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control, and the singular one. Both drift and diffusion terms may involve the regular
control variable. The regular control domain is postulated to be convex. Under

g}erflq-:liriisﬁrogramming principle certain assumptions, in the framework of the Malliavin calculus, we derive the
Forward-backward stochastic pointwise second-order necessary conditions for stochastic SOC in the classical sense.
differential equations This condition is described by two adjoint processes, a maximum condition on the
Malliavin calculus Hamiltonian supported by an illustrative example. A new necessary condition for
Maximum principle optimal singular control is obtained as well. Besides, as a by-product, a verification

Singular optimal controls

theorem for SOCs is derived via viscosity solutions without involving any derivatives
Viscosity solution

of the value functions. It is worth pointing out that this theorem has wider
applicability than the restrictive classical verification theorems. Finally, we focus
on the connection between the maximum principle and the dynamic programming
principle for such SOCs problem without the assumption that the value function is
smooth enough.
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1. Introduction

Singular stochastic control problem is a fundamental topic in fields of stochastic control. This problem
was first introduced by Bather and Chernoff [7] in 1967 by considering a simplified model for the control of a
spaceship. It was then found that there was a connection between the singular control and optimal stopping
problem. This link was established through the derivative of the value function of this initial singular
control problem and the value function of the corresponding optimal stopping problem. Subsequently, it
was considered by Benés, Shepp, Witzsenhausen (see [9]) and Karatzas and Shreve (see [43-47]).
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The state process is described by a n-dimensional SDE of the following type:
dxtows = b (s, X" (s) ,u(s)) ds + o (s, X554 (s) ,u(s)) AW (s) + G (s) dE (s), (1)
Xtows () = g, 0<t<s<T,

on some filtered probability space (2, F, P), where b(-,-,-) : [0,T] x R® x R¥ — R" o (-,-,-) : [0,T] x
R"™ x R* — R™ 4 G (-) : [0,T] — R™ ™ are given deterministic functions, (W (s)),, is an d-dimensional
Brownian motion, (z,t) are initial time and state, u (-) : [0,7] — R¥ is a regular control process, and
£(-) : [0,T] — R™, with nondecreasing left-continuous with right limits stands for the singular control”
(SC for short). To avoid the risk of confusion, we shall introduce the other definitions of singular control in
various senses. Indeed, they are just a coincidence of terminology usage.

The aim is to minimize the cost functional:

T T

J(tyz;u,&) =E /l (S,Xt’z;“’§ (s),u (s)) ds + /K (s)d¢(s)] s (2)

t t

where

1(---):[0,T] x R" x RF = R,
K(-):[O,T]—)RTé{mERm:xiEO, i=1,...m}

are given deterministic functions, where [ (-) represents the running cost tare of the problem and K the cost
rate of applying the singular control.

We mention that there are four approaches to deal with singular control: The first, partial differential
equations (PDE for short) and on variational arguments, can be found in the works of Alvarez [1,2], Chow,
Menaldi, and Robin [23], Karatzas [44], Karatzas and Shreve [47], and Menaldi and Taksar [57]. The second
one is related to probabilistic methods; see Baldursson [5], Boetius [12,13], Boetius and Kohlmann [14], El
Karoui and Karatzas [28,29], Karatzas [43], and Karatzas and Shreve [45,46]. Third, the DPP, has been
studied in a general context, for example, by Boetius [13], Haussmann and Suo [39], Fleming and Soner [32]
and Zhang [79]. At last the maximum principle for optimal singular controls (see, for example, Cadenillas
and Haussmann [20], Dufour and Miller [27], Dahl and @Qksendal [25] see references therein).

Singular controls are used in diverse fields such as mathematical finance (see Baldursson and Karatzas [0],
Chiarolla, Haussmann [22], Kobila [50], Karatzas, Wang [48], Davis, Norman [26] and Pages and Possamai
[62]), manufacturing systems (see Shreve, Lehoczky, and Gaver [70]), and queuing systems (see Martins and
Kushner [56]).

Completely different from the singular control introduced above, to the best of our knowledge, there are
two other types of singular optimal controls, in which the first-order necessary conditions turn out to be
trivial. We list briefly as follows:

o Singular optimal control in the classical sense (SOCCS for short), is the optimal control for which
the gradient and the Hessian of the corresponding Hamiltonian with respect to the control variable
vanish/degenerate.

o Singular optimal control in the sense of Pontryagin-type mazimum principle (SOCSPMP for short), is
the optimal control for which the corresponding Hamiltonian is equal to a constant in the control region.

2 Because the measure d¢, may be singular with respect to the Lebesgue measure ds.
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When an optimal control is singular in certain senses above (SOCCS and SOCSPMP), usually the
first-order necessary condition could not carry sufficient information for the further theoretical analysis and
numerical computation, and consequently it is necessary to investigate the second order necessary conditions.
In the deterministic setting, reader can refer many articles in this direction (see [8,33,35,36,49,52,54] and
references therein).

As for the second-order necessary conditions for stochastic singular optimal controls (SOCCS and SOC-
SPMP), there are some work should be mentioned, for instance [80,81] (note that singular control & (-) in
these articles does not appear in systems). Tang [71] obtained a pointwise second order maximum principle
for stochastic singular optimal controls in the sense of the Pontryagin-type maximum principle whenever
the control variable u does not enter into the diffusion term. Meanwhile, Tang addressed an integral-type
second-order necessary condition for stochastic optimal controls with convex control constraints. Zhang
and Zhang [80] also establish certain pointwise second-order necessary conditions for stochastic singular
(SOCCS) optimal controls, in which both drift and diffusion terms in may depend on the control variable
u with convex control region U by making use of Malliavin calculus technique. Later, adopting the same
idea but with large complicated analysis, Zhang et al. [81] deepen this research for the general case when
the control region is nonconvex.

The theory of backward stochastic differential equation (BSDE for short) can be traced back to Bismut
[10,11] who studied linear BSDE motivated by stochastic control problems. Pardoux and Peng 1990 [63]
proved the well-posedness for nonlinear BSDE. Duffie and Epstein (1992) introduced the notion of recursive
utilities in continuous time, which is actually a type of BSDE where the generator f is independent of z. El
Karoui et al. (1997, 2001) extended the recursive utility to the case where f contains z. The term z can be
interpreted as an ambiguity aversion term in the market (see Chen and Epstein 2002 [21]). Particularly, the
celebrated Black-Scholes formula indeed provided an effective way of representing the option price (which
is the solution to a kind of linear BSDE) through the solution to the Black-Scholes equation (parabolic
partial differential equation actually). Since then, BSDE has been extensively studied and used in the areas
of applied probability and optimal stochastic controls, particularly in financial engineering (cf. for instance
[30]).

By means of BSDE, Peng (1990) [64] considered the following type of stochastic optimal control problem:
minimize a cost function

T
J(u() =E /1<x<t>,u<t>>dt+h<x<m ,
0

subject to

gtz (t),u(t)dt+o(t,x(t),u(t)dW (),

3)

—N—
s B
=S=
S— —r
[

over an admissible control domain which need not be convex, and the diffusion coefficients depend on the
control variable. In his paper, by spike variational method and the second order adjoint equations, Peng
[64] obtained a general stochastic maximum principle for the above optimal control problem. It was just the
adjoint equations in stochastic optimal control problems that motivated the famous theory of BSDE (cf.
[63]).

Later, Peng first [66] studied a stochastic optimal control problem where state variables are described by
the system of FBSDEs:

da(t) = f(ta(),

o,
<
—~

~
~—

I
s}
—~
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where = and y are given deterministic constants. The optimal control problem is to minimize the cost
function:

T
J(u() =E /l(t,fc(t)yy(t)7U(t))dt+h($(T))+7(y(0)) ;
0

over an admissible control domain which is convex. Later, Xu [75] studied the following non-fully coupled
forward-backward stochastic control system:

dz(t) = [f(t,z@),u(t))dt+o (2 (t)dW (1),
dy(t) = g (t7 z (), (t) ) % (t) , U (t)) dt + 2 (t> dW (t), (5)
z(0) = wo,y(T)=h(z(T)).

The optimal control problem is to minimize the cost function J (u(_)) = E~ (y0), over Uyq, but the control
domain is non-convex. Wu [73] firstly gave the maximum principle for optimal control problem of fully
coupled forward-backward stochastic system:

dz(t) = f(tx(t
dy (t)
z(0) = zo,  y(

y(t),2(0),u()dt+ o (ta(t),y(t),z(t),u(t)dW (1),
(t), 2 (t),u(t)dt + 2 (£) AW (1), (6)

I

\

Q
—
\‘H~

8

where £ is a random variable and the cost function:

T

J(u() =E /L(tﬂf(t)7y(t),Z(t),U(t))dt+‘I>(1?(T))+h(y(0))
0

The optimal control problem is to minimize the cost function J (v(_)) over an admissible control domain
which is convex. Ji and Zhou [42] obtained a maximum principle for stochastic optimal control of non-fully
coupled forward-backward stochastic system with terminal state constraints. Shi and Wu [69] studied the
maximum principle for fully coupled forward-backward stochastic system:

dz(t) = bt,z(t),yt),z(t),u(t)dt+o(t,z(t),y(t),z(t))dB,
dy(t) = —f(t,z(t),y(t),2(t),u(t))dt+z(t)dB, (7)
z(0) = o, y(I)=h(T))),

and the cost function is

T
J(u() =E /l(t,w(t),y(t)7Z(t)aU(t))dt+‘1>(x(T))+7(y(0))
0

The control domain is non-convex but the forward diffusion does not contain the control variable.
Subsequently, in order to study the backward linear-quadratic optimal control problem, Kohlmann and
Zhou [51], Lim and Zhou [55] developed a new method for handling this problem. The term z is regarded
as a control process and the terminal condition y(7') = h (z(T)) as a constraint, and then it is possible
to use the Ekeland variational principle to obtain the maximum principle. Adopting this idea, Yong [76]
and Wu [74] independently established the maximum principle for the recursive stochastic optimal control
problem (noting the diffusion term containing control variable with non-convex control region). Nonetheless,
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the maximum principle derived by these methods involves two unknown parameters. Therefore, the hard
questions raise as follows: What is the second-order variational equation for the BSDE? How to obtain the
second-order adjoint equation since the quadratic form with respect to the variation of z. All of which seem
to be extremely complicated.

Hu [40] overcomes the above difficulties by introducing two new adjoint equations. Then, the second-
order variational equation for the BSDE and the maximum principle are obtained. The main difference of
his variational equations with those in Peng [64] consists in the term (p (¢),do (¢t)) Ig, (t) in the variation
of z. Due to the term (p(t),do (t)) Ig. (t) in the variation of z, Hu obtained a global maximum principle
which is novel and different from that in Wu [74], Yong [76] and previous work, which solves completely
Peng’s open problem. Furthermore, Hu’s maximum principle is stronger than the one in Wu [74], Yong [76].
For a general case, reader can refer [41].

