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Predation-driven Allee effects play an important role in the dynamics of a small prey 
population; however, such effects cannot occur for the model with type I functional 
response. Predator-driven Allee effects generally occur when a generalist predator 
targets some specific prey. However, apart from the lethal effects of predation, there 
are some non-lethal effects in the presence of a predator. Due to the fear of predation, 
positive density dependence growth of prey may be observed at low population 
density because of reduced foraging activities. Moreover, such a non-lethal effect 
can be carried over through generations or seasons. In the present manuscript, we 
investigate the role of predation fear and its carry-over effects in the prey-predator 
model. First, we study the single-species model from a global perspective. We have 
shown that depending on the birth rate; our single-species model describes three 
types of growth dynamics, namely, strong Allee dynamics, weak Allee dynamics, 
and logistic dynamics. Then we include the explicit dynamics of the predator, with 
type I functional response. Basic dynamical properties, as well as the global stability 
of each equilibrium, have been discussed. From our analysis, we can observe that 
both the fear and its carry-over effects have a significant role in the stability of 
the coexistence equilibrium, even for the model with type I functional response. 
The phenomenon ‘paradox of enrichment’ can be observed in our model, which 
cannot be observed in the classical prey-predator model with type I functional 
response. However, we can see that such a phenomenon can be ruled out by choosing 
suitable non-lethal effect parameters. Therefore, our study shows how non-lethal 
effects change the dynamics of a prey-predator model and has powerful biological 
insights, especially for understanding the dynamics of small populations.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

Allee effect is a positive density-dependence phenomenon defined as the positive relationship between 
population density and per capita growth rate (pgr) at low population density [1,7]. In contrast to the 
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logistic dynamics, Allee effects play an essential role in the extinction of small populations. There are a 
number of mechanisms for which Allee effects have been observed, such as mate limitation, cooperative 
defense, cooperative feeding, environmental conditioning, inbreeding depression, demographic stochasticity, 
etc. [7,50,23,11,26]. Apart from the above mechanisms, predator-driven Allee effects also can be observed in 
nature. Though predator-driven Allee effects are limited as predator population declines, prey population 
also declines - leading to the negative density dependence growth. It can be observed for some specific 
type of functional response, such as Holling type II functional response [7,17,24]. However, here we will 
investigate the occurrence of Allee effects for Holling type I functional response in the presence of non-lethal 
effects of predation. Due to the considerable impact of Allee effects, it seeks significant attention among 
theoretical ecologists in several aspects, like population ecology [7,11,12,45,46], biological invasion [14,26,51], 
eco-epidemiology [13,22,44], etc.

Apart from the direct killing, which is widely observed in nature, many preys modify their traits in 
response to the predation risk. These modified traits could be related to behavior, morphology, life history 
of prey. To avoid predation, prey shows various anti-predator behaviors, e.g., habitat changes, reduced 
foraging activities, vigilance, some physiological changes, etc. [9]. Such effects are known as a trait-mediated 
indirect effect, as such effect arising from predator’s influence on prey traits rather than arising from prey 
densities. Such non-lethal predator effects could be immediate and can influence the entire prey population 
over the entire lifetime. It can be argued that non-lethal effects are important and are needed to consider 
in population ecology only when it is large compared to direct density-dependent effects. However, it may 
not be the case even when the predation rate is high. Many authors suggest that such indirect effects could 
be equivalent or more influential compared to density effects (direct predation) [8,9,39]. This argument was 
supported by the experimental data from prey-predator interaction of larval dragonfly - Anax sp. (predator) 
and bullfrog tadpoles - Rana catesbeiana (prey) [36]. Some recent studies showed that among such anti-
predator responses, fear of predation could play an important role as direct predation effect in prey-predator 
models [54,53,43]. Due to the predation fear, scared prey forages less, as well as it leads to some stress-
related physiological changes, which impact reproduction success [8,48,15]. For example, birds flee from 
their nests in response to their predators sound as an anti-predator response [8,9]. Though such an anti-
predator response may be instantly beneficial as it increases adult survival, however, as a long-term cost, it 
reduces the reproduction rate [9]. Zanette et al. [54] experimentally showed the 40% reduction in offspring 
production of prey (song sparrows - Melospiza melodia) due to predation fear by providing predatory sound 
only and without direct killing. They showed that this reduction is due to anti-predator behavior, which 
affects the reproduction of song sparrows. Therefore, for the free-living wildlife population, incorporation of 
non-lethal trait-mediated indirect effect by predation fear is important. Moreover, as density declines, prey 
individuals are more vigilant and less foraging. Therefore, such a non-lethal effect could be a cause of Allee 
effects and increases the extinction risk of small populations [6,29].

