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We consider favorite (i.e., most visited) sites of a symmetric persistent random 
walk on Z, a discrete-time process typified by the correlation of its directional 
history. We show that the cardinality of the set of favorite sites is eventually at 
most three. This is a generalization of a result by Tóth for a simple random walk, 
used to partially prove a longstanding conjecture by Erdős and Révész. The original 
conjecture asserting that for the simple random walk on integers the cardinality of 
the set of favorite sites is eventually at most two was recently disproved by Ding 
and Shen.

Published by Elsevier Inc.

1. Introduction

Let λ ∈
[1

2 , 1
)
. Let {Xs}∞s=1 be a discrete-time Markov chain on the state space {−1, 1}. We assume 

that X1 is either 1 or -1 with equal probability, and for each s > 1, the Markov chain has the transition 
probabilities for values c ∈ {−1, 1}

P (Xs = c|Xs−1 = c) = λ, P (Xs = −c|Xs−1 = c) = 1 − λ.

Define the symmetric nearest-neighbor persistent random walk {St}∞t=0 by

St :=
t∑

s=1
Xs,

with the convention S0 = 0 w.p.1. Intuitively, St is similar to a simple symmetric random walk on Z, except 
the direction of the motion of St has a bias towards the same direction its previous step. As a matter of 
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fact, if λ = 1
2 is permitted, then the persistent random walk can be seen as a generalization of the simple 

random walk.
The earliest works on the persistent random walk come from [13,31], who each introduced the model 

as a way of describing certain physical phenomena, and from [16,19] in mathematical literature (see also 
[7,3,17,24,26] and references therein). The persistent random walk and other related processes have seen 
applications in other fields of physics, economics and biology, such as random collision models [30], ballistic 
diffusion [35], quantum random walks [21,33], investment portfolio optimization [3], and the movement of 
animals [6], among others. Overviews of applications can be found in [8,35]. A random environment version 
of the model has been discussed in [2,30].

We begin this study on the persistent random walk with defining relevant notation. We define the 
local time of a site x ∈ Z at time t > 0 as the number of visits x receives from the walk up to 
time t:

L(x, t) := #{0 < s ≤ t : Ss = x}.

For every time t, we also define the set of favorite sites, that is, the sites of Z that have been visited by 
the random walk the most by time t:

K(t) := {y ∈ Z : L(y, t) = max
z∈Z

L(z, t)}.

Since the range of St is finite, #K(t) < ∞ w.p.1 for any t. Note that there are only two ways in which 
K(t) could change from K(t − 1): either the local time of a site outside of K(t − 1) becomes a maximum 
local time at time t, in which #K(t) = #K(t − 1) + 1, or one of the sites in K(t − 1) receives one more visit 
at time t, in which #K(t) = 1.

Finally, we define f(r) to be the number of times #K(t) becomes r ∈ N:

f(r) := #{t ≥ 1 : St ∈ K(t),#K(t) = r}. (1)

In the simple walk case (λ = 1
2 ), it was shown that f(1) = f(2) = ∞ w.p.1 in [10] and [5]. In [10], [11]

and [12], Erdős and Révész conjectured that f(r) was finite w.p.1 for r ≥ 3 (see [28] for an overview). The 
conjecture was partially proven in [32], in which it was shown that f(4) was finite w.p.1, hence f(r) for 
r ≥ 5 as well. Our main result in this chapter reveals that the set of favorite sites for the persistent random 
walk behaves similarly, regardless of the amount of local directional bias.

Theorem 1.1 (Main Theorem). For any choice of λ ∈ (1
2 , 1),

E(f(4)) < ∞.

In particular, f(4) < ∞ w.p.1.

This theorem extends the result found for the simple random walk in [32]. Note that for lambda close 
to 1 the persistent walk tends to cover large intervals of integers with almost the same number of visits. 
Irrespective of the value of λ, the theorem shows that over time, the number of favorite sites will eventually 
be bounded above by 3.

It was recently shown in [9] that for the simple random walk on integers, f(3) = ∞ w.p.1. Together with 
the result of Tóth [32] this establishes the phase transition in the behavior of f(n) for the simple random 
walk. It is plausible that a similar phase transition happens for a general class of random motions on Z. 
The present paper discusses an example of the process that turns out to be amenable to an adaptation of 
the approach of Tóth [32].
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In [5], it was shown that for the simple random walk, the typical favorite site is transient. This immediately 
implied that f(1) = f(2) = ∞ almost surely, for f(r) defined in (1), and the fact was also used to prove 
that f(3) = ∞ almost surely as well in [9]. The transience of the favorite sites is a property we would also 
desire for the persistent random walk, particularly in examining the cases of f(r) for r = 2, 3. We conjecture 
that the favorite sites of the persistent walk exhibit the same transience, based on our observations on the 
distribution of local times. However, this conjecture does not easily extend from the simple walk case in [5], 
as the result relies on the strong invariance principle of the local times between simple walks and Brownian 
motion. As no such strong invariance exists for the local times of directionally-reinforced random walks, a 
different approach is necessary for the case of the persistent walk.

Our method of proof will follow closely to that of [32], as the framework of sojourn times provides naturally 
closed formulations in the extension into the directionally-dependent persistent processes. As such, much 
of the notation and the key lemmas will appear similar to as they did in [32], albeit under a new random 
process. However, the extension will not be trivial, as the simple walk case in [32] provided simplifications 
in the essential formulations that are absent in the persistent case. Our proof for the persistent random 
walk will utilize some deep results into the studies of probability theory, mathematical statistics, asymptotic 
analysis and the theory of hypergeometric functions. We hope that the work for this proof will pave the 
way for the study in the number of favorite sites for other processes outside of the realm of simple random 
walks.

2. Definitions

Before we begin to prove the theorem, we need to establish some preliminary definitions and observations. 
First, we define upcrossings and downcrossings, respectively, of a site x ∈ Z:

U(x, t) := #{0 < s ≤ t : Ss = x, Ss−1 = x− 1},

D(x, t) := #{0 < s ≤ t : Ss = x, Ss−1 = x + 1}.

A couple of things to note here: U(x, t) and D(x, t) can be seen as a partition of the total local time L(x, t), 
in that L(x, t) = U(x, t) + D(x, t). Also, U(x, t) and D(x, t) are related to each other given the relative 
position of St in the following way:

U(x, t) −D(x− 1, t) = 1{0<x≤St} − 1{St<x≤0}, (2)

D(x, t) − U(x + 1, t) = −1{0<x≤St} + 1{St<x≤0}. (3)

Using (2) and (3), we can rewrite the local time all in terms of either upcrossings or downcrossings:

L(x, t) = D(x, t) + D(x− 1, t) + 1{0<x≤St} − 1{St<x≤0} (4)

= U(x, t) + U(x + 1, t) − 1{0<x≤St} + 1{St<x≤0}.