Motivated by above work, in this paper, we consider singular controls problem of the following type:

dXBEul (s) = b (s, XHE (5) u(s)) ds + o (s, XH5E (s),u(s)) AW (s) + G (s) d& (s),
dytout (s) = —f (£, XH5ws (s), Yhmwd (5), 2658 (s)  u(s)) ds ()
78R (5) AW () — K (s)
XtEwl (1) = g, YOEeE(T) = & (X6l (T)),  0<t<s<T,

with the similar cost functional

J(t,x;5u,8) = ytaiug (s)|S:t. (9)
Wang [72] firstly introduced and studied a class of singular control problems with recursive utility, where
the cost function is determined by BSDE. Under certain assumptions, the author proved that the value
function is a nonnegative, convex solution of the H-J-B equation. However, FBSDEs in Wang [72] do not
contain the regular control and the generator is not general case. In our work, using some properties of the
BSDE and analysis technique, we expand the extension of the MP for SOC to the recursive control problem
in Zhang and Zhang [80]. To the best of our knowledge, such singular optimal controls problems of FBSDEs
(8) via two kinds of singular controls have not been explored before. We shall establish some pointwise
second-order necessary conditions for stochastic optimal controls of FBSDEs. Both drift and diffusion terms
may contain the control variable u, and we assume that the control region U is convex. We also consider
the pointwise second-order necessary condition, which is easier to verify in practical applications.

As claimed in [80], quite different from the deterministic setting, there exist some essential difficulties in
deriving the pointwise second-order necessary condition from an integral-type one whenever the diffusion
term depends on the control variable, even for the case of convex control domain. We overcome these
difficulties by means of some technique from the Malliavin calculus. For general case, namely, the control
region is non-convex can be found in [81].

In this paper, we are interested in studying singular optimal controls for FBSDEs (8). Compared with
above literature, our paper has several new features. The novelty of the formulation and the contribution
in this paper may be stated as follows:

¢ Our control systems in this paper are governed by FBSDEs which exactly extends the work of Zhang
and Zhang [80] to utilities. Our work is the first time to establish the pointwise second order necessary
condition for stochastic singular optimal control in the classical sense for FBSDEs, a new necessary
condition for singular control is involved as well. In this sense, our paper actually considers two kinds
of singular controls problems simultaneously, which is interesting to deepen this research.

e We derive a new verification theorem for optimal singular controls via viscosity solution, which responses
to the question raised in Zhang [79]; Meanwhile, we study the relationship between the adjoint equations
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derived and value function, which extends the smooth case considered by Cadenillas and Haussmann
[20] to the framework of viscosity solution for stochastic recursive systems.

The rest of this paper is organized as follows: after some preliminaries in the second section, we are
devoted the third section to the MP for two kinds of singular optimal controls. A concrete example is
concluded with as well. Then, in Section 4, we study the verification theorem for singular optimal controls
via viscosity solutions. Finally, we establish the relationship between the DPP and MP for viscosity solution.
Some proofs of lemmas are displayed in Appendix A.

2. Preliminaries and notations

Throughout this paper, we denote by R™ the space of n-dimensional Euclidean space, by R”*? the space
the matrices with order n x d. Let (2, F,{F;}+>0, P) be a complete filtered probability space on which
a one-dimensional standard Brownian motion W(-) is defined, with {F;};>0 being its natural filtration,
augmented by all the P-null sets. Given a subset U (nonempty, bounded, and convex) of R*, we will denote
U[0,T] = U, x Us, separately, the class of measurable, adapted processes (u, &) : [0,7] x Q — U x [0,00)™,

with & nondecreasing left-continuous with right limits and & = 0, moreover, E | sup |u (¢)]*> +|¢ (T)[*| <
0<t<T

00. £ is called singular control. For each t > 0, we denote by {Fi,t <s<T} the natural filtration of the
Brownian motion {W (s) =W (t) },,«p, augmented by the P-null sets of F. T appearing as superscript
denotes the transpose of a matrix. In what follows, C represents a generic constant, which can be different
from line to line.

We now introduce the following spaces of processes:

S%(0,T;R) £ {R"—valued Fi-adapted process ¢(t); E { sup |o (t)|2} < oo} ,

0<t<T

T
M?2(0,T;R) £ { R"-valued F;-adapted process o(t); E / lp ()P dt| < oo b,
0

and denote N2 [0, T] = S2(0,T;R™) x S2(0,T;R) x M?(0,T;R™). Clearly, N2 [0, T] forms a Banach space.
For any u (-) x £(-) € Uy X Uy, we study the stochastic control systems governed by FBSDEs (8).

We assume that the following conditions hold:

(A1) The coefficients b : [0,T] x R® x R¥ — R", ¢ : [0,T] x R" x R¥ — R", are twice continuously differ-
entiable with respect to x; b, by, bys, 0, O, O are continuous in (z,u); by, bry, Oz, Tze are bounded

b, o are bounded by C (14 |z| + |u|) for some positive constant C. Moreover, for any (t,x1,u1),
(t,l‘z,UQ) € [O,T] x R™ x Rk,

|b(t,0,2)| + |o(t,0,u)] < C,
‘b(w}u)z (t21,11) = (g2 (t,xQ,UQ)‘ < O (|21 — 2] + Jug — ua])

‘O’(w’u)2 (t,21,U1) = Og )2 (t,xg,ug)‘ < C(Jxy — mo| + |u1 — ual) .

(A2) The coefficients f: [0,T] x R® x R x R x RF — R, & : R® — R, are twice continuously differentiable
with respect to (z,y,2). K is a given deterministic matrix. f, Df, D?f are continuous in (x,v, 2, u).
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There exists constant C' > 0 such that for any (¢,21,y1, 21, u1), (t, T2, Y2, 22,u2) € [0,T] Xx R™ x R x

R x R¥,
|f @z, y,z,u)] < C (L4 |z + |y + |2])
|f£ (t7$79azau)| + ‘fy (t’xvyaz7u)| + |fz (taxyyaz7u)| + |fu (tvxay7zau)| S Oa
|fww (t7x?yaz7u)‘ + |fa:u (t,x,y,z,u)| + |f1/u (t,x,y,z,u)|

+ |fyy (t7xay7zau)| + |fzz (t,x,y7z,u)| + |fzu (t,x,y,z,u)|

+|fuu (t=$7y,27u)| <C,

f(‘T’Z/,Z,U)Q (t’xl’ Y1, 21, ul) - f(w,y,z,u)2 (t7x27y27 Z2au2)

< C(Jor — 2| + [y1 — ya| + 21 — 22| + w1 — u2l),

and

(z) <C(1+|z),
C, Py (71) — Puz (22)| < Clzy — 22|

Under above assumptions (A1)-(A2), for any u(-) X £(-) € Uy X Ua, it is easy to check that FBSDEs
(8) admit a unique F;-adapted solution denoted by the triple (X8 yhomws zExuly ¢ A210 T (see
Pardoux and Peng [63]).

Like Peng [67], given any control processes u (-) X (+) € Uy xUa, we introduce the following cost functional:

J(t,ziu(-),€() = YH5UE (s)] (t,z) € [0,T] x R™. (10)

s=t’

We are interested in the value function of the stochastic optimal control problem:

V(ta) = J(t,za(),€()
= ess u(-)xg(i-r)lgulxug J(t,xu (), (), (t,z) €[0,T] x R™. (11)

Since the value function (11) is defined by the solution of controlled FBSDEs (8), so from the existence and
uniqueness, V is well-defined.
The following estimate is very useful whose proof can be found in Briand et al. 2003 [16].

Lemma 1. Let (yi, zi), i1 =1,2, be the solution to the following
T T
y'(t) =&+ / fi (s, y'(s), 2" (s))ds — /zi (s)dW (s), (12)
t t

where £ € Fr and E Ufl‘ﬁ} < 00, whilst f? (s,yi,zi) satisfies the conditions (A2), and

- 8
E / ‘fl (s,yi (s) , 2t (s)) ‘ ds < 00

Then, for some 3 > 2, there exists a positive constant Cg such that
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B
2
0<t<T

E | sup |y1 (t)—y2(t)|5+ /|z1 (s)—zz(s)‘zds
0

B

T
<G| [ -’ + /Ifl(s,yl(s),zl(S))—fz(s,y2(8)722(8))|d8 ]

Particularly, whenever putting €2 = 0, and f? =0, one has
" :
E | sup |y (¢ P+ /‘zl (8)|2d5 < CgE |§1’ﬁ+ /|f1 (5,0,0)|ds ]
0 t

0<t<T
Now let us recall briefly the notion of differentiation on Wiener space (see the expository papers by
Nualart 1995 [59], Nualart and Pardoux [60] and Ocone 1988 [61]).

. le (]Rk ,Rq) will denote the set of functions of class C* from R* into RY whose partial derivatives of
order less than or equal to k are bounded.

e Let S denote the set of random variables & of the form £ = (p( (hl) (hg) yoe W (hk)), where
p ey (Rk,R),hl,hQ,---hkeLg([O T];R™), andW(hz) fo <h’ dW ( )>

o If £ €S is of the above form, we define its derivative as being the n-dimensional process

Doé = Zax] (R') W (h?) -+« ,W (BF)) hj), 0< O <T.

For £ € S, p > 1, we define the norm

T Nk
el = | B I + / IDyé[? a6

0

It can be shown (Nualart 1995) that the operator D has a closed extension to the space D, the closure
of § with respect to the norm [[-[|, . Observe that if £ is Fy-measurable, then Dp{ = 0 for 0 € (¢,T]. We
denote by D} 6, the 1th component of Dyé.

Let L1P (]Rd) denote the set of R%-valued progressively measurable processes {u (t,w),0 <t < T;w € Q}
such that

o Forae. t€[0,T], u(t,-) € DLP (R");
o (t,w) = Du(t,w) € (L* ([0, T]))m(d admits a progressively measurable version;
o We have

T 3 T T 3
lull , =E /|u(t)|2dt + // |Dyu (t)]* dodt < +o0.
0 00
Note that for each (0, t,w), Dyu (t,w) is an n x d matrix. Hence, |Dgu (t)|* = ’Deuj )‘2 Obviously,

Dyu (t,w) is defined uniquely up to sets of df ® dt ® dP measure zero. Moreover, denote by ]L]},’p (Rd) the
set of all adapted processes in L' (R?).
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We define the following notations from Zhang and Zhang [80]:

]Lip (RY)

{ o (-) € L7 (RY)| 3D* o () € L2 (0, 7] x ©;R™) such that
J= (8) = 5uDy o< (o4 n1 E [Dsip (1) = Do ()] < o0, ane. s € 0,71,
fe (s) is measurable on [0,7] for any € > 0, and lim._ o+ fOT fe(s)ds = 0};

and

Li7 (RY) = { ¢ () e LY? (RY)[ 3D (-) € L2 ([0, T] x % R™) such that
_ 2
= (8) := SUP(4_o)voctcs B [Dsp () = D7 (s)|” < 00, ae. s € 0,77,
(

ge (8) is measurable on [0,7T] for any € > 0, and lim,_,o+ fOT ge (s)ds = 0}.

