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Burjassot, València, SPAIN.

Abstract

This paper studies the limit behavior as p → 1 of the eigenvalue problem{
−(|ux|p−2ux)x − c|ux|p−2ux = λ|u|p−2u, 0 < x < 1,

u(0) = u(1) = 0.

We point out that explicit expressions for both the eigenvalues λn and asso-
ciated eigenfunctions are not available (see [16]). In spite of this hindrance,
we obtain the precise values of the limits limp→1+ λn. In addition, a com-
plete description of the limit profiles of the eigenfunctions is accomplished.
Moreover, the formal limit problem as p → 1 is also addressed. The results
extend known features for the special case c = 0 ([6], [28]).
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1. Introduction

This work deals with the nonlinear eigenvalue problem{
−(ϕp(ux))x − cϕp(ux) = λϕp(u), 0 < x < 1,

u(0) = u(1) = 0,
(1)

where p > 1, ϕp(·) stands for the function ϕp(t) = |t|p−2t while Lp(u) :=
(ϕp(ux))x is the well–known p–Laplacian operator acting in a distributional
sense on functions u ∈ C1

0(0, 1) (see Section 2). There is no loss of generality
in assuming that the constant c is positive. Otherwise, the transformation
x → 1− x restores the problem to this normalized situation.

The symmetric case c = 0 of (1), namely{
−(ϕp(ux))x = λϕp(u), 0 < x < 1,

u(0) = u(1) = 0,
(2)

goes back at least to [11]. The set of eigenvalues to (2) consists of the sequence
σn = nptp1, n = 1, 2, . . . , where t1 = 2π

p sin(π/p)
(p − 1)1/p. They are simple and

a normalized eigenfunction associated to σn is given by

ũn(x) = v(t), t = nt1x,

v(t) being the odd and 2t1–periodic function such that

t =

(
p− 1

p

) 1
p
∫ v(t)

0

ds

(1− sp)1/p
& v(t1 − t) = v(t)

for every 0 ≤ t ≤ t1
2
(see further details in [7], [18] and [30] for a generalization

of the classical Sturm–Liouville theory). However, ascertaining the structure
of the full Dirichlet spectrum of the p-Laplacian −Δp in a N–dimensional
domain still remains a hard open question ([23]). In this N–dimensional
setting, the radially symmetric case is the only one where all the eigenvalues
are essentially known ([8], [30], [28]).

As far as problem (1) is concerned, a detailed knowledge of the full set of
eigenvalues and associated eigenfunctions has not been attained until quite
recently (see [16]). Observe that in the linear scenario p = 2, problem (1)
is easily reduced to (2). Nevertheless, it has been shown in [16] that the
eigenvalues to (1) form a sequence,

0 < λ1 < λ2 < · · · < λn < · · · ,
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such that λn → ∞ (more exactly λn ∼ σn as n → ∞). Each λn is simple
and a normalized eigenfunction can be expressed as

un(x, p) = v(λ
1
p
nx),

where v(t) is a suitably chosen oscillatory solution to the equation

(ϕp(vt))t + γϕp(vt) + ϕp(v) = 0, (3)

with γ = cλ
− 1

p
n . Specifically, v(t) is required to satisfy

v(0) = 0 and max
[0,∞)

v = max
[0,∞)

|v| = 1. (4)

The latter condition is equivalent to v′(0) = v′0 with a proper choice of v′0 > 0.
However, it can be checked that v′0 → ∞ as p → 1. Our objective being to
study the limit behavior as p → 1, the maximum condition turns out to be
more convenient. See further details in Section 3 below.

It should be stressed that while the study of (2) only involves direct inte-
gration arguments, the corresponding analysis for its convective perturbation
(1) is far from immediate. It requires upgrading to the p–Laplacian case well
known devices from the qualitative ODE theory (see Lemmas 5 and 6 of
Section 2). On the other hand, the situation for the N–dimensional version
of (1) is even worse. In fact, the variational nature of the p–Laplacian is lost
under the presence of a convective term. We refer to [17] for recent results
on this considerably more delicate problem.

In this work our interest is focused on two goals. The first one is eluci-
dating the existence of the limits

λ̄n := lim
p→1

λn(p), (5)

together with a detailed description of the limit profiles,

ūn(x) := lim
p→1

un(x, p) (6)

of the associated eigenfunctions. The notation (λn(p), un(·, p)) for the eigen-
pairs of (1) will be employed when necessary to emphasize their dependence
on p.

The second one is addressing the limit eigenvalue problem of (1) as p → 1.
This allows us to give a meaning to the formal eigenpairs (λ̄n, ūn). Higher
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order eigenvalues to the 1–Laplacian have not been considered until quite
recently (see [6], [25] and further references in [28]). Accordingly, an explicit
description of the eigenvalues and associated eigenfunctions to the convective
perturbation (11) of the one–dimensional 1–Laplacian is introduced in this
work.

It is worth recalling that equations involving the p-Laplacian operator
arise in the study of a variety of physical phenomena, in particular non-
Newtonian fluids (see [10]), glaciology ([12]), also in reaction–diffusion sys-
tems and population dynamics. Regarding the latter subjects, the classical
logistic equation under nonlinear diffusion was extended and thoroughly an-
alyzed in the series of works [14], [13] and [15] (see also [20] for a previous
discussion). The 1–Laplacian was first studied as a limit of p–Laplacian type
equations and the interest in such limit process originated in an optimal
design problem raised in the theory of torsion and related geometrical prob-
lems (see [21]). Since the 1–Laplacian describes isotropic diffusion within
each level surface, with no diffusion across different level surfaces, this oper-
ator also constitutes a powerful tool in PDE based image processing (see the
pioneering paper [27] and [4]). Although our objectives in the present work
are mainly theoretical, we point out that our results could find applications
in these areas.

In our previous work [28] the N–dimensional version of (2) is considered.
The existence of the limits (5) and (6) is discussed when the λn are the
Ljusternik–Schnirelman eigenvalues to −Δp ([23]). In addition, ūn is shown
to define a “reference” eigenfunction to a suitable limit eigenvalue problem
(see [24] for related results). For the special case of the radial eigenvalues,
the delicate question of ascertaining the limit profiles of the eigenfunctions
un is addressed in [28] by direct arguments in the spirit of Section 4 below. In
contrast to this, more precise phase space methods allow us, in this work, to
provide a detailed description of the limits (λ̄n, ūn) of the eigenpairs (λn, un)
to (1) as p → 1. It should be mentioned that similar results were obtained in
[6] for the simpler problem (2). Therefore, the analysis of (1) constitutes an
interesting intermediate case of study linking the one–dimensional and the
radial problems. However, the extension to dimension N of the results of
this work concerning (1) stands for the moment as a challenging problem.

Our main results on the limit behavior of problem (1) as p → 1 are next
stated. It is worthwhile recalling that every eigenfunction un to (2) vanishes
exactly at x = k/n, 0 ≤ k ≤ n. In addition, it exhibits a unique critical point
x = ξk−1 ∈ (

k−1
n
, k
n

)
, 1 ≤ k ≤ n. These assertions are properly reviewed in
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the course of the proofs of Section 3. In what follows C(U) will stand for the
space of continuous functions in an open U ⊂ R, endowed with the uniform
convergence in compact sets.

Theorem 1. Let λn = λn(p, c) be the n–th eigenvalue to problem (1) and let
un = un(x, p, c) be the associated eigenfunction normalized so as

max
x∈(0,1)

un(x) = 1.