Next, we define the following stopping times for the upcrossings and downcrossings above: for any x ∈ Z

and k ≥ 0,

TU
x,k := inf{t ≥ 1 : U(x, t) = k}, TD

x,k := inf{t ≥ 1 : D(x, t) = k}.

We can use these stopping times to help partition f(4) into infinite random variables based on the location 
and visiting direction of the new favorite sites in the following way:
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ux(4) :=
∞∑
t=1

1{Xt=1,x∈Kt,#K(t)=4} =
∞∑
k=1

1{x∈K(TU
x,k),#K(TU

x,k)=4},

dx(4) :=
∞∑
t=1

1{Xt=−1,x∈Kt,#K(t)=4} =
∞∑
k=1

1{x∈K(TD
x,k),#K(TD

x,k)=4}.

From here, we can see that

f(4) =
∑
x∈Z

(
ux(4) + dx(4)

)
.

Note that, due to the symmetry of our persistent random walk model (in the sense that for any x ∈ Z

and t ≥ 0, P (St = x|S0 = 0) = P (St = −x|S0 = 0)), ux(4) is equal in distribution to d−x(4) for 
any x ∈ Z. Hence, for the expectation of f(4), we only need to concern ourselves with the nonnegative 
sites:

E(f(4)) = 2
∞∑
x=1

E(ux(4)) + 2
∞∑
x=0

E(dx(4)).

We can prove E(f(4)) is finite by showing the series on the right-hand side of the above equation are 
both finite. For the rest of this work, we will set out to prove the following:

∞∑
x=1

E(ux(4)) =
∞∑
x=1

∞∑
k=1

P
(
x ∈ K(TU

x,k),#K(TU
x,k) = 4

)
< ∞. (5)

The proof that 
∑∞

x=0 E(dx(4)) < ∞ is a similar exercise left to the reader.

3. Ray-Knight representation

Now we introduce the offspring distribution for a sequence of critical branching processes which will be 
vital in the theorem’s proof. For any given positive site i ≥ 1 and time t ≥ 0, let the random variable ζt,i
represent the number of times a persistent particle will move from i + 1 to i until eventually returning to 
i −1. When the particle first moves rightward onto i, it has a 1 −λ probability of going against its rightward 
bias and moving leftward to i − 1. If the particle goes right instead, the particle will take an excursion 
before returning to i again, which includes a downcrossing from i + 1. This time, the particle has a 1 − λ

probability of moving right and starting another excursion, or a λ probability of moving left and ending the 
“trials”.

Under this interpretation, we can derive the distribution of ζt,i for every t ≥ 0 and i ≥ 1:

P (ζt,i = j) =
{

1 − λ if j = 0
λ2(1 − λ)j−1 if j ≥ 1.

(6)

A note about this distribution is that its expectation is 1 and its variance is 21−λ
λ , as the computation 

of a couple of geometric series reveals.
Whenever a particle visits i from the left again after arriving at i − 1, the memory of the Markov 

chain that dictate the particle’s transition probabilities does not include any of its previous excursions 
to the right of i. Thus, every trial of (i + 1)-to-i downcrossings for each i-to-(i − 1) downcrossing will 
be independent and identically distributed with each other. So the number of downcrossings between two 
adjacent sites will be a Markov chain dependent on the number of downcrossings between the next lower 
pair of sites.
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For each t ≥ 0 and i ≥ 1, we will make i.i.d. copies of ζt,i, call them ζ∗t,i and ζ ′t,i. The motivation for these 
new random variables is slightly different from that of ζt,i, but they will be used for similar representations. 
Fix k ≥ 0 and x ≥ 1.

First, we will define a Galton-Watson process Yt with {ζt,i}∞t=0,i=1 as the offspring it produces each 

generation. Define the initial state Y−1 = k and, for each −1 ≤ t < ∞, let Yt+1 :=
∑Yt

i=1 ζt+1,i. Then, Yt is 
a Markov chain with transition probabilities π(i, j) given by

π(i, j) := P (Yt+1 = j|Yt = i) ,

=

⎧⎪⎪⎨⎪⎪⎩
δ0,j i = 0
(1 − λ)i i ≥ 1 and j = 0(

λ2

1−λ

)i

(1 − λ)j
∑i−1

k=(i−j)+

(
i
k

)(
j−1

i−k−1
) ( 1−λ

λ

)2k
i ≥ 1 and j ≥ 1,

(7)

where (a)+ := max{a, 0}. Note that the right-hand side of (7) is the calculated i-fold convolution of (6). As a 
note of interest, setting λ = 1

2 in (7) will reduce the right-hand side to the equivalent transition probabilities 
seen in [25] and [20], due to the Chu-Vandermonde identity (see [27]).

Next, define a Galton-Watson process Zt with {ζ∗t,i}∞t=1,i=1 offspring and one immigrant particle entering 

each generation. Let Z0 = k be the initial state and, for each 0 ≤ t ≤ x − 1, let Zt+1 :=
∑Zt+1

i=1 ζ∗t+1,i. Then 
Zt is a Markov chain with transition kernel ρ(i, j) given by

ρ(i, j) := P (Zt+1 = j|Zt = i)

=

⎧⎨⎩ (1 − λ)i+1 j = 0(
λ2

1−λ

)i+1
(1 − λ)j

∑i
k=(i+1−j)+

(
i+1
k

)(
j−1
i−k

) ( 1−λ
λ

)2k
j ≥ 1.

(8)

Note that (8) is the same as if i is replaced with i + 1 in (7). Thus, much of our results on π(i, j) will have 
analogues for ρ(i, j).

Before defining the final process in this set, we first need to define a new random variable η with distri-
bution

P (η = j) =
{

1
2 if j = 0
1
2λ(1 − λ)j−1 if j ≥ 1.

This variable describes the number of downcrossings from 0 to -1 until a first visit to 1 (with the 1
2 due 

to the symmetric distribution of X1). This will be used to define the third Galton-Watson process Y ′
t , with 

initial state Y ′
0 = Zx−1, Y ′

1 := η · δ{S1=−1} +
∑Y ′

0
i=1 ζ

′
1,i, and Y ′

t+1 :=
∑Y ′

t
i=1 ζ

′
t+1,i for each 1 ≤ t < ∞.

With these three processes defined, we are now ready to build our Ray-Knight type representation of the 
local times of St. For each y ∈ Z, define Δx,k(y) by

Δx,k(y) :=

⎧⎪⎨⎪⎩
Yy−x if x− 1 ≤ y < ∞
Zx−y−1 if 0 ≤ y ≤ x− 1
Y ′
−y if −∞ < y ≤ 0.