Denote L3 (RY) = ]LQ’p (RY) N Ly? (R9). For any ¢ (-) € Ly? (R9), denote Vi (-) = Do () + D ¢ (-).
Whenever ¢ is adapted, it follows that Dsp (t) = 0 for ¢t < s. Furthermore, Vo () = Dty () since D~ <p( )=
0. Put ]L%’flf- (Rd) as the set of all adapted processes in ]L%’p (]Rd).

3. Maximum principle of singular optimal controls

This section will study the optimal controls separately. Due to the special structure of control systems, we
shall first consider the singular control part, deriving the necessary condition, subsequently, regular part. The
initial condition will be fixed to be (0, ), z € R™. At the beginning let us suppose that (@ (-),£(+)) € Uy XUs

is an optimal control and denote by (X0:@®E () yOmut (1) Z0.mug ()) the optimal solution of (8). Our
maximum principle will be proved in two steps. The first variational inequality is derived from the fact

J(O7x7u€ ()75()) _J(07x7ﬂ(')ag(')) >0, (13)

where u° (+) is a convex perturbation of optimal control. The second variational inequity is attained from
the inequity

J(0,2,a(-),€ () = J (0,,a(-),£() =0, (14)
where & (+) is a convex perturbation of &.
3.1. Optimal singular control

Forl=0(-), o (), f(-), we denote

Let us introduce the following

Proposition 2. Let (A1)-(A2) hold, and let (X =% () Y Omswa (1) Z0=w1 (.)€ N2(0,T;R™) be an opti-
mal solution. Then, the following FBSDFEs:

dp(r) = —[5x<r,~>Tp<>+&< V() = fo(r,)" <>}dr+f<>dw<>
da(r) = fy(r,) a(r)dr+ fo (r,) " q(r)dW (r), (15)
p(T) = =@ (XM (T)a(T), q(0)=1,
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admit an adapted solution (p(-),q(-),€(-)) € N3(0,T;R™).

Theorem 3. Let (A1)-(A2) hold. If (X%7 (-), Y7 (), Z%7 (), @ (), € (+)) is an optimal solution of (8), then
there exists a unique pair of adapted processes (p (+),q(+)) satisfying (15) such that

Pla®) K —p" () Guy(t) >0, t€[0,T], Vi} =1, (16)

and

m T
{Z/ () o =7 ()G (>0} A€ (1) = 0} =1 (17)
=19
Before the proof, we need some lemmas. At the beginning, we introduce the convex perturbation

(@(t),6* (1) = (a(t),£(t) +a ((t) —£(1)),

where a € [0, 1] and £ (-) is an arbitrary element of Us. We now introduce the following variational equations

of (8):

dat (f) = b (0)2" () dt 4 7, (1) 2" (AW (1) + G (1) d (E®) —&),
dy* (¢) —fe (@)t (1) = fy ) y' (8) = f2 (1) 2' (t) dt + 21 (¢) AW (1)

KA (£(1) - £(1)). (18)
(T = @, (X(““]f(T)) 2 (T), ' (0) =0

From (A1)-(A2) it is easy to check that (18) has a unique strong solution. Moreover, we have

Lemma 4. Under the Assumptions (Al)-(A2), we have

XO,J;;'E,f“ t) — Xo,w;ﬁ,f t
lim E | ®) ()—xl(t) =0, te[0,T7], (19)
a—0 (0%
YO,m;ﬂ,g ( ) YO U é( ) 2]
lim E -yt ()| | =0, tel0,T], (20)
a—0 o
7| zowmes Z0.wtE -
LU, t . S, TiU, t
lim]E[/ ®) ()—zl(t) dt| =0. (21)
a—0 (0%
0 J

The proof can be seen in the Appendix.
Proof of Theorem 3. Applying 1t6’s formula to (p (-),z* (-)) + q(-) y* (-) on [0,T] yields

T

0<y' (0)=E /(q(r)Kpr(r)G(t))d(f(t)—g(t))dt ) (22)

0

In particular, let & € Uy be a process satisfying P {Z fo 5)de@ (s) < } and such that (22) and
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de () = 0 if q(r)Kag —p' (r) G (t) >0,
€0 (s) otherwise,

holds where £(*) (s) denotes the ith component. Then,

m T
E Z/ T (1) Gy (D) L Ky -7 (G oy (95044 (*f_(i) (t))
0

7:1

r T
_E /(q(r)Kpr(r)G(t))d(E(t)ff(t))dt
0

Thus

m T
E Z/ (a(r) K@y —p" (r) Gy (1) Iia(ry Ky —pT (MG oy (1)>03d (—5@) (t)> dt| =0
0

i=1
which proves (17). Next we show that (16) is valid. For that, let us define the events:
AD £ {(t,w) € [0,T] x Q:q(r) Ky —p' (r) Gy (8) < 0},

where t € [0,7], 1 < i < m.
Define the stochastic process g“(i) 1[0, 7] x 2 — [0,00) by

t
ED (1) = €D () + /[Am (r,w)dr.
0

Then one can easily check that 5 = (5(1), f @, ... 7§v(m)) is a measurable, adapted process which is nonde-

creasing left-continuous with right limits and f (0) = 0, and which satisfies

T
> [ G(s)dg (s) < o0
°]

Further, we have

(a(r) K —p" (r)G(t)d (s (t) — é(t)) dt

=
—

s

=E

T
/ K(l - p ( )G(i) (t)) IA(i)dt
0

z 1

<0,

which obviously contradicts to (22), unless for any i, we have (Leb® P) {A®)} = 0. We thus complete the
proof. O
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Remark 5. One can easily check that

S

q(s):exp{/ {fy(r>—%|fz (7")’2:|d7“+/sfz (r)dW(r>},

t

which implies that q (r) > 0, r € [0,T], P-a.s. So —p (+) /q (-) makes sense. Clearly, our Theorem 3 for optimal
singular control is completely different from [3]. Ours contains two variables (p(-),q(-)). As a matter of
fact, we have

P {K(i) n (‘fé?) Gy () >0, te[0,T], w} —1.

We claim that —p (-) /q(-) is the partial derivative of value function, which will be studied in Section 4.3.
8.2. Optimal regular control

In this subsection, we study the optimal regular controls for systems driven by FBSDEs (8) under the
types of Pontryagin, namely, necessary maximum principles for optimal control. To this end, we fix £ € U,
and introduce the following convex perturbation control. Taking u (-) € U, we define v (1) = u (-) —u(-),
u® () =u(-)+ev(-), where € > 0 is sufficiently small. Since U is convex, u® (-) € U (0,T). Let (2%, y°, 2°, u®)
be the trajectory of the control system (8) corresponding to the control u®. Put éz (-) = 2° (-) —z (-). When
[ =0b, 0 and ®, we denote

lo () =1l (t,2(t),u(t), Lu(t) =1 (t,2(t),u(t)),
lzz (t) =lua (8,2 (t) U (t)) s lau (t) = lou (t, z(t),u (t)) )
luu (t) = luu (taf (t) 7a(t)) ) faf (t) = f:c (taj (t) 7@(0 7Z(t) U (t)) )
Ly @) =fy (6,2(),5 1), 2(t),u(t), f- () =f(t,2(),5(t),2(t),u(t),
Joo (1) = fou (0,2 (1), 5 (1), 2(1) 0 (t), fou (@) = fou (t,Z(8),5(t),Z(t),u(t)),
fuy ) = fyy (6,2 (1) 5 (t) 2 (), u(t)), - etc
Let us introduce the following two kinds of variational equations, mainly taken from [15]. For simplicity, we
omit the superscript.
{ dzy (t) = [bo (t) 21 (£) +bu (t) v ()] dE + [0 () 21 () + 0w (£) v ()] AW (2) , (23)
z1(0) = 0, tel0,77,
and
daz () = [bo (w2 () + 2] (1) buw ()21 (1)
20 (0) b () 0 (1) + 07 (8)bus (D)0 (8) |,
|02 (D)2 (8) + 2] (1) 02 (B) 21 (1) (24)
+20 (1) 0 (1) 21 (1) + 07 (1) 00 ()0 (1) AW (1),
z2(0) = 0, te|0,T].

From Lemma 3.5 and Lemma 3.11 in [15], we have following result.
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Lemma 6. Assume that (A1)-(A2) is in force. Then, we have, for any § > 2,

lz1]2, < C, Jlzal2, < C, |162]2, < CeP,

2 B

0x — e s < 0525, oxr —exy — 6—372 < 0535,
o° 2

[N lE ( sup |z <t>5>
t€[0,T]

We shall introduce the so called variational equations for FBSDEs (8) beginning from the following two

adjoint equations:

o
where

B

dp(t) = T()dt—q(0dW (o),
{ p(T) = (& (T)), (%)
and
AP () = T dt—Q1)dW (1), 26)
P(T) = @, (z(T)),

where T'(+), II () are unknown two processes to be determined. Next we will derive two kinds of adjoint
equations. The main idea is borrowed from [40]. First of all, we observe that

@ (2°(T)) = @ (2(T)) = (62 (T) , @z (2 (1))

% (@, (2 (T)) 6 (T) , 6z (T)) + 0 (?)

_ <m (1) + 32 (1), @, (@ <T>>>

5 (@ (2(T)) 1 (T) 0 (T) 4 0(<2)

which inspires us to use the adjoint equations to expand the following:

<5x1 )+ %52:@ t),p (t)> + %sztr [P (t)a1 (t) 2] (t)] on [0,T7]. (27)

Ito’s formula applied to (27) yields for ¢ € [0, T7,

<€x1 (T) + %€2$2 (T),p (T)> + %52tr [P(T) a1 (T) 2] (T)]

- <5x1 (t) + %62.%2 (t),p (t)> + %s%r [P (t)a1 (t) 2] ()]

T
o
t

A (A (921 (9,01 () + Aa ()

(50160 + 3202 () M1 (9) +2 (11 (9 02 o)

ds
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-I—%aQ (A7 (s)x1(8),z1(s)) +As(s) [dW (s)
where
AL(t)=by ()p(t) +o] (H)a(t) T (1),
Az (8) = by, () v (8) P (1) + 0, (8) v () g (t) + P (1) bu () v (1)
+og (t) P (t)ou (t) v (t) + Q (t) ou (t) v (2)
Az (t) = p (t) buw (8) + q (1) 00 (t) + P (t) by () + b, () P (2)

As (1) = p(t) oz (1) +q (1)

A (t) =p (@) v (t) opu (t) + P (t) o (t) v (2),

A7 (1) = p(8) 0za (1) + P (t) 00 (1) + 0, (8) P (1) +Q (1),
As (t) = e {ou (t)p(t),v () + 5* (P () ouu (v (1) 0 (2))

Remark 7. Note that T'(¢) and II (¢) do not appear in the dW (s)-term.