Then the following properties hold.

a) The limits λ̄n = limp→1 λn(p, c) exist for every n ∈ N. In fact,

λ̄n = c
e

c
n + 1

e
c
n − 1

.

In particular,
λ̄n ∼ σ̄n,

both as c → 0+ and as n → ∞, where σ̄n = 2n and σ̄n = limp→1 σn(p), σn(p)
being the n–th eigenvalue to problem (2).

b) The unique critical point ξk−1 of un in the interval k−1
n

< x < k
n
satisfies

lim
p→1

ξk−1 =
k

n
− 1

c
log

(
e−

c
n + 1

2

)
. (7)

Moreover,
ᾱk−1 := lim

p−1
αk−1 = e−(k−1) c

n , 1 ≤ k ≤ n, (8)

where αk−1 > 0 is defined through un(ξk−1) = (−1)k−1αk−1, α0 = 1.

c) For each n

ūn(x) := lim
p→1

un(x, p, c) =
n∑

k=1

(−1)k−1ᾱk−1χ(nx− (k − 1)), (9)

where χ stands for the characteristic function of the unit open interval I =
(0, 1). Moreover, convergence (9) holds in C(I \ { 1

n
, . . . , n−1

n
}).

d) The limit

lim
p→1

dun

dx
(x, p, c) = 0, (10)

also holds true in C(I \ { 1
n
, . . . , n−1

n
}).
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Remark 1. As shown in [28], the n–th eigenfunction ũn(x, p) to problem (2),
normalized so that maxx∈(0,1) ũn = 1, satisfies

lim
p→1

ũn(x, p) =
n∑

k=1

(−1)k−1χ(nx− (k − 1)).

This expression coincides with the limit of the right–hand side of (9) as
c → 0+.

Once the existence of the limits λ̄n and

ūn(x) =
n∑

k=1

(−1)k−1ᾱk−1χ(nx− (k − 1))

is settled, their connection with the formal limit problem⎧⎪⎨
⎪⎩
−
(

ux

|ux|
)

x

− c
ux

|ux| = λ
u

|u| , 0 < x < 1,

u(0) = u(1) = 0,

(11)

should be addressed. As expected, we are going to show that each (λ̄n, ūn)
defines an eigenpair of problem (11), in a certain sense to be introduced
in Section 4. At this early stage, we point out the presence in (11) of the

so–called 1–Laplacian operator
(

ux

|ux|

)
x
, a natural feature in this kind of de-

generate limit problems (see [28]).
In the following statement solutions are understood in a distributional

sense (see precise details in Section 4).

Theorem 2. For every n ∈ N, λ̄n = c
e

c
n + 1

e
c
n − 1

is an eigenvalue to problem

(11) having

ūn(x) =
n∑

k=1

(−1)k−1e−(k−1) c
nχ(nx− (k − 1))

as the associated eigenfunction normalized with max ūn = 1.
Moreover,

ūn(x) = v(λ̄nx),

where v = v(t) is the unique normalized solution to equation
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(
vt
|vt|

)
t

+ γ
vt
|vt| +

v

|v| = 0, t ∈ (0,+∞), (12)

with γ = cλ̄−1
n , which satisfies the additional condition

d|v|
dt

= −γ

∣∣∣∣dvdt
∣∣∣∣ . (13)

Remark 2. Normalized solutions to (12) are properly defined in Section 4.
They satisfy conditions analogous to those in (4) (see Remark 8). We point
out that equation (12) could exhibit infinitely many normalized solutions.
Therefore, energy condition (13) is crucial since it allows us to choose a
normalized solution with uniqueness.

The paper is organized as follows. Section 2 studies the relevant initial
value problems for equation (3). In addition, an analysis of its orbits is dis-
cussed. Section 3 addresses the eigenvalue problem (1) and contains the proof
of Theorem 1. The asymptotic analysis of the auxiliary integrals involved in
such a proof is also included there. Section 4 deals with the limit problem
from the alternative approach provided by the 1–Laplacian. It contains the
proof of Theorem 2.

2. Initial value problems

In this section the analysis of (1) is revisited. The tools to attain the
existence of eigenvalues developed in [16] are introduced for the purposes
of the present work. Since we are mainly concerned with the behavior of
problem (1) as p → 1 we are restricting ourselves in what follows to the case
where 1 < p ≤ 2.

By a weak eigenpair (λ, u) ∈ R × W 1,p
0 (I), I = (0, 1), it is understood

that u �= 0 solves (1) in a weak sense. That is,∫ 1

0

{ϕp(ux)ψx−cϕp(ux)ψ} = λ

∫ 1

0

ϕp(u)ψ (14)

for all ψ ∈ W 1,p
0 (I). Thus both ϕp(u) and ϕp(ux) belongs to Lp′(I), p′ = p

p−1
,

while (14) entails that ϕp(ux) ∈ W 1,p′(I). By modifying both u and ux in a
null set we conclude that u, ϕp(ux) ∈ C1(I) ∩ C(I) (see [5]) whereas

(ϕp(ux))x + cϕp(ux) + λϕp(u) = 0 (15)
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is pointwise satisfied in I. In addition, u vanishes at x = 0, 1. Finally, observe
that ϕp′(·) = ϕp(·)−1, where p′ = p/(p− 1), and hence ux = ϕp′(ϕp(ux)). As
1 < p ≤ 2, we achieve that u ∈ C2(I)∩C(I). Summarizing all these remarks,
we can state the following lemma.

Lemma 3. Every weak eigenfunction u ∈ W 1,p
0 (I) associated to an eigen-

value λ to (1), with 1 < p ≤ 2, can be regarded as a function u ∈ C2(I)∩C(I)
defining a classical solution to (14) such that u(0) = u(1) = 0. Moreover,
the eigenvalues λ of (1) are necessarily positive.

Proof. Equation (14) can be rewritten as

−(ecxϕp(ux))x = λecxϕp(u) x ∈ I,

whereby, after multiplication by u and an integration, it follows that

λ =

∫ 1

0

ecx|ux|p∫ 1

0

ecx|u|p
> 0.

Let u ∈ W 1,p
0 (I) be a solution to (1). Then the scale change t = λ

1
px,

λ > 0, leads to a classical solution v(t) := u(λ− 1
p t) to equation

(ϕp(vt))t + γϕp(vt) + ϕp(v) = 0,

with γ = cλ− 1
p . In addition, v(0) = v(λ

1
p ) = 0. Therefore, a discussion of

the initial value problem{
v′ = ϕp′(w),

w′ = −(ϕp(v) + γw),

v(0) = v0,

w(0) = w0,
′ =

d

dt
, (16)

becomes necessary. Problem (16) is obtained from (3) by setting w = ϕp(v
′).

The prominent rôle of the function w will be shown when dealing with the
limit problem as p → 1. Also, it should be stressed that (16) does not fall into
the scope of the standard existence and uniqueness theory when p �= 2. In
fact, as 1 < p < 2, (16) fails to be smooth when v = 0, while the first equation
in (16) loses its differentiability near w = 0 if p > 2. Figures 2 and 3 depict
the orbit of (16) corresponding to v0 = 1, w0 = 1. The singular features of
the equation as p → 1 are suggested by these numerical simulations.
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Lemma 4. Suppose 1 < p ≤ 2. Then problem (16) possesses a unique
classical solution v ∈ C2(0,∞) ∩ C[0,∞) for every initial data v0, w0 ∈ R.
Moreover, (v(t), v′(t)) → (0, 0) as t → ∞. Furthermore, for every b > 0,
(v(·), v′(·)) defines a continuous function of the parameters (p, γ) ∈ (1, 2)×R

when it is regarded as taking values in C1[0, b]× C1[0, b].