The ‘carry-over effect’ originally started from recurrent measures of clinical experiments. However, re-
cently it has been used in ecological and evolutionary aspects and can be used for a broad range of situations. 
O’Connor et al. [35] proposed the following working definition for carry-over effects: “In an ecological context, 
carry-over effects occur in any situation in which an individual’s previous history and experience explain 
their current performance in a given situation”. In view of the above definition, carry-over effects are not 
restricted to the seasonal requirement, discrete-time scale, migration, etc. [27,34], which was previously con-
sidered. It should be considered as a more general phenomenon, which allows us to identify in a broad range 
of situations, like, within and across life-history stages, seasons, years, etc. Under this definition, life-history 
trade-offs and reproduction costs can be viewed as special types of carry-over effects. Moreover, some lab 
experiments showed that non-lethal carry-over effects have an impact on long-term population dynamics 
[3,4]. Carry-over effects can occur across multiple seasons or within a single season (e.g., transitions between 
physiological states within a season). Experimental evidences of carry-over effects within a single season and 
over short time periods are observed in insects [10], amphibians [52], marine fish [21], and marine inverte-
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brates [27], etc. Due to the above reasons, the study on ecological carry-over effects has been increasing in 
mathematical modeling studies [31,42,33], as well as in empirical research [32,20,25,49]. Therefore, integrat-
ing the research on carry-over effects, with a potential connection between life-history trade-offs and cost 
of reproduction, will improve our understanding of the factors affecting population dynamics in nature.

Betini et al. [3] introduced an experimental model system of Drosophila to study the sequential density 
dependence and carry-over effects and used a simple Ricker map with season-specific parameters. On the 
other hand, Elliott et al. [16] investigated the role of fear in relation to fitness and population density 
by considering a prey-predator system of Drosophila melanogaster (prey) and mantid (predator), both in 
breeding and non-breeding seasons. They used the experimental results to parameterize a bi-seasonal Ricker 
map and provided evidence that the indirect effect of the predator can be a cause of the Allee effect, which 
is very important to understand the dynamics of a small population. Motivated from the above discussion, 
we develop and analyze continuous-time population models to investigate the cost of predation fear and 
its carry-over effects in prey-predator interaction with Holling type I functional response. The objectives 
of our study are to answer the following questions: (i) How these non-lethal effects (cost of predation fear 
and its carry-over effects) change the growth dynamics of the prey population? (ii) How the phenomenon 
‘paradox of enrichment’ can be observed for our model, and under which condition can it be ruled out? (iii)
What is the role of non-lethal effects on the stability of the coexistence equilibrium? (iv) What is the global 
dynamical behavior of our proposed model? The remainder of the paper is organized as follows: In Section 2, 
we formulate and analyze a single species population model with fear and its carry-over effects. We find the 
global dynamical behavior of our proposed single species model and show how growth dynamics changes 
depending on the parameter values. In Section 3, we include the explicit dynamics of predator population, 
with Holling type I functional response. Basic dynamical properties, as well as global stability of equilibria, 
are provided in this section. Moreover, the existence and stability of Hopf-bifurcation are also provided in 
this section. Some numerical simulation results are shown in Section 4. In Section 5, we discuss our results 
and findings and provide some potential future directions. Some detailed proofs of our analytical findings 
are given in Section 6.

2. Single species model with fear and carry-over effects

First, we consider prey growth follows the logistic dynamics, which can be split into three parts, birth, 
natural death, and death due to intra-prey competition. Thus in the absence of a predator, a single species 
population model is given by the following ODE:

dx
dt = rx− d1x− d2x

2, (2.1)

where x is the density of prey, whose maximum birth rate is r in the absence of predation. d1 is the natural 
death rate, and d2 is the density-dependent death rate of prey. Next, we consider a single species (prey) 
population model with a generalist predator, at constant density y. Here, we neglect direct predation. We 
develop and analyze a single species population model with fear and carry-over effects which is given by

dx
dt = rx︸︷︷︸

birth

1 + cx

1 + cx + fy︸ ︷︷ ︸
fear and carry-over effect

−d1x− d2x
2 = x

[
r(1 + cx)

1 + cx + fy
− d1 − d2x

]
︸ ︷︷ ︸

per capita growth rate

≡ xΘ(x).
(2.2)

Here c is the carry-over effect parameter due to fear, quantified by the parameter f . In the Model (2.2), if 
f = 0 (i.e., if there is no growth-rate reduction due to predation fear), then the model will be simply logistic 
dynamics (2.1). If c = 0, then model is reduced to the single species model with only fear effect which has 
been studied in [53,47].
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Note: Here the factor Ψ(c, f, x, y) = 1+cx
1+cx+fy , which is related to fear and its carry-over effects, satisfies 

all the following six properties related to fear [53,43].

(i) Ψ(c, 0, x, y) = 1, (ii) Ψ(c, f, x, 0) = 1

(iii) limf→∞ Ψ(c, f, x, y) = 0, (iv) limy→∞ Ψ(c, f, x, y) = 0

(v) ∂
∂f Ψ(c, f, x, y) < 0, and (vi) ∂

∂yΨ(c, f, x, y) < 0.

In addition, the factor Ψ(c, f, x, y) satisfies the following five properties related to carry-over effects.

(a) ∂
∂cΨ(c, f, x, y) = fxy

(1+cx+fy)2 > 0: as c increases, reproduction of prey increases. Here we consider 
carry-over effects impact is positive (due to learning from previous experiences).

(b) ∂
∂xΨ(c, f, x, y) = cfy

(1+cx+fy)2 > 0: as density of prey increases, reproduction of prey increases.