Define
() = ~F (0,07 (1),25 (1), 0 (1)t + 2 (1) QW (1),
V(@) = 6 D),
Let
7 0 =0~ | (0. (50104 520 0) ) + 52 (P @021 (0.0 (1) (28)

Z(t) = 2°(t) -

(50160 + 32202 (9) A5 (9) + 2 (21 (9) o o)

1
5% (A7 (s) 21 (), 21 (5)) + As (8)1 : (29)
Clearly, from Lemma 6, we have

® (2°(T)) =@ (z(T)) + <p (1), (sxl (T) + %s%g (T)>>

+%52 (P(t)xy (t),21(t))+ o0 (€2> :
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After some tedious computations, we have

Put

then we attain

where

Next we are going to seek I'(-), II(-), determined by the optimal quadruple (
that

15

(31)

81
—~
S~—
Y|
—
N

Y]
—~
N

N
—~
N
:—/

)

=

o

=
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7 (5260 4 201 6)+ 5220 (). 56) + 80 (). (5) + Auo 6) 07 5
15605360160 + (01 9+ 52202 (9) ) A 0)

52 (s ()21 (), 1 (5)) = 0 (),

where

)

4%52 (A7 (s)z1(s),21(s)) + As (s)

in which o (¢?) does not involve the terms z1 (-) and x5 (+). Note that in BSDE (30), there appears the term
x{ (s) A3 (s) 21 (s). Hence, we make use of Taylor’s expansion to

(s, Z(s)+exy(s)+ %62@ (s),y(s)+Ag(s),2(s)+ Ao (s),u” (s))

20 () fau (5) (€21 () + 2222 (5) ) + €0 () Fouao (5) + 26202 (5) fune (5).
2 2

where the Hessian matrix H; is with respect to (z,y, 2).
Then, we obtain

D) =b] Op®)+ £ O+ £, Op(®)
0. () g+ £ (1) |ox () +q ()],
IL(t) = P (£) b, (1) +b] (8) P (8) + £, (1) P (8) +bL, () p (1)
HQ M) 0w (1) + 02 () Q1)+ 0 (] (1) + 00 (1) P (1) 7, (1)
HI WP ©) 0w (6) + L= () 0w ()T PO+ [ (0 Q(8) + f= () 00a (1) " p ()]
+ [Loxnsp(0),00. () p(8) +q (0] - Hif (1)

[renp @02 0 00 +a(0)]

where I,,x, denotes the identity matrix.
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In the classical theory of optimal control for FBSDEs (cf. [73,74]), there generally appear two groups
of the first-order adjoint equations, for instance (p(-),q(-)) in Egs. (15). The following proposition will
establish the relationship between them with p () from (25), which is very useful to study the connection
between maximum principle and dynamic programming (see Theorem 40 below).

Proposition 8. Suppose that Assumptions (A1)-(A2) are in force. Then we have

p(s) =— s€t,T], P-as.,

where p () and (p (-),q()) are solutions to FBSDFEs (25) and (15), respectively.

The proof is just to apply the Itd’s formula to —pT (s) /q (s), so we omit it.
We define the classical Hamiltonian function:

H(t7x7y?z’u’p7q) = <p’b(t3x7u)>—"_<Q?O-(t7x7u)>+f(t’x7y?zﬂu)7

where (t,x,y, z,u,p,q) € [0,T] x R"xR x R x R¥xR™xR™.
Then, we have

T
ge (¢ +/ ),y (s),2(s)
+s<p<s)au(s)7v(s)>+%< (8) ouu (5) v (5), (s)m(s))

—f(5,2(s),5(s),2(s),u(s)) + fy ()9 (s) + [ (5) 2° (s)
+&*([P () bau () + ¢ (5) Tau (5) + P (3) bu (5)
+P (5) 02 (s) 0u (5) + Q (s) 0u (5) J21 () ;v (5))
+e([p(8) bu (5) +q(s) ou (s) + fu (s)], v (s))

(

+% [4(5) Ouu (5) + 1 (5) buu (5) + €% fuu (5) + 0y (5) P (s) 7 (5)] v (5) v (5))

2

F0T (9 fu (9 [e () + S <s>} 20T (5) fu (5) Ao (5

T
10T (8) fau (5) Aro (5 ] /

Namely,

T
i (t )+ / ) £ () £ (3) + %] (5) [Hau (5)

+P (5) 04 (5) 0u (5) + Q (5) 0 (5) + P (1) fyu (5) + P (5) bu (5) |0 (5)
+e[Hu(s) + f2(5)p(s) ou (s)] v (s)

2

+ 0T (5) [Hu () + 02 () P (5) + fox ()52 () 02 (5) + f () poaa] 0 (5)

2207 () fou (5) | (P(0) 0 (6) + 4 (1)) 21 (5) + P () 0 () v (5) | s
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- / 5 (s)dW (). (32)

Remark 9. Note that FBSDEs (32) are somewhat different from (22) in Hu [40]. Specifically, the term
Az (s) Ig, (s) disappears in (22) since

T /B
E /|A4(s)x1 () Ig. (s)|ds :0(55) for g > 2
0

in [40] by using spike variational approach. Nevertheless, the corresponding term in our paper is just
e2z] (s) Az (s). We will see a moment later that this term is needed to define an extensive “Hamiltonian
function” as follows.

Define
H (t7$7y7z7u7p7qvp7 Q) é H:L’u (ta$>y7Z7U7P»Q) + bu (tumvu)P
+Qoy (t,x,u) + Poy (t,x,u) oy (t, 2, u)
+fyu (tvxvyazvu)p + fZU (tvxayVZaU) [pJT (tvxau) + Q] I
where

(t,z,y,2,0,¢, P,Q) € [0, T] x R" Xx R x R x R™ x R™ x R™*™ x R™™,

We now give the adjoint equation for BSDE (32) as follows:

{dx () = fOxOdt+F @Oy dW (@), (33)

x(0) = 1.

Lemma 10. Under the Assumptions (Al1)-(A2), SDE (33) admits a unique adapted strong solution x (t) €
S2%(0,T;R). Moreover, we have

E [ sup |X(t)|l] <o, 1>1, (34)
0<t<T
4
E { sup |X(s)|2} < 0. (35)
0<s<T

Proof. The first inequality can be obtained from Theorem 6.16 of [77]. We deal with the second one. By
It6’s formula, we have

t

sup ()= 1 [ () @1, (01 + £2(0) de+ sup [ 2 (5) 1. (5) AW ().
0<t<T J ogthO

It follows that

< sup x° (0)4 =C

0<t<T

[ 3@ @1 01+ 12 0) a
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2
+ (OiltlgTO/%c (s) f2 (s) dW(S)) ]

But by the B-D-G inequality, we get

4
E ( sup /2X2 (s) f»(s)dW (s)) < CE
0<i<7 )

~

Thus

E[(@?fﬁ@ﬂﬂ (/ 0 ) / X (s)ds

§C]E 1+T sup |x()|}
0<t<T

The second estimation comes from the Holder inequality. We complete the proof. O

Set

() =2(t) + |As (s) (e ( )+%x2 (s)> + 206 (s) 1 (5)
52
+5ﬂ31 (t) A7 (s) w1 (s) +As (s) | +2°(1).

We are able to give the variational equations as follows:

yi(t)=ep’ (a1 (t),
A (1) =ela] (5)As(s) +p (t)ou(t)v(t)]

and

vs (1) =5 [pT (D22 () + 27 () P (H) 21 (O] +5° (1),

3

5 (6) = - |As () 22 (5) + 206 () 1 (5)

+af () Az ()21 (s) +p" (v’ () oua (v (1) | +2° (D).

Obviously, we have
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y°(0) —y (0) = §° (0) > 0, since the definition of value function.

Lemma 11. Under the Assumptions (A1)-(A2), we have the following estimation

T

B | suwp |5 (0 + [ 15 () ds| =0 (). (36)
0<t<T )

Proof. To prove (36), we consider (32) again. From assumptions (A1)-(A2), one can check that the adjoint
equations (25) and (26) have a unique adapted strong solution, respectively. Furthermore, by classical
approach, we are able to get the following estimates for g > 2,

B
T 2

2| s (O +1POF)+ | [ (liOF +1@@F)dt| | <+ (37)

0<t<
0

Applying Lemma 1 to (32), we get the desired result. Indeed, since there appears a term
e[Hy (s) + f2 (s)p(s) ou (s)] v (s),
in BSDE (32), so we have the estimation with O (¢?). We complete the proof. O

We shall derive a variational inequality which is crucial to establish the necessary condition for optimal
control. Before this, we introduce the following the other type of singular control using the Hamiltonian
function:

Definition 12 (Singular control in the classical sense). We call a control 4 (-) € U (0,T) a singular control in
the classical sense if @ (-) satisfies

a.s., a.e., t € [0,7);

where (£ (-), 7 (-), 2 (-)) denotes the state trajectories driven by # (-). Moreover, (p (), ¢ (-)) and (ﬁ’ (),Q ())
denote the adjoint processes given respectively by (25) and (26) with (Z (¢),y (¢),z (¢), @ (t)) replaced by
(@ (), 5(),2(),u(-)). If this @ (-) is also optimal, then we call it a singular optimal control in the classical
sense.

Remark 13. Hu [40] first considers the forward-backward stochastic control problem whenever the diffusion
term o (¢, z,u) depends on the control variable v with non-convex control domain. In order to establish the
stochastic maximum principle, he introduces the H-function of the following type:

,H(t’I'?y’Z?u’p?q’P) épb(t’x7u)+q0—(t’$7u)

+% (U (t,x,u) -0 (ta‘ivﬂ‘))—r P (J (t,x,u) - O—(tvi'aﬂ))
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+f(tx,y,z+po(t,z,u)—o(tz,u)),u).