Proof. We refer to [16] for a proof of the existence and uniqueness assertions.
The decay of solutions to (0, 0) follows from La Salle’s invariance principle
(see [22]) by employing the Lyapunov function

V (v, w) =
1

p′
|w|p′ + 1

p
|v|p, (17)

whose derivative along trajectories is given by

dV

dt
= −γ|v′|p. (18)

The continuous dependence assertion is a well-known consequence of
uniqueness of solutions to problem (16) ([19]). Actually, sharper results on
the dependence of the solution v on initial data v0, w0 and parameter γ can
be achieved (see [13]).

Remark 3. Lemma 4 also holds true if p > 2. However, solutions to (16) are
not twice differentiable at the discrete set of points where u′ vanishes. This
fact is more clearly expressed through the asymptotic estimate

v(t) = −v0ϕp′(t− t0) + o(|t− t0|p′−1), t → t0, (19)

which is valid when v′(t0) = 0.

Remark 4. We point out that if we let p go to 1 both in (17) and (18), we
formally obtain V (v, w) = |v| and dV

dt
= −γ|v′|. This suggests the extra

equation (13) in Theorem 2.

Suppose again that u ∈ W 1,p
0 (I) is a weak eigenfunction to (1). Since the

equation (3) is invariant with respect to similarities v → μv, μ ∈ R, it is

clear from Lemma 4 that u(x) = μφ(λ
1
px) for certain μ �= 0, where v = φ(t)

is the unique solution to{
(ϕp(vt))t + γϕp(vt) + ϕp(v) = 0, t > 0,

v(0) = 0, v′(0) = 1,
(20)
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for γ = cλ− 1
p . Since φ must vanish at t = λ

1
p > 0, then an analysis of the

oscillatory properties of the solutions to (3) is required.
In spite of equation (3) being non linear, the ansatz v = ezt turns out to

be helpful to shed some light on this. It leads to the equation

(p− 1)|z|p + γϕp(z) + 1 = 0, (21)

which is, of course, the equivalent to the characteristic equation in the linear
case. By setting,

h(z) = (p− 1)|z|p + γϕp(z) + 1, (22)

it is easily seen that h(z) > 0 for all z if 0 ≤ γ < p, while h vanishes
exactly at z1 = −1 for γ = p. Similarly, h exhibits exactly two negative zeros
z2 < z1 < 0 when γ > p. The next two results show that similar consequences
to those of the linear case can be extracted from this discussion on the roots
of (21). A sketch of the proof of Lemmas 5 and 6 below is provided for future
use in Section 3. We are restricting ourselves to the regime 1 < p ≤ 2 (see
[16] for the complementary range p > 2).

Lemma 5. Assume that v is a nontrivial solution to (3) defined in J =
[0,∞). Then v vanishes at most once in J provided γ ≥ p. In particular, the
solution φ to (20) becomes positive in (0,∞).

Lemma 6. Let v be a nontrivial solution of (3) defined in J = [0,∞) and
suppose that 0 ≤ γ < p. Then there exists T = T (γ) so that

i) v vanishes exactly at t = t0 + (n− 1)T for a certain t0 ∈ J and all n ∈ N.
In particular φ vanishes at t = nT , n ∈ N.

ii) Function T (γ) is smooth and increasing in 0 ≤ γ < p,

T (0) =
2π

p sin
(

π
p

)(p− 1)1/p, (23)

while T (γ) → ∞ as γ → p−.

iii) An integral expression for T is given by

T (γ) = 2(p− 1)

∫ ∞

0

tp + p− 1

(tp + p− 1)2 − γ2t2
dt. (24)
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Proof of Lemmas 5 and 6. Let v be a nontrivial solution of (3). It gives rise
to the nontrivial solution v = (v1, v2) = (v, v′) to{

v′1 = v2

v′2 = − 1
p−1

|v2|2−p{ϕp(v1) + γϕp(v2)},
(25)

satisfying v(0) = (v(0), v′(0)). It should be remarked that such solution v(t)
attains at finite time t the values (v0, 0) �= (0, 0), even though the latter are
critical points to (25) (see below). In that case, it is implicit in the estimate
(19) that a solution v to (16) can only assume such value (v0, 0) at a unique
instant t. Indeed, although all solutions to (3) generate a solution of (25),
not all solutions to the latter equation come from a solution to (3) (see [16]
for further details).

Moreover, there exist C1 functions ρ and θ defined in [0,∞) so that ([29])

v1(t) = ρ(t) cos θ(t), v2(t) = ρ(t) sin θ(t), t ≥ 0. (26)

Thus, ρ and θ solve the equations{
ρ′ = ρf1(θ),

θ′ = f2(θ),
(27)

where

f1 = − 1

p− 1

sin2 θ

| tan θ|p {γ| tan θ|
p + tan θ − (p− 1)ϕp(tan θ)} ,

f2 = − 1

p− 1

sin2 θ

| tan θ|ph(tan θ),

and h is the function defined in (22). Observe that as a consequence of
Lemma 3 we find that ρ(t) → 0 as t → ∞ for every nontrivial solution v to
(3).

Let us suppose next that 0 ≤ γ < p. Taking into account that f2 → −1
as θ → π

2
+ nπ, n ∈ Z, it follows that f2 < 0 for all θ �= nπ. In addition,

f2(θ) ∼ − 1

p− 1
| sin θ|2−p as θ → nπ.

This means that the integral ∫ θ

nπ

ds

f2(s)

11



converges for every n ∈ Z. Thus θ(t) reaches the values θ = nπ at finite t
and, in view of (19), θ(t) progressively crosses all these values in decreasing
sense. Therefore, v(t) = v1(t) exhibits infinitely many zeros in [0,∞). To
compute the distance between two consecutive zeros t1 < t2, we observe that
θ(t1) = nπ+ π

2
and θ(t2) = nπ− π

2
. From the equation for θ in (27) we obtain

t2 − t1 =

∫ nπ−π
2

nπ+π
2

ds

f2(s)
= −

(∫ 0

−π
2

+

∫ π
2

0

)
ds

f2(s)
,

and hence

t2 − t1 = (p− 1)

∫ ∞

0

dτ

τ p + γτ + p− 1
+ (p− 1)

∫ ∞

0

dτ

τ p − γτ + p− 1
, (28)

which is the desired expression (24) for T . The smoothness and increasing
character of T are also implicit in (24).

As for the case γ ≥ p, suppose that v(t) �≡ 0 solves (3) and is different
from ezit, where h(zi) = 0, i = 1, 2. Assume without loss of generality that
v(t0) = 0 and v′(t0) > 0. Then, θ(t0) = π

2
(mod π) whereas θ(t) → θ1 as

t → ∞ in a decreasing way. Here −π
2
< θ1 < 0 with tan θ1 = z1, z1 being the

maximum negative root of h. This proves Lemma 5.

3. Eigenvalues for p > 1 and their limits

The following result is a shortened version of Theorem 4.1 in [16]. Details
of the proof will be instrumental for the forthcoming issues in this paper.