By this construction, we arrive at the Ray-Knight type representation for the downcrossings of the 
persistent walk (cf. [32] and also, for instance, [14,22]):

(Δx,k(y), y ∈ Z) D=
(
D(TU

x,k+1, y), y ∈ Z
)
, (9)
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in which 
D= means equal in distribution. Plainly speaking, Δx,k(y) represents the random number of down-

crossings into site y before the (k + 1)th upcrossing to x for any y ∈ Z.
Now define the following random variable for each y ∈ Z:

Λx,k(y) := Δx,k(y) + Δx,k(y − 1) + 1{0<y≤x}. (10)

Λx,k(y) serves as the local time of y stopped at TU
x,k+1, based on (4). Hence, using (4), (9) and (10), we get 

the following Ray-Knight representation:

(Λx,k(y), y ∈ Z) D=
(
L(TU

x,k+1, y), y ∈ Z
)
.

The following is a list of random variables and events that we will use for the more technical aspects of 
the main theorem’s proof:

Ỹt := Yt + Yt−1, Z̃t := Zt + Zt−1 + 1, Ỹ ′
t := Y ′

t + Y ′
t−1.

σh := inf{t ≥ 0 : Yt ≥ h}, ω = inf{t ≥ 0 : Yt = 0},

σ′
h := inf{t ≥ 0 : Y ′

t ≥ h}, ω′ = inf{t ≥ 0 : Y ′
t = 0}, τh = inf{t ≥ 0 : Zt ≥ h},

σ̃h,0 := 0, σ̃h,i+1 := inf{t > σ̃h,i : Ỹt ≥ h}, σ̃h := σ̃h,1,

σ̃′
h,0 := 0, σ̃′

h,i+1 := inf{t > σ̃′
h,i : Ỹ ′

t ≥ h}, σ̃′
h := σ̃′

h,1,

τ̃h,0 := 0, τ̃h,i+1 := inf{t > τ̃h,i : Z̃t ≥ h}, τ̃h := τ̃h,1,

Ah,p :=
{

max
1≤t<∞

Ỹt ≤ h, #{1 ≤ t < ∞ : Ỹt = h} = p

}
:= {σ̃h,p < ∞ = σ̃h,p+1, Ỹσ̃h,i

= h for i = 1, · · · , p},

A′
h,p :=

{
max

1≤t<∞
Ỹ ′
t ≤ h,#{1 ≤ t < ∞ : Ỹ ′

t = h} = p

}
:= {σ̃′

h,p < ∞ = σ̃′
h,p+1, Ỹ ′

σ̃′
h,i

= h for i = 1, · · · , p},

Bx,h,p :=
{

max
1≤t<x

Z̃t ≤ h,#{1 ≤ t < x : Z̃t = h} = p

}
:= {τ̃h,p < x ≤ τ̃h,p+1, Z̃τ̃h,i

= h for i = 1, · · · , p}.

Plainly speaking, σh, σ′
h, and τh are the first hitting times of the interval [h, ∞) by their respective 

processes, whereas σ̃h,i, σ̃′
h,i and τ̃h,i are the ith hitting times of the interval [h, ∞) by their respective 

processes. Furthermore, ω and ω′ are the extinction times of their respective processes. Finally, Ah,p, A′
h,p

and Bx,h,p are the events that the respective processes hit exactly p times its maximum level h either before 
extinction or, in Bx,h,p’s case, before time x.

With these events defined and the Ray-Knight representation established, we arrive at the following 
expression for E(ux(4)) for any x:

E(ux(4)) =
∑

p+q+r=3

∞∑
h=1

∞∑
k=0

∞∑
�=0

P (Ah,p|Y0 = h− k − 1)

× π(k, h− k − 1) × P (Bx,h,q, Zx−1 = �|Z0 = k) × P (A′
h,r|Y ′

0 = �),

which then leads to an upper bound for the left-hand side of (5):
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∞∑
x=1

E(ux(4)) ≤
∑

p+q+r=3

∞∑
h=1

∞∑
k=0

P (Ah,p|Y0 = h− k − 1) (11)

× π(k, h− k − 1) ×
∞∑
x=1

P (Bx,h,q|Z0 = k) × sup
�≥0

P (A′
h,r|Y ′

0 = �).

We now introduce bounds to the values in the right-hand side of (11). The first set of bounds comes in 
the form of a proposition, which shall be proven in the next section:

Proposition 3.1. For any ε > 0 there exists a finite constant C < ∞ such that for any h ≥ 1 and k ≥ 0 with 
0 ≤ k ≤ h:

1. For any p ≥ 0,

∞∑
x=1

P (Bx,h,p|Z0 = k) ≤ Ch.

2. If either k ∈ [(h − h1/2+ε)/2, h + h1/2+ε)/2] or p ≥ 1 holds, then

P (Ah,p|Y0 = k) ≤ (Ch−1/2+ε)p+1,

∞∑
x=1

P (Bx,h,p|Z0 = k) ≤ (Ch−1/2+ε)p+1h.

Next is a lemma on the sum of some extreme values of π(i, j). The proof of this lemma will be postponed 
until the Appendix. For organizational purposes, we will begin an alphabetical ordering of the lemmas 
which are principal to the proof of Proposition 3.1, starting with the following lemma. Note that each of 
these lemmas have analogues to lemmas and side-lemmas in [32] for the simple random walk case, with the 
following lemma namely being an analogue to Side-Lemma 1(i) in [32].

Lemma A. For any ε > 0, there exist constants C, γ > 0 such that, for any h ≥ 1,∑
k:|h−2k|>h1/2+ε

π(k, h− 1 − k) < C exp(−γh2ε).

Using Proposition 3.1 and Lemma A, we can bound the terms of the right-hand side of (11) for each 
fixed h. To show this, first fix h, p, q, r and ε ∈ (0, 1

10 ), then decompose the right-hand side of (11) into 
two series, one for values of k such that |h − 2k| ≤ h1/2+ε and the other for |h − 2k| > h1/2+ε. The bounds 
of each of these sums will be represented in the following lines as a left term of a sum and a right term, 
respectively.

For the case in which r = 0, we have through Proposition 3.1 and Lemma A

∞∑
x=1

E(ux(4)) ≤
∞∑
h=1

(Ch−1/2+ε)p+q+2h + (Ch)(C exp(−γh2ε)) ≤
∞∑
h=1

C ′h−3/2+5ε < ∞.

for a large enough C ′ < ∞. If r > 0, we have

∞∑
x=1

E(ux(4)) ≤
∞∑
h=1

(Ch−1/2+ε)p+q+r+3h + (Ch)(C exp(−γh2ε)) ≤
∞∑
h=1

C ′h−2+6ε < ∞.

for another large C ′ < ∞. This shows (5), which then completes the proof of Theorem 1.1.
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4. Proof of Proposition 3.1

To prove Proposition 3.1, we rely primarily on four main lemmas. We shall continue the alphabetical 
labeling of the lemmas which started with Lemma A. Again, note that each of the following lemmas have 
analogues in [32], which will be detailed below. For all of the lemmas, fix ε > 0.