(c) limx→∞ Ψ(c, f, x, y) = 1: if prey population is very large, then no reduction in prey reproduction due 
to anti-predator behavior exists.

(d) limc→∞ Ψ(c, f, x, y) = 1: if carry-over effect is very large, then no reduction in prey reproduction 
exists.

(e) Ψ(0, f, x, y) = 1
1+fy : model reflects only fear effect [53,43].

Lemma 2.1. The solution of system (2.2) is uniformly ultimately bounded in R+ with

lim
t→∞

x(t) ≤ r − d1

d2
,

when r ≥ d1.

Here, System (2.2) can exhibit Allee effects depending on the parameters r, c, f , d1, d2, and when 
Θ′(0) > 0. The Allee effect will be weak if population of (2.2) persists with Θ(0) > 0 and strong if there 
exists a threshold density (Allee threshold) below which population of (2.2) goes to extinction and above 
which population persists for Θ(0) < 0. Moreover, when Θ′(0) < 0 or any one of the parameters f and c is 
zero (or both) then the system (2.2) shows logistic dynamics.

System (2.2) always has the extinction equilibrium x0 = 0. Other equilibria of the System (2.2) are roots 
of the quadratic equation

Φ(x) ≡ cd2x
2 + [c(d1 − r) + d2(1 + fy)]x + [d1 − r + d1fy] = 0. (2.3)

We rename the coefficients of the above equation as

Ω1 = c(d1 − r) + d2(1 + fy) and Ω2 = d1 − r + d1fy.

Denote the roots of the above equation by

x1,2 = −Ω1 ±
√

Δ
2cd2

,

where

Δ = Ω2
1 − 4cd2Ω2 = [c(d1 − r) + d2(1 + fy)]2 − 4cd2 [d1 − r + d1fy] . (2.4)



Here, x1 > x2 (when both the roots are real, i.e., when Δ > 0). Further we note that Θ(x) < 0 for any 
x > 0, when r ≤ d1. Hence, x(t) → 0 as t → ∞, when r ≤ d1. No other non-negative equilibrium exists in 
this case, except x0 = 0, which is globally asymptotically stable. Hereafter, we assume that r > d1.

Depending on the number of roots of the quadratic equation (2.3), we have the following three cases:

1. (2.3) has no positive solution in the following two cases:

(i) Ω1 ≥ 0 and Ω2 ≥ 0, (ii) Ω1 < 0 and Δ < 0

2. (2.3) has unique positive solution in the following three cases:

(i) Ω2 < 0, (ii) Ω1 < 0 and Ω2 = 0, (iii) Ω1 < 0 and Δ = 0.

3. (2.3) has two positive solutions if

Ω1 < 0,Ω2 > 0 and Δ > 0.

Following theorem summarizes the existence and stability of all equilibria for the Model (2.2).

Theorem 2.1 (Existence and stability of equilibria for Model (2.2)).

1. The System (2.2) has only the trivial extinction equilibrium x0 = 0, if any of the following two conditions 
holds:

(i) r ≤ min
{
d1(1 + fy), d1 + d2(1+fy)

c

}
(see Fig. 1(a)).

(ii) r > d1 + d2(1+fy)
c and Δ < 0 (see Fig. 1(b)).

In this case the equilibrium x0 = 0 is globally asymptotically stable.

2. The System (2.2) has two non-negative equilibria, namely, the trivial extinction equilibrium x0 = 0, and 
a non-trivial equilibrium, if any of the following three conditions holds:

(i) If r > d1(1 +fy), then (2.2) has unique positive equilibrium point x1. Here, x0 is always unstable 
and x1 is globally asymptotically stable (see Fig. 1(c)).

(ii) If r = d1(1 +fy) > d1+d2(1+fy)
c , then (2.2) has unique positive equilibrium x3 = c(r−d1)−d2(1+fy)

cd2
. 

Here also x0 is unstable and x3 is globally asymptotically stable (see Fig. 1(d)).

(iii) If r > d1 + d2(1+fy)
c and Δ = 0, then (2.2) has one positive equilibrium x4 = c(r−d1)−d2(1+fy)

2cd2

of order two. Here, x0 is locally asymptotically stable and x4 is a saddle (see Fig. 1(e)).

3. The System (2.2) has three non-negative equilibria, namely, the trivial extinction equilibrium x0, and two 
non-trivial equilibria x1 and x2, if d1 + d2(1+fy)

c < r < d1(1 + fy) and Δ > 0. Here, both the equilibria 
x0 and x1 are locally asymptotically stable, and x2 is always unstable (see Fig. 1(f)).

Where Δ is defined in (2.4).