Theorem 7. The set of eigenvalues of (1) consists of a sequence(
c

p

)p

< λ1 < λ2 < · · · < λn < · · · ,

so that λn ∼ σn as n → ∞, where σn is the n–th eigenvalue to (2). Moreover,
every λn is simple while its associated eigenfunctions are scalar multiples of

u(x) = φ(λ
1
p
nx, γn),

where γn = cλ
− 1

p
n and φ(·, γ) stands for the solution to (20). In particular,

every eigenfunction vanishes at the points x = k/n, 0 ≤ k ≤ n.

12



Proof. An eigenfunction u associated to a possible eigenvalue λ is necessarily
of the form

u = φ(λ
1
px, γ), γ = cλ− 1

p ,

modulus a scalar factor. Thus

λ
1
p = nT (γ) (29)

for some n ∈ N. Hence we get γ = γn as the unique solution to

c = nγT (γ), 0 ≤ γ < p. (30)

We remark that existence and uniqueness for (30) is a consequence of the
increasing character of the function γ �→ γT (γ) together with the limit
limγ→p− γT (γ) = +∞. Notice also that the sequence 0 < γn < p is de-
creasing and γn → 0. Then the eigenvalues to (1) are exactly

λn =

(
c

γn

)p

,

and from the previous remarks we achieve

λn ∼ npT (0)p = σn as n → ∞.

Remark 5. The normalized eigenfunction in Theorem 1 is obtained as un =
v′0φ, where v′0 > 0 is chosen so as to satisfy

max
[0,∞)

v′0φ(t) = 1,

with φ the solution to (20). Since function V in (17) decreases, it follows
that

(p− 1)v′0
p
> 1,

and so v′0 → ∞ when p → 1+.

We proceed now to show the assertion in Theorem 1 regarding the limit
of the λn’s as p → 1. In the next statement, the parameter p is incorporated
as an extra argument in the expression of the relevant functions.
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Lemma 8. Let T (γ, p), 0 ≤ γ < p, the function defined in (24). Then

lim
p→1+

T (γ, p) =
1

γ
log

(
1 + γ

1− γ

)
, γ ∈ (0, 1), (31)

where the value of the limit is equal to 2 if γ = 0.

Proof. Let p > 1 and γ ∈ [0, 1). Set

T (γ, p) = T (γ, p)+ + T (γ, p)−,

where

T (γ, p)+ = (p− 1)

∫ +∞

0

1

tp + γt+ p− 1
dt (32)

and

T (γ, p)− = (p− 1)

∫ +∞

0

1

tp − γt+ p− 1
dt. (33)

To achieve (31) it suffices to take a = p − 1 and b = ±γ in formula (34)
proved in Lemma 9.

Lemma 9. Let b > −1. It holds that

lim
a→0+

∫ ∞

0

a

t1+a + bt+ a
dt =

log (1 + b)

b
, (34)

where the value of the limit is equal to 1 if b = 0.

Proof. We first check that the integrand appearing in (34) is positive and
bounded for t ≥ 0 and a > 0. It is obvious that

t1+a + bt+ a ≥ t1+a − t+ a, b > −1, a > 0, t ≥ 0.

Set g(t) = t1+a − t+ a. Then g′(t) = (1+ a)ta − 1 and the function g attains
its minimum at the point

ta =
1

(1 + a)1/a
< 1.

Thus, we can write ta = 1/xa, with xa ∈ [1,+∞). For each x ∈ [1,+∞) let
us consider the function

h(a) =
1

x1+a
− 1

x
+ a, a ∈ [0,∞).

14



It is clear that h(0) = 0, whereas

h′(a) = 1− log x

x1+a
> 1− log x

x
> 0, a > 0,

which shows that h(a) > 0 for all x ≥ 1 and a > 0. In particular, g(ta) > 0,
as we wanted to prove.

Next, we will prove the formula

lim
a→0+

∫ M

0

a

t1+a + bt+ a
dt = 0, b > −1, M > 0. (35)

Let us fix an arbitrary δ ∈ (0,M) and b > −1. We have

∫ δ

0

a

t1+a + bt+ a
dt ≤ aδ

t1+a
a − ta + a

.

Note that

lim
a→0+

t1+a
a − ta + a

a
=

e− 1

e
, (36)

since
t1+a
a − ta + a

a
= 1− ta − t1+a

a

a
= 1− ta

1− taa
a

= 1− ta
1 + a

and

lim
a→0+

ta
1 + a

= lim
a↓0

ta =
1

e
.

Then it follows from (36) that

lim sup
a→0+

∫ δ

0

a

t1+a + bt+ a
dt ≤ e

e− 1
δ. (37)

Furthermore, the dominated convergence theorem implies

lim
a→0+

∫ M

δ

a

t1+a + bt+ a
dt = 0,

which, together with (37), proves the estimate

lim sup
a→0+

∫ M

0

a

t1+a + bt+ a
dt ≤ e

e− 1
δ. (38)
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Since δ > 0 is arbitrary, we obtain (35) by taking limits in (38) as δ goes to
0.

Now we are ready to prove (34). Let us consider an arbitrary M > 1.
Since the function f(t) = t1+a+bt is strictly positive on the interval [1,+∞),
the integral ∫ +∞

M

1

t1+a + bt
dt, b > −1, a > 0,

is convergent. To solve it, we perform the change of variable x = ta. Then∫ +∞

M

1

t1+a + bt
dt =

1

a

∫ +∞

Ma

1

x(x+ b)
dx =

1

ab

∫ +∞

Ma

(
1

x
− 1

x+ b

)
dx

= − 1

ab

[
log

(
1 +

b

x

)]+∞

Ma

=
1

ab
log

(
1 +

b

Ma

)
.

Consequently,

lim
a→0+

∫ +∞

M

a

t1+a + bt
dt =

log (1 + b)

b
. (39)

These calculations are valid provided that b �= 0. In the case b = 0, it is very
easy to see that

lim
a→0+

∫ +∞

M

a

t1+a
dt = 1. (40)

In addition, it is clear that

0 ≤
∫ +∞

M

a

t1+a + bt+ a
dt ≤

∫ +∞

M

a

t1+a + bt
dt

and, therefore, we have

0 ≤
∫ +∞

M

(
a

t1+a + bt
− a

t1+a + bt+ a

)
dt

=

∫ +∞

M

a2

(t1+a + bt+ a)(t1+a + bt)
dt ≤

∫ +∞

M

a2

(t1+a + bt)2
dt.

At this point we need to further specify the constant M depending on the
constant b. Fix b > −1 and choose M > 1 such that t1+a + bt > 1 for all

16



t ≥ M . For instance, it is enough to take M > 1/(1 + b), since t1+a + bt >
(1 + b)t. Then ∫ +∞

M

a2

(t1+a + bt)2
dt <

∫ +∞

M

a2

t1+a + bt
dt

and, taking account of (39) and (40), we arrive at the expression

lim
a→0+

∫ +∞

M

(
a

t1+a + bt
− a

t1+a + bt+ a

)
dt = 0.

Now, this last equality and formulas (35), (39) y (40) imply

lim
a→0+

∫ ∞

0

a

t1+a + bt+ a
dt = lim

a→0+

∫ +∞

M

a

t1+a + bt
dt =

log (1 + b)

b
,

which proves (34).

