−2|∇u|2 + p(p− 1)b0
p + β − 1

∫
Ω

(u + 1)p+β−1|Δv|

+ p(b + μ)
∫
Ω

(u + 1)p−1 − 21−rpμ

∫
Ω

(u + 1)p+r−1

=: −Is-d + Ic-d + Il-s+ − Il-s−,

where the integral involving the cross-diffusive term has been integrated by parts twice with all deriva-
tives transferred onto v. Clearly, the ill-signed term Il-s+ can be absorbed by −Il-s−. As for Ic-d, it can 
be properly controlled by −Is-d when the self-diffusion prevails over the cross-diffusion (Lemma 4.3); by 
−Il-s− in the case that the logistic source suppresses or balances the cross-diffusion (Lemma 4.4 and Sub-
section 4.3); and by −Is-d if the self-diffusion and the logistic dampening both balance the cross-diffusion 
(Subsection 4.4). However, in these processes, an additional term related to the integral 

∫
Ω |Δv|p′ for some 

p′ > 1 has occurred. To deal with it, the maximal Sobolev regularity for abstract differential equations 
with nonzero initial data (Lemma 2.2) plays a crucial role. For the non-flux linear parabolic problem 
ζt = Δζ − aζ + g, we use the maximal Sobolev regularity to elaborately establish two kinds of spatio-
temporal integral estimates for the principal part (Proposition 2.2 (i) (iii)), and spatial integral estimates of 
solutions (Proposition 2.2 (ii)). These preparations enable us on the one hand to show the Lq-boundedness of 
w with suitable q ≥ 1 (Lemma 3.3), and on the other hand to establish the proper integral relations between 
Δv and u (Lemmas 3.4 and 3.5). Accordingly, the appropriate differential inequalities for 

∫
Ω(u + 1)p(·, t)

with the boundedness property (Lemmas 2.4 and 2.5) are obtained. We mention that the estimates in 
Proposition 2.2 (iii) have already been used to investigate the global boundedness of solutions resulting 
from the logistic dampening [3,36,37]. One of the novelty of our proof is that in considering the inhibition of 
self-diffusion to the cross-diffusion, we have developed an effective estimate as in Proposition 2.2 (i) to serve 
the current treatment. This method is universal, and is certainly applicable to the direct signal production 
system. Also, Proposition 2.2 (i) guarantees the boundedness of ‖Δv(·, t)‖L6(Ω) on some temporal average 
in dimension n = 4 (Lemma 3.5), a key for the proof of Theorem 4, which however cannot be achieved by a 
test procedure. In addition, with regard to Proposition 2.2 (ii), it provides the integral estimates of w that 
can reach the borderline case (Lemma 3.3 (ii)). This is essentially required by Theorem 3.

This paper is organized as follows. In Section 2, we provide some preliminary material, especially the 
regularity properties of solutions for the Neumann problem on the linear parabolic equations in (1.1), which 
are derived by the smoothing estimates of the Neumann heat semigroup and the maximal Sobolev regularity 
with nonzero initial data belonging to some real interpolation spaces. Besides, as a potential preparation, 
the boundedness features of solutions for some ordinary differential inequalities are also given in this section. 
Indeed, Section 2 is the cornerstone of our work. And then some crucial estimates for the proof of main 
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results, such as the Lq-boundedness of w with some q ≥ 1 and the proper integral relations between Δv and 
u, are established in Section 3. Finally, in Section 4, we prove the main results of this paper (Theorems 1–4).

2. Preliminaries

In this section, we will resort the Lp-Lq estimates of the Neumann heat semigroup [32, Theorem 1.3] and 
the maximal Sobolev regularity [2, Section 4 of Chapter III] to establish some a priori estimates of solutions 
for the Neumann problem related to the latter two parabolic equations in (1.1).

Firstly, the following regularity properties of solutions (see e.g. [34, Lemma 2.4]) can be derived by a 
straightforward application of the smoothing estimates for the Neumann heat semigroup. For clarifying the 
dependence of the constants therein, we prove it in detail.

Proposition 2.1. Let a > 0, ζ0 ∈ W 1,∞(Ω) and g ∈ C0(Ω̄ × [0, T )) with T ∈ (0, ∞]. Suppose that ζ ∈
C2,1(Ω̄ × (0, T )) ∩ C0(Ω̄ × [0, T )) solves

⎧⎪⎪⎨
⎪⎪⎩

ζt = Δζ − aζ + g, (x, t) ∈ Ω × (0, T ),

∂νζ = 0, (x, t) ∈ ∂Ω × (0, T ),

ζ(x, 0) = ζ0(x), x ∈ Ω.

(2.1)

(i) If (n/2)(1/p − 1/q) < 1 with 1 ≤ p, q ≤ ∞, then there exists C > 0, relying on a, p, q, n and Ω, such 
that

‖ζ(·, t)‖Lq(Ω) ≤ C
(

sup
s∈(0,t)

‖g(·, s)‖Lp(Ω) + ‖ζ0‖L∞(Ω)
)

for each t ∈ (0, T ).

(ii) Assume that (1/2) + (n/2)(1/p − 1/q) < 1 and 1 ≤ p, q ≤ ∞. Then

‖∇ζ(·, t)‖Lq(Ω) ≤ C
(

sup
s∈(0,t)

‖g(·, s)‖Lp(Ω) + ‖∇ζ0‖L∞(Ω)
)

for any t ∈ (0, T )

with some C = C(a, p, q, n, Ω) > 0.

Proof. (i) First, we assume that q ≥ p. Invoking the variation-of-constants formula for ζ yields

ζ(·, t) = et(Δ−a)ζ0(·) +
t∫

0

e(t−s)(Δ−a)g(·, s)ds for any t ∈ (0, T ). (2.2)

Therefore, it follows from [32, Lemma 1.3 (i)] and the maximum principle that

‖ζ(·, t)‖Lq(Ω)

≤ ‖et(Δ−a)ζ0(·)‖Lq(Ω) +
t∫

0

‖e(t−s)(Δ−a)(g(·, s) − ḡ(s))‖Lq(Ω) + ‖e(t−s)(Δ−a)ḡ(s)‖Lq(Ω)ds

= ‖et(Δ−a)ζ0(·)‖Lq(Ω) +
t∫

0

e−a(t−s)‖e(t−s)Δ(g(·, s) − ḡ(s))‖Lq(Ω) + e−a(t−s)‖ḡ(s)‖Lq(Ω)ds

≤ |Ω| 1q ‖et(Δ−a)ζ0(·)‖L∞(Ω)
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+
t∫

0

[
C1

(
1 + (t− s)−

n
2 ( 1

p− 1
q ))‖g(·, s) − ḡ(s)‖Lp(Ω) + ‖ḡ(s)‖Lq(Ω)

]
e−a(t−s)ds

≤ |Ω| 1q ‖ζ0‖L∞(Ω) +
t∫

0

[
2C1

(
1 + (t− s)−

n
2 ( 1

p− 1
q )) + |Ω| 1q− 1

p

]
e−a(t−s)‖g(·, s)‖Lp(Ω)ds

≤ |Ω| 1q ‖ζ0‖L∞(Ω) + sup
s∈(0,t)

‖g(·, s)‖Lp(Ω)

∞∫
0

[
2C1

(
1 + s−

n
2 ( 1

p− 1
q )) + |Ω| 1q− 1

p

]
e−asds

for all t ∈ (0, T ), where ḡ(s) = 1
|Ω|

∫
Ω g(·, s), and C1 > 0 depends on Ω only. Noticing that

∞∫
0

[
2C1

(
1 + s−

n
2 ( 1

p− 1
q )) + |Ω| 1q− 1

p

]
e−asds < ∞

for (n/2)(1/p − 1/q) < 1, we arrive at the claimed estimate. When q < p, the assertion results from the 
Hölder inequality and the Lp-bound of ζ.

(ii) Likewise, we may assume that q ≥ p. Now with ∇ applied to both sides of (2.2), we deduce by [32, 
Lemma 1.3 (ii) and (iii)] that

‖∇ζ(·, t)‖Lq(Ω)

≤ ‖∇et(Δ−a)ζ0(·)‖Lq(Ω) +
t∫

0

‖∇e(t−s)(Δ−a)g(·, s)‖Lq(Ω)

≤ ‖∇etΔζ0(·)‖Lq(Ω) +
t∫

0

e−a(t−s)‖∇e(t−s)Δg(·, s)‖Lq(Ω)ds

≤ |Ω| 1q ‖∇etΔζ0(·)‖L∞(Ω) +
t∫

0

C2
(
1 + (t− s)−

1
2−n

2 ( 1
p− 1

q ))e−a(t−s)‖g(·, s)‖Lp(Ω)ds

≤ C3|Ω| 1q ‖∇ζ0‖L∞(Ω) + sup
s∈(0,t)

‖g(·, s)‖Lp(Ω)

∞∫
0

C2
(
1 + s−

1
2−n

2 ( 1
p− 1

q ))e−asds

for all t ∈ (0, T ) with Ci = Ci(Ω) > 0 (i = 2, 3). Because of the convergence of the integral 
∫∞
0 C2(1 +

s−
1
2−n

2 ( 1
p− 1

q ))e−asds, the desired estimate is established. The proof is complete. �
As needed later, we next introduce two notations.

(1) For λ > 0 and p ∈ (1, ∞), we let Aλ,p denote the realization of −Δ +λ in Lp(Ω) under the homogeneous 
Neumann boundary conditions, defined by

Aλ,pϕ := −Δϕ + λϕ for ϕ ∈ D(Aλ,p) := W 2,p
N :=

{
ϕ ∈ W 2,p(Ω) : ∂νϕ|∂Ω = 0

}
.

If no confusion is likely, we sometimes abbreviate Aλ,p to Aλ.
(2) For p, q ∈ (1, ∞), write

Lp,q := (Lp(Ω),W 2,p
N )1−1/q,q with the norm ‖ · ‖p,q,
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where (·, ·)1−1/q,q represents the real interpolation functor of exponent 1 − 1/q and parameter q [2, 
Example 2.4.1]. That is to say, Lp,q denotes the Banach space of the functions ϕ in Lp(Ω) +W 2,p

N such 
that

‖ϕ‖p,q :=
( ∞∫

0

τ−qKq(τ, ϕ)dτ
) 1

q

< ∞

with

K(τ, ϕ) := inf{‖ϕ1‖Lp(Ω) + τ‖ϕ2‖W 2,p(Ω) : ϕ = ϕ1 + ϕ2} for τ > 0.

Clearly, the embedding W 2,p
N ↪→ Lp,q is valid by definition.