Note: Under conditions of Theorem (2.1) part 1(i) and 1(ii), pgr (per capita growth rate) of the Model 
(2.2) is always negative, (Θ(x) < 0 for all x > 0), i.e., as a whole pgr lies below the density axis. In this case 
S.K. Sasmal, Y. Takeuchi / J. Math. Anal. Appl. 505 (2022) 125485 5
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Fig. 1. Existence of equilibria and their stability for the Model (2.2). Green dots ( ) are globally stable equilibria, red dots ( ) are 
unstable equilibria, yellow dots ( ) are locally stable equilibria, and blue arrows ( ) are the flow direction. The fixed parameters 
are f = 1, c = 1, y = 1, d1 = 1, d2 = 0.25. (For interpretation of the colors in the figure(s), the reader is referred to the web 
version of this article.)
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Fig. 2. Bifurcation diagram of our Model (2.2), with respect to the parameter r. Saddle-node bifurcation occurs at r = 1.866 (black 
dot-dashed line) and transcritical bifurcation occurs at r = 2 (black dashed line). All the other parameters are fixed at f = 1, 
y = 1, c = 1, d1 = 1, and d2 = 0.25.

Table 1
Type of growth dynamics and parameter constraints for the Model (2.2).

Type of growth dynamics Parameter constraints

Weak Allee dynamics r > max
{
d1(1 + fy), d2(1+fy)2

cfy

}
Strong Allee dynamics max

{
d1 + d2(1+fy)

c , d2(1+fy)2

cfy

}
< r < d1(1 + fy) and Δ > 0 (2.4)

Logistic dynamics r < d2(1+fy)2

cfy or c = 0 or f = 0

population declines and eventually goes extinct, no matter how large the population is, which is known as 
“fatal Allee effects” (Figs. 1(a) and 1(b)) [7].

In the following lemma, we discuss the possible bifurcation points for the System (2.2).

Lemma 2.2 (Saddle-node and transcritical bifurcations). When the Model (2.2) parameters are such that 
Δ = 0, then a saddle-node bifurcation occurs at the positive equilibrium point x4. Moreover, when Ω2 = 0, 
i.e., r = d1(1 + fy), then Model (2.2) experiences a transcritical bifurcation at the positive equilibrium x3.

The saddle-node bifurcation and transcritical bifurcation have shown in the Fig. 2.
For the Model (2.2), the pgr is given by Θ(x) and Θ′(x) = rcfy

(1+cx+fy)2 − d2. Therefore, according to the 

previous discussion, Model (2.2) may show Allee dynamics if Θ′(0) > 0, i.e., if r > d2(1+fy)2
cfy . Therefore, our 

model (2.2) shows three types of growth dynamics, which is summarized in the Table 1.

• If r > d1(1 +fy), then the population of species is persistent in R+. Moreover, Θ(0) ≥ 0 if r ≥ d1(1 +fy). 
Therefore, the Model (2.2) shows weak Allee dynamics (Fig. 3(a)) if

r > max
{
d1(1 + fy), d2(1 + fy)2

cfy

}
.

• If d1 + d2(1+fy)
c < r < d1(1 + fy) and Δ > 0, then the population of species is persistent in R+\[0, x2), 

and goes to extinction otherwise. Since Θ(0) < 0 if and only if r < d1(1 + fy). The Model (2.2) shows 
strong Allee dynamics (Fig. 3(b)) if the following conditions hold
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Fig. 3. Other parameters are fixed as y = 1, d1 = 1 and d2 = 0.25. Dashed line represents the x − axis (i.e., when PGR is zero).

max
{
d1 + d2(1 + fy)

c
,
d2(1 + fy)2

cfy

}
< r < d1(1 + fy) and Δ > 0.

Here, x2 is known as Allee threshold. Population will persist if initial population density is above x2, 
otherwise it goes extinction.

• Moreover, if r < d2(1+fy)2
cfy , then the System (2.2) shows logistic growth dynamics (Fig. 3(c)). Also, if 

f = 0 or c = 0 (or both are zero), then also equation (2.2) shows logistic growth dynamics (Fig. 3(d)).

Remark 2.1. In this section, we do not consider the predator dynamics explicitly. We only consider the 
constant predator population, without predation term. However, the qualitative properties of the Model 
(2.2), will be the same for constant predator population model with Holling type I functional response. In 
fact, we rewrite the model as,

dx

dt
= rx

1 + cx

1 + cx + fy
− d1︸︷︷︸ x− d2x

2 − axy︸︷︷︸

constant death type-I response
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= rx
1 + cx

1 + cx + fy
− (d1 + ay)︸ ︷︷ ︸

constant death

x− d2x
2.

In the next section, we will discuss the dynamics in the presence of predator population explicitly, with 
Holling type-I functional response.

3. Predator-prey model with type - I functional response

In this section, we study a prey-predator model with fear and carry-over effects with linear functional 
response (Holling type-I). Thus, our two-species prey-predator model becomes,

dx
dt = rx(1+cx)

1+cx+fy − d1x− d2x
2 − axy

dy
dt = aαxy −my.

(3.1)

Here, a is the rate of predation, α is the conversion efficiency from prey biomass to predator biomass and m
is the natural death rate of predator population. In the following theorem we summarize the basic dynamical 
properties of the Model (3.1).

Lemma 3.1 (Positivity and boundedness of solutions for Model (3.1)). For the System (3.1), the set R2
+

is positively invariant. Moreover, the System (3.1) is dissipative, i.e., every solution of (3.1) is ultimately 
bounded in R2

+, with the following properties

limt→∞ supx(t) ≤ r−d1
d2

limt→∞ sup
[
x(t) + 1

αy(t)
]

≤
{ r−d1

d2
if m>r−d1

(r−d1+m)2
4d2m if m≤r−d1.