Remark 6. Proof of Lemma 9 can be adapted to show the slightly more
general relation

lim
(a,b)→(0+,b̄)

∫ ∞

0

a

t1+a + bt+ a
dt =

log
(
1 + b̄

)
b̄

,

provided that b̄ > −1.

Proof of Theorem 1–a). As shown in Theorem 7,

λn(p, c) =

(
c

γn(p, c)

)p

,

where γ = γn(p, c), 0 < γ < p, is the unique root of the equation (30).
Therefore, γn(p, c) → γ̄n as p → 1, where γ = γ̄n ∈ (0, 1) is the solution to
the equation

c = n log

(
1 + γ

1− γ

)
,

and so,

γ̄n =
e

c
n − 1

e
c
n + 1

. (41)
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Proof of Theorem 1–b). Set v = v(t, γ, p) the solution to (3) such that v(0) =
0 together with sup(0,∞) v = 1 (see Figure 1). Explicit reference to p in the
expression for v will be omitted for short. As was pointed out (Remark 5),
v is a scalar multiple of the solution φ to (20), while the normalized n–th
eigenfunction associated to (1) is defined by

un(x) = v(λ
1
p
nx, γ), γ = γn, (42)

γn being the root of (30). Function v(t, γ) vanishes exactly at t = nT (γ),
n ∈ N. Set

αn−1 = max
t∈((n−1)T,nT )

|v(t, γ)|.

Then, the decreasing character of the energy V (see Lemma 4) implies that
αn decreases. In particular,

α0 = max
t∈(0,T )

v(t, γ) = 1.

In order to study the behavior of v in the interval ((n − 1)T, nT ) a first
fact to be observed is that the relation

v(t, γ) = (−1)n−1αn−1v(t− (n− 1)T, γ), (43)

holds for (n− 1)T ≤ t ≤ nT . In fact, it follows from the analysis in Lemma
6 that the extremum value (−1)n−1αn−1 is achieved at

t = tn−1 := (n− 1)T + T+,

T and T+ being given by (24) and (32) respectively. Accordingly, the shape
of v in ((n− 1)T, nT ) is controlled by the amplitude αn−1 and the restriction
of v(t, γ) to the initial interval (0, T ).

Let us analyze αk−1 as p → 1. We are also keeping track of the dependence
of αk−1 on the parameter γ.

By employing the expression (26) for v and v′, we notice that θ(tk) = −kπ
together with ρ(tk) = αk. In addition, the orbital equation associated to (27)
is

dρ

dθ
= ρ

f1(θ)

f2(θ)
.

Thus,

αk

αk−1

= exp

{
−
∫ π

0

f1(θ)

f2(θ)

}
= exp

{
−
∫ π

2

−π
2

f1(θ)

f2(θ)

}
,
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wherein the fact that f1(θ)
f2(θ)

is π–periodic has been employed.
Define

J =

∫ π
2

−π
2

f1(θ)

f2(θ)
dθ.

Setting τ = tan θ we find∫ π
2

0

f1(θ)

f2(θ)
dθ =

∫ ∞

0

1

1 + τ 2
g(τ)

h(τ)
dτ,

where h is defined in (22) while

g(τ) = γ|τ |p + τ − (p− 1)ϕp(τ).

Similarly, ∫ 0

−π
2

f1(θ)

f2(θ)
dθ =

∫ ∞

0

1

1 + τ 2
g(−τ)

h(−τ)
dτ.

It can be seen that

1

1 + τ 2

(
g(τ)

h(τ)
+

g(−τ)

h(−τ)

)
= 2γ(p− 1)

τ 2(p−1)

((p− 1)τ p + 1)2 − γ2τ 2(p−1)
.

Thus,

J = 2γ(p− 1)

∫ ∞

0

τ 2(p−1)

((p− 1)τ p + 1)2 − γ2τ 2(p−1)
dτ.

At this point it is worth considering J as a function of both p and γ, 0 ≤
γ < 1. Then, by proceeding as in Lemma 9 and putting a = p− 1, we next
show that

lim
(a,γ)→(0+,γ̄)

J = − log

(
1− γ̄

1 + γ̄

)
.

In fact,

J = 2γa

∫ ∞

0

τ 2a

(aτa+1 + 1)2 − γ2τ 2a
dτ = 2γ

∫ ∞

0

s2a

(sa+1 + aa)2 − γ2s2a
ds

= 2γ

∫ ∞

0

ds

(s+ aas−a)2 − γ2
= 2γ

(∫ γ̄+2ε

0

+

∫ ∞

γ̄+2ε

)
ds

(s+ aas−a)2 − γ2
,

with a small ε > 0. Assume that γ ≤ γ̄+ε. The latter integrand is estimated
as

2γ

(s+ aas−a)2 − γ2
≤ 2(γ̄ + ε)

s2 − (γ̄ + ε)2
,
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while the former integrand can be estimated in the form

2γ

(s+ aas−a)2 − γ2
≤ 2(γ̄ + ε)

(s+ aa(γ̄ + 2ε)−a)2 − (γ̄ + ε)2
.

Indeed, taking into account that γ̄ < 1, a small ε can be chosen such that

aa(γ̄ + 2ε)−a ≥ γ̄ + 2ε

when a is small enough.
Hence, dominated convergence enables us to conclude that

lim
(a,γ)→(0+,γ̄)

J = 2γ̄

∫ ∞

0

ds

(s+ 1)2 − γ̄2
= 2γ̄

∫ ∞

1

ds

s2 − γ̄2
= − log

(
1− γ̄

1 + γ̄

)
.

Thus,

lim
(a,γ)→(0+,γ̄)

αk

αk−1

=
1− γ̄

1 + γ̄
. (44)

Since α0 = 1 this implies that

lim
(a,γ)→(0+,γ̄)

αk =

(
1− γ̄

1 + γ̄

)k

.

Going back to the expression (42) for the normalized eigenfunction un, we
observe that in the interval

(
k
n
, k+1

n

)
it takes its extremum with value (−1)kαk

at the point

ξk =
k

n
+

T+

nT
,

where both T and T+ are evaluated at γ = γn. Thus, in view of (41), we
obtain

lim
p→1

αk =

(
1− γ̄n
1 + γ̄n

)k

= e−c k
n ,

together with

lim
p→1+

ξk =
k

n
+

1

c
log(1 + γ̄n).

This proves both (7) and (8).
Next, we are going to show c). As before, χ stands for the character-

istic function of the interval (0, 1). First observe that, in view of (43), the
convergence

un(x) → (−1)k−1ᾱk−1χ (nx− (k − 1)) as p → 1
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Figure 1: Profile of v(t) := v(t + T+, γ), t ≥ 0. Notice that v solves (3) with initial
conditions v(0) = 1, v′(0) = 0. Parameter γ is fixed to γ = 0.5 while p is successively
chosen p = 2, p = 1.5, p = 1.1 and p = 1.01. The smaller p is the steeper v becomes.
Solution v vanishes at t = T−(γ, p), its limit value as p → 1 being, according to (34),

T
−
(0.5) = 1.39. In the figure, the first computed zero of v for p = 1.01 is T− = 1.46.

in C
(
k−1
n
, k
n

)
, amounts to prove that

v(t, γn) → χ
(
T

−1
t
)

as p → 1,

in C(0, T ) (see Figures 1, 2, 3), where the value T is defined by

T =
c

nγ̄n
.