Some basic properties on the space Lp,p with p ∈ (1, ∞) are summed in the following lemma.

Lemma 2.1.

(i) It holds that

⎧⎪⎪⎨
⎪⎪⎩

Lp,p � W 2(1−1/p),p(Ω) for 1 < p < 3,

Lp,p ↪→ W 2(1−1/p),p(Ω) for p = 3,

Lp,p � {u ∈ W 2(1−1/p),p(Ω) : ∂νu|∂Ω = 0} for p > 3,

(2.3)

where W 2(1−1/p),p(Ω) with p �= 2 denotes the Sobolev-Slobodeckij space (see e.g. [1, Section 11]), and �
indicates that the corresponding norms are equivalent.

(ii) Moreover, we have

Lp,p ↪→ W s̃,p̃(Ω) if 2 − (n + 2)/p ≥ s̃− n/p̃ with s̃ ≥ 0 and 1 < p ≤ p̃ < ∞, (2.4)

and

W 1,p(Ω) ↪→ Lp,p for 1 < p ≤ 2. (2.5)

Proof. (i) The assertions for p �= 2, 3 come from [1, Theorem 13.3]. Due to [28, Theorem 1.18.10] and again 
by [1, Theorem 13.3], we have

L2,2 = (L2(Ω), D(A1,2))1/2,2 � [L2(Ω), D(A1,2)]1/2 � W 1,2(Ω)

with [·, ·]1/2 denoting the complex interpolation functor of exponent 1/2 [2, Example 2.4.2]. As for p = 3, it 
can be readily checked with [1, Theorem 11.6] that

L3,3 = (L3(Ω),W 2,3
N )2/3,3 ↪→ (L3(Ω),W 2,3(Ω))2/3,3 � W 4/3,3(Ω).

(ii) This is immediate from (2.3) and the Sobolev embedding theorem [1, Theorem 11.5]. �
Now we give the maximal Sobolev regularity for abstract differential equations with nonzero initial data.
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Lemma 2.2. ([2, Theorems 4.10.2 and 4.10.7, and Remark 4.10.9 (c)]) Let p, q ∈ (1, ∞) and λ > 0. Then 
for any g ∈ Lq((0, ∞); Lp(Ω)) and every ϕ ∈ Lp,q, the initial value problem

{
u′(s) + Aλu(s) = g(s), s > 0,

u(0) = ϕ
(2.6)

possesses a unique solution u ∈ Lq((0, ∞); W 2,p
N ) ∩W 1,q((0, ∞); Lp(Ω)) satisfying

c sup
s∈(0,∞)

‖u(s)‖qp,q ≤
∞∫
0

‖u(s)‖qLp(Ω)ds +
∞∫
0

‖u′(s)‖qLp(Ω)ds +
∞∫
0

‖Aλu(s)‖qLp(Ω)ds

≤ C
( ∞∫

0

‖g(s)‖qLp(Ω)ds + ‖ϕ‖qp,q
)

for some positive constants c and C depending on λ, p, q, n and Ω.

The foregoing preparations allow us to further establish integral estimates of solutions for the Neumann 
problem related to the latter two parabolic equations in (1.1).

Proposition 2.2. Let a > 0 and 0 ≤ t0 < T ≤ ∞. Assume that ζ ∈ C2,1(Ω̄ × [t0, T )) satisfies

{
ζt = Δζ − aζ + g, (x, t) ∈ Ω × (t0, T ),

∂νζ = 0, (x, t) ∈ ∂Ω × (t0, T ).

(i) For any p, q ∈ (1, ∞), there exist positive constants C and Ĉ, relying on a, p, q, n and Ω, such that

‖ζ(·, t)‖qp,q ≤ C
(

sup
s∈(t0,t]

s∫
t0+(s−1−t0)+

‖g(·, τ)‖qLp(Ω)dτ + ‖ζ(·, t0)‖qp,q
)

(2.7)

for each t ∈ (t0, T ), and

t∫
t0+(t−1−t0)+

‖Aaζ(·, τ)‖qLp(Ω)dτ

≤ Ĉ
(

sup
s∈(t0,t]

s∫
t0+(s−1−t0)+

‖g(·, τ)‖qLp(Ω)dτ + ‖ζ(·, t0)‖qp,q
)

(2.8)

for any t ∈ (t0, T ).
(ii) Suppose that 2 − (n + 2)/p ≥ −n/p̃ with 1 < p < ∞ and 1 ≤ p̃ < ∞. Then there exists C =

C(a, p, n, Ω, p̃) > 0 such that

‖ζ(·, t)‖pLp̃(Ω) ≤ C
(

sup
s∈(t0,t]

s∫
t0+(s−1−t0)+

‖g(·, τ)‖pLp(Ω)dτ + ‖ζ(·, t0)‖pp,p
)

for each t ∈ (t0, T ).
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(iii) For any p, q ∈ (1, ∞) and every a ∈ [0, a), there exists C > 0, depending on a − a, p, q, n and Ω, such 
that

t∫
t0

eaqτ‖Aa−aζ(·, τ)‖qLp(Ω)dτ ≤ C
( t∫
t0

eaqτ‖g(·, τ)‖qLp(Ω)dτ + eaqt0‖ζ(·, t0)‖qp,q
)

for any t ∈ (t0, T ).

Proof. Let t0 ≤ t1 < t2 < T and 0 ≤ a < a. Set

u(s) = u(s; t1, t2, a) :=
{

ea(s+t1)ζ(·, s + t1) if 0 ≤ s ≤ t2 − t1,

υ(·, s− t2 + t1) if s > t2 − t1

with υ(x, s) = υ(x, s; t2, a) solving

⎧⎪⎪⎨
⎪⎪⎩

υs = Δυ − (a− a)υ, x ∈ Ω, s > 0,

∂νυ = 0, x ∈ ∂Ω, s > 0,

υ(x, 0) = eat2ζ(x, t2), x ∈ Ω.

Then for any p, q ∈ (1, ∞), u ∈ Lq((0, ∞); W 2,p
N ) ∩W 1,q((0, ∞); Lp(Ω)) is the solution of (2.6) with

λ = λ(a) := a− a,

g(s) = g(s; t1, t2, a) :=
{

ea(s+t1)g(·, s + t1), 0 ≤ s < t2 − t1,

0, s > t2 − t1,
and

ϕ(x) = ϕ(x; t1, a) := eat1ζ(x, t1).

(i) Given p, q ∈ (1, ∞), we at first prove (2.7). In view of Lemma 2.2, there exists C1 = C1(a, p, q, n, Ω) such 
that

‖u(t− t0; t0, t, a/2)‖qp,q ≤ C1

( ∞∫
0

‖g(τ ; t0, t, a/2)‖qLp(Ω)dτ + ‖ϕ(·; t0, a/2)‖qp,q
)

for all t ∈ (t0, T ), which entails

‖ζ(·, t)‖qp,q ≤ C1

( t−t0∫
0

e−
aq
2 (t−τ−t0)‖g(·, τ + t0)‖qLp(Ω)dτ + e−

aq
2 (t−t0)‖ζ(·, t0)‖qp,q

)

≤ C1

( t∫
t0

e−
aq
2 (t−τ)‖g(·, τ)‖qLp(Ω)dτ + ‖ζ(·, t0)‖qp,q

)
for all t ∈ (t0, T )

with the integral on the right-hand side estimated as

t∫
e−

aq
2 (t−τ)‖g(·, τ)‖qLp(Ω)dτ
t0
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=
t−t0∫
0

e−
aq
2 τ‖g(·, t− τ)‖qLp(Ω)dτ

=
[t−t0]−1∑

k=0

k+1∫
k

e−
aq
2 τ‖g(·, t− τ)‖qLp(Ω)dτ +

t−t0∫
[t−t0]

e−
aq
2 τ‖g(·, t− τ)‖qLp(Ω)dτ

≤
[t−t0]−1∑

k=0

e−
aq
2 k

t−k∫
t−k−1

‖g(·, τ)‖qLp(Ω)dτ +
t−[t−t0]∫

t0

‖g(·, τ)‖qLp(Ω)dτ

≤
( ∞∑

k=0

e−
aq
2 k + 1

)
sup

s∈(t0,t]

s∫
t0+(s−1−t0)+

‖g(·, τ)‖qLp(Ω)dτ

=
( 1

1 − e−aq/2 + 1
)

sup
s∈(t0,t]

s∫
t0+(s−1−t0)+

‖g(·, τ)‖qLp(Ω)dτ for all t ∈ (t0, T ).

This proves (2.7) by choosing C := C1( 1
1−e−aq/2 + 1).

We proceed to verify (2.8). Again by Lemma 2.2, we can find C2 > 0, determined by a, p, q, n and Ω, 
satisfying

∞∫
0

∥∥Aλ(0)u
(
τ ; t0 + (t− 1 − t0)+, t, 0

)∥∥q
Lp(Ω)dτ

≤ C2

( ∞∫
0

∥∥g(τ ; t0 + (t− 1 − t0)+, t, 0
)∥∥q

Lp(Ω)dτ +
∥∥ϕ(·; t0 + (t− 1 − t0)+, 0

)∥∥q
p,q

)

for all t ∈ (t0, T ), from which we further derive that

t∫
t0+(t−1−t0)+

‖Aaζ(·, τ)‖qLp(Ω)dτ

=
t−[t0+(t−1−t0)+]∫

0

∥∥Aaζ
(
·, τ + t0 + (t− 1 − t0)+

)∥∥q
Lp(Ω)dτ

≤ C2

( t−[t0+(t−1−t0)+]∫
0

∥∥g(·, τ + t0 + (t− 1 − t0)+
)∥∥q

Lp(Ω)dτ

+
∥∥ζ(·, t0 + (t− 1 − t0)+

)∥∥q
p,q

)

= C2

( t∫
t0+(t−1−t0)+

‖g(·, τ)‖qLp(Ω)dτ +
∥∥ζ(·, t0 + (t− 1 − t0)+

)∥∥q
p,q

)
(2.9)

for all t ∈ (t0, T ). In addition, we have

∥∥ζ(·, t0 + (t− 1 − t0)+
)∥∥q

p,q
= ‖ζ(·, t0)‖qp,q if t ∈ (t0, T ) and t ≤ 1 + t0, (2.10)
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or

∥∥ζ(·, t0 + (t− 1 − t0)+
)∥∥q

p,q

≤ C
(

sup
s∈(t0,t0+(t−1−t0)+]

s∫
t0+(s−1−t0)+

‖g(·, τ)‖qLp(Ω)dτ + ‖ζ(·, t0)‖qp,q
)

≤ C
(

sup
s∈(t0,t−1]

s∫
t0+(s−1−t0)+

‖g(·, τ)‖qLp(Ω)dτ + ‖ζ(·, t0)‖qp,q
)

(2.11)

if t ∈ (t0, T ) and t > 1 + t0 due to (2.7). Therefore, one can easily see from (2.9)–(2.11) that (2.8) is valid 
with Ĉ := C2(1 + C).