The Model (3.1) always has the trivial extinction equilibrium E0 = (0, 0). Apart from this, it has the 

boundary equilibrium (or prey only equilibrium) E1 =
(

r−d1
d2

, 0
)
, under the condition r > d1. Moreover, 

there exists a unique interior equilibrium E∗ = (x∗, y∗) =
(
m
aα , y∗

)
where y∗ is the root of the quadratic 

equation

Γ0y
2 + Γ1y + Γ2 = 0,

where

Γ0 = a3α2f

Γ1 = aα [a(aα + cm) + f(d1aα + d2m)]
Γ2 = (aα + cm)(d1aα + d2m− raα).

The above equation has unique real positive root

y∗ = −[a(aα+cm)+f(d1aα+d2m)]+
√

[a(aα+cm)−f(d1aα+d2m)]2+4a2αrf(aα+cm)
2a2αf , (3.2)

iff raα > d1aα + d2m i.e., iff r > d1 + d2m
aα . (3.3)

Remark 3.1. When the prey and predator population coexists at E∗, the density of prey population does 
not depend on any of the parameters, cost of predation fear (f) and carry-over effect (c). However, the 
density of predator population depends on both the parameters. We have,
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∂y∗
∂f = −

(aα+cm)
[
a(aα+cm)−f(d1aα+d2m)+2aαrf−

√
[a(aα+cm)−f(d1aα+d2m)]2+4a2αrf(aα+cm)

]
2aαf2

√
[a(aα+cm)−f(d1aα+d2m)]2+4a2αrf(aα+cm)

. (3.4)

Now, it is easy to prove that the numerator of (3.4) is positive, iff r > d1 + d2m
aα , which is the existence 

condition of y∗. Thus, ∂y∗
∂f < 0, i.e., at the coexistence state, as we increase the cost of fear, the density of 

predator population decreases.
Similarly, we have

∂y∗
∂c = −

m
[√

[a(aα+cm)−f(d1aα+d2m)]2+4a2αrf(aα+cm)−a(aα+cm)+f(d1aα+d2m)−2aαrf
]

2a
√

[a(aα+cm)−f(d1aα+d2m)]2+4a2αrf(aα+cm)
. (3.5)

Again, it is easy to prove that the numerator of (3.5) is negative, iff r > d1 + d2m
aα , which is the existence 

condition of y∗. Thus, ∂y∗
∂c > 0, i.e., at the coexistence state, as we increase the carry-over effect, the density 

of predator population increases.

The following theorem describes the local stability of all three equilibria.

Theorem 3.1 (Local stability of equilibria for Model (3.1)).

1. The extinction equilibrium E0 is locally asymptotically stable if r < d1, and a saddle otherwise.
2. The prey-only equilibrium E1 is locally asymptotically stable if the condition (3.3) is reversed and a saddle 

when the condition (3.3) is satisfied.
3. The coexistence equilibrium E∗ is locally asymptotically stable if r < d2(aα+cm+aαfy∗)2

a2α2cfy∗
, where y∗ is 

defined in (3.2).
Moreover, if d1 + d2m

aα < r < 4d2(aα+cm)
aαc , then the coexistence equilibrium E∗ is always locally asymp-

totically stable.

The following theorems give the additional stability properties for the coexistence equilibrium.

Theorem 3.2. If r < rc, then the coexistence equilibrium E∗ is always locally asymptotically stable. Fur-
thermore, if r > rc, then the sufficient condition for the local stability of the coexistence equilibrium E∗ is 
f < fc, where rc and fc are given by

rc = c(aα+cm)(d1aα+d2m)+
√

c(aα+cm)(d1aα+d2m)[c(aα+cm)(d1aα+d2m)+4a2α2d2]
2aαc(aα+cm) ,

fc = a2αd2[aαd2+rc(aα+cm)]
rc[aαr2c(aα+cm)−rc(aα+cm)(d1aα+d2m)−aαd2(d1aα+d2m)] .

Remark 3.2. If r < rc, then the condition (6.2) is always satisfied, i.e., when r is small (smaller than rc), 
the fear parameter f has no role in the coexistence equilibrium stability. In other words, if

d1 + d2m

aα
< r < rc,

then the equilibrium E∗ is always locally asymptotically stable. The stability of E∗ will not change if the 
birth rate of prey is not large enough to support oscillations, which is similar to the result obtained by 
Wang et al. [53] with type-II response function.

If r > rc, then the condition (6.2) is satisfied for f < fc, which is the sufficient condition for the stability 
of E∗. In other words, if

r > max
{
d1 + d2m

, rc

}
,

aα
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then the sufficient condition for the local stability of E∗ is f < fc.
Therefore, we can see that the fear parameter has an important role on the stability of the coexistence 

equilibrium, even for the type-I response function. However, the actual stability property with respect to 
the fear parameter f is more complex than the above scenarios, which is discussed later through numerical 
simulations.