Note that this Hamiltonian function is slightly different from Peng 1990 [64]. The main difference of this
variational equations with those in (Peng 1990) [64] appears in the term p (¢)do (¢) I, (t) (the similar
term ep (t) oy, (t) v (t) + %p (t) ouw (t) v* (t) in our paper) in variational equation for BSDE and maximum
principle for the definition of p (¢) in the variation of z, which is O(e) for any order expansion of f. So it
is not helpful to use the second-order Taylor expansion for treating this term. The stochastic maximum
principle (see [40]) says that if (& (¢),9 (t), 2 (t),u (¢)) is an optimal pair, then

ACIORTORIORIONIORTORZ0)

= minH (4,2 ()5 (1), 2 (1), w5 (1), 4(0), P (1)) (39)

Apparently, Definition 12 says that a singular control in the classical sense is the real one that fulfills
trivially the first and second-order necessary conditions in classical optimization theory dealing with the
maximization problem (39), namely,

Ha (L2 (8),5(0),2(0),5(),5(6),4(), P (1) =0, as, ae, te[0,T];

i (40)
Huw (12 (6),5(0),2(0),0(0).5(1),3(1), P() =0, as., ae., t € [0,T].

It is easy to verify that (38) is equivalent to (40). Certainly, one could investigate stochastic singular optimal
controls for forward-backward stochastic systems in other senses, say, in the sense of process in Skorohod
space, which can be seen in Zhang [79] via viscosity solution approach (Hamilton-Jacobi-Bellman inequality),
or in the sense of Pontryagin-type maximum principle (cf. Tang [71]). As this complete remake of the various
topics is much longer than the present paper, it will be reported elsewhere.

Lemma 14 (Variational inequality). Under the Assumptions (A1)-(A2), it holds that

0 SE{X(T)0(52) —|—/X(s) [€<fz (s)o, (s)p(s)+ Hy, (s),v(s)>

452 (= ()0l ()P () 0 (5) 0 (5)) + 2 (B () (5) 0 (5))

where

H(s) = H (£, 2 (s),5 (s), 2 (s),u(s),p(s),q(s), P(s),Q(s)),
H () = Huu (s) + 0y () P(5) 0y () + foz () oy ()" (s)p(5) 0 (5) -

Proof. Using Itd’s formula to (x (s),9° (s)) on [0,T], we get the desired result. O

Theorem 15. Assume that (A1)-(A2) hold. If u(-) € U (0,T) is a singular optimal control in the classical
sense, then

0<E

/ O () H () 21 (s) v (5)) ds | (42)
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foranyv(:)=u(-)—u(), u(-) €U (0,T).

Proof. According to the definition of value function, we have

Letting € — 04, we get the desired result from Definition 12 and Lemma 14. O

Remark 16. Clearly, if f does not depend on (y, z), then x (-) = 1. Consequently, (42) reduces to

T
E /(H(s)xl(s)m(s»ds >0,
0

which is just the classical case studied in Zhang et al. [80] for classical stochastic control problems. Mean-
while, our result actually extends Peng [66] to second order case.

Remark 17. Recall that, for deterministic system, it is possible to derive pointwise necessary conditions for
optimal controls via the first suitable integral-type necessary conditions and normally there are no obstacles
to establish the pointwise first-order necessary condition for optimal controls whenever an integral type one
is on the hand. Nevertheless, the classical approach to handle the pointwise condition from the integral-
type can not be employed directly in the framework of the pointwise second-order condition in the general
stochastic setting because of certain feature the stochastic systems owning. In order to derive the second
order variational equations for BSDE in Hu [40], the author there introduces two kinds of adjoint equations
and a new Hamiltonian function. The main difference of this variational equations with those in (Peng
1990) [64] lies in the term p (t) do (t) Ig, (t). Then, it is possible to get the maximum principle basing one
variational equation. Note that the order of the difference between perturbed state, optimal state and first,
second-order state is o (¢).

As observed in Theorem 15, there appears a term (H (s) 21 (s),v (s)). In order to deal with it, we give
the expression of 7 (+), mainly taken from Theorem 1.6.14 in Yong and Zhou [77]. To this end, consider the
following matrix-valued stochastic differential equation:

dU(t) = b, (t) ¥ (t)dt + o, (t) U (¢t)dW (1), (43
v(0) = I, tel0,T], )
where I denotes the identity matrix in R™*". Then,
x1 (1) =V (1) /\Il_1 (r) (by (r) — oz (r) oy (r)) v (r)dr + / O (r) oy (r) v (r)dW (r)] . (44)
0 0

Substituting the explicit representation (44) of z into (42) yields

0<E

T
[x&{t@p© o6 0,06
0

S

+H (s)v (s) ¥ (s) [/\I/_1 (r) (by (1) — 0z () o (7)) v () dr

0
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4 [V o)) AW ()] + (0(5),0(6) fou () () 1) }ds] . (45)

0

Clearly, (45) contains an Itd’s integral. Next we shall borrow the spike variation method from [80] to check
its order with perturbed control. More precisely, let € > 0 and E. C [0,T] be a Borel set with Borel measure
|E.| = ¢, define

us () = u(t) Ipe (1) +u(t) Ie. (1),

where u () € U (0,T). This u® is called a spike variation of the optimal control 4. For our aim, we only need
touse E. = [l,l+¢]| for ] € [0,T —¢] and € > 0. Let

v()=u () —u()=(ut)-a() e ().

Then, inserting it into (45), we have

/ X (s)HL (s) (45 (s) — @ ()) ¥ (s) / U (1) 0 (1) (u () — @ (r) AWV (1) .
l

l

By Hélder inequality and Burkholder-Davis-Gundy inequality, we have

l+¢ s

E /X(S)]HI(s)v(s)\Il(s)/‘If1 (r)oy (r)v (r)dW (r)ds

[N

IN
&=
=
=
=
—
N
<
—~
»
~
S
—
»
~—
o
(oW
»

1
I+ s 2

IE//|\IF1 (r) 0 () (0 () — @ (r))] drds

1

< Ce?,
since sup,eo, 1) X (s)|? < oo from classical estimate for stochastic differential equations.

Lemma 18 (Martingale representation theorem). Suppose that ¢ € L3 (Q; L?([0,T] : R")) Then, there exists
a k()€ L*([0,T]; LE ([0,T] x Q% R™)) such that

The proof can be seen in Zhang et al. [30].

Lemma 19. Assume that (A1)-(A2) hold. Then,

X(VH() € Ly (L2 ([0,T] : R)).
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Proof. We shall prove that

From (A1)-(A2), we have
|| < C and Y| < C forp =b, o, f.

Besides,

Hence,

2

T T
E [ / x(t)H(t)l2dt] <E [OggT|x<t>|2 / |H<t>|2dt]
| o) o (e df)

/]Hw 050,020, 5().5(0).7()

IN
N | =

IN
N | =

E | sup |x(¢ 2} + IE
lo<t<T

+Qoy (1,7 (1), u(t)) + Poy (1,7 (1), u(t)) ou (t,
+bu (8,2 (1), (1) P (8) + fyu (5,7 (1),

o\ﬂ

+

S

+

o

+

O

=

S

From Lemma 10 and the classical estimation in (37), we finish the proof. O
Therefore, by our assumption (A1)-(A2) and Lemma 18, for any u € U, there exists a
G () € L2 ([0.T] : L3 (2 % [0,T] : R™)
such that for a.e. t € [0, 7]

t

X O BT (£) (u—a(t) =E [x () HT () (u—a(£))] + / B (s,8) IV (5).

0

Using (46), we are able to assert the following:

(46)
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Theorem 20. Suppose that (A1)-(A2) are in force. Let u(-) be a singular optimal control in the classical
sense, then we have

E O (r) H (r) by (r) (u—a(r)) ,u —u(r))
+0f (X(T)HT( ) (u—1(r)),ou(r) (u—1u(r))) 20, ae, rel0T],

where

of (x () HT (r) (w—a(r)),ou (r) (u—u(r)))

r+a t
= 211msupa—IE / / (" (s,t), 0 (r) O () oy (s) (u—u(s))) dsdt,

a—0
ror

where Y¥ (s,t) is obtained by (46), and U is determined by (43).

The proof is just to repeat the process in Theorem 3.10, [80], so we omit it.

Note that Theorem 20 is pointwise with respect to the time variable ¢ (but also the integral form). Now if
each of x () H () and u (+) are regular enough, then the function ¢* (-,-) admits an explicit representation.

Suppose the following:

(A3) () € Lyg (R®), x ()HT (1) € Lyg (RF*m) 0 L ([0, T] x Q;RF>m).

Theorem 21. Suppose that the Assumptions (A1)-(A3) are in force. Let u (-) be a singular optimal control
in the classical sense, then we have

() HL(r) by (r) (w = u(r) s u = a(r)) +(V (x (r) H(r)) ou (r) (w = u(r)) ,u—a(r))
—(x(MH(@) oy (r)(wu—u(r)),Vu(r)) >0, ae.,rel0,T], Vue U, P-a.s.

Observe that the expression (42) is similar to (3.17) in [80]. Therefore, the proof is repeated as in Theorem
3.13 in Zhang and Zhang [80].

3.2.1. Example

We provide a concrete example to illustrate our theoretical result (Theorem 21) by looking at an example.
If the FBSDEs considered in this paper are linear, it is possible to implement our principles directly. For
convenience, we still adopt the notations introduced in Section 3.2.

Example 22. Consider the following FBSDEs with n =1 and U = [-1, 1].

de(t) = [u(t)sinz(t)+u® ()] dt + x (t)u(t)dW (t),
—dy(t) = [ +x@)ut)+yt)+2z(t)+u ()] dt—z () dW (1), (47)
z(0) = 0, y(T)=x(T).

One can easily get the solutions to (33),
1
x (t) = exp{;f—i—W(t)} >0, 0<t<T, P-as.

Set (z(t),y(t),z(t),u(t)) = (0,0,0,0). The corresponding adjoint equations are (25) and (26), namely,
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—dp(t) = [p(t)+a(®)dt—q()dW (),
{ p(T) = 1 (48)
and
{dP(t) = [P()+QM]d Q1) W (1), (49)
P(T) = o.

We get immediately, the solutions to (48) and (49) are

(p(t),q(t)) = (e"*,0), t€[0,T],
(P (t),Q () = (0,0), t € [0, 77,

respectively. Hence, we have

Therefore, @ (t) = 0 is a singular control in the classical sense. Moreover, we compute
Vi (t) =0, H(t) =p(t)cosz (t) +1=el 7t 4 1.
Consequently, we get
O () H () by (r) (w = a (), u —a(r))
+(V(x (r) H (r)) ou (r) (u —u(r))

= (X (M) H (r)ou (r) (u—1u(r)),Vu(r),
=0, Vu € [-1,1], a.e. r €[0,T], P-a.

w0

which indicates that Theorem 21 always holds and @ (r) = 0 is a singular optimal control.
4. Singular optimal controls via dynamic programming principle

In this section, we proceed our control problem from the view point of DPP. From now on, we focus on
the following

dXBTue (s) = b (s, XP"E (5) u(s)) ds + o (s, XB"E (5),u(s)) AW (s) + GdE (s),
AYhowt (s) = —f (s, Xbmws (5), YEEwl (5), 768 (5) ju(s)) ds (50)
+ 20wk () AW (s) — KdE (s),
XPEE (1) = g, YOURE(T) = @ (XPowE (T)),  0<t<s<T.