(ii) It is obviously true if 2 − (n + 2)/p ≥ −n/p̃ and 1 < p ≤ p̃ < ∞ by (2.7) and (2.4). When 
2 − (n + 2)/p ≥ −n/p̃ and 1 ≤ p̃ < p, since 2 − (n + 2)/p ≥ −n/p, the assertion results from the Hölder 
inequality and the corresponding estimate for ‖ζ(·, t)‖pLp(Ω).

(iii) Applying Lemma 2.2 to u(·; t0, t, a), we obtain

∞∫
0

‖Aλ(a)u(τ ; t0, t, a)‖qLp(Ω)dτ ≤ C3

( ∞∫
0

‖g(τ ; t0, t, a)‖qLp(Ω)dτ + ‖ϕ(·; t0, a)‖qp,q
)

for all t ∈ (t0, T ) with C3 > 0 relying on a − a, p, q, n and Ω, whence

t−t0∫
0

eaq(τ+t0)‖Aa−aζ(·, τ + t0)‖qLp(Ω)dτ

≤ C3

( t−t0∫
0

eaq(τ+t0)‖g(·, τ + t0)‖qLp(Ω)dτ + eaqt0‖ζ(·, t0)‖qp,q
)

for all t ∈ (t0, T ), as desired. �
Proposition 2.3. Assume that 2 − (n + 2)/p ≥ −n/p̃ with 1 < p < ∞ and 1 ≤ p̃ < ∞. Then under the 
conditions of Proposition 2.1, there exists C = C(a, p, n, Ω, p̃) > 0 such that

‖ζ(·, t)‖pLp̃(Ω) ≤ C
(

sup
s∈(0,t]

s∫
(s−1)+

‖g(·, τ)‖pLp(Ω)dτ + ‖g(·, 0)‖pLp(Ω) + ‖ζ0‖pW 1,∞(Ω) + 1
)

for all t ∈ (0, T ) if 1 < p ≤ 2, or

‖ζ(·, t)‖pLp̃(Ω) ≤ C
(

sup
s∈(0,t]

s∫
(s−1)+

‖g(·, τ)‖pLp(Ω)dτ + ‖ζ0‖pp,p
)

for each t ∈ (0, T ) if 2 < p < ∞ and further ζ0 ∈ Lp,p.

Proof. Let us first treat the case 1 < p ≤ 2. By Proposition 2.1 and the continuity of g, there exist 
C1 = C1(a, p, n, Ω) > 0 and a small t∗ > 0 such that
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sup
t∈(0,t∗)

‖ζ(·, t)‖W 1,p(Ω) ≤ C1
(

sup
t∈(0,t∗)

‖g(·, t)‖Lp(Ω) + ‖ζ0‖W 1,∞(Ω)
)

≤ C1
(
1 + ‖g(·, 0)‖Lp(Ω) + ‖ζ0‖W 1,∞(Ω)

)
. (2.12)

For any t ∈ (0, T ), we take 0 < t1 < min{t, t∗}, and then gain by Proposition 2.2 (ii) and (2.5) that

‖ζ(·, t)‖pLp̃(Ω) ≤ C2

(
sup

s∈(t1,t]

s∫
t1+(s−1−t1)+

‖g(·, τ)‖pLp(Ω)dτ + ‖ζ(·, t1)‖pp,p
)

≤ C2

(
sup

s∈(0,t]

s∫
(s−1)+

‖g(·, τ)‖pLp(Ω)dτ + C3‖ζ(·, t1)‖pW 1,p(Ω)

)

with C2 = C2(a, p, n, Ω, p̃) > 0 and C3 = C3(p, n, Ω) > 0. This along with (2.12) yields the claimed estimate.
Now, assume that 2 < p < ∞ and in addition that ζ0 ∈ Lp,p. For any fixed 0 < T ′ < T , let u ∈

Lp((0, ∞); W 2,p
N ) ∩W 1,p((0, ∞); Lp(Ω)) be the solution of (2.6) with

λ = a, g(s) =
{
g(·, s), 0 ≤ s < T ′,

0, s > T ′,
and ϕ(x) = ζ0(x).

Note that 2 < p < ∞. Therefore, u ∈ L2((0, T ′); H1(Ω)) with u′ ∈ L2((0, T ′); L2(Ω)) is a weak solution of 
(2.1) in Ω × (0, T ′), that is

T ′∫
0

(u′,v) = −
T ′∫
0

(∇u,∇v) − a

T ′∫
0

(u,v) +
T ′∫
0

(g,v)

for all v ∈ C∞
0 ((0, T ′); H1(Ω)), and u(0) = ζ0, where the pairing (·, ·) denotes the inner product in L2(Ω). 

Define

ũ := ũ(t) := ζ(·, t), t ∈ (0, T ′).

Then ũ ∈ L∞((0, T ′); H1(Ω)) due to Proposition 2.1, and furthermore testing the first equation in (2.1) by 
ζt gives ũ′ ∈ L2((0, T ′); L2(Ω)). Clearly, ũ is also a weak solution of (2.1) in Ω × (0, T ′). By uniqueness, 
ũ = u ∈ Lp((0, T ′); W 2,p

N ) ∩ W 1,p((0, T ′); Lp(Ω)), and hence ζ ∈ Lp
loc([0, T ); W 2,p

N ) ∩ W 1,p
loc ([0, T ); Lp(Ω))

for the arbitrariness of T ′. Just because of this, we can follow the proof of (2.7) to get with some C4 =
C4(a, p, n, Ω) > 0 that

‖ζ(·, t)‖pp,p ≤ C4

(
sup

s∈(0,t]

s∫
(s−1)+

‖g(·, τ)‖pLp(Ω)dτ + ‖ζ0‖pp,p
)

for all t ∈ (0, T ), which together with (2.4) leads to the desired estimate. �
In the following, we need an extended version of the classical Gagliardo-Nirenberg inequality (see e.g. 

[5,21,31]).

Lemma 2.3. Assume that q, r ∈ (0, ∞] are such that

ι :=
1
r − 1

q
1
r + 1

n − 1
2
∈ (0, 1).
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Then

‖φ‖Lq(Ω) ≤ c
(
‖∇φ‖ιL2(Ω)‖φ‖1−ι

Lr(Ω) + ‖φ‖Lr(Ω)
)
, ∀ φ ∈ W 1,2(Ω) ∩ Lr(Ω)

with c > 0 depending on n, r, ι and Ω.

We end this section with two lemmas that assert the boundedness of solutions for some ordinary differ-
ential inequalities and play a key role in the proof of main results.

Lemma 2.4.

(i) Let 0 ≤ t0 < T ≤ ∞ and 0 < � < κ ≤ 1. Suppose that nonnegative functions y ∈ C1((t0, T )) ∩C0([t0, T ))
and h ∈ C0([t0, T )) satisfy

y′(t) + c1y
κ(t) ≤ c2h(t) + c3, t ∈ (t0, T ) (2.13)

with ci > 0 (i = 1, 2, 3), and

t∫
t0+(t−1−t0)+

h(τ)dτ ≤ c4
(
Y �(t) + 1

)
, t ∈ (t0, T )

for some c4 > 0 with Y (t) := supt0<τ<t y(τ), t ∈ (t0, T ). Then y is bounded in (t0, T ).
(ii) Let 0 ≤ t0 < T ≤ ∞ and 0 < � < 1 < κ. If nonnegative functions y ∈ C1((t0, T )) ∩ C0([t0, T )) and 

h ∈ C0([t0, T )) fulfill

y′(t) + c1y
κ(t) ≤ c2h(t) + c3, t ∈ (t0, T )

with ci > 0 (i = 1, 2, 3), and

t∫
t0

eΛτh(τ)dτ ≤ c4

( t∫
t0

eΛτy�(τ)dτ + 1
)
, t ∈ (t0, T )

for some c4, Λ > 0, then y is bounded in (t0, T ).

Proof. (i) Without loss of generality, we may assume that y > 0 on [t0, T ). Multiply (2.13) by e
∫ t
t0

c1y
κ−1(s)ds

and integrate to get

y(t) − y(t0) ≤
t∫

t0

e−
∫ t
τ
c1y

κ−1(s)ds(c2h(τ) + c3)dτ

≤
t∫

t0

e−c1Y
κ−1(t)(t−τ)(c2h(τ) + c3)dτ

=
t−t0∫

e−c1Y
κ−1(t)τ (c2h(t− τ) + c3)dτ
0
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=
[t−t0]−1∑

k=0

k+1∫
k

e−c1Y
κ−1(t)τ (c2h(t− τ) + c3)dτ

+
t−t0∫

[t−t0]

e−c1Y
κ−1(t)τ (c2h(t− τ) + c3)dτ

≤
[t−t0]−1∑

k=0

e−c1Y
κ−1(t)k

t−k∫
t−k−1

(c2h(τ) + c3)dτ +
t−[t−t0]∫

t0

(c2h(τ) + c3)dτ

≤
( ∞∑

k=0

e−c1Y
κ−1(t)k + 1

)
·
(
c2c4

(
Y �(t) + 1

)
+ c3

)

≤ 2c2c4(Y �(t) + 1) + 2c3
1 − e−c1Y κ−1(t)

for all t ∈ (t0, T ), where we use the fact that 0 < κ ≤ 1, the assumption on h and the nondecreasing 
monotonicity of Y . Consequently,

Y (t) ≤ y(t0) + 2c2c4(Y �(t) + 1) + 2c3
1 − e−c1Y κ−1(t) for all t ∈ (t0, T ),

whence

Y 1−�(t)
(
1 − e−c1Y

κ−1(t)) ≤ y1−�(t0) + 2c2c4
(
1 + y−�(t0)

)
+ 2c3y−�(t0)

for all t ∈ (t0, T ), which implies that Y (and thereby y) is bounded in (t0, T ), as otherwise Y 1−�(t)(1 −
e−c1Y

κ−1(t)) is unbounded in (t0, T ) since

lim
ς→∞

ς1−�
(
1 − e−c1ς

κ−1)
= ∞

for 0 < � < κ ≤ 1.
(ii) Since κ > 1, we have by the Young inequality that

Λy(t) ≤ c1y
κ(t) + c5, t ∈ (t0, T )

with c5 := (Λc−1/κ
1 )κ/(κ−1), and thus

y′(t) + Λy(t) ≤ c2h(t) + c3 + c5, t ∈ (t0, T ).