Theorem 3.3. If r < 4d2m
aα , then the coexistence equilibrium E∗ is locally asymptotically stable. Furthermore, 

if r > 4d2m
aα , then the sufficient condition for the local stability of E∗ is c < cr, which does not depend on 

the fear parameter f , where 
(
cr = 4d2aα

raα−4d2m

)
.

Remark 3.3. If r < 4d2m
aα , then the condition (6.5) is always satisfied, i.e., when r is small, the parameter c

has no role in the stability of the coexistence equilibrium. In other words, if

d1 + d2m

aα
< r <

4d2m

aα
,

then the equilibrium E∗ is always locally asymptotically stable. The stability of E∗ will not be changed if 
the birth rate of prey is not large enough to support oscillations.

If r > 4d2m
aα , then the condition (6.5) is satisfied for c < cr, which is the sufficient condition for the 

stability of E∗. In other words, if

r > max
{
d1 + d2m

aα
,
4d2m

aα

}
,

then the sufficient condition for the local stability of E∗ is c < cr.

From the previous two Theorems (3.2) and (3.3), we can see that when prey growth rate r is small, the 
stability of the coexistence equilibrium is not affected by the cost of fear or its carry-over effect. For the 
classical prey-predator model with Holling type I functional response, without the cost of fear and carry-over 
effect, Hopf-bifurcation never occurs (our Model (3.1) will be reduced to the classical prey-predator model 
with Holling type I functional response if we neglect the cost of fear). The result is the same in this regard 
for the prey-predator model with Holling type I functional response with only the cost of fear (i.e., c = 0
in (3.1)). However, for our model with both cost of fear and carry-over effect, Hopf-bifurcation occurs as 
we increase the parameter r, and the phenomenon ‘paradox of enrichment’ appears [28,40,41,18]. When the 
birth rate of prey is large enough, prey and predator can still go to the coexistence steady state according 
to preys cost of fear or carry-over effect. If either of the cost of fear and carry-over effect is small enough, it 
can suppress oscillations. Therefore, by incorporating the cost of fear and carry-over effect, the phenomenon 
‘paradox of enrichment’ can occur; however, we can rule out such phenomenon by choosing suitable f or c.

It is to be noted that the carrying capacity (e.g., for logistic model) is considered as the parameter to 
be evaluated in terms of enrichment [30]. In this study, the parameter r, which is the maximum birth rate 
of prey, is considered the parameter to be evaluated in terms of enrichment. Actually, if we simplify the 
Model (2.1) then we will get the expression for the carrying capacity as r−d1

d2
. From this expression, we 

can see that the carrying capacity increases or decreases with the parameter r when other parameters are 
fixed. Therefore, it is reasonable to assume the parameter r as the parameter to be evaluated in terms of 
enrichment.

All the local stability conditions in the Theorem (3.1) are actually global conditions. In the next theorems 
we will discuss about the global stability of all equilibria for Model (3.1).

Theorem 3.4 (Global stability of boundary equilibria for Model (3.1)). The equilibrium E0 is globally asymp-
totically stable if r ∈ (0, d1) and E1 is globally asymptotically stable if r ∈

(
d1, d1 + d2m

)
.
aα
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Theorem 3.5 (Global stability of interior equilibrium for Model (3.1)). The positive equilibrium E∗ is globally 
asymptotically stable if r ∈

(
d1 + d2m

aα , 4d2
c

)
.

Remark 3.4. From the Theorem (3.1), we can see that, as the parameter r increases the Model (3.1) ex-
periences two bifurcations of equilibrium and a Hopf-bifurcation at positive equilibrium (discussed later). 
When 0 < r < d1, E0 is globally asymptotically stable, when r passes d1, E0 loses its stability to E1, which 
becomes globally asymptotically stable in d1 < r < d1 + d2m

aα . Again, when r passes d1 + d2m
aα then E1 loses 

its stability to E∗, which is locally asymptotically stable in d1 + d2m
aα < r < d2(aα+cm+aαfy∗)2

a2α2cfy∗
, where y∗ is 

defined in (3.2). Moreover, when r passes through d2(aα+cm+aαfy∗)2
a2α2cfy∗

, then E∗ loses its stability and limit 
cycle oscillation occurs around E∗ through Hopf-bifurcation.

3.1. Existence of limit cycles and Hopf-bifurcation

In this subsection, we investigate the possibility of Hopf-bifurcation at the coexistence equilibrium E∗
by considering the fear effect parameter f , as the bifurcation parameter. Similarly, we can obtain the Hopf-
bifurcation with respect to other parameters r and c.

At the Hopf-bifurcation point, the real parts of the eigenvalues of the characteristic equation (6.1) equal 
to zero. We set, at f = fH the Hopf-bifurcation occurs, which gives

Ψ11(fH) = 0 and Ψ12(fH)Ψ21(fH) > 0.

Thus, at the Hopf-bifurcation point, we have

Ψ11(fH) = 0 ⇒ fH =
aαrc− 2d2(aα + cm) ±

√
aαrc [aαrc− 4d2(aα + cm)]

2d2aαy∗
.