The first lemma, an analogue to Lemma 1 in [32], shows that the jumps of the Markov chains Yt and Zt

is unlikely to be greater than h1/2+ε until the Markov chains reach h.

Lemma B. Define the maximal jumps of Yt and Zt:

Mh := sup{|Yt − Yt−1| : 1 ≤ t ≤ σh ∧ ω},
Nh := sup{|Zt − Zt−1| : 1 ≤ t ≤ τh}.

There exist two constants, C < ∞ and γ > 0, such that for any h ≥ 1 and k ≥ 0 with 0 ≤ k ≤ h, we have

P (Mh > h1/2+ε|Y0 = k) < C exp(−γh2ε),

P (Nh > h1/2+ε|Z0 = k) < C exp(−γh2ε).

The next lemma, an analogue to Lemma 2 in [32], provides bounds on the probabilities that Ỹt and Z̃t

enter the interval [h, ∞) at exactly h.

Lemma C. There exists a constant C < ∞ such that for any h ≥ 1 and k ≥ 0 with 0 ≤ k ≤ h, we have

P (σ̃h < ∞, Ỹσ̃h
= h|Y0 = k) < Ch−1/2+ε,

P (Z̃τ̃h = h|Z0 = k) < Ch−1/2+ε.

Next, an analogue to Lemma 3 in [32], is a bound on the probability that Ỹt does not enter [h, ∞) before 
extinction, given that Y0 is close to h/2.

Lemma D. There exists a constant C < ∞ such that for any h ≥ 1 and k ∈
[
h−h1/2+ε

2 , h+h1/2+ε

2

]
,

P (σ̃h = ∞|Y0 = k) < Ch−1/2+ε.

Finally, we have an analogue to Lemma 4 in [32], which gives upper bounds to the expectation of the 
hitting times τ̃h.

Lemma E. There exists a constant C < ∞ such that for any h ≥ 1 the following holds:

1. For any k with 0 ≤ k ≤ h, E(τ̃h|Z0 = k) < Ch.
2. For k ∈

[
h−h1/2+ε

2 , h+h1/2+ε

2

]
, E(τ̃h|Z0 = k) < Ch1/2+ε.

Proof of Proposition 3.1. Using the strong Markov property of Yt and Zt, we arrive at the following recur-
rence relations for p ≥ 1:

P (Ah,p|Y0 = k) =
∞∑
�=0

P (σ̃h < ∞, Yσ̃h−1 = h− �, Yσ̃h
= �|Y0 = k) × P (Ah,p−1|Y0 = �),

∞∑
P (Bx,h,p|Z0 = k) =

∞∑
P (Zτ̃h−1 = h− �, Zτ̃h = �|Z0 = k) ×

∞∑
P (Bx,h,p−1|Z0 = �).

(12)
x=1 �=0 x=1
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Note that

∞∑
x=1

P (Bx,h,0|Z0 = k) =
∞∑
x=1

P (τ̃h ≥ x|Z0 = k) = E(τ̃h|Z0 = k),

so we have the first part of the proposition when p = 0 by Lemma E.
Now consider the case p = 1. We divide the right-hand sides of (12) into two disjoint sums: one such that 

� ∈
[
h−h1/2+ε

2 , h+h1/2+ε

2

]
and for all other values of �. From Lemmas C and D, we have for the first sum of 

the first series∑
�:|h−2�|≤h1/2+ε

P (σ̃h < ∞, Yσ̃h−1 = h− �, Yσ̃h
= �|Y0 = k) × P (Ah,0|Y0 = �) ≤

(
Ch−1/2+ε

)2
.

Also, from Lemma B, we have for the second sum∑
�:|h−2�|>h1/2+ε

P (σ̃h < ∞, Yσ̃h−1 = h− �, Yσ̃h
= �|Y0 = k) × P (Ah,0|Y0 = �)

≤ P (Mh > h1/2+ε|Y0 = k) < C exp(−γh2ε).

As for the other relation, we obtain similar results using Lemmas B, C and E:

∑
�:|h−2�|≤h1/2+ε

P (Zτ̃h−1 = h− �, Zτ̃h = �|Z0 = k) ×
∞∑
x=1

P (Bx,h,0|Z0 = �) ≤
(
Ch−1/2+ε

)2
,

∑
�:|h−2�|>h1/2+ε

P (Zτ̃h−1 = h− �, Zτ̃h = �|Z0 = k) ×
∞∑
x=1

P (Bx,h,0|Z0 = �)

≤ P (Nh > h1/2+ε|Z0 = k) sup
�≥0

∞∑
x=1

P (Bx,h,0|Z0 = �) < (C exp(−γh2ε))(Ch).

These inequalities yield the second part of the proposition for p = 1. The cases of p = 2, 3 follow directly 
from the p = 1 case and from the recurrence relations in (12). �

In the Appendix, we detail the proofs of Lemmas A and C, as well as side-lemmas necessary to prove 
Lemma B. As for Lemmas B, D and E, while they are original results, their proofs are similar to those 
of their respective analogues found in [32] for the simple random walk case, albeit with slight changes to 
some of the calculations to account for the new distribution of ζt,i defined in (6). Thus, in order to avoid 
redundancy, the complete proofs of Lemmas B, D and E are omitted here, and we request that you refer to 
[32] for their nature.

5. Preliminary results on π(i, j) and ρ(i, j)

Before we prove the lemmas introduced in Sections 3 and 4, we first need to establish some preliminary 
facts about the transition kernels π(i, j) and ρ(i, j) introduced in (7) and (8) respectively. For the simple 
random walk (λ = 1

2 ), [20] and [25] showed that the variables Yt and Zt followed a negative binomial 
distribution, which was used to great effect in [32]. While the distributions of Yt and Zt in the persistent 
case are related to negative binomial distributions, there are enough differences to warrant a more meticulous 
kind of analysis.
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The majority of the effort shown in this section will focus more on π(i, j), as a proof of a result for π(i, j)
will closely resemble that for ρ(i, j) with minor differences. However, analogous results of both kernels will 
be seen.

5.1. Expectation and variance

Observation 5.1. For each i ≥ 0 and t ≥ 1,

E(Yt|Yt−1 = i) = i, Var(Yt|Yt−1 = i) = 21 − λ

λ
i,

E(Zt|Zt−1 = i) = i + 1, Var(Zt|Zt−1 = i) = 21 − λ

λ
(i + 1).

This is a trivial result, since both random variables are sums of i (resp. i + 1) i.i.d. copies of the same 
variable ζt,i with distribution given in (6). Still, we will make use of these calculations in the next sec-
tion.

5.2. Log-concavity

Here we explain the concept of logarithmic-concavity for sequences, which will be used to justify the 
unimodality of the distributions π(i, ·) and ρ(i, ·).