Setting v(t) = v(t, γn) for short we begin by studying its limit profile in

(0, T
+
), where

T
+
=

1

γ̄n
log(1 + γ̄n).

Accordingly, we fix 0 < η < 1 and define tη as the unique value 0 < t <
T+(γn) where v = 1 − η. From the equation for θ in (27) an expression for
tη is

tη = (p− 1)

∫ cot θ(tη)

0

dt

tp + γnt+ (p− 1)
.
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Figure 2: The orbit corresponding to the solution (v, w) = (v(t), ϕp(v
′(t))) to (16) with

(v0, w0) = (1, 0). The parameter γ is taken to be 0.5 while p = 2 and p = 1.5, respectively.
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Figure 3: The orbit in Figure 2 is drawn now for the values p = 1.1 and p = 1.01. The
closer to 1 the value of p is, the more “squared” the shape of the orbit becomes.
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Equivalently,

tη = (p− 1)
1
p

∫ cot θ(tη)

(p−1)
1
p

0

dτ

τ p + γn(p− 1)
− 1

p′ τ + 1
. (45)

Since v is increasing in [0, T+(γn)] and the energy V (v, v′) = p−1
p
|v′|p + 1

p
|v|p

decreases, the inequality

(p− 1)v′(tη)p + (1− η)p > 1

holds. Now, it follows from

cot θ(tη) =
1− η

v′(tη)
,

that
cot θ(tη)

(p− 1)
1
p

<
1− η

(1− (1− η)p)
1
p

,

and so,
cot θ(tη)

(p− 1)
1
p

= O(1) as p → 1.

This in turn says that

∫ cot θ(tη)

(p−1)
1
p

0

dτ

τ p + γn(p− 1)
− 1

p′ τ + 1
≤

∫ cot θ(tη)

(p−1)
1
p

0

dτ

τ p + 1
= O(1) as p → 1.

The relation (45) then implies that tη → 0 as p → 1. This entails that

v(t, γn) → 1 as p → 1,

in C(0, T
+
). We now show that

v(t0, γn) → 1 as p → 1 (46)

at every fixed T
+
< t0 < T . In fact, direct integration yields

v(t0) = 1−
∫ t0

T+(γn)

ψ(t)
1

p−1 dt, (47)
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where

ψ(t) =

∫ t

T+

eγn(s−t)v(s)p−1 ds.

Notice that

ψ(t) ≤ 1

γn
(1− e−γn(t0−T+(γn))) for T+(γn) ≤ t ≤ t0.

Since

lim
p→1+

1

γn
(1− e−γn(t0−T+(γn))) =

1

γ̄n
(1− e−γ̄n(t0−T

+
))

and t0 − T
+
< T

−
, where

T
−
= − 1

γn

log(1− γn),

we find that
1

γn
(1− e−γn(t0−T+(γn))) ≤ k < 1

for p close enough to 1. This estimate combined with (47) yields (46).

Finally, for arbitrary 0 < a < T
+
< b < T we observe that

1 ≥ min
[a,b]

v(·, γn) ≥ min{v(a, γn), v(b, γn)} → 1 as p → 1. (48)

We thus achieve the desired conclusion.
As for d) observe that

w(t, p) := ϕp(v
′(t, p)) → 1

γ̄n
(eγ̄n(T

+−t) − 1) as p → 1, (49)

pointwise in any fixed interval [a, b] ⊂ (0, T ). By appealing both to equa-
tion (3) and the behavior of v(·, p), it follows that the family {w(·, p)}p is
equicontinuous and uniformly bounded in [a, b]. Hence, limit (49) is uniform.
Therefore the limit

v′(t, p) → 0 as p → 1, (50)

is actually uniform in [a, b]. This fact is transferred to the remaining intervals
((k − 1)T , kT ) by means of (43).

Thus we have completed the proof of Theorem 1.

25



4. Eigenvalues and eigenfunctions of the limit problem

This section is concerned with the limit problem in (1) when p → 1. It
goes without saying that the analysis is more delicate than in the case p > 1.

Due to the presence of the 1–Laplacian operator
(

ux

|ux|

)
x
, the natural frame-

work to study problem (11) is the space BV (0, 1) of functions of bounded
variation in the interval (0, 1). A function u ∈ L1(0, 1) belongs to BV (0, 1)
provided that its distributional derivative ux ∈ D′(0, 1) is a signed Radon
measure with finite total variation. In that case, |ux| will designate the total
variation measure of the distributional derivative of u. A first feature is the
validity of the embedding BV (0, 1) ⊂ L∞(0, 1). Additionally, functions that
are equal almost everywhere are identified. However, it is remarkable that in
any equivalence class there always exist distinguished elements, the so–called
good representatives. A good representative u satisfies

sup

{
n−1∑
i=1

|u(xi+1)− u(xi)|
}

< ∞,

where 0 < x1 < · · · < xn < 1 varies in the partitions of (0, 1) with n ≥ 2
elements. Regarding ux ∈ D′(0, 1) as a measure, its set of atoms is defined
as A = {x : ux({x}) �= 0} (for instance A = {1

2
} for Dirac’s δ(x− 1

2
)). It can

be shown that every good representative u is continuous in (0, 1)\A and has
just jump discontinuities at every point of A. In what follows, we are only
dealing with good representatives of functions in BV (0, 1). We refer to [1,
Section 3.2] for further information on this class of functions.

The next definition involves a concept of solution for the 1–Laplacian that
goes back to [2, 3, 9]. For the specific case of the N–dimensional Dirichlet
eigenvalue problem, it has been recently analyzed in [28] (see also [6] for the
one–dimensional setting). We continue to denote I = (0, 1).

Definition 10. We say that (λ, u) is a weak eigenpair to problem (11)⎧⎪⎨
⎪⎩
−
(

ux

|ux|
)

x

− c
ux

|ux| = λ
u

|u| , 0 < x < 1,

u(0) = u(1) = 0,

if u ∈ BV (I) and there exist functions z ∈ W 1,∞(I) and β ∈ L∞(I) such
that
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1) −zx − cz = λβ in the sense of D′(0, 1),
2) ‖z‖∞ ≤ 1 and (z, ux) = |ux| as measures (recall |ux| is the total varia-

tion of ux),

3) ‖β‖∞ ≤ 1 and βu = |u| holds a.e. in I,

4) boundary conditions are understood in the following sense:

z(0)u(0+) = |u(0+)|, −z(1)u(1−) = |u(1−)|,

where u(0+) and u(1−) stand for the corresponding side limits.

Remarks 7.

1) Functions z and β play the rôle of the fractions ux

|ux| and
u
|u| , respectively.

Moreover, these functions provide a meaning to these quotients even when
ux or u vanish.

2) Condition z ∈ W 1,∞(I) is specific to the one–dimensional case. It is just a
consequence of z, β ∈ L∞(I) and that z solves the equation in 1). Notice that
this is consistent with the fact ϕp(ux) ∈ W 1,p′(I) when p > 1 (see Section 2).
In addition, it follows from z ∈ W 1,∞(I), that z is a Lipschitz–continuous
function in I (see [5]). In particular, z admits a derivative zx a. e. in I with
zx ∈ L∞(I).