Moreover, if we simplify the above condition by using maple software, we can obtain that the values of 
fH are the roots of the quadratic equation

C1f
2 + C2f + C3 = 0,

where

C1 = d2 [c(d1aα + d2m)(arα− (d1aα + d2m)) − arαd2(aα + cm)]

C2 = ac [arcα(arα− (d1aα + d2m)) + d2(aα + cm)(2(d1aα + d2m) − 3arα)]

C3 = −a2cd2(aα + cm)2.

Therefore, fH = −C2±
√

C2
2−4C1C3

2C1
.

Further, at the Hopf-bifurcation point, we have

d(λr)
df

∣∣∣
f=fH

=
2λ2

i
d(Ψ11)

df − Ψ11
d(Ψ12Ψ21)

df

Ψ2
11 + 4λ2

i

∣∣∣
f=fH


= 0,

which is true if 
[
2λ2

i
d(Ψ11)

df − Ψ11
d(Ψ12Ψ21)

df

] ∣∣∣
f=fH


= 0, where λr and λi are real and imaginary parts of the 

eigenvalues of the characteristic equation (6.1).
The following theorem gives conditions for the existence of Hopf-bifurcation at E∗ for Model (3.1).
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Fig. 4. Bifurcation diagrams for Model (3.1) with respect to r. Here, r varies from 0 to 2.5, with the initial condition [x(0), y(0)] =
[0.5, 0.1]. Fixed parameter values are f = 1, c = 0.8, d1 = 0.1, d2 = 0.25, a = 0.1, α = 0.5, and m = 0.01.

Theorem 3.6 (Condition for the existence of Hopf-bifurcation at interior equilibrium for Model (3.1)). If 
Ψ12(fH)Ψ21(fH) > 0, and 

[
2λ2

i
d(Ψ11)

df − Ψ11
d(Ψ12Ψ21)

df

] ∣∣∣
f=fH


= 0, hold, then the interior equilibrium E∗

of Model (3.1) is locally asymptotically stable when f < fH , and undergoes Hopf-bifurcation at E∗ when 
f = fH .

The following theorem gives the direction and stability of Hopf-bifurcation around the coexistence steady 
state E∗.

Theorem 3.7 (Direction and stability of Hopf-bifurcation at interior equilibrium for Model (3.1)). Let define 
L as

L := 3g2
vguuu [(1 − guvz1) + 2z1(guvvz2w − guuvz1gv)] + 3wgvvvz2 [2w(huguvvz2 − wguuvz1) + guvhu]

+ guvvw [w(1 − guvz1) + 2z2(gvguu − hugvv) + 2z2w(wguvvz1 − gvz2guuv)]

+ 2guuvz1
[
g2
v(wguuvz2 − guu) − w2(gvv + gvz1guvv)

]
+ guv(hugvv + wgvguuvz2 − gvguu).

Then the Hopf-bifurcation is supercritical if L < 0 and it is subcritical if L > 0.

4. Numerical simulations

In the Fig. 4, we fix the parameters f , c, d1, d2, a, α and m (the specific values are given in the 
figure) and vary the parameter r. From the figure, we can see that as we increase the parameter r, the 
coexistence equilibrium becomes unstable through Hopf-bifurcation and prey-predator oscillation occurs. 
This phenomenon is known as ‘paradox of enrichment,’ which can not be observed in the classical prey-
predator model with Holling type I functional response (even in the presence of only fear effect [53,43]). 
Here, we consider the parameter r as the enrichment parameter because, if we simplify the Model (2.1), we 
will get the expression for carrying capacity as r−d1

d2
, therefore, it is reasonable to assume r as the enrichment 

parameter, when the other parameters are fixed.
In Theorems (3.2) and (3.3), we found the critical values of r and have shown that if r is less than the 

critical values then oscillation cannot be observed for our model (3.1). The coexistence equilibrium is always 
stable irrespective of the non-lethal parameter values. For oscillation, r must be greater than some threshold 
value, and in that case also, oscillation can be suppressed by the non-lethal effects parameters, which is 
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Fig. 5. Bifurcation diagrams for Model (3.1) with respect to f . Here, f varies from 0 to 0.75, with the initial condition [x(0), y(0)] =
[0.5, 0.1]. Fixed parameter values are r = 1.5, c = 0.8, d1 = 0.1, d2 = 0.25, a = 0.1, α = 0.5, and m = 0.01. The critical values of 
r and f are rc = 0.2896 (6.3) and fc = 0.0186 (6.4), respectively.

Fig. 6. Bifurcation diagrams for Model (3.1) with respect to c. Here, c varies from 0 to 35, with the initial condition [x(0), y(0)] =
[0.5, 0.1]. Fixed parameter values are r = 0.37, f = 1, d1 = 0.1, d2 = 0.25, a = 0.1, α = 0.5, and m = 0.01. The critical values of 
r = 4d2m

aα = 0.2 and c = cr = 5.8824 (6.6).

shown in Figs. 5 and 6. Theoretically, we prove that for large values of r, if f or c is sufficiently small, 
we can suppress the oscillation; however, the situation is more complex, as shown in these two figures. In 
both the Figs. 5 and 6, we choose r sufficiently large (greater than the critical values) and observed that 
predator-prey oscillation can occur only for the intermediate values of f and c. Therefore, oscillation can be 
suppressed by both sufficiently low and high values of the cost of fear and carry-over effect parameters, and 
we can rule out the phenomenon ‘paradox of enrichment.’ We draw phase diagrams in Fig. 7 to show how we 
can rule out the oscillating behavior by choosing a high anti-predator response. Moreover, in Fig. 8, we have 
shown the Hopf-bifurcation curve for our Model (3.1), in the r − f parameter plane. From this figure, we 
can see that the parameter r should be sufficiently large to show oscillatory behavior. Moreover, numerically 
we have checked the direction and stability of Hopf-bifurcation and found that the Hopf-bifurcation is only 
supercritical. We use Matlab 2017b software to produce all the figures (4 to 8) in this section.