Definition 5.2. A nonnegative sequence {ak}∞k=0 is said to be log-concave if, for every k ≥ 1, a2
k ≥ ak−1ak+1.

If {ak}∞k=0 is a positive sequence, then this is equivalent to the sequence of ratios {ak+1
ak

}∞k=0 being 
nonincreasing. For more information on the concept of log-concave sequences, we refer to [4], [29] and [34]. 
For now, we present this fact (Corollary 3.3 in [34]):

Lemma 5.3. The convolution of two log-concave sequences is also log-concave.

Given the distribution in (6), it is a straightforward exercise to show that {π(1, j)}∞j=0 and {ρ(1, j)}∞j=0
are both log-concave sequences. Thus, since {π(i, j)} is a convolution of {π(i − 1, j)} and {π(1, j)} for each 
i > 1, {π(i, j)} is log-concave for any i ≥ 1 by mathematical induction. Similarly, {ρ(i, j)} is log-concave as 
well. The log-concavity feature of these transition kernels ensures unimodality in their distributions, which 
is the next topic of discussion.

5.3. Mode of π(i, j)

Since {π(i, j)} is unimodal, there exists k ≥ 0 such that for all j ≥ 0,

π(i, j) ≤ π(i, k). (13)

It is in our interests to find exactly which values this k could take for each fixed i and λ. While the 
exact values could depend on λ, we have found that they do not stray very far from the expectation of Yt

given Yt−1.

Theorem 5.4. Fix λ ∈
( 1

2 , 1
)

and i ≥ 1. Let k be such that (13) holds for each j ≥ 0. Then k ∈ {i − 1, i}.

Note that, by the log-concavity of {π(i, j)} and the resulting monotonicity of 
{

π(i,j+1)
π(i,j)

}
, we have the 

following corollary:
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Corollary 5.5. If j < i, then π(i, j − 1) ≤ π(i, j), and if j ≥ i, the π(i, j + 1) ≤ π(i, j)

Our proof of Theorem 5.4 will require a reinterpretation of π(i, j). First, allow us to define the Gauss 
hypergeometric function as in [1]:

Definition 5.6. For each a, b and c, the Gauss hypergeometric function 2F1(a, b; c; z) is the function mapping 
{z : |z| < 1} to C of the form

2F1(a, b; c; z) :=
∞∑

n=0

(a)n(b)n
(c)n

zn

n! ,

where (m)n =
∏n−1

k=0(m + k) is the Pochhammer symbol.

Define z :=
( 1−λ

λ

)2, and observe that z ∈ (0, 1). Then the following representation can be formulated for 
i ≥ 1 and j ≥ 0:

π(i, j) =
{√

z
j−i(1 −√

z)j+i
(
j−1
i−1

)
2F1(j + 1, j; 1 + j − i; z), i ≤ j

√
zi−j

(1+
√
z)i+j

(
i

i−j

)
2F1(1 − j,−j; 1 + i− j; z), i > j.

(14)

For the purposes of this proof, we shall use the representation in (14). In particular, we wish to observe 
the following instances of π(i, j):

π(i, i + 1) = i(1 −
√
z)2i(

√
z − z)2F1 (i + 2, i + 1; 2; z) , (15)

π(i, i) = (1 −
√
z)2i2F1 (i + 1, i; 1; z) , (16)

π(i, i− 1) = i

√
z

(1 +
√
z)2i−1 2F1 (2 − i, 1 − i; 2; z) , (17)

π(i, i− 2) = i(i− 1)
2

z(1 +
√
z)

(1 +
√
z)2i−1 2F1 (3 − i, 2 − i; 3; z) . (18)

We recognize other transformations of the hypergeometric functions, in particular the following list of Gauss’ 
contiguous relations [1]. A note on notation: F = 2F1(a, b; c; z), F (a±) = 2F1(a ± 1, b; c; z), and all other 
parameter changes use similar notation.

z
ab

c
F (a+, b+, c+) = a(F (a+) − F ) = b(F (b+) − F ) = (c− b)F (b−) + (b− c + az)F

1 − z

= z

c(1 − z) ((c− a)(c− b)F (c+) + c(a + b− c)F ) .

It is not hard to see that using these contiguous relations, one can find the following equalities for every 
i ≥ 1:

2F1(i + 2, i + 1; 2; z) = 1 − z

z(2i + 1) 2F1(i + 2, i + 1, 1, z) − 1
z(2i + 1) 2F1(i + 1, i, 1, z), (19)

2F1(3 − i, 2 − i; 3; z) = 2
i(1 + z) − 22F1(2 − i, 1 − i; 2; z)

− (i− 1)(1 − z) + (2i− 3)z2

(i− 1)(i(1 + z) − 2) 2F1(3 − i, 2 − i; 2; z).
(20)

We leave tedious but straightforward details to the reader.
Before moving on to the proof of Theorem 5.4, we need the following lemma:
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Lemma 5.7.

1. For all i ≥ 1, c > 0,

2F1 (i + 2, i + 1; c; z)
2F1 (i + 1, i; c; z) ≤ 1

(1 −√
z)2

, (21)

2. For all i ≥ 3 and c > 0,

2F1 (3 − i, 2 − i; c; z)
2F1 (2 − i, 1 − i; c; z) ≥ 1

(1 +
√
z)2

. (22)

Moreover, the left-hand side of each inequality converges to the right-hand side as i → ∞.

Proof. The convergence to the right-hand side is a direct result of Theorem 2 of [15] on the asymptotic 
estimates of the large-parameter Gauss hypergeometric functions seen as solutions to given second-order 
difference equations, in particular on the (+ + 0) case. One can check that the inequalities hold for their 
lowest values of i. It is shown in [15] that said difference equations have characteristic equations with positive 
roots and positive discriminants, ensuring that the solutions are non-oscillatory. Thus, the inequalities are 
maintained by the monotonicity of the pointwise convergence. �

With (15)-(22), we can now prove Theorem 5.4.

Proof of Theorem 5.4. Since the log-concavity of π(i, j) gives us that 
{

π(i,j+1)
π(i,j)

}
is nonincreasing, it is 

enough to show that π(i,i−1)
π(i,i−2) > 1 and π(i,i+1)

π(i,i) < 1. Using (15), (16), (19) and (21), we have the follow-
ing:

π(i, i + 1)
π(i, i) = i(

√
z − z)2F1 (i + 2, i + 1; 2; z)

2F1 (i + 1, i; 1; z)

= i

2i + 1
(1 − z)(

√
z − z)

z
2F1 (i + 2, i + 1; 1; z)

2F1 (i + 1, i; 1; z) − i

2i + 1

√
z − z

z

≤ i

2i + 1
(1 − z)(

√
z − z)

z

1
(1 −√

z)2
− i

2i + 1

√
z − z

z

= i

2i + 1

(
(1 − z)(

√
z − z) − (

√
z − z)(1 −√

z)2

z(1 −√
z)2

)
= i

2i + 1
2(
√
z − z)2

z(1 −√
z)2

= 2i
2i + 1 < 1.