Multiplying this inequality by eΛt, integrating and using the hypothesis on h result in

y(t) ≤ y(t0) + c2e−Λt

t∫
t0

eΛτh(τ)dτ + (c3 + c5)Λ−1

≤ y(t0) + c2c4e−Λt
( t∫
t0

eΛτy�(τ)dτ + 1
)

+ (c3 + c5)Λ−1

≤ y(t0) + c2c4Λ−1Y �(t) + c2c4 + (c3 + c5)Λ−1 for all t ∈ (t0, T ),
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where Y (t) := supt0<τ<t y(τ), t ∈ (t0, T ). As in the proof of (i), one can readily deduce with 0 < � < 1 that 
Y is bounded in (t0, T ). �
Lemma 2.5. Let 0 ≤ t0 < T ≤ ∞. If nonnegative functions y ∈ C1((t0, T )) ∩ C0([t0, T )) and h1, h2 ∈
C0([t0, T )) satisfy

y′(t) ≤ h1(t)y(t) + h2(t), t ∈ (t0, T ), (2.14)

and

t∫
t0+(t−1−t0)+

y(τ)dτ ≤ c0,

t∫
t0+(t−1−t0)+

h1(τ)dτ ≤ c1,

t∫
t0+(t−1−t0)+

h2(τ)dτ ≤ c2

for all t ∈ (t0, T ) with ci > 0 (i = 0, 1, 2), then

y ≤
(
max{y(t0), c0} + c2

)
ec1 in (t0, T ).

Proof. For t ∈ (t0, T ) with t > 1 + t0, since 
∫ t

t−1 y(τ)dτ ≤ c0, the mean value theorem for integrals implies 
that y(t) ≤ c0 for some t ∈ [t − 1, t], and thus multiplying (2.14) by e−

∫ t
t0

h1(s)ds and integrating over (t, t)
yield

y(t) ≤ y(t)e
∫ t
t
h1(s)ds +

t∫
t

h2(τ)e
∫ t
τ
h1(s)dsdτ

≤ y(t)e
∫ t
t−1 h1(s)ds +

t∫
t−1

h2(τ)e
∫ t
t−1 h1(s)dsdτ

≤ (c0 + c2)ec1 .

On the other hand, when t ∈ (t0, T ) and t ≤ 1 + t0, a similar integration shows

y(t) ≤ y(t0)e
∫ t
t0

h1(s)ds +
t∫

t0

h2(τ)e
∫ t
τ
h1(s)dsdτ

≤ y(t0)e
∫ t
t0

h1(s)ds +
t∫

t0

h2(τ)e
∫ t
t0

h1(s)dsdτ

≤ (y(t0) + c2)ec1 .

All in all, the proof is complete. �
3. Local existence and crucial estimates

We begin with the local existence of classical solutions to (1.1) that can be asserted by following the 
proof of [4, Lemma 3.1].
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Lemma 3.1. Let Ω ⊂ Rn be a bounded domain with smooth boundary. Assume that D, S ∈ C2([0, ∞)) satisfy 
D(s) > 0 for s ≥ 0 and S(0) = 0. Also, suppose that f ∈ W 1,∞

loc (R) complies with f(0) ≥ 0. Then for any 
nonnegative (u0, v0, w0) ∈ Cω(Ω̄) × [W 1,∞(Ω)]2 with 0 < ω < 1, there exist Tmax ∈ (0, ∞] and a triplet 
(u, v, w) of nonnegative functions from C0(Ω̄ × [0, Tmax)) ∩ C2,1(Ω̄ × (0, Tmax)) solving (1.1) classically in 
Ω × (0, Tmax). Moreover, if Tmax < ∞, then

lim sup
t→Tmax

‖u(·, t)‖L∞(Ω) = ∞. (3.1)

Henceforth, let (u, v, w) be the classical solution of (1.1) with the maximal existence time Tmax ∈ (0, ∞], 
and write

t0 := min
{

1, Tmax

2

}
.

Now we immediately have the following simple estimate.

Lemma 3.2. Assume that f fulfills (1.8). Then
∫
Ω

u(x, t)dx ≤ max
{∫

Ω

u0,
( b
μ

) 1
r |Ω|

}
=: M1 for all t ∈ (0, Tmax), (3.2)

and

t∫
(t−1)+

∫
Ω

ur(x, s)dxds ≤ 1
μ

(b|Ω| + M1) =: M2 for all t ∈ (0, Tmax). (3.3)

Proof. Integrating Eq. (1.1)1 and using (1.8) give

d

dt

∫
Ω

u ≤ b|Ω| − μ

∫
Ω

ur ≤ b|Ω| − μ|Ω|1−r
(∫

Ω

u
)r

for all t ∈ (0, Tmax),

which implies (3.2) and (3.3) clearly. The proof is complete. �
Based upon (3.2) and (3.3), we can use Propositions 2.1–2.3 to show the Lq-boundedness of w with q ≥ 1

suitable.

Lemma 3.3. Let f satisfy (1.8).

(i) Then for any q ∈ [1, n/(n − 2)+) ∪ [1, nr/(n + 2 − 2r)+), w ∈ L∞((0, Tmax); Lq(Ω)).
(ii) In particular, assume that 1 < r ≤ 2 and n ≥ 3, or 2 < r < (n + 2)/2 and additionally w0 ∈ W 2,r

N . 
Then there exists C = C(a2, b2, r, n, Ω, q) > 0 with q = nr/(n + 2 − 2r) such that

‖w(·, t)‖Lq(Ω) ≤ C(M
1
r
2 + ‖u0‖Lr(Ω) + ‖w0‖W 1,∞(Ω) + 1) for all t ∈ (0, Tmax)

if 1 < r ≤ 2 and n ≥ 3, or

‖w(·, t)‖Lq(Ω) ≤ C(M
1
r
2 + ‖w0‖W 2,r(Ω)) for all t ∈ (0, Tmax)

if 2 < r < (n + 2)/2 and w0 ∈ W 2,r
N .
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Proof. (i) For q ∈ [1, n/(n − 2)+), this is a consequence of Proposition 2.1 (i) to w and (3.2). When q ∈
[1, nr/(n + 2 − 2r)+) with 1 < r < ∞ (equivalently, 2 − (n + 2)/r > −n/q with 1 < r < ∞ and 1 ≤ q < ∞), 
in view of Proposition 2.2 (ii) for w and (3.3), we have with some C1 = C1(a2, r, n, Ω, q) > 0 that

‖w(·, t)‖rLq(Ω) ≤ C1

(
sup

s∈(t0,t]

s∫
t0+(s−1−t0)+

‖b2u(·, τ)‖rLr(Ω)dτ + ‖w(·, t0)‖rr,r
)

≤ C1

(
sup

s∈(0,t]

s∫
(s−1)+

‖b2u(·, τ)‖rLr(Ω)dτ + ‖w(·, t0)‖rr,r
)

≤ C1(br2M2 + ‖w(·, t0)‖rr,r) for each t ∈ (t0, Tmax).

Also, it is evident that w ∈ L∞((0, t0); Lq(Ω)). So, assertion (i) follows.
(ii) Suppose that 1 < r ≤ 2 and n ≥ 3, and thereby 1 < r < (n + 2)/2. A straightforward application of 

Proposition 2.3 to w along with (3.3) shows

‖w(·, t)‖rLq(Ω) ≤ C2

(
sup

s∈(0,t]

s∫
(s−1)+

‖b2u(·, τ)‖rLr(Ω)dτ + ‖b2u0‖rLr(Ω) + ‖w0‖rW 1,∞(Ω) + 1
)

≤ C2(br2M2 + br2‖u0‖rLr(Ω) + ‖w0‖rW 1,∞(Ω) + 1) for all t ∈ (0, Tmax)

with q = nr/(n +2 − 2r) and C2 = C2(a2, r, n, Ω, q) > 0, as claimed. Likewise, by Proposition 2.3, (3.3) and 
the embedding W 2,r

N ↪→ Lr,r, we can prove the assertion for the case of 2 < r < (n +2)/2 and w0 ∈ W 2,r
N . �

In the following lemma, with the norm ‖w‖L∞((0,Tmax);Lq(Ω)) for q ≥ 1 involved, the proper integral 
relations between Δv and u have been established due to Proposition 2.2.

Lemma 3.4. Assume that p, p̃ ∈ (1, ∞) and q ∈ [1, ∞) satisfy

p̃ι̃ ∈ (1,∞) with ι̃ :=
1
q − 1

p̃
1
q + 2

n − 1
p

∈ (0, 1).

(i) Then

t∫
t0+(t−1−t0)+

(∫
Ω

|Δv(x, τ)|p̃dx
)
dτ ≤ C

{
‖w‖p̃(1−ι̃)

L∞((0,Tmax);Lq(Ω))

(
sup

τ∈(t0,t)
‖u(·, τ)‖p̃ι̃Lp(Ω)

+ ‖w(·, t0)‖p̃ι̃p,p̃ι̃
)

+ ‖v(·, t0)‖p̃p̃,p̃
}

(3.4)

for all t ∈ (t0, Tmax) with C > 0 relying on ai, bi (i = 1, 2), p̃, p, q, n and Ω.
(ii) For any 0 ≤ Λ < min{p̃a1, p̃ι̃a2}, there exists C > 0, determined by a1 −Λ/p̃, a2 −Λ/(p̃ι̃), b1, b2, p̃, p, 

q, n and Ω, such that

t∫
t0

eΛτ
(∫

Ω

|Δv(x, τ)|p̃dx
)
dτ ≤ C

{
‖w‖p̃(1−ι̃)

L∞((0,Tmax);Lq(Ω))

( t∫
t0

eΛτ‖u(·, τ)‖p̃ι̃Lp(Ω)dτ

+ eΛt0‖w(·, t0)‖p̃ι̃p,p̃ι̃
)

+ eΛt0‖v(·, t0)‖p̃p̃,p̃
}

(3.5)

for all t ∈ (t0, Tmax).
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Proof. (i) In view of the elliptic regularity estimates [5, Section 19 of Part 1] and (2.8), one can find some 
C1 = C1(a1, p̃, n, Ω) > 0 and C2 = C2(a1, b1, p̃, n, Ω) > 0 such that

t∫
t0+(t−1−t0)+

(∫
Ω

|Δv(x, τ)|p̃dx
)
dτ ≤ C1

t∫
t0+(t−1−t0)+

‖Aa1v(·, τ)‖p̃Lp̃(Ω)dτ

≤ C2

(
sup

s∈(t0,t]

s∫
t0+(s−1−t0)+

‖w(·, τ)‖p̃Lp̃(Ω)dτ + ‖v(·, t0)‖p̃p̃,p̃
)