Since the value function defined by the solution of controlled BSDE (50), so from the existence and unique-
ness, V defined in (11) is well-defined.

Remark 23. We assume that G, xm,» and Kix,, are deterministic matrices. On the one hand, from the
derivations in Theorem 5.1 of [39], it is convenient to show the “inaction” region for singular control; On
the other hand, we may regard Y*#%< (s) 4+ K¢ (s) together as a solution, in this way, we are able to apply
the classical It6’s formula, avoiding the appearance of jump. We believe these assumptions can be removed
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properly, but at present, we consider constant only in our paper. Whilst in order to get the uniqueness of
the solution to H-J-B inequality (51), we add the assumption K* > ko > 0, 1 < i < m. More details, see
Theorem 2.2 in [79].

Set

1
L(t,z,u)p= §Tr (oo™ (t,x,u) Prz) + {(pz, b (t, 2, u)),

(t,x,u) € [0,T] x R" x U, p € C*?([0,T] x R™).
4.1. Verification theorem via viscosity solutions
Zhang [79] has given a verification theorem for smooth solution of the following H-J-B inequality:

min (VIT (t,z) G+ K, 2V (t,2)

+mingepy L (8, 2,u) V (t,2) + f (t,m,V(t,x),VxT (t,z) o (t,z,u) ,u)) =0, (51)
u(T,z) =@ (x), 0<t<T.

Lemma 24. Define
D (V) = {xER":V(t,x) <V (t,x+Gh)+ Kh, h € R, hyéO}.

Then the optimal state process XtoE s continuous whenever (r, Xﬁ”;‘ﬂ’é) € D, (V). To be precise, we
have

P (AX}E’I*ﬁ’é £0, xtwif ¢ p, (V)) —0, t<r<T.
The proof can be seen in Zhang [79].
Proposition 25. Suppose that V is a classical solution of the H-J-B inequality (51) such that for somel > 1,
WV (t,z)| < C (1 + |x|l) .
Then for any [0,T] x R™, (u,&) € U:
V(t,x) < J(t,z,u,f).

Furthermore, if there exists (ﬁ,é) € U such that

1=pP { (r, Xt (7‘)) €D, (V), 0<r< T} , (52)
1=P /[VwT(r,x)G+K}dr:0 ; (53)
(.71

1 —P{ (S,Xt’g”;ﬁ’é (5+)) €D (V), t<s<T:

Ug € LnelTI]l [Vt (S,Xt’w;ﬁ’é (5)) +L (:;‘,)('t’g””i’é (s+) ,u) Vv (S,Xt’w;a’é (5+))
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(5, XETE () V(1 X050E (5))
\va’s (s, Xt (s+)) o (s, Xt (s+) ,u) ,u)} } (54)
and
PV (5, X550 (5)) =V (5, X0504 (5)) + KAE(s), t<s < T} =1, (55)
Then

Vo) =J (Lasa().€0)). (56)

In this section, we remove the unreal condition, smooth on value function, by means of viscosity solutions.?
We will recall the definition of a viscosity solution for H-J-B variational inequality (51) from [24]. Below,
S™ will denote the set of n X n symmetric matrices.

Let us begin at introducing the following parabolic superjet:

Definition 26. Let V (t,2) € C([0,7] x R") and (¢t,z) € [0,T] x R". We denote by P>TV (¢,x), the
“parabolic superjet” of V at (¢,x) the set of triples (p,q, X) € R x R™ x S™ which are such that

1

S (X w—a),y—a)+o(ls—tl+]y—af).

Vis,y) <V (t,x)+p(s—1t)+ (g, x—y)
*3

Similarly, we denote by P?~V (¢,x), the “parabolic subjet” of V at (t,x) the set of triples (p,q, X) €
R x R™ x S™ which are such that

Vis,y) 2V (t,z) +p(s—t) +{gz —y)
+

Lemma 27. Let V € C ([0, T] x R™) and (t,z) € [0,T] x R™ be given. Then:
1) (p,q, X) € P>V (t,x) if and only if there exists a function o € C12([0,T] x R™) such that V — ¢
attains a strict mazimum at (t,z) and

(ot ), 00 (t, ), 00 (,2) , paa (8, 2)) = (V (t,2) ,p,q, X) .

2) (p,q, X) € P>~V (t,x) if and only if there exists a function p € C12([0,T] x R™) such that V — ¢
attains a strict minimum at (t,z) and

(90 (tax),SDt (tax),% (tax) y Pax (t,l’)) = (V (tvx) ’pvq’X) :

More details can be seen in Lemma 5.4 and 5.5 in Yong and Zhou [77].
Define

G(t,x,q,X) = inf {%Tr (oo™ (t,z,u) X) + (q,b(t,z,u)) + f (t, 2,V (t,2),q" o (t,z,u), u)} . (57)

uelU

3 In the classical optimal stochastic control theory, the value function is a solution to the corresponding H-J-B equation whenever
it has sufficient regularity (Fleming and Rishel [31], Krylov [53]). Nevertheless, when it is only known that the value function is
continuous, then, the value function is a solution to the H-J-B equation in the viscosity sense (see Lions [24]).
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Definition 28. (i) It can be said V' (¢, z) € C ([0, T] x R™) is a viscosity subsolution of (51) if V (T, z) > ® (z),
x € R, and at any point (t,z) € [0,T] x R™, for any (p,q, X) € P>TV (¢, ),

min (¢G + K,p+ G (t,z,q,X)) > 0. (58)
In other words, at any point (¢, z), we have both ¢G + K > 0 and
p+G(tzqX)=0.

(ii) Tt can be said V (¢t,2) € C ([0,T] x R™) is a viscosity supersolution of (51) if V (T,z) < ® (z), z € R™,
and at any point (t,z) € [0,T] x R™, for any (p,q, X) € P>~V (¢, ),

min (qG + K,p + G (t,,¢, X)) < 0. (59)
In other words, at any point where ¢G + K > 0, we have
p+G(tx,qX)<0.

(iii) It can be said V (t,x) € C([0,T] x R™) is a viscosity solution of (51) if it is both a viscosity sub and
super solution.

We have the following result:

Proposition 29. Assume that (A1)-(A2) are in force. Then there exists at most one viscosity solution of
H-J-B inequality (51) in the class of bounded and continuous functions.

We need a generalized 1t6’s formula. Define

Lt 2u) ¥ = %Tr (00" (t,2,u) D*T) + (DV, b (t, z,u)),
(t,z,u) € [0,T] x R" x U, ¥ € C*2([0,T] x R™).

For any ¥ € C+2 ([0, T] x R™;R), by virtue of Doléans-Dade-Meyer formula (see [20,39]), we have

U (s, Xs) =V (t ) +/\Ilt (rX)+Lr,X(r),v)¥(r,X (r)dr

t

S S

+/\11w (r, X (1) o (r, X (1), 0 (1)) AW (r)+/% (r, X (r)) Gd¢ (1)
+ Z (U, X(r+) =W (r,X(r) =Y, (r,X(r) AX (r)}. (60)

We begin to introduce a useful lemma.

Lemma 30. Assume that (A1)-(A2) are in force. Let (t,x) € [0,T) x R™ be fized and let (X" (1) u(-),
£(-)) be an admissible pair. Define processes

21 (1) = b (r, X558 (1) u (1))
2o (r) =0 (r, XETwg () oy r))o* (r, XETwE () gy (),
Z3 (T’) = f (T’ Xt,:v;u,f (T) ) Yt,z;u,§ (T) ) Zt,z;u,§ (7’) , U (T)) .
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Then

t+h

1 .
Jim / 5 () — % ()] dr =0, ae te[0,T], i=1,23. (61)
t

The proof can be found in [77] by similar arguments.

Lemma 31. Let g € C ([0,T]). Extend g to (—oo,+00) with g(t) = g(T) fort > T, and g (t) = g(0), for
t < 0. Suppose that there is an integrable function p € L' ([0,T];R) and some hg > 0, such that

gt+h)—g(t)

3 <p(t), aetel0,T], h < ho.
Then
/ t+h t
9(B)—g(a) < /hmsupwdr, Vo<a<pB<T.
h—0+ h

[e%

The proof can be seen in Zhang [78].
The main result in this section is the following.

Theorem 32 (Verification theorem). Suppose that the Assumptions (Al)-(A2) are in force. Let V €
C ([0, T] x R™), be a viscosity solution of the H-J-B equations (51), satisfying the following conditions:

D)V (t+hx)-V(tx)<C(1l+|z|™)h, m > 0,
forallz e R"" 0<t<t+h<T.

it) V is semiconcave, uniformly in t, i.e. there exists Co > 0 (62)
such that for every t € [0,T), V (t,-) — Co |-|* is concave on R™.
Then we have
Vitz) < J(tau(),§(0)), (63)
for any (t,xz) € (0,T] x R™ and any u (-) x £ (+) € U (¢, T).
Furthermore, let (t,z) € [0,T) x R™ be fized and let
OB S O A CLIORA0)
be an admissible pair such that there exist a function ¢ € C12 ([0,T];R™) and a triple
(5.7,0) € (L%, ([t T)5R) x L, ([t, T);R") x L, ([t,T];8)) (64)

satisfying

(5(5),3(5),0 (5)) € P>V (5, X10E (3))
(3 (5. X057 ())  Du (5, X078 (s) ) D2 (5, X027 (5)) ) = (p(s),7(s) O (), ()
p

and
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2| [ [P +6 (s X (5) . 5().5(5). 8 (5).u() | ds| <0, (66)

where B (s) = ¢ (s,)?t’a””_"5 (s)) and G is defined in (57). Then (X%%€ () @ (-),€(-)) is an optimal pair.
In order to prove Theorem 32, we need the following lemma:

Lemma 33. Let V be a viscosity subsolution of the H-J-B equations (51) satisfying (62). Then we have
E% [V (s +h, XET0E (5 4 h)) v (s,)‘(f@;ﬁf (s))] <p(s), 0<h<T—t, (67)
where p(s) € L* ([t,T] : R).
The proof can be seen in the Appendix.

Proof of Theorem 32. We have (63) from the uniqueness of viscosity solutions of the H-J-B equations (51).