3) Distribution (z, ux) in 2) is defined through the expression

〈(z, ux), ϕ〉 = −
∫ 1

0

u(zϕ)x ,

for ϕ ∈ D(0, 1). Since z is a continuous function and ux is a Radon measure
then (z, ux) also constitutes a Radon measure. In addition, it can be shown
that the following integration by parts formula holds true:∫ 1

0

u(x)zx(x) dx+

∫ 1

0

(z, ux) = z(1)u(1−)− z(0)u(0+) . (51)

4) In general, the boundary condition does not hold in the sense of traces
when the 1–Laplacian operator is involved. The last condition of Definition
10 is a weak version of the usual Dirichlet condition. As pointed out above,
functions u ∈ BV (I) always admit finite side limits u(x±) at every 0 < x < 1
as well as u(0+) and u(1−). Therefore, the weak boundary condition 4)
makes sense.
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Regarding the terminology “weak eigenvalue”, it should be mentioned
that a variational definition of eigenpair to (11) can be given, by straight-
forward extension of the one in [6] for the case c = 0. From this point of
view “weak” eigenvalue becomes a necessary condition to be a “variational”
eigenvalue. See Remark 9 below.

We next show that the limits (λ̄n, ūn) introduced in Theorem 1 define
weak eigenpairs to problem (11).

Proposition 11. For every n ∈ N, λ̄n = c
e

c
n + 1

e
c
n − 1

is a weak eigenvalue to

problem (11) with

ūn(x) =
n∑

k=1

(−1)k−1e−(k−1) c
nχ(nx− (k − 1))

as associated normalized eigenfunction. Here χ denotes the characteristic
function of the unit open interval (0, 1).

Proof. It is enough to check that the functions

z(x) =
n∑

k=1

(−1)k−1

c

[
(λ̄n + c)e−

c
n
(nx−(k−1)) − λ̄n

]
χ(nx− (k − 1))

and

β(x) =
n∑

k=1

(−1)k−1χ(nx− (k − 1))

satisfy the requirements of Definition 10.

Let us now introduce the notion of a normalized solution to equation (12).
In the next definition BVloc(0,+∞) denotes the space

BVloc(0,+∞) =
⋂
b>0

BV (0, b).

Definition 12. It is said that v ∈ BVloc(0,+∞) is a normalized solution to
equation (12) if there exist w ∈ W 1,∞(0,+∞) and β ∈ L∞(0,+∞) such that

1) wt + γw + β = 0 holds in D′(0,∞),

2) w(0) = 1, ‖w‖∞ ≤ 1 and (w, vt) = |vt| as measures,

3) ‖β‖∞ ≤ 1 and βv = |v| a.e. in (0,∞),
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4) v(0+) = 1.

Remark 8. Under condition (13), normalized solutions satisfy analogous fea-
tures as those in (4). In fact, (13) says that |v| is nonincreasing which,
together with 4), implies that max[0,+∞) v = 1. In addition, the equality
w(0)v(0+) = |v(0+)| follows from 2) and 4) and so the initial condition
v(0) = 0 is fulfilled in the sense of Definition 10.

Existence of a normalized solution to (12) verifying (13) is now shown.
We remark that the condition on the maximum of v below is equivalent to
max[0,∞) v = 1 together with v′(0) > 0. It means that v reaches its maximum
before the first zero.

Proposition 13. Fix 0 ≤ γ̄ < 1 and for 1 < p ≤ 2, 0 ≤ γ < 1, let
vp ∈ C2(0,∞) ∩ C[0,∞) be the solution to{

(ϕp(vt))t + γϕp(vt) + ϕp(v) = 0, t > 0,

v(0) = 0, max[0,∞) v = max[0,∞) |v| = 1.
(52)

Then
vp → v as (p, γ) → (1, γ̄)

in L1(0, b) for all b > 0, where v is a normalized solution to equation(
vt
|vt|

)
t

+ γ̄
vt
|vt| +

v

|v| = 0,

satisfying condition (13).

Proof. Let T (γ, p) be the value defined in (24) (see Lemma 6) and T its limit
as (p, γ) goes to (1, γ̄). According to Lemma 8, we have

T =

⎧⎪⎨
⎪⎩

1

γ̄
log

(
1 + γ̄

1− γ̄

)
if γ̄ ∈ (0, 1) ;

2 if γ̄ = 0 .

First of all, notice that as a consequence of (48) the convergence

vp(t) → v(t) := 1, (p, γ) → (1, γ̄)
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holds in C(0, T ). Due to (43) and (44) it further implies that

vp(t) → v(t) := (−1)kαk, α :=
1− γ̄

1 + γ̄
, (53)

in C(kT , (k + 1)T ). This defines v with the exception of points t = kT .
Moreover, by taking side limits we arrive at

|v(kT+)| − |v(kT−)| = −2γ̄

1 + γ̄
αk−1 = −γ̄

∣∣v(kT+)− v(kT−)
∣∣ . (54)

Since v is constant in (0,∞)\{kT : k = 1, 2, . . . }, then its derivative vanishes
except at the jumps. Hence, v ∈ BVloc(0,+∞) and its derivative in the sense
of D′(0,∞) satisfies the equation (13). In addition, condition 3) holds under
the choice of the function β defined as

β(t) = (−1)k, t ∈ (kT , (k + 1)T ). (55)

Moreover, we have

ϕp(v
′
p(t)) = −

∫ t

kT (γ,p)+T (γ,p)+
e−γ(t−s)ϕp(vp) ds

and, as a consequence of Lemma 9, lim(p,γ)→(1,γ̄) T (γ, p)
+ = T

+
. So, it follows

from (53) that

ϕp(v
′
p(t)) → w(t) :=

(−1)k

γ̄
(e−γ̄(t−kT−T

+
) − 1) (56)

as (p, γ) → (1, γ̄) in C(kT , (k + 1)T ) for all k. By taking into account
(Remark 6)

T
±
= ± log(1± γ̄)

γ̄
,

it is found that

w(kT+) = (−1)k, w((k + 1)T−) = (−1)k+1. (57)

Hence w can be extended as a Lipschitz continuous function to the whole of
[0,∞), conditions w(0) = 1 and ‖w‖∞ ≤ 1 being clearly fulfilled.
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Now observe that w, as defined in [kT , (k + 1)T ] through (56) and (57),
just coincides with the solution of the initial value problem{

wt + γ̄w + β = 0, kT ≤ t ≤ (k + 1)T ,

w(kT ) = (−1)k,

for all k. Hence w and β satisfy 1) in Definition 12.
It only remains to check the equality (w, vt) = |vt| as measures. The

derivative of v is

vt =
∞∑
k=1

(v(kT+)− v(kT−)δ(t− kT ),

where δ(t− kT ) stands for the Dirac’s δ shifted to t = kT . Thus,

(w, vt) =
∞∑
k=1

w(kT )(v(kT+)− v(kT−))δ(t− kT )

=
∞∑
k=1

(−1)k(v(kT+)− v(kT−))δ(t− kT )

=
∞∑
k=1

∣∣v(kT+)− v(kT−)
∣∣ δ(t− kT ) = |vt|

as desired.

Notice that, in full concordance with Lemma 6 ii), T = T (γ) is smooth
and increasing in 0 ≤ γ < 1, T (0) = 2 and T (γ) → ∞ as γ → 1−.

Regarding uniqueness, we now show that equation (12) possesses at most
a normalized solution which satisfies condition (13). Furthermore, the proof
furnishes the explicit form of this solution.

Theorem 14. Assume γ ≥ 0. Then there exists at most a normalized solu-
tion to equation (12) which satisfies condition (13).