(3.6)

for all t ∈ (t0, Tmax). Furthermore, by means of the Gagliardo-Nirenberg inequality, and using the elliptic 
regularity estimates along with (2.8) again, we derive

s∫
t0+(s−1−t0)+

‖w(·, τ)‖p̃Lp̃(Ω)dτ ≤
s∫

t0+(s−1−t0)+

(
C3‖w(·, τ)‖ι̃W 2,p(Ω)‖w(·, τ)‖1−ι̃

Lq(Ω)

)p̃

dτ

≤ (C3)p̃‖w‖p̃(1−ι̃)
L∞((0,Tmax);Lq(Ω))

s∫
t0+(s−1−t0)+

‖w(·, τ)‖p̃ι̃W 2,p(Ω)dτ

≤ (C3)p̃‖w‖p̃(1−ι̃)
L∞((0,Tmax);Lq(Ω)) · C4

s∫
t0+(s−1−t0)+

‖Aa2w(·, τ)‖p̃ι̃Lp(Ω)dτ

≤ (C3)p̃‖w‖p̃(1−ι̃)
L∞((0,Tmax);Lq(Ω))

× C5

(
sup

ς∈(t0,s]

ς∫
t0+(ς−1−t0)+

‖u(·, τ)‖p̃ι̃Lp(Ω)dτ + ‖w(·, t0)‖p̃ι̃p,p̃ι̃
)

≤ (C3)p̃‖w‖p̃(1−ι̃)
L∞((0,Tmax);Lq(Ω))

× C5

(
sup

τ∈(t0,t)
‖u(·, τ)‖p̃ι̃Lp(Ω) + ‖w(·, t0)‖p̃ι̃p,p̃ι̃

)

for all s ∈ (t0, t] with t ∈ (t0, Tmax), where C3 = C3(n, p, q, ̃ι, Ω), C4 = C4(a2, p, n, Ω, p̃ι̃) and C5 =
C5(a2, b2, p, n, Ω, p̃ι̃) are positive constants. Combining this with (3.6), we arrive at (3.4).

(ii) Let 0 ≤ Λ < min{p̃a1, p̃ι̃a2}. Then Λ/p̃ < a1 and Λ/(p̃ι̃) < a2. It follows from the elliptic regularity 
estimates and Proposition 2.2 (iii) that

t∫
t0

eΛτ
(∫

Ω

|Δv(x, τ)|p̃dx
)
dτ ≤ C6

t∫
t0

eΛτ‖Aa1−Λ/p̃v(·, τ)‖p̃Lp̃(Ω)dτ

≤ C7

( t∫
t0

eΛτ‖w(·, τ)‖p̃Lp̃(Ω)dτ + eΛt0‖v(·, t0)‖p̃p̃,p̃
)

(3.7)

for all t ∈ (t0, Tmax) with C6 = C6(a1 − Λ/p̃, p̃, n, Ω) > 0 and C7 = C7(a1 − Λ/p̃, b1, p̃, n, Ω) > 0. Using the 
Gagliardo-Nirenberg inequality and again by the elliptic regularity estimates, we further have

‖w(·, τ)‖p̃ p̃ ≤
(
C8‖w(·, τ)‖ι̃W 2,p(Ω)‖w(·, τ)‖1−ι̃

q

)p̃
L (Ω) L (Ω)
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≤ (C8)p̃‖w‖p̃(1−ι̃)
L∞((0,Tmax);Lq(Ω)) · C9‖Aa2−Λ/(p̃ι̃)w(·, τ)‖p̃ι̃Lp(Ω)

for all τ ∈ (t0, Tmax) with C8 = C8(p, q, ̃ι, n, Ω) > 0 and C9 = C9(a2−Λ/(p̃ι̃), p, p̃ι̃, n, Ω) > 0, which together 
with Proposition 2.2 (iii) entails

t∫
t0

eΛτ‖w(·, τ)‖p̃Lp̃(Ω)dτ ≤ (C8)p̃‖w‖p̃(1−ι̃)
L∞((0,Tmax);Lq(Ω))

× C10

( t∫
t0

eΛτ‖u(·, τ)‖p̃ι̃Lp(Ω)dτ + eΛt0‖w(·, t0)‖p̃ι̃p,p̃ι̃
)

for all t ∈ (t0, Tmax) with C10 = C10(a2−Λ/(p̃ι̃), b2, p, p̃ι̃, n, Ω) > 0. Inserting this into (3.7) yields (3.5). �
By embedding in the 4-dimensional case, the boundedness of ‖Δv(·, t)‖L6(Ω) in terms of some temporal 

average can be inferred with the logistic source exponent r = 3/2.

Lemma 3.5. Suppose that n = 4, and f satisfies (1.8) with r = 3/2. Then there exists C > 0, relying on 
ai, bi (i = 1, 2), Ω, M2, ‖w(·, t0)‖3/2,3/2 and ‖v(·, t0)‖6,3/2, such that

t∫
t0+(t−1−t0)+

‖Δv(·, τ)‖
3
2
L6(Ω)dτ ≤ C for all t ∈ (t0, Tmax).

Proof. It follows from (2.8) for w and (3.3) that

t∫
t0+(t−1−t0)+

‖Aa2w(·, τ)‖
3
2

L
3
2 (Ω)

dτ ≤ C1

(
sup

s∈(t0,t]

s∫
t0+(s−1−t0)+

‖b2u(·, τ)‖
3
2

L
3
2 (Ω)

dτ + ‖w(·, t0)‖
3
2
3
2 ,

3
2

)

≤ C1

(
sup

s∈(0,t]

s∫
(s−1)+

‖b2u(·, τ)‖
3
2

L
3
2 (Ω)

dτ + ‖w(·, t0)‖
3
2
3
2 ,

3
2

)

≤ C1

(
b

3
2
2 M2 + ‖w(·, t0)‖

3
2
3
2 ,

3
2

)
for all t ∈ (t0, Tmax)

with C1 = C1(a2, Ω) > 0, which together with the Sobolev embedding theorem and the elliptic regularity 
estimates yields

t∫
t0+(t−1−t0)+

‖w(·, τ)‖
3
2
L6(Ω)dτ ≤ C2

t∫
t0+(t−1−t0)+

‖w(·, τ)‖
3
2

W 2, 32 (Ω)
dτ

≤ C3

t∫
t0+(t−1−t0)+

‖Aa2w(·, τ)‖
3
2

L
3
2 (Ω)

dτ

≤ C1C3

(
b

3
2
2 M2 + ‖w(·, t0)‖

3
2
3
2 ,

3
2

)
=: C4

for any t ∈ (t0, Tmax) with C2 = C2(Ω) > 0 and C3 = C3(a2, Ω) > 0. Combining this with (2.8) for v, we 
obtain with some C5 = C5(a1, Ω) > 0 that
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t∫
t0+(t−1−t0)+

‖Aa1v(·, τ)‖
3
2
L6(Ω)dτ ≤ C5

(
sup

s∈(t0,t]

s∫
t0+(s−1−t0)+

‖b1w(·, τ)‖
3
2
L6(Ω)dτ + ‖v(·, t0)‖

3
2
6, 32

)

≤ C5

(
b

3
2
1 C4 + ‖v(·, t0)‖

3
2
6, 32

)
for all t ∈ (t0, Tmax),

and hence the elliptic regularity estimates warrant for a certain C6 = C6(a1, Ω) > 0 that

t∫
t0+(t−1−t0)+

‖Δv(·, τ)‖
3
2
L6(Ω)dτ ≤ C6

t∫
t0+(t−1−t0)+

‖Aa1v(·, τ)‖
3
2
L6(Ω)dτ

≤ C5C6

(
b

3
2
1 C4 + ‖v(·, t0)‖

3
2
6, 32

)

for all t ∈ (t0, Tmax), as claimed. �
4. Proof of main results

This section is devoted to the proof of main results (Theorems 1–4), where a crucial ingredient is that 
the bound of u(·, t) in Lp(Ω) with any p > 1 can be turned into the bound in L∞(Ω).

Lemma 4.1. Let D and S obey (1.7), and assume that (1.8) holds for f . If u ∈ L∞((0, Tmax); Lp(Ω)) for any 
p > 1, then u ∈ L∞(Ω × (0, Tmax)), and hence the solution is global and remains bounded in time.

Proof. Since u ∈ L∞((0, Tmax); Lp(Ω)) for any p > 1, applying Propositions 2.1 (i) and (ii) to w and v, 
respectively, yields ∇v ∈ L∞((0, Tmax); (Lq(Ω))n) with any q > 1. So, we can further infer by [25, Lemma 
A.1] that u ∈ L∞(Ω ×(0, Tmax)). This in conjunction with the extensibility criterion provided by Lemma 3.1
asserts the global boundedness of solutions. �

As a first step towards obtaining the Lp-boundedness of u for any p > 1, let us establish a preparatory 
differential inequality for the energy 

∫
Ω(u + 1)p̄ with p̄ > 1 large by testing the first equation in (1.1).

Lemma 4.2. Suppose that D and S satisfy (1.7), and that f fulfills (1.8). Then

d

dt

∫
Ω

(u + 1)p̄ ≤ −p̄(p̄− 1)a0

∫
Ω

(u + 1)p̄−α−2|∇u|2 + p̄(p̄− 1)b0
p̄ + β − 1

∫
Ω

(u + 1)p̄+β−1|Δv|

+ p̄(b + μ)
∫
Ω

(u + 1)p̄−1 − 21−rp̄μ

∫
Ω

(u + 1)p̄+r−1 (4.1)

for all t ∈ (0, Tmax) with p̄ > max{1, 1 − β}.