It remains to show that ()_(t*””?ﬁf(-) ,u(+) ,§(~)) is an optimal, we now fix tg € [t,T] such that (64) and
(65) hold at tg. For 21 (-) = b(-), 22(:) = 7(-)T(-)", 23(-) = f(-). We claim that the set of such points
is of full measure in [¢,T] by Lemma 7 in [78]. Now we fix wy € 2 such that the regular conditional
probability P (-| Ff) (wo), given Ff is well defined. In this new probability space, the random variables
X8 (1) B (to) ,q (to) , © (to) are almost surely deterministic constants and equal to

X558 (tg,wo) , P (to, wo) , G (to, wo) , © (to,wo)

respectively. We remark that in this probability space the Brownian motion W is still a standard Brow-
nian motion although now W (tg) = W (tg,wo) almost surely. The space is now equipped with a new
filtration {F}},., <y and the control process u(-) is adapted to this new filtration. For P-a.s. wy the
process Xt (1) is a solution of (1.1) on [ty,T] in (Q, 7, P (:| F,)) (wo)) with the initial condition
Xt,:z;zl& (to) = Xt,w;ﬁ,ﬁ (to, OJO).

Then on the probability space (Q,]:,P (\]—'fo) (wo)), we are going to apply Ito’s formula to ¢ on
[to,to + h] for any h > 0,

) (to + h, XT0E (¢ 4 h)) - (to,f(m ’ (to))

to+h

1 st ) s 574 0) )
+%tr {5 (1) Dawtp (n Xhewg (r)) T (r)} } dr
to+h to+h
- / o (7, X1E (1)) GAE () + / (Dap (1. X5 (1)) 7 (1)) AW (7)
+ Z {(p (r, Xtemd (7’)) —p (7’, Xt (7‘))

to<r<to+h

— s (7"7 Xttt (r)) AXBTEE (r) }

Taking conditional expectation value E” ‘o () (wo), dividing both sides by h, and using (65), we have
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E {V (s 40, Xtot (s + 9)) -V (8, Xtwing (s))}

>E {(p (s + 0, Xtond (s+ 9)) — (s, Xtemg (s))}

s+6

[8_90 (r X5€ 1)) + (D (1, X75€ (1)) B0

=E
ot

S

—I—%tr {E (r)" Dyztp (7“, Xtwwg (7“)) T (r)} ] dr
to+h
+ [ e (e e+ Y {o(nxEm)

to s<r<s+60

— (r, Xt (r)) — P (r, Xt (r)) AX g (r) }1 .

‘We now handle the last two terms. Note that

AXBHEE (1) = GAE (r)

and
XUE0E (py) = XO5BE () 4 AXBEEE () = XO50E (1) + GAE (r) .
Thus
[ to+h
—-E / Oz (r, Xtwtg (r)) Gdg(r) +E [gow (r, Xtatg (T)) A XL (r)}
L to

M tot+h
=_FE / Do (7“, Xtwsg (r)) Gdee (7“)]

L to

to+h
/ Kdee(r) | .

to

=E

We now deal the term

[ 3 i) s

t0<7‘<t0+h

r 1
. /% rXth +0AX”“5())GA§(T)d0
t0<r<t0+h

0

—E [KAE(r)].

Combining (69) and (70), we have

(68)



L. Zhang / J. Math. Anal. Appl. 497 (2021) 124905 33

%Effo (o) [V (to + R, X550E (1 + h)) —V (to,Xtvz%ﬂf (to)ﬂ

to+h
_ %Ef;)(wo){

/ [%—f (r %0558 (1) + (Dusp (1, X5 (1)) 5.1

to

+%tr{6(r)*Dmg0 (T,Xmﬂf (r))a(r)”dr— / Kdg‘(r)}. (71)

Letting h — 0, and employing the similar delicate method as in the proof of Theorem 4.1 of Gozzi et al.
[37], we have

1 _ . _ .
= lim sup E 7% (“0) [V (to 4 h, X P (1 4 h)) —V (to, Xt (to))}
h hsor

< g_f (tO’Xt,z;ﬁ,E (t07w0)) + <ngp (t07Xt,x;ﬁ,5 (to,w0)> ,b (t0)>
%tr {E (t0)" Dun (to, taing (to,wo)) 5 (to)} — Kd¢ (to)
— B (to,wo) + (@ (to,wo) . b (to)) + %tr (5 (t0)" B (t0, w0) 7 (fo) } — KdE (fo) -

From Lemma 33, that there exist p € L' (to, T;R) and p; € L' (;R) such that

1 _t,w;ﬁ,é _ Y S, Y€
E [h [v (t+h,X (t+h)) vV (t, X (t))H
< p(t), for h < hyg, for some hg > 0 (72)

and

. 1 R _
Eo (o) [E [V (£, X85 E (4 R)) =V (1, X (t))H
< p1 (wo), h < hyg, for some hg > 0. (73)

holds, respectively.
By virtue of Fatou’s Lemma, noting (73), we obtain

tim sup %IE [V (o + X552 (1 1 1)) = V7 (1, X557 (1) )|

= ligs(,)lip %E []E]:tto (wo) {V (to + h, Xtmug (to + h)) -V (to, Xtwiud (to)) }]

<E [li;ri%:l_p %Eftto (wo) {V (to + h, Xtming (to + h)) -V (to, Xtwing (t0)> }]

<E [p(t0) + (7(t0) (1) + 5 (7 ()" B (1) (1)} ~ KA 1) (14)

for a.e. tg € [¢,T]. Then the rest of the proof goes exactly as in [37].
We apply Lemma 8 in [78] to g (t) = E [v (t, Xt (t))}, using (72), (66) and (74) to get
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E [v (T, Xtaaé (T)) e x)]

<E /ﬁ(t) 4 (q(),5(0) + %tr (1) 8 (1) (1)] dt — Kdé (t0)

From this we claim that

V(t,z) > E V(T,XtvmE /Tf dr+/ dé (r)
T

= |@ (X5 (7)) / dr+/ Kdé(r)| |

where

Fory=f (7", Xt () |y (r, Xtwing (r)) q(r)o (r, Xtaid () a)) .

Thus, combining the above with the first assertion (63), we prove the (Xt’x?a’g (),u ()) is an optimal pair.
The proof is thus completed. O

Remark 34. The condition (66) is just equivalent to the following:

P(s) = ming (s, X" (), 5(5) (), 8 (5) u)

uclU
=G (5. X" (5).5().7(),8 () 7(s) )
a.e. s € [t,T], P-as., (75)

where @ (¢) is defined in Theorem 32. This is easily seen by recalling the fact that V' is the viscosity solution
of (51):

P(s) +ming (5, X" (5),5(5),7(5), 0 (s) ,u) = 0,
uelU
which yields (75) under (66).

Remark 35. Clearly, Theorem 32 is expressed in terms of parabolic superjet. One could naturally ask whether
a similar result holds for parabolic subjet. The answer was positive for the deterministic case (in terms of
the first-order parabolic subjet, see Theorem 3.9 in [77]). Unfortunately, as claimed in Yong and Zhou [77],
the answer is that the statement of Theorem 32 is no longer valid whenever the parabolic superjet in (65)
is replaced by the parabolic subjet.

Now let us present a non-smooth version of the necessity part of Theorem 32. However, we just have
“partial” result.
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Theorem 36. Assume that (A1)-(A2) hold. Let V' € C([0,T] x R™) be a wviscosity solution of the H-J-B
equations (51) and let (a(-),£()) be an optimal singular controls. Let (X 5@ () YHaiws (1) ZHans ()
u(-),€(")) be an admissible pair such that there ezist a function ¢ € C*2([0,T];R"™) and a triple

(7,3.0) € (L%, (I T];R) x L%, ([t,T):R") x L, ([t,T];S™)
satisfying

5) € P2V (s, X1t (5)),

.e.s€t,T], P-a.s.

Q —

Then, it holds that

Ep(s) < -E

—

g (s,Xt’m;a’é(s),(j(s) .0 (t))} , a.e. s €[t,T].
Proof. On the one hand, let s € [t,T] and w € Q2 such that
(5(5),d(5),0 (5)) € P2V (5, X154 (5) )

By Lemma 27, we have a test function ¢ € C12 ([0, T] x R™) with (s,x) € [0, T]xR" (p,q,0) € RxR" x S"
3

such that V' — ¢ achieves its minimum at (s, Xtw (s)) and
0 o i S - _
<8—f (3, Xhwiut (s)) , Dy (s, Xhwiut (s)) ,D?*p <s7 Xhot (S)>> = (p(s).4(s),0(s))
holds. Then for sufficiently small § > 0, a.e. s € [¢,T].

E [V (s + g, Xtwut (s+ 9)) -V (s, Xtwitg (3))}

>E {g@ (s + 0, Xted (s+ 9)) — (s, Xtwsg (S))}
546

= [ () (e (240 )

to+h
+ / oo (nXmE @) GaE () + Y e (X))

to s<r<s+60

— (r, Xt (r)) — Y (r, Xt (r)) AX g (r) }]

s+6

/ [%_f (7"7 gtasié (r)) i <D;c<,0 (r, Ktwsig (r)) 75(7")>

546
#tr{70) Dasg (r X5 () 70 Jar - [ s (”] |

S
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The last inequality comes from the derivation in Theorem 32 by means of the condition (76). On the other
hand, since (X't’w?ﬁ’f (1), Yot ()| Zbmwl () g (-) ,5()) is optimal, by DPP of optimality, it yields

1% (7’, Xt (7’))

T T
—E7@ @ (XtmmE(T)) +/f(r) dr+/Kd£(r) Ve, T], P-as.,
which implies that
s+6 T
E [V (s + 0, XtE (5 4 9)) v (s, Xt (s))] | [ Frydr+ / KdE(r) | . (77)

Therefore, it follows from (77) that
E[5(s) < ~E[% (5, X057 (s)) + (Dagp (5, X157 (5)) B (s) )

+itr {E(s)* Dyzp (S,Xt’”ﬁ’g (s)) E(s)} — f(s) }, a.e. s € [t,T7],

where

Fo) = f (r, X058 (), (1, X955 ()) g () o (r, XE ()0 ).
We thus complete the proof. O

4.2. Optimal feedback controls

In this subsection, we describe the method to construct optimal feedback controls by the verification
Theorem 32. First, let us recall the definition of admissible feedback controls.