Also with (17), (18), (20) and (22), we get

π(i, i− 2)
π(i, i− 1) = i− 1

2 (
√
z + z)2F1 (3 − i, 2 − i; 3; z)

2F1 (2 − i, 1 − i; 2; z) = i− 1
i(1 + z) − 2(

√
z + z)

− (i− 1)(1 − z) + (2i− 3)z2

2(i(1 + z) − 2) (
√
z + z)2F1 (3 − i, 2 − i; 2; z)

2F1 (2 − i, 1 − i; 2; z)

≤ i− 1 (
√
z + z) − (i− 1)(1 − z) + (2i− 3)z2

(
√
z + z) 1√ 2
i(1 + z) − 2 2(i(1 + z) − 2) (1 + z)
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= 2(i− 1)(
√
z + z)(1 +

√
z) − ((i− 1)(1 − z) + (2i− 3)z2)

√
z

2(i(1 + z) − 2)(1 +
√
z)

= 1 − (2i− 4)(1 − z) + (i− 3)
√
z(1 − z) + (2i− 3)z5/2

2(i(1 + z) − 2)(1 +
√
z)

< 1.

This completes the proof of the theorem. �
We get a similar result as Theorem 5.4 for ρ(i, j), although we must account for the immigrant particle 

of the Galton-Watson process Zt.

Theorem 5.8. Fix λ ∈
( 1

2 , 1
)

and i ≥ 1. Let k be an integer such that ρ(i, j) ≤ ρ(i, k) for all j ≥ 0. Then 
k ∈ {i, i + 1}.

5.4. Upper bound for π(i,j−1)
π(i,j) for i < j

While Theorem 5.4 provides a lower bound for π(i,j−1)
π(i,j) when i < j, we now seek an upper bound for 

the ratio. To achieve this, we continue our analysis of hypergeometric functions, but now in the context of 
an existing result in the statistical study of contingency tables. We define the noncentral hypergeometric 
distribution Hyper(M1, M2, N1, N2, θ) with the following formula for max(0, M1 −N2) ≤ x ≤ min(N1, M1):

P (X = x) =
(
N1
x

)(
N2

M1−x

)
θx∑min(N1,M1)

u=max(0,M1−N2)
(
N1
u

)(
N2

M1−u

)
θu

,

where X ∼ Hyper(M1, M2, N1, N2, θ) (note that M2 is dependent on the other integer parameters by the 
relation M1 + M2 = N1 + N2). While the noncentral hypergeometric distribution has no direct application 
in our model, we utilize an upper bound for its expectation given in line (5.2) in [23]:

E(X) ≤ −c +
√
c2 + 4θ(1 − θ)N1M1

2(1 − θ) , (23)

where c := N1 + N2 − (N1 + M1)(1 − θ). Using this inequality, we have the following lemma:

Lemma 5.9. Let i < j. Let X ∼ Hyper(M1 = i − 1, M2 = j, N1 = i, N2 = j − 1, θ =
( 1−λ

λ

)2). Then 
E(X) < (1 − λ)(j − 1).

Proof. By (23), E(X) ≤ −c+
√

c2+4θ(1−θ)i(i−1)
2(1−θ) , where c = i + j− 1 − (2i − 1)(1 − θ). Note that c > (2i − 1)θ, 

i − 1 < 2(1 − λ)(i − 1/2) + (2λ − 1)(j − 1), and i ≤ j − 1. So

θi(i− 1) < θ(j − 1)((1 − λ)(2i− 1) + (2λ− 1)(j − 1))

= (1 − λ)(j − 1)(2i− 1)θ + (1 − λ)2 2λ− 1
λ2 (j − 1)2

< (1 − λ)(j − 1)c + (1 − θ)(1 − λ)2(j − 1)2.

Thus,

c2 + 4θ(1 − θ)i(i− 1) < c2 + 4(1 − θ)(1 − λ)(j − 1)c + 4(1 − θ)2(1 − λ)2(j − 1)2

= (c + 2(1 − θ)(1 − λ)(j − 1))2.

Therefore, E(X) ≤ −c+
√
c2+4θ(1−θ)i(i−1)

< (1 − λ)(j − 1). �
2(1−θ)
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We use this lemma to get an upper bound for π(i,j−1)
π(i,j) when i < j.

Lemma 5.10. π(i,j−1)
π(i,j) < 1

1−λ
j−i
j−1 + 1 for all i < j.

Proof.
π(i, j − 1)
π(i, j) =

∑i−1
k=0

(
i
k

)
(1 − λ)k

(
j−2

i−k−1
)
λ2(i−k)(1 − λ)j−1−(i−k)∑i−1

k=0
(
i
k

)
(1 − λ)k

(
j−1

i−k−1
)
λ2(i−k)(1 − λ)j−(i−k)

= 1
1 − λ

∑(
i
k

)(
j−1

i−k−1
) (

j−i+k
j−1

) ( 1−λ
λ

)2k
∑(

i
k

)(
j−1

i−k−1
) ( 1−λ

λ

)2k
= 1

1 − λ

∑(
i
k

)(
j−1

i−k−1
) (

j−i
j−1

) ( 1−λ
λ

)2k +
∑(

i
k

)(
j−1

i−k−1
) (

k
j−1

) ( 1−λ
λ

)2k
∑(

i
k

)(
j−1

i−k−1
) ( 1−λ

λ

)2k
= 1

1 − λ

j − i

j − 1 + 1
1 − λ

1
j − 1

∑
k
(
i
k

)(
j−1

i−k−1
) ( 1−λ

λ

)2k∑(
i
k

)(
j−1

i−k−1
) ( 1−λ

λ

)2k
= 1

1 − λ

j − i

j − 1 + 1
1 − λ

1
j − 1E(X) < 1

1 − λ

j − i

j − 1 + 1,

where X ∼ Hyper(M1 = i − 1, M2 = j, N1 = i, N2 = j − 1, θ =
( 1−λ

λ

)2). The last inequality above comes 
from Lemma 5.9. �
6. Appendix

We now go on to prove Lemmas A and C, as well as selected sublemmas for the complete proof of B and 
the persistent analogue to the Overshooting Lemma in [32].