Proof. Let p̄ > max{1, 1 − β}. Multiply the first equation in (1.1) by p̄(u + 1)p̄−1 and integrate by parts 
over Ω to get

d

dt

∫
Ω

(u + 1)p̄ = −p̄(p̄− 1)
∫
Ω

D(u)(u + 1)p̄−2|∇u|2

− p̄(p̄− 1)
∫
Ω

χ(u)Δv + p̄

∫
Ω

f(u)(u + 1)p̄−1
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for all t ∈ (0, Tmax) with D(u) ≥ a0(u + 1)−α and

0 ≤ χ(u) =
u∫

0

S(ς)(ς + 1)p̄−2dς ≤ b0
p̄ + β − 1(u + 1)p̄+β−1

due to (1.7). Also, it is easy to see that

p̄

∫
Ω

f(u)(u + 1)p̄−1 ≤ p̄

∫
Ω

(b− μur)(u + 1)p̄−1

≤ p̄(b + μ)
∫
Ω

(u + 1)p̄−1 − 21−rp̄μ

∫
Ω

(u + 1)p̄+r−1

by means of (1.8) and the fundamental inequality (s + 1)r ≤ 2r−1(sr + 1) for s ≥ 0. All relations obtained 
above immediately give (4.1). �

In Subsections 4.1 and 4.2, we consider the global boundedness of solutions with Theorems 1 and 2 proved 
for the cases that the cross-diffusion is dominated by the self-diffusion and the logistic source, respectively. 
And then we in Subsection 4.3 prove Theorem 3 that asserts the global boundedness of solutions for the 
logistic source balancing the cross-diffusion with the coefficient μ > 0 large. The last subsection is devoted 
to the investigation for the logistic source and the self-diffusion both balancing the cross-diffusion, and we 
prove with some additional restrictions that the solutions of (1.1) are globally bounded regardless of the 
size of μ > 0 as claimed in Theorem 4.

4.1. Self-diffusion dominating cross-diffusion. Proof of Theorem 1

This subsection is concerned with the global boundedness of solutions due to the inhibition of the self-
diffusion on the cross-diffusion. A key lemma is given as below.

Lemma 4.3. Assume that D and S satisfy (1.7), and that (1.8) is valid for f . Also, suppose that w ∈
L∞((0, Tmax); Lq(Ω)) for some q ∈ [1, ∞). If

α + β < 1 + 2
n
− n

n + 2q , (4.2)

then u ∈ L∞((0, Tmax); Lp(Ω)) for any p > 1.

Proof. Clearly, it suffices to prove that there exists some p∗ > 1 such that u ∈ L∞((0, Tmax); Lp(Ω)) for all 
p > p∗. Take

p0 := max
{

1 − α,
(n
2 − 1

)
α,

n

2 − α,
q(1

q + 2
n + 1)(2 + n− αn− βn)

n

}
.

It can be readily checked that

p + α,
pn + 2

2 + n− αn− βn
∈ (1,∞),

ῑ := ῑ(p) :=
p
2 − p

2(p+α)
p 1 1 ∈ (0, 1),

2 + n − 2
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ι̃1 := ι̃1(p) :=
1
q − 2+n−αn−βn

pn+2
1
q + 2

n − 1
p+α

∈ (0, 1) and (pn + 2)ι̃1(p)
2 + n− αn− βn

∈ (1,∞)

for all p > p0. Now define for p > p0 that

κ := κ(p) := p

(p + α)ῑ(p) = pn + 2 − n

n(p + α− 1) and

� := �(p) := (pn + 2)ι̃1(p)
2 + n− αn− βn

· 1
p + α

=
pn+2

q(2+n−αn−βn) − 1
(1
q + 2

n )(p + α) − 1
.

Since α + β < 1 + 2
n − n

n+2q , one can choose p∗0 > p0 large enough such that

� = �(p) < κ = κ(p) and � = �(p) < 1 for all p > p∗0. (4.3)

Let p > p∗0. With (4.1) applied to p̄ = p + α, we obtain

d

dt

∫
Ω

(u + 1)p+α ≤ −(p + α)(p + α− 1)a0

∫
Ω

(u + 1)p−2|∇u|2

+ (p + α)(p + α− 1)b0
p + α + β − 1

∫
Ω

(u + 1)p+α+β−1|Δv|

+ (p + α)(b + μ)
∫
Ω

(u + 1)p+α−1 − 21−r(p + α)μ
∫
Ω

(u + 1)p+α+r−1

for all t ∈ (0, Tmax). Clearly,

(p + α)(b + μ)(s + 1)p+α−1 − 21−r(p + α)μ(s + 1)p+α+r−1 ≤ C1

for s ≥ 0 with C1 = C1(p + α, b, μ, r) > 0. Therefore,

d

dt

∫
Ω

(u + 1)p+α ≤ −(p + α)(p + α− 1)a0

∫
Ω

(u + 1)p−2|∇u|2

+ (p + α)(p + α− 1)b0
p + α + β − 1

∫
Ω

(u + 1)p+α+β−1|Δv| + C1|Ω| (4.4)

for all t ∈ (0, Tmax). Since α + β < 1 + 2/n, we have by the Young inequality that

(p + α)(p + α− 1)b0
p + α + β − 1

∫
Ω

(u + 1)p+α+β−1|Δv| ≤ ε

∫
Ω

(u + 1)p+ 2
n + cε

∫
Ω

|Δv|
pn+2

2+n−αn−βn (4.5)

for arbitrary ε > 0 with

cε := ε−
n(p+α+β−1)
2+n−nα−nβ

[
(p + α)(p + α− 1)b0

p + α + β − 1

] np+2
2+n−nα−nβ

.

Moreover, it follows from the Gagliardo-Nirenberg inequality (Lemma 2.3) and (3.2) that
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∫
Ω

(u + 1)p+ 2
n = ‖(u + 1)

p
2 ‖

2(pn+2)
pn

L
2(pn+2)

pn (Ω)

≤ C2

(
‖∇(u + 1)

p
2 ‖

pn
pn+2
L2(Ω)‖(u + 1)

p
2 ‖

2
pn+2

L
2
p (Ω)

+ ‖(u + 1)
p
2 ‖

L
2
p (Ω)

) 2(pn+2)
pn

≤ C3

(∫
Ω

(u + 1)p−2|∇u|2 + 1
)

for all t ∈ (0, Tmax) (4.6)

with C2 = C2(n, p, Ω) > 0 and C3 = C3(n, p, Ω, M1) > 0. Combining (4.4)–(4.6) and taking ε = (p +α)(p +
α− 1)a0/(2C3), we get

d

dt

∫
Ω

(u + 1)p+α ≤ − (p + α)(p + α− 1)a0

2

∫
Ω

(u + 1)p−2|∇u|2

+ C4

∫
Ω

|Δv|
pn+2

2+n−αn−βn + C5 for all t ∈ (0, Tmax), (4.7)

where

C4 =
[
(p + α)(p + α− 1)a0

2C3

]−n(p+α+β−1)
2+n−nα−nβ

[
(p + α)(p + α− 1)b0

p + α + β − 1

] np+2
2+n−nα−nβ

and

C5 = (p + α)(p + α− 1)a0

2 + C1|Ω|.

Again by the Gagliardo-Nirenberg inequality and (3.2), we have
∫
Ω

(u + 1)p+α = ‖(u + 1)
p
2 ‖

2(p+α)
p

L
2(p+α)

p (Ω)

≤ C6

(
‖∇(u + 1)

p
2 ‖ῑL2(Ω)‖(u + 1)

p
2 ‖1−ῑ

L
2
p (Ω)

+ ‖(u + 1)
p
2 ‖

L
2
p (Ω)

) 2(p+α)
p

≤ C7

(
‖∇(u + 1)

p
2 ‖

2
κ

L2(Ω) + 1
)

for all t ∈ (0, Tmax)

with C6 = C6(p, p + α, n, Ω) > 0 and C7 = C7(p, p + α, n, Ω, M1) > 0, whence

C8

(∫
Ω

(u + 1)p+α
)κ

≤ 2(p + α)(p + α− 1)a0

p2

(
‖∇(u + 1)

p
2 ‖2

L2(Ω) + 1
)

= (p + α)(p + α− 1)a0

2

∫
Ω

(u + 1)p−2|∇u|2 + 2(p + α)(p + α− 1)a0

p2

for all t ∈ (0, Tmax) with

C8 = 2(p + α)(p + α− 1)a0

p2(C7)κ max{2κ−1, 1} .

This along with (4.7) results in

d

dt

∫
Ω

(u + 1)p+α + C8

(∫
Ω

(u + 1)p+α
)κ

≤ C4

∫
Ω

|Δv|
pn+2

2+n−αn−βn + C9 (4.8)
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for all t ∈ (0, Tmax) with C9 = C5 + 2(p + α)(p + α− 1)a0/p
2.

As for the integral on the right-hand side of (4.8), it can be properly controlled by 
∫
Ω up+α. Indeed, by 

Lemma 3.4 and the hypothesis that w ∈ L∞((0, Tmax); Lq(Ω)), we have

t∫
t0+(t−1−t0)+

(∫
Ω

|Δv(x, τ)|
pn+2

2+n−αn−βn dx
)
dτ ≤ C10

(
sup

τ∈(t0,t)
‖u(·, τ)‖

(pn+2)ι̃1
2+n−αn−βn

Lp+α(Ω) + 1
)

= C10

((
sup

τ∈(t0,t)

∫
Ω

up+α(·, τ)
)�

+ 1
)

(4.9)

for all t ∈ (t0, Tmax) with some C10 > 0 relying on ai, bi (i = 1, 2), pn+2
2+n−αn−βn , p + α, q, n, Ω, 

‖w‖L∞((0,Tmax);Lq(Ω)), ‖w(·, t0)‖p+α,(p+α)� and ‖v(·, t0)‖ pn+2
2+n−αn−βn , pn+2

2+n−αn−βn
, and it also holds that

t∫
t0

eΛτ
(∫

Ω

|Δv(x, τ)|
pn+2

2+n−αn−βn dx
)
dτ ≤ C11

( t∫
t0

eΛτ‖u(·, τ)‖
(pn+2)ι̃1

2+n−αn−βn

Lp+α(Ω) dτ + 1
)

= C11

( t∫
t0

eΛτ
(∫

Ω

up+α(x, τ)dx
)�

dτ + 1
)

(4.10)

for all t ∈ (t0, Tmax) with

Λ = 1
2 min

{ (pn + 2)a1

2 + n− αn− βn
,

(pn + 2)ι̃1a2

2 + n− αn− βn

}

and C11 > 0 related to ai, bi (i = 1, 2), pn+2
2+n−αn−βn , p + α, q, n, Ω, ‖w‖L∞((0,Tmax);Lq(Ω)), t0, 

‖w(·, t0)‖p+α,(p+α)� and ‖v(·, t0)‖ pn+2
2+n−αn−βn , pn+2

2+n−αn−βn
.