Definition 37. A measurable function (u, &) from [0,7] x R™ to U x [0,00)™ is called an admissible feedback
control pair if for any (t,z) € [0,T) x R™ there is a weak solution X*®%¢ (.) of the following SDE:

dXtewe (r) = b (r, XBE (1) ju(r)) dr 4+ o (1, X57WE () u (r)) AW (r) + Gd&,,
Aytews (p) = —f (r, X558 (p)  YEERE (r) u(r)) dr + dM 55 (r) — Kd&,, (78)
Xtows () = g, YhERE(T) = (XbmwE(T)), re[t,T],

where MH*%¢ is an R-valued F*®%¢-adapted right continuous and left limit martingale vanishing in t = 0

which is orthogonal to the driving Brownian motion W. Here F&it%é = }‘;Xt’m;u’s 7] is the smallest
set,T

filtration and generated by X*#%¢, which is such that X*#We is F-#WE adapted. Obviously, M*#WeE is a
part of the solution of BSDE of (78). Simultaneously, we suppose that f satisfies the Lipschitz condition
with respect to (z,¥, z). An admissible feedback control pair (u*,£*) is called optimal if

(X* ('§t7w)ﬂY* (-;t7x),u* ('7X* (~;t,$)) 75* (-,X* (-;t,l’)))

is optimal for each (¢, z) is a solution of (78) corresponding to (u*,£*).
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Theorem 38. Let (u*,£*) be an admissible feedback control and p*,q*, and ©* be measurable functions
satisfying (p* (t,x),q* (t,2),0 (t,z)) € P>TV (t,z) for all (t,z) € [0,T] x R™. If

pr(tx) +G(ta,V(ta),q" (tx),0" (), u" (t,2))
= inf p+G(tz,V(tz),q0,u)]=0 (79)

(p,q,9,0)EP2Fv(t,z)xU

and ¢* (t,2) G+ K > 0 for all (t,z) € [0,T] x R™, then (u*,&*) is singular optimal control pair.
Proof. From Theorem 32, we get the desired result. O

Remark 39. In FBSDEs (78), Y*#%¢ (.) is actually determined by (X**"< (-),u(-),£(-)). Hence, we need
to investigate the conditions imposed in Theorem 32 to ensure the existence and uniqueness of X% (.) in
law and the measurability of the multifunctions (¢, z) — P**V (¢, ) to obtain (p* (t,x),q* (t,7),0 (t,x)) €
P2FV (t,x) that minimizes (79). This can be done by virtue of the celebrated Filippov’s Lemma (cf. [77]).

4.3. The connection between DPP and MP

In Section 3, we have obtained the first and second order adjoint equations. In this part, we shall
investigate the connection between the general DPP and the MP for such singular controls problem without
the assumption that the value is sufficient smooth. By associated adjoint equations and delicate estimates,
it is possible to establish the set inclusions among the super- and sub-jets of the value function and the
first-order and second-order adjoint processes as well as the generalized Hamiltonian function.

Theorem 40. Assume that (A1)-(A2) are in force. Suppose that (4, &) be a singular optimal controls, V (-,-)
is a value function, and (Xt € (1) Yhems (1) Zbmnd (1) g () ,f_()) is optimal trajectory. Let (p,q) €
S§2(0,T;R™) x M?(0,T;R"™) and (P,Q) € S*(0,T; R™ ™) x M?(0,T; R" ™) be the adjoint equations (25),
(26), respectively. Then, we have

P{K@+p(t) G (1) 20, t€[0,T], Vi} =
{p(s)} x [P (s),00) C P2V (t,)‘(m%ﬁﬁé (3)) , (50)
P2y (t,Xt,m;ﬂf (s)) C{p(s)} x [-00,P(s)), a.e. s€[t,T], P-a.s.

Proof. From Theorem 3 and Proposition 8, we get the first part of (80). From Theorem 3.1 in Nie, Shi and
Wu [58], we get the second and third results of (80). O

5. Concluding remarks

In this paper, on the one hand, we have derived a second order pointwise necessary condition for singular
optimal control in classical sense of FBSDEs with convex control domain by means of the variation equations
and two adjoint equations, which is separately extends the work by Zhang and Zhang [80] to stochastic
recursive case, and Hu [40] to pointwise case in the framework of Malliavin calculus. A new necessary
condition for singular control has been obtained. Moreover, we investigate the verification theorem for
optimal controls via viscosity solution and establish the connection between the adjoint equations and value
function also in viscosity solution sense.

There are still several interesting topics should be scheduled as follows:

e As an important issue, the existence of optimal singular controls has never been exploited. Haussmann
and Suo [38] apply the compactification method to study the classical and singular control problem of



38

L. Zhang / J. Math. Anal. Appl. 497 (2021) 124905

1t6’s type of stochastic differential equation, where the problem is reformulated as a martingale problem
on an appropriate canonical space after the relaxed form of the classical control is introduced. Under
some mild continuity assumptions on the data, they obtain the existence of optimal control by purely
probabilistic arguments. Note that, in the framework of BSDE with singular control, the trajectory of
Y seems to be a cadlag process (from French, for right continuous with left hand limits). Hence, we may
consider Y in some space with appropriate topologies, for instance, Skorokhod M; topology or Meyer-
Zheng topology (see [34]) to obtain the convergence of probability measures deduced by Y involving
relaxed control. Related work from the technique of PDEs can be seen in [4,19] references therein. From
Wang [72], one may construct the optimal control via the existence of diffusion with refections (see [23]).
However, it is interesting to extend this result to FBSDEs.

The matrices K,G are deterministic. It is also interesting to extend this restriction to time varying
matrices, even the generator b, o, f involving the singular control. Whenever the coefficients are random,
the H-J-B inequality will become stochastic PDEs. No doubt, stochastic viscosity solution will be applied.
For this direction, reader can refer to Buckdahn, Ma [17,18], Peng [65] and Qiu [68].

As for the general cases, i.e., the control regions are assumed to be non-convex and both the drift and
diffusion terms depend on the control variable. Indeed, such a mathematical model, from view point of
application, is more reasonable and urgent in many real-life problems (for instance, some finance models
in which the controls may impact the uncertainty, etc.). In near future, we shall remove the condition of
convex control region, employing the idea developed by Zhang et al. [81]. It is worth mentioning that the
analysis in [81] is much more complicated. Some new and useful tools, such as the multilinear function
valued stochastic processes, the BSDE for these processes are introduced. Hence, it will be interesting
to borrow these tools to investigate the singular optimal controls problems for FBSDEs, which will
definitely promote and enrich the theories of FBSDEs.
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Appendix A. Proofs of lemmas

Proof of Lemma 4. We first prove the continuity of solution depending on parameter.

Set

~
Q
—
V2l
N
Il
~
=
8
S
ary
R
—~
Va)
S~—
|
~
=}
8
S
LA
Va)
S~—"

It can be shown that

()A(a (t), Y (), 2" (t)) converges to 0 in N?[0,7] as a — 0 (81)
by standard estimates and the Burkholder-Davis-Gundy inequality, so we omit it.
Next, set
Xe ye A
axe(s) = 2 1), ave s = T ) aze s = 229 ).
o «a Q@

Note that (19) has be obtained in [3]. We will prove (20) and (21).
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Then,
dAX%(s) = Ab*(s)ds+ Ac®(s)dW (s),
—dAY*(s) = Af*(s)ds— AZ*(s)dW (s), (82)
AX®(0) = 0, AY*(T)=Ad(T), 0<t<s<T,
where

b (s, X050 (5) 0 (s)) = b (5, X057 (s) 0 (5))

Ab* (s) = o - B:L’ (t) z! (t) )
o (s, X0 (5) 1 (s)) — o (s, XO0w5mE () 4 (s)
Ac® (s) = ( ” ( ) — 3. (t)z' (1),
Afe(s) = é lf (5, X0 (), Y 05" (), 20508 (5) i (s)
—f (5, X0 (5) YOrE (5), 200508 (5) a (s)) ]
—fu (8) @' (s) = fy (5)y" (s) = f= (s) 2" (s),
P (X0mwt™ (T)) — @ ( XOwas (T i
AP (T) = ( @) - ( ( )> — 3, (XO’I‘“ (T)) 21 (T).

Simple calculation yields

Af*(s)
1
_ / o (5, AXOFEE (5) 4 (1= 2) XOTE () YO0 (), 20508 (5) 7 (5) ) AX (s) AN
0
1

+ / fy (s,XO»f;ﬂf (5), AYOmBE" () 4 (1 — \) YOk (g) 70wt (s),a(s)) AY™ (s)dA
0

1
+ / Jo (5, XOBIE (5), Y O5E (5) AZOBTE (5) (1= X) 2075 (), (5) ) AZ° (s) AN
0

+Ap* (s),
where

Ap® (s)

1
- l/ fo (5 AXOTTE (5) 4 (1= X) XOUTE () YO8 (), 2050 () 7 (5) ) A
0

1
+ [/ fy (S’Xg,:c;ﬁf’ )\YSO,ac;ﬁ,ﬁa + (1 _ )\) Yo,x;ﬁ,é_ (8) : Zg,ac;ﬂ,£a’a (S)> d\ — ﬁ/ (S) yl (S) ds
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1
%—L/fzGﬁXﬂ“iiYﬁﬁméAZgﬁmgl+(1—A)Z§x@§ﬂ(ﬁ)dA—j;@) A (s)ds
0

and
ADS (T)
1
_ / o, (/\Xo)w;ﬂ’f“ (T) + (1 — \) XOwstd (T)) AX (s)d\
0
1

+ / o, (/\Xovx%ﬁ»f“ (T) + (1 — \) XOwsté (T)) dr— @, (X%"””_“é) 2! (T) ds.
0

From classical theory of BSDE, one can show

E [ sup |zt (t)|2} < oo, E { sup |y (t)|2dt] < o0, E /|z1 (t)|2dt < 0. (83)
0<t<T 0<t<T

By using (81) and (83), the dominated convergence theorem, Lemma 1 and Gronwall’s lemma, we get the
desired result by letting o — 0. O

Proof of Lemma 33. From (62) and (6) in Gozzi et al. in [37], we have that if (p, ¢, P) € P>V (t,z), then
1% (t + R, XEE0E (44 h)) -V (t,Xtv“”ﬂf (t)) <C (1 + ‘X“ﬁf (t)’ ) h

- - = - 2
(a0, XTE (L4 h) = XPE () Co| XUEEE (14 ) — XTE ()]
=10+ 13+ Is.

We shall deal with I, I, I3, separately. For I;, we have E (1 + ‘Xt*””?ﬂ’g(t + h)’ ) h <O+ |z|™) h, by

classical estimate and the assumption E[|¢7|*] < co. For Iy, from (7) in [37] and Holder inequality, we have

E (g (t), X" (1 4 ) = XW50E (1) )

<E[1+\w oY) { (3| oo 000

[N

C(]E 1+\x|’”1 D :

1
since E [|¢7]?] < oo and the fact (1 + |2*)% <1+ |z.



L. Zhang / J. Math. Anal. Appl. 497 (2021) 124905 41

Finally,
t+h 2
CoE ‘Xt’“’"_"g (t+ h) — X bt (t))2 < CoE / b (r, X0 (1) ()
t
t+h 2 t+h 2
+CoE / o (r, X0mwE (1) g (r)) + CoE / G (r)dé (r)
t t

<O (1+1al?) (252 +1).
By It6 isometry and classical estimate on SDE, we complete the proof. 0O
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