Proof. Let v ∈ BVloc(0,∞), w ∈ W 1,∞(0,+∞) and β ∈ L∞(0,+∞) be the
functions involved in Definition 12. We first analyze the case 0 < γ < 1,
delaying γ ≥ 1 until the end of the proof.
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Consider the open set {|w(t)| < 1} and let (a, b) be one of its components.
We assert that v keeps constant in (a, b). In fact, choose J := [a1, b1] ⊂ (a, b).
Then

|vt|J = (w, vt) ≤ ‖w‖∞,J |vt|J ,
where |vt|J := sup〈vt, ϕ〉, functions ϕ ∈ C(J) with supp ϕ ⊂ J and supJ |ϕ| ≤
1. So, v is constant in (a, b). Recall that we are using a good representative
for v.

We next suppose a > 0 together with v = c a constant, c �= 0, in the
mentioned component (a, b). We claim that: 1) b = a + T , 2) sign w(a) =
sign c while w(a)w(b) = −1. Fix t0 ∈ (a, b) with w(t0) = w0 (notice that
|w0| < 1). By employing the equation for w in 1) we obtain

w(t) =

(
w0 +

sign c

γ

)
e−γ(t−t0) − sign c

γ
.

Hence w decreases if c > 0 or increases when c < 0. Since |w| = 1 at t = a
and t = b, taking c > 0 we observe that

a = t0 +
1

γ
log

(
sign c+ w0γ

sign c+ γ

)
& b = t0 +

1

γ
log

(
sign c+ w0γ

sign c− γ

)
.

In this case w(a) = 1, w(b) = −1 while b− a = T . When c < 0 conclusions
remain the same after interchanging the rôles of a and b. This proves the
claim.

We now prove that, as a consequence of (13), function v cannot jump
from v(t1−) �= 0 to v(t1+) = 0 at any t1 > 0. In fact, it follows from this
relation and the distributional derivatives of both |v| and v at t = t1 that

−|v(t1−)| = −γ|v(t1−)|.
This is not possible since 0 < γ < 1.

Now let (a, a + T ) be a component of {|w| < 1} with v = c a constant,
c �= 0. Then we assert that (a + T , a + 2T ) is a further component where
v = c′ is a constant so that cc′ < 0. Moreover, it holds that

|c′| = 1− γ

1 + γ
|c|. (58)

Indeed by putting b = a + T and since v(b+) �= 0 then sign v = sign v(b+)
in a small interval (b, b + δ). Suppose c > 0 (the argument is symmetric if
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c < 0) and so w(b) = −1. In this interval (b, b+ δ), it holds that

w(t) =

(
−1 +

sign v(b+)

γ

)
e−γ(t−b) − sign v(b+)

γ
,

and so it must be v(b+) < 0. Otherwise, w would become less than −1
which is not possible. Accordingly, −1 < w < 1 in (b, b + δ) (by reducing δ
if necessary). Thus (b, b + δ) falls into a further component (b, b1) where, as
shown above, b1 = b + T and v = c′ is a constant that exhibits the opposite
sign to c. To show the jump relation (58) we make use of (13) and the
(distributional) derivatives of |v| and v at t = b to obtain

|c′| − |c| = |v(b+)| − |v(b−)| = −γ|v(b−)− v(b+)| = −γ(|c|+ |c′|),
which provides the relation (58).

We finally show that v is uniquely determined from the “initial data”
w(0) = v(0+) = 1. By gathering together all the preliminary features of w
and v we first obtain that v = 1 in (0, T ) with w(T ) = −1. Then v jumps to

v = −α, α =
1− γ

1 + γ
,

in the interval (T , 2T ). Proceeding by induction we see that

v = (−1)kαk in (kT , (k + 1)T ).

Therefore, function v is completely defined in (0,∞) and the discussion of
case 0 < γ < 1 is over.

As for the range γ ≥ 1, notice that equation 1) provides the expression

w =

(
1 +

1

γ

)
e−γt − 1

γ
,

which is valid for all t > 0. This means that v = 1 is the unique normalized
solution in this case.

Corollary 15. Let v be the normalized solution to equation (12) which sat-
isfies condition (13). Then,

lim
(p,γ′)→(1,γ)

vp = v in L1(0, b) for all b > 0, (59)

where vp stands for the solution to (52) with γ replaced by γ′.
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In our final result we directly construct a sequence of weak eigenvalues
to (11) by an alternative approach. Namely, the eigenpairs are computed by
means of the normalized solution of Theorem 14 and the scaling argument of
Theorem 7. We would like to remark that the proof of Theorem 14 does not
involve any limit process as p → 1. However, we are just obtaining the same
eigenpairs (λ̄n, ūn) as in Proposition 11. Of course, this should be expected
if one takes (59) into account.

Proposition 16. Let v = v(t, γ) the normalized solution to equation (12)
which satisfies (13). Then

λ = λ̄n, where λ̄n = c
e

c
n + 1

e
c
n − 1

,

is a weak eigenvalue to (24) and

ûn = v(λnx, γ), λnγ = c,

is its normalized associated eigenfunction. Moreover

ûn = ūn,

where ūn is given by (9).

Proof. Let v(t, γ) and w(t) be the functions obtained in Theorem 14, and let
β(t) be the function in (55). By setting

u(x) = v(λx, γ), z(x) = w(λx),

conditions 1), 2), 3) together with z(0+)u(0+) = |u(0+)| in Definition 10
hold. To this purpose β(λx) plays the rôle of β. To get an eigenpair only
condition

−z(1−)u(1−) = |u(−1)|
remains to be checked. It is just equivalent to

−w(λ−)v(λ−) = |v(λ−)|.

Since v(λ−) �= 0 for all λ > 0, the latter equality holds only if

λ = nT (γ)
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for a certain n ≥ 1. It amounts to c = nγT (γ), which is equivalent to

γ =
e

c
n − 1

e
c
n + 1

.

This shows that (λ̄n, ûn) is a weak eigenvalue to (11) being ûn = v(λ̄nx, γ).
That ûn = ūn follows by simple checking.

Remarks 9.

1) When γ = 0, condition (13) becomes
d|v|
dt

= 0 and so |v| must be constant

(although v could change sign). This fact agrees with the results of [6].

2) Variational eigenvalues to (24) with c = 0 have been introduced in [6]. A
main result in this work characterizes the variational eigenvalues as the limit
as p → 1 of the corresponding eigenvalues to (2). It can be shown by the
same arguments as in [6] that the eigenpairs (λ̄n, ūn) introduced in Theorem
1 constitute the variational eigenpairs to (11). Details are delayed to a future
work.

3) Property of being a weak eigenvalue (Definition 10) is only a necessary
condition to be a variational eigenvalue. More importantly, a whole interval
of weak (and so non variational) eigenvalues to (11) can be constructed (see
[6] for the case c = 0 and a further N–dimensional example in [26]). Such
an immoderate amount of weak eigenvalues clearly reveals that they do not
capture, by themselves, the “proper” spectrum of (11).

4) It is stressed that condition (13) has been crucial in the present work
to discriminate the proper eigenvalues λ̄n from the spurious ones. Right
eigenvalues to (11) are just those obtained as the limit as p → 1 of the
eigenvalues to (1). As was mentioned in Section 1, all these features have
been recently studied in [28] for the radially symmetric 1–Laplacian.
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