We next assert that u ∈ L∞((t0, Tmax); Lp+α(Ω)). The proof is divided into two cases.
Case 1. If α ≥ 2

n , then κ ≤ 1. Combining (4.8) with (4.9) and noticing that 0 < � < κ by (4.3), we know 
from Lemma 2.4 (i) that 

∫
Ω(u +1)p+α(·, t) is bounded in (t0, Tmax), and hence u ∈ L∞((t0, Tmax); Lp+α(Ω)).

Case 2. Assume that α < 2
n , and so κ > 1. According to (4.8) and (4.10), and since � < 1 for (4.3), 

Lemma 2.4 (ii) entails the boundedness of 
∫
Ω(u + 1)p+α(·, t) in (t0, Tmax), as desired.

All in all, we gain that u ∈ L∞((t0, Tmax); Lp+α(Ω)) for all p > p∗0. By the continuity of u on Ω̄ × [0, t0], 
we thus have u ∈ L∞((0, Tmax); Lp+α(Ω)) for all p > p∗0, that is, u ∈ L∞((0, Tmax); Lp(Ω)) for all p > p∗ :=
p∗0 + α. The proof is complete. �

Now, we can easily prove Theorem 1.

Proof of Theorem 1. Note that the condition (1.9) is equivalent to

α + β < 1 + 2
n
− n

n + 2 max
{

n
(n−2)+ , nr

(n+2−2r)+

} ,
which allows us to choose 1 ≤ q < max{n/(n − 2)+, nr/(n + 2 − 2r)+} such that

α + β < 1 + 2
n
− n

n + 2q .
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By Lemma 3.3 (i), we know that w ∈ L∞((0, Tmax); Lq(Ω)) for q taken above. Therefore, Lemma 4.3 entails 
that u ∈ L∞((0, Tmax); Lp(Ω)) for all p > 1. This results in the global boundedness of solutions due to 
Lemma 4.1. The proof is complete. �
4.2. Logistic source suppressing cross-diffusion. Proof of Theorem 2

In this subsection, we consider the blow-up prevention by logistic kinetics. To this end, we seek appropriate 
conditions on the logistic exponent r that warrant the Lp-boundedness of u with p > 1 arbitrary.

Lemma 4.4. Assume that D and S satisfy (1.7), and that (1.8) is valid for f . Also, suppose that w ∈
L∞((0, Tmax); Lq(Ω)) for some q ∈ [1, ∞). If

r > β + n

n + 2q , (4.11)

then u ∈ L∞((0, Tmax); Lp(Ω)) for any p > 1.

Proof. We only need to prove that there exists p∗ > 1 such that for any p > p∗, ‖u(·, t)‖Lp(Ω) is bounded 
in t. A direct computation shows

ι̃2 := ι̃2(p) :=
1
q − r−β

p+r−β
1
q + 2

n − 1
p+r−β

∈ (0, 1) and (p + r − β)ι̃2(p)
r − β

∈ (1,∞)

when

p > p1 := max
{
|β|, n2 − r + β, q( 2

n
+ 1)(r − β)

}
.

Also, the condition r > β + n/(n + 2q) guarantees

�̃ := �̃(p) := ι̃2(p)
r − β

< 1 for all p > p1.

Let p > p1. By (4.1), we have

d

dt

∫
Ω

(u + 1)p−β+1 ≤ (p− β + 1)(p− β)b0
p

∫
Ω

(u + 1)p|Δv|

+ (p− β + 1)(b + μ)
∫
Ω

(u + 1)p−β − 21−r(p− β + 1)μ
∫
Ω

(u + 1)p+r−β

for all t ∈ (0, Tmax), where an application of the Young inequality leads to

(p− β)b0
p

∫
Ω

(u + 1)p|Δv| ≤ 2b0
∫
Ω

(u + 1)p|Δv|

≤ 2−r−1μ

∫
Ω

(u + 1)p+r−β + C1

∫
Ω

|Δv|
p+r−β
r−β

with C1 = (2b0)
p+r−β
r−β (2−r−1μ)−

p
r−β , and
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(b + μ)
∫
Ω

(u + 1)p−β ≤ 2−r−1μ

∫
Ω

(u + 1)p+r−β + C2

with C2 = (b + μ) p+r−β
r (2−r−1μ)− p−β

r |Ω|. All these therefore yield

d

dt

∫
Ω

(u + 1)p−β+1 ≤ (p− β + 1)
(
C1

∫
Ω

|Δv|
p+r−β
r−β − 2−rμ

∫
Ω

(u + 1)p+r−β + C2

)
,

and thereby

d

dt

∫
Ω

(u + 1)p−β+1 + Λ̃
∫
Ω

(u + 1)p+1−β

≤ (p− β + 1)
(
C1

∫
Ω

|Δv|
p+r−β
r−β − 2−r−1μ

∫
Ω

(u + 1)p+r−β + C2

)

=: (p− β + 1)(h̃(t) + C2) (4.12)

for all t ∈ (0, Tmax) with

Λ̃ = 1
2 min

{ (p + r − β)a1

r − β
,
(p + r − β)ι̃2a2

r − β
, (p− β + 1)2−rμ

}
.

Moreover, we have from Lemma 3.4 (ii) that

t∫
t0

eΛ̃τ
(∫

Ω

|Δv(x, τ)|
p+r−β
r−β dx

)
dτ ≤ C3

( t∫
t0

eΛ̃τ‖u(·, τ)‖
(p+r−β)ι̃2

r−β

Lp+r−β(Ω)dτ + 1
)

≤ C3

( t∫
t0

eΛ̃τ
(∫

Ω

(u + 1)p+r−β(x, τ)dx
)�̃

dτ + 1
)

for all t ∈ (t0, Tmax), where C3 > 0 depends on ai, bi (i = 1, 2), Λ̃, p+r−β
r−β , p + r − β, q, n, Ω, 

‖w‖L∞((0,Tmax);Lq(Ω)), t0, ‖w(·, t0)‖p+r−β,(p+r−β)�̃ and ‖v(·, t0)‖ p+r−β
r−β , p+r−β

r−β
. Since �̃ < 1, this further implies 

by the Young inequality that

t∫
t0

eΛ̃τ
(∫

Ω

|Δv(x, τ)|
p+r−β
r−β dx

)
dτ

≤ 2−r−1μ

C1

t∫
t0

eΛ̃τ
(∫

Ω

(u + 1)p+r−β(x, τ)dx
)
dτ + C4

t∫
t0

eΛ̃τdτ + C3

≤ 2−r−1μ

C1

t∫
t0

eΛ̃τ
(∫

Ω

(u + 1)p+r−β(x, τ)dx
)
dτ + C4Λ̃−1eΛ̃t + C3

for all t ∈ (t0, Tmax) with C4 = C
1

1−�̃

3 (2−r−1μ/C1)−
�̃

1−�̃ , whence
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t∫
t0

eΛ̃τ h̃(τ)dτ ≤ C1(C4Λ̃−1eΛ̃t + C3) for all t ∈ (t0, Tmax).

From this we obtain by integrating (4.12) that

∫
Ω

(u + 1)p−β+1(·, t) ≤
∫
Ω

(u + 1)p−β+1(·, t0) + (p− β + 1)e−Λ̃t

t∫
t0

eΛ̃τ (h̃(τ) + C2)dτ

≤
∫
Ω

(u + 1)p−β+1(·, t0) + (p− β + 1)(C1C4Λ̃−1 + C1C3 + C2Λ̃−1)

for all t ∈ (t0, Tmax), and hence u ∈ L∞((t0, Tmax); Lp+1−β(Ω)). By the continuity of u on Ω̄ × [0, t0], we 
have u ∈ L∞((0, Tmax); Lp+1−β(Ω)). So, it has proved u ∈ L∞((0, Tmax); Lp(Ω)) for all p > p∗ := p1 +1 −β, 
as expected. �

Along with Lemma 3.3 (i), we give the proof of Theorem 2.

Proof of Theorem 2. Direct computations show that

r > β + n

n + 2nr
(n+2−2r)+

⇔ r > β + (n + 2 − 2β)+
n + 4 ,

from which we can easily check that the condition (1.10) agrees with

r > β + n

n + 2 max
{

n
(n−2)+ ,

nr
(n+2−2r)+

} .
This enables us to take 1 ≤ q < max{n/(n − 2)+, nr/(n + 2 − 2r)+} such that

r > β + n

n + 2q .

For such q, w ∈ L∞((0, Tmax); Lq(Ω)) by Lemma 3.3 (i). Therefore, u ∈ L∞((0, Tmax); Lp(Ω)) for all p > 1
in view of Lemma 4.4, which together with Lemma 4.1 proves Theorem 2. �
4.3. Logistic source balancing cross-diffusion. Proof of Theorem 3

When the logistic source balances the cross-diffusion, as asserted in Theorem 3, the solutions of (1.1)
remain bounded in time if the coefficient μ > 0 is properly large. Now we prove it.

Proof of Theorem 3. Note that the condition (1.13) entails r = (β+1)(n +2)/(n +4) ∈ [(n +2)/n, (n +2)/2)
with n ≥ 3. Given m∗ > 0, we know from Lemma 3.3 (ii) that for any nonnegative (u0, v0, w0) ∈ Cω(Ω̄) ×
[W 1,∞(Ω)]2 (0 < ω < 1) satisfying

(a) ‖u0‖Lr(Ω) ≤ m∗ and ‖w0‖W 1,∞(Ω) ≤ m∗ with r ≤ 2, or
(b) ‖u0‖L1(Ω) ≤ m∗ and ‖w0‖W 2,r(Ω) ≤ m∗ with r > 2 and w0 ∈ W 2,r

N ,

it holds that

‖w(·, t)‖Lq(Ω) ≤ Mμ for all t ∈ (0, Tmax), (4.13)
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where

q = nr

n + 2 − 2r ,

and

Mμ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

L1

([ 1
μ

(
b|Ω| + max

{
|Ω|1− 1

rm∗,
( b
μ

) 1
r |Ω|

})] 1
r + 2m∗ + 1

)
for case (a),

L2

([ 1
μ

(
b|Ω| + max

{
m∗,

( b
μ

) 1
r |Ω|

})] 1
r + m∗

)
for case (b)

with the constants L1, L2 > 0 depending only on a2, b2, r, n, Ω and q.
Fix

p̂ >
n(1 − r + β)

2 + β − 1,

and set

ι̃3 :=
1
q − r−β

p̂+r−β
1
q + 2

n − 1
p̂+r−β

.

Since r = (β + 1)(n + 2)/(n + 4) and 4/n ≤ β < (n + 2)/2, we have

p̂− β >
n(1 − r + β)

2 − 1 = nβ − 4
n + 4 ≥ 0 and ι̃3 = r − β = n + 2 − 2β

n + 4 ∈
(
0, n

n + 2
)
.