6.1. Lemma A

Proof of Lemma A. Assume that h ≥ 2 and k ≥ 1, and let n = h −2 and � = k−1. Note that π(k, h −1 −k)
can be interpreted as the probability that the walk leaves an arbitrary site k times to the left before visiting it 
a total of h times, given that the site’s hth visit from the walk came from the left side. For each m ∈ N, define 
Km to be the number of downcrossings from the site given m visits to the site. We can write Km =

∑m
t=1 Jt

such that for each t, Jt = 1 if the tth visit to the site is immediately followed by a downcrossing and Jt = 0
otherwise. For the persistent walk, it is clear that {Jt}∞t=1 is a Markov chain on the state space {0, 1} with 
P (Jt = 0|Jt−1 = 0) = P (Jt = 1|Jt−1 = 1) = 1 − λ and P (Jt = 0|Jt−1 = 1) = P (Jt = 1|Jt−1 = 0) = λ. It 
can also be shown easily that the {Jt}∞t=1 is stationary with uniform stationary distribution μ ≡ 1

2 .
Using this new notation, we have the following:

π(k, h− 1 − k) = P (Kn+1 = k|Jn+1 = 1) = P (Kn = �) .

Thus, ∑
k:|h−2k|>h1/2+ε

π(k, h− 1 − k) = P
(
|n− 2Kn| > (n + 2)1/2+ε

)
. (24)

We now seek for an upper bound for the right-hand side of (24). To accomplish this, we use a functional 
central limit theorem for Markov chains from [18]. Let f : {0, 1} → R be defined as f(x) = x. Then 
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Eμf :=
∫
{0,1} f(x)μ(dx) = 1

2 and Eμf
2 = 1

2 < ∞. Also, since {Jt}∞t=1 is a finite Markov chain, it is 
uniformly ergodic. Thus, by Theorem 9 in [18], we get the following weak convergence as m → ∞:

√
m

(
1
m

m∑
t=1

Jt − Eμf

)
=

Km − m
2√

m
⇒ N(0, σ2

f ),

where N(0, σ2
f ) is a normal distribution with mean 0 and variance σ2

f > 0. Using this central limit theorem, 
we can show that, for any γ < 1/2, E

(
exp{γ (2Km −m)2 /m}

)
converges as m → ∞. Hence,

sup
m

E
(
exp{γ (2Km −m)2 /m}

)
< ∞.

Using (24) and Markov’s inequality, we finally arrive at our result. �
6.2. Overshooting lemma

Before proving the remaining lemmas, we first want to establish a rather important result in the study of 
favorite sites of the simple walk for the case of the persistent walk. It was shown in [32] that the probabilities 
of the Markov chains Yt and Zt going past a threshold point by a given amount, conditioned on the processes 
reaching the threshold for the first time at this instant, is comparable to the probability that the Markov 
chain achieves the same amount of overshoot conditioned on the threshold being reached on the very first 
step. This allows one to find simple asymptotic bounds for the conditional moments of Yt and Zt, essential 
for the application of optional stopping theorems in the proofs for Lemmas B-E.

Here, we obtain the analogous result for the persistent case.

Lemma 6.1 (Overshooting Lemma). For any 0 ≤ k < h ≤ u the following overshoot bounds hold:

P (Yσh
≥ u|Y0 = k, σh < ∞) ≤ P (Y1 ≥ u|Y0 = h, Y1 ≥ h) =

∑∞
v=u π(h, v)∑∞
w=h π(h,w)

,

P (Zτh ≥ u|Z0 = k) ≤ P (Z1 ≥ u|Z0 = h, Z1 ≥ h) =
∑∞

v=u ρ(h, v)∑∞
w=h ρ(h,w)

.

Proof. For 1 ≤ h ≤ u,

P (Yσh
≥ u|Y0 = k, σh < ∞) =

h−1∑
l=0

P (Yσh−1 = l|Y0 = k, σh < ∞)
∑∞

v=u π(l, v)∑∞
w=h π(l, w)

,

P (Zτh ≥ u|Z0 = k) =
h−1∑
l=0

P (Zτh−1 = l|Z0 = k)
∑∞

v=u ρ(l, v)∑∞
w=h ρ(l, w)

.

Note that if the ratios of the right-hand side are bounded above by the case in which l = h, we’d get 
our desired inequalities, since the probabilities of the right-hand side partition their respective conditioned 
event. It is then enough to show that the ratios on the right-hand side are increasing in l.

Observe the following relations for π(l, v):

π(l, v)π(l + 1, v + 1) − π(l + 1, v)π(l, v + 1)

= π(l, v) · (π(1, ·) ∗ π(l, ·))(v + 1) − π(l, v + 1) · (π(1, ·) ∗ π(l, ·))(v)
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= (1 − λ)π(l, v)π(l, v + 1) +
v+1∑
j=1

λ2(1 − λ)j−1π(l, v + 1 − j)π(l, v)

− (1 − λ)π(l, v)π(l, v + 1) −
v∑

j=1
λ2(1 − λ)j−1π(l, v − j)π(l, v + 1)

= λ2(1 − λ)vπ(l, 0)π(l, v)

+
v∑

j=1
λ2(1 − λ)j−1(π(l, v + 1 − j)π(l, v) − π(l, v − j)π(l, v + 1)).

The terms in the sum of the last line are nonnegative, by the log-concavity of π(l, ·). Thus, π(l+1,v)
π(l,v) ≤

π(l+1,v+1)
π(l,v+1) . Similarly, ρ(l+1,v)

ρ(l,v) ≤ ρ(l+1,v+1)
ρ(l,v+1) .

So, for all v < w,

π(l, v)π(l + 1, w) ≥ π(l + 1, v)π(l, w),

ρ(l, v)ρ(l + 1, w) ≥ ρ(l + 1, v)ρ(l, w).

Hence, for all 0 ≤ l < h ≤ u,

∞∑
v=h

π(l, v)
∞∑

w=u

π(l + 1, w) ≥
∞∑

v=h

π(l + 1, v)
∞∑

w=u

π(l, w),

∞∑
v=h

ρ(l, v)
∞∑

w=u

ρ(l + 1, w) ≥
∞∑

v=h

ρ(l + 1, v)
∞∑

w=u

ρ(l, w).

Thus, 
{∑∞

w=u π(l, w)∑∞
v=h π(l, v)

}h

l=0
is an increasing sequence, and so is 

{∑∞
w=u ρ(l, w)∑∞
v=h ρ(l, v)

}h

l=0
. This completes the 

proof. �
Using the Overshooting Lemma, we obtain the following set of inequalities, which are necessary for the 

complete proofs of Lemmas B-E:

Corollary 6.2. There exist constants C1, C2, C3 and C4 such that for any 0 ≤ k < h,

E (Yσh
|Y0 = k, σh < ∞) ≤

∑∞
v=h π(h, v)v∑∞
w=h π(h,w)

≤ h + C1h
1/2,

E
(
Y 2
σh
|Y0 = k, σh < ∞

)
≤

∑∞
v=h π(h, v)v2∑∞
w=h π(h,w)

≤ h2 + C2h
3/2,

E (Zτh |Z0 = k) ≤
∑∞

v=h ρ(h, v)v∑∞
w=h ρ(h,w)

≤ h + C3h
1/2,

E
(
Z2
τh
|Z0 = k

)
≤

∑∞
v=h ρ(h, v)v2∑∞
w=h ρ(h,w)

≤ h2 + C4h
3/2.