Now, invoking (4.1) with p̄ = p̂− β + 1 yields

d

dt

∫
Ω

(u + 1)p̂−β+1 ≤ (p̂− β + 1)(p̂− β)b0
p̂

∫
Ω

(u + 1)p̂|Δv|

+ (p̂− β + 1)
(
(b + μ)

∫
Ω

(u + 1)p̂−β − 21−rμ

∫
Ω

(u + 1)p̂+r−β
)

≤ (p̂− β + 1)
(
b0

∫
Ω

(u + 1)p̂|Δv|

+ (b + μ)
∫
Ω

(u + 1)p̂−β − 21−rμ

∫
Ω

(u + 1)p̂+r−β
)

for all t ∈ (0, Tmax). Furthermore, by the same proof as in Lemma 4.4 with the Young inequality used, we 
gain

d

dt

∫
Ω

(u + 1)p̂−β+1

≤ (p̂− β + 1)
(
b

p̂+r−β
r−β

0 (2−r−1μ)−
p̂

r−β

∫
Ω

|Δv|
p̂+r−β
r−β − 2−rμ

∫
Ω

(u + 1)p̂+r−β + C1

)
(4.14)

for all t ∈ (0, Tmax) with C1 = (b + μ) p̂+r−β
r (2−r−1μ)− p̂−β

r |Ω|. In view of the Hölder inequality, we have∫
Ω

(u + 1)p̂+r−β ≥ |Ω|−
r−1

p̂+1−β

(∫
Ω

(u + 1)p̂+1−β
)κ̂

for all t ∈ (0, Tmax)
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with

κ̂ = p̂ + r − β

p̂ + 1 − β
> 1.

Combining this with (4.14) results in

d

dt

∫
Ω

(u + 1)p̂−β+1 + c1

(∫
Ω

(u + 1)p̂+1−β
)κ̂

≤ (p̂− β + 1)
(
b

p̂+r−β
r−β

0 (2−r−1μ)−
p̂

r−β

∫
Ω

|Δv|
p̂+r−β
r−β − 2−r−1μ

∫
Ω

(u + 1)p̂+r−β + C1

)

=: (p̂− β + 1)(ĥ(t) + C1) (4.15)

for all t ∈ (0, Tmax) with c1 = (p̂ − β + 1)2−r−1μ|Ω|−
r−1

p̂+1−β . We proceed to estimate ĥ(t). Lemma 3.4 (ii) 
shows that there exists L3 > 0, related to ai, bi (i = 1, 2), (p̂ + r − β)/(r − β), p̂ + r − β, q, n and Ω, such 
that

t∫
t0

eΛ̂τ
(∫

Ω

|Δv(x, τ)|
p̂+r−β
r−β dx

)
dτ

≤ L3

{
‖w‖

(p̂+r−β)(1−ι̃3)
r−β

L∞((0,Tmax);Lq(Ω))

( t∫
t0

eΛ̂τ‖u(·, τ)‖
(p̂+r−β)ι̃3

r−β

Lp̂+r−β(Ω)dτ

+ eΛ̂t0‖w(·, t0)‖
(p̂+r−β)ι̃3

r−β

p̂+r−β,
(p̂+r−β)ι̃3

r−β

)
+ eΛ̂t0‖v(·, t0)‖

p̂+r−β
r−β

p̂+r−β
r−β , p̂+r−β

r−β

}

≤ L3

{
M

(p̂+r−β)(1−r+β)
r−β

μ

( t∫
t0

eΛ̂τ

∫
Ω

(u + 1)p̂+r−β(x, τ)dxdτ

+ eΛ̂t0‖w(·, t0)‖p̂+r−β
p̂+r−β,p̂+r−β

)
+ eΛ̂t0‖v(·, t0)‖

p̂+r−β
r−β

p̂+r−β
r−β , p̂+r−β

r−β

}
(4.16)

for all t ∈ (t0, Tmax), where

Λ̂ = 1
2 min

{ (p̂ + r − β)a1

r − β
, (p̂ + r − β)a2

}
,

and the second inequality is due to (4.13). By the expression of Mμ, we can take μ∗ > 0 large enough such 
that when μ > μ∗,

b
p̂+r−β
r−β

0 (2−r−1μ)−
p̂

r−β L3M
(p̂+r−β)(1−r+β)

r−β
μ ≤ 2−r−1μ,

and hence (4.16) turns into

t∫
t0

eΛ̂τ ĥ(τ)dτ ≤ b
p̂+r−β
r−β

0 (2−r−1μ)−
p̂

r−β

× L3

{
M

(p̂+r−β)(1−r+β)
r−β

μ eΛ̂t0‖w(·, t0)‖p̂+r−β
p̂+r−β,p̂+r−β + eΛ̂t0‖v(·, t0)‖

p̂+r−β
r−β

p̂+r−β
r−β , p̂+r−β

r−β

}
=: C2
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for all t ∈ (t0, Tmax), which together with (4.15) implies u ∈ L∞((t0, Tmax); Lp̂−β+1(Ω)) thanks to 
Lemma 2.4 (ii). So, u ∈ L∞((0, Tmax); Lp̂−β+1(Ω)) by the continuity of u on Ω̄ × [0, t0].

Next, with μ > μ∗, we further assert the Lp-boundedness of u for any p > 1, and thereby achieve the 
L∞-boundedness of u. It is known from the choice of p̂ that

1
p̂− β + 1 − 2(r − β)

n(1 − r + β) <
2
n
,

which allows us to pick

q̂ >
n(1 − r + β)

2(r − β) , or equivalently, r > β + n

n + 2q̂

such that

1
p̂− β + 1 − 1

q̂
<

2
n
.

Since u ∈ L∞((0, Tmax); Lp̂−β+1(Ω)) under μ > μ∗, we have w ∈ L∞((0, Tmax); Lq̂(Ω)) by Proposition 2.1 (i), 
and furthermore u ∈ L∞((0, Tmax); Lp(Ω)) for any p > 1 according to Lemma 4.4. The proof is complete. �
4.4. Self-diffusion and logistic source both balancing cross-diffusion. Proof of Theorem 4

Finally, we focus on the proof of Theorem 4 concerning the global boundedness of solutions for the case 
that the self-diffusion and the logistic source both balance the cross-diffusion.

Proof of Theorem 4. Since α = 0, β = 1 and r = 3/2, (4.1) with p̄ = 3/2 takes the form

d

dt

∫
Ω

(u + 1) 3
2 ≤ −4

3a0

∫
Ω

|∇(u + 1) 3
4 |2 + 1

2b0
∫
Ω

(u + 1) 3
2 |Δv|

+ 3
2(b + μ)

∫
Ω

(u + 1) 1
2 − 3

√
2

4 μ

∫
Ω

(u + 1)2 (4.17)

for all t ∈ (0, Tmax). By the Hölder inequality, the Gagliardo-Nirenberg inequality in dimension n = 4 and 
the Young inequality, we derive

1
2b0

∫
Ω

(u + 1) 3
2 |Δv|

≤ 1
2b0‖(u + 1) 3

2 ‖
L

6
5 (Ω)

‖Δv‖L6(Ω)

= 1
2b0‖(u + 1) 3

4 ‖2
L

12
5 (Ω)

‖Δv‖L6(Ω)

≤ 1
2b0C1

(
‖∇(u + 1) 3

4 ‖
2
3
L2(Ω)‖(u + 1) 3

4 ‖
4
3
L2(Ω) + ‖(u + 1) 3

4 ‖2
L2(Ω)

)
‖Δv‖L6(Ω)

≤ 4
3a0‖∇(u + 1) 3

4 ‖2
L2(Ω) +

√
2

12 a
− 1

2
0 (b0C1)

3
2 ‖(u + 1) 3

4 ‖2
L2(Ω)‖Δv‖

3
2
L6(Ω)

+ 1
2b0C1‖(u + 1) 3

4 ‖2
L2(Ω)

(2
3‖Δv‖

3
2
L6(Ω) + 1

3

)

for all t ∈ (0, Tmax) with C1 = C1(Ω) > 0. Inserting it into (4.17), we gain
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d

dt

∫
Ω

(u + 1) 3
2 ≤ C2‖Δv‖

3
2
L6(Ω)

∫
Ω

(u + 1) 3
2 + 1

6b0C1

∫
Ω

(u + 1) 3
2

+ 3
2(b + μ)

∫
Ω

(u + 1) 1
2 − 3

√
2

4 μ

∫
Ω

(u + 1)2

for all t ∈ (0, Tmax), where C2 = (
√

2/12)a−
1
2

0 (b0C1)
3
2 + (1/3)b0C1. Because

1
6b0C1(s + 1) 3

2 + 3
2(b + μ)(s + 1) 1

2 − 3
√

2
4 μ(s + 1)2 ≤ C3 for s ≥ 0

with C3 > 0 relying on b0, b, μ and C1, we further have

d

dt

∫
Ω

(u + 1) 3
2 ≤ C2‖Δv‖

3
2
L6(Ω)

∫
Ω

(u + 1) 3
2 + C3|Ω| for all t ∈ (0, Tmax).

Note that it follows from Lemma 3.2 that

t∫
t0+(t−1−t0)+

∫
Ω

(u + 1) 3
2 (x, τ)dxdτ ≤

t∫
(t−1)+

∫
Ω

(u + 1) 3
2 (x, τ)dxdτ

≤
√

2(M2 + |Ω|) for all t ∈ (t0, Tmax),

and Lemma 3.5 gives

t∫
t0+(t−1−t0)+

‖Δv(·, τ)‖
3
2
L6(Ω)dτ ≤ C4 for all t ∈ (t0, Tmax)

with C4 > 0 depending on ai, bi (i = 1, 2), Ω, M2, ‖w(·, t0)‖3/2,3/2 and ‖v(·, t0)‖6,3/2. Thus we can know 
by Lemma 2.5 that u ∈ L∞((t0, Tmax); L

3
2 (Ω)), and so u ∈ L∞((0, Tmax); L

3
2 (Ω)). Moreover, applying 

Proposition 2.1 (i), we get w ∈ L∞((0, Tmax); Lq(Ω)) with q ∈ [1, 6). Fix q ∈ (2, 6). Then

α + β < 1 + 2
n
− n

n + 2q

with α = 0, β = 1 and n = 4. By Lemma 4.3, u ∈ L∞((0, Tmax); Lp(Ω)) for all p > 1. Hence invoking 
Lemma 4.1 yields the global boundedness of solutions. �
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