6.3. Sublemmas to Lemma B

While we will not entirely prove Lemma B, we would like to discuss the analogues to side-lemmas found 
in [32] which are important to the full proof of Lemma B. There are enough differences in the persistent 
case to warrant a brief discussion.
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We first state the following inequality on the tail probabilities of sums of i.i.d. random variables, which 
is proven in [36].

Sublemma 6.3 (Exponential Kolmogorov Inequality). Let ξj, j ≥ 1, be i.i.d. random variables with 
E
(
eθ|ξj |

)
< ∞ for some θ > 0 and E(ξj) = 0. Then for any N > 0 and n ∈ N,

P

(
max

1≤j≤n

∣∣∣∣∣
j∑

i=1
ξj

∣∣∣∣∣ > N

)
≤ e−θN

(
E
(
eθξj

)n + E
(
e−θξj

)n)

Let ξj = ζj − 1, where P (ζj = x) =
{

1 − λ if x = 0
λ2(1 − λ)x−1 if x ≥ 1

. Then, for any t,

E(etξ1) = (1 − λ)e−t + λ2

1 − (1 − λ)et

= (1 − λ)e−t − 1 + 2λ
1 − (1 − λ)et

= 2e−t − e−2t − 2(1 − λ) + (1 − λ)e−t + e−2t − 2e−t + 1
1 − (1 − λ)et

= 2e−t − e−2t + e−2t − 2e−t + 1
1 − (1 − λ)et .

Note that for fixed t, the formula in the final line decreases with an increase in λ, so for λ ∈ [ 12 , 1), 
E(etζ1) is maximized at λ = 1

2 , which is the simple walk case. So, by [32], assuming that λ ∈
[1

2 , 1
)
, there 

is a constant θ0 > 0 such that for all θ ∈ [0, θ0), E(eθξ1) < e2θ2 and E(e−θξ1) < e2θ2 . Using the Exponential 
Kolmogorov Inequality and choosing θ = N/(4n), we obtain the following analogue to Side-Lemma 2 
in [32]:

Sublemma 6.4. There is a constant θ0 such that N/(4n) < θ0 implies

P
(

max
1≤j≤n

∣∣∣ j∑
i=1

(ζi − 1)
∣∣∣ > N

)
≤ 2 exp(−N2/(8n)).

6.4. Lemma C

In order to prove Lemma C, we need the following sublemma:

Sublemma 6.5. There exists a constant C s.t. for any h ≥ 1 and � ∈
[
h−h1/2+ε

2 , h+h1/2+ε

2

]
,

π(�, h− �)∑
m≥h−� π(�,m) < Ch−1/2+ε

Proof. We make use of the inequalities found in Corollary 5.5. We shall split this proof into two cases. 
First, assume � ∈

[
h
2 ,

h+h1/2+ε

2

]
. Then � > h − �. Let {ζk}�k=1 be a set of i.i.d. random variables with the 

same distribution as in (6). Recall that E(ζk) = 1 and Var(ζk) = 21−λ
λ . Let σ2 = Var(X), and let Φ be the 

standard normal cdf. Then
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π(�, h− �) ≤ π(�, �− 1) = P

(
�∑

k=1

ζk = �− 1
)

= lim
t→1−

P

(
�∑

k=1

ζk ≤ �− 1
)

− P

(
�∑

k=1

ζk ≤ �− t

)

= lim
t→1−

P

(∑�
k=1(ζk − 1)√

�σ
≤ − 1√

�

)
− P

(∑�
k=1(ζk − 1)√

�σ
≤ − t√

�

)

≤ lim
t→1−

Φ
(
− 1√

�σ

)
− Φ

(
− t√

�σ

)
+ C1√

�
= C1√

�
.

The last inequality above comes from the Berry-Esseen inequality. By the central limit theorem applied to 
{ζk}∞k=1, lim�→∞

∑
m≥� π(�, m) = 1

2 . So there is a constant C2 > 0 s.t.

∑
m≥h−�

π(�,m) ≥
∑
m≥�

π(�,m) ≥ C2.

By these inequalities, we have our result for � ∈
[
h
2 ,

h+h1/2+ε

2

]
.

We now continue with the � ∈
[
h−h1/2+ε

2 , h
2

]
case for the proof of the lemma. Note that � < h − �. 

Let k = 
h − � + h1/2−ε�. Then we get the following inequalities, which will be described in more detail 
below:

π(�, h− �)∑
m≥h−� π(�,m) ≤ (k − h + � + 1)−1π(�, h− �)

π(�, k)

≤ (k − h + � + 1)−1
(
π(�, k − 1)
π(�, k)

)k−h+�

< (k − h + � + 1)−1
(

1 + 1
1 − λ

k − �

k − 1

)k−h+�

≤ h−1/2+ε

(
1 + 1

1 − λ

h1/2+ε + h1/2−ε

h/2 + h1/2−ε − 1

)h1/2−ε

≤ h−1/2+ε

(
1 + 2

1 − λ
h−1/2+ε

)h1/2−ε

≤ exp
(

2
1 − λ

)
h−1/2+ε.

The first inequality comes from Corollary 5.5. The second comes from the log-concavity of {π(�, j)}. 
The third is Lemma 5.10. The fourth used k ≤ h − � + h1/2−ε and � ≥ (h − h1/2+ε)/2. The fifth is due 
to the convergence of the base of the exponent above, as well as the monotonicity of that convergence. 
The final inequality relies on the exponential convergence of the power, as well as the monotonicity of that 
convergence. �
Proof of Lemma C. We provide details of the proof of the first inequality and leave the similar details of 
the second inequality for the reader. First, observe that

P (σ̃h < ∞, Ỹσ̃h
= h|Y0 = k)

=
∞∑
�=0

P (σ̃h < ∞, Yσ̃h−1 = �, Yσ̃h
= h− �|Y0 = k)
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We split the infinite sum above into two sums, one for values of � inside the interval 
[
h−h1/2+ε

2 , h+h1/2+ε

2

]
and the other for values of � outside the interval. For the first sum, we use Sublemma 6.5 to obtain∑

�:|h−2�|≤h1/2+ε

P (σ̃h < ∞, Yσ̃h−1 = �, Yσ̃h
= h− �|Y0 = k)

=
∑

�:|h−2�|≤h1/2+ε

P (σ̃h < ∞, Yσ̃h−1 = �|Y0 = k) π(�, h− �)∑∞
m=h−� π(�,m)

≤ Ch−1/2+ε.

For the second sum, we use Lemma B to obtain∑
�:|h−2�|>h1/2+ε

P (σ̃h < ∞, Yσ̃h−1 = �, Yσ̃h
= h− �|Y0 = k)

P (Mh > h1/2+ε|Y0 = k) < C exp(−γh2ε).

Therefore, we arrive at the result. �
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