5. Discussion

One of the central topics in ecology and evolutionary biology is to understand the variety of mechanisms 
that influence the fitness and survivability of the population [38]. In the literature, most of the studies only 
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Fig. 7. Coexistence equilibrium stability for the fixed parameter values r = 2, c = 0.8, d1 = 0.1, d2 = 0.25, a = 0.1, α = 0.5, and 
m = 0.01, corresponding to the Model (3.1).

Fig. 8. Hopf-bifurcation curve in r − f parameter plane for the Model (3.1). Other parameter values are fixed at c = 0.8, d1 = 0.1, 
d2 = 0.25, a = 0.1, α = 0.5, and m = 0.01.

concentrated on the lethal effects of predator in prey-predator interaction. However, some recent studies 
showed that apart from the lethal effects, there are some non-lethal effects, whose impact is equally crucial 
as of the previous one [39]. Among such effects, fear of predation has a vital role in population fitness 
and survivability in the prey-predator system. Even such non-lethal effects are not restricted to affect in a 
single generation or a particular season; they can be carried-over over generations or within generation [35]. 
Therefore, we consider both the cost of predation fear and its carry-over effects in the population model in 
the present study.

First, we developed and analyzed a single species (e.g., prey) population model by incorporating non-
lethal effects of the predator by considering constant predator population and without explicit predator 
dynamics. We include the non-lethal effects in the form of birth rate reduction due to the fear of predation. 
Moreover, we consider that such non-lethal effects can be carried within or over generations. We provide 
a detailed analysis of our single-species model by neglecting direct predation; however, the qualitative 
properties of the model will be the same if we consider predation followed by the Holling type I functional 
response. We derive the global dynamical properties of our proposed single species Model (2.2). For the 
single species Model (2.2), our primary study objective is to find the different growth dynamics due to the 
cost of predation fear and its carry-over effects. More specifically, our goal is to investigate the occurrence 
of Allee effects due to such non-lethal effects of the predator. From our analysis, we can see that such non-
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lethal effects can be a cause of generating Allee effects. Our model shows three types of growth dynamics, 
namely, weak Allee dynamics, strong Allee dynamics, and logistic dynamics, depending on the restrictions 
of model parameters, which is summarized in the Table 1. The above results relate to the Allee effects and 
predation fear mechanism and answer the first objective raised in the introduction section. Moreover, our 
system shows both saddle-node and transcritical bifurcations depending on the parameter values.

Next, we include the explicit dynamics of the predator population, where predation follows Holling type 
I [19] functional response. We derive the basic dynamical properties of our proposed model, existence, and 
local stability conditions of each equilibrium. Unlike the previous studies [53,43], our mathematical and 
numerical results show that the cost of predation fear and its carry-over effect affect the prey-predator 
interactions in many ways, even if predation is followed by the Holling type I functional response. If the 
birth rate of prey is small enough, then non-lethal effects parameters have no effects on the system stability 
at coexistence equilibrium. However, if the birth rate of prey is large enough to support oscillation, non-
lethal effects parameters greatly impact the system stability. System can be stable if non-lethal effects 
parameters are less than some threshold density, which is discussed in Theorems (3.2) and (3.3). Moreover, 
at the coexistence equilibrium, the equilibrium density of prey does not depend on any non-lethal effects 
parameters; however, predator density decreases as we increase the parameter associated with the cost of 
predation fear (f). On the other hand, the effect of carry-over parameter (c) is opposite, i.e., predator density 
increases as we increase the parameter (c) when the population are at the coexistence steady state. The 
above discussion fulfills the third objective given in the introduction section regarding the role of non-lethal 
effects on system stability at the coexistence equilibrium.

We provide the global stability conditions of each equilibrium in Theorems (3.4) and (3.5). As we increase 
the birth rate parameter (r), our Model (3.1) experiences two bifurcations of equilibrium and a Hopf-
bifurcation at positive equilibria. Existence of Hopf-bifurcation, its direction and stability at the interior 
equilibrium are discussed in Theorems (3.6) and (3.7). From our analysis, we can see that the unique 
coexistence equilibrium is globally asymptotically stable if the birth rate of prey is not large enough to 
support the oscillation. One of the interesting results is that our model system supports oscillation, even for 
the Holling type I functional response, which can not be observed in the classical prey-predator model with 
Holling type I functional response. Even oscillation cannot be observed in the presence of only growth rate 
reduction due to predation fear and with type I functional response [53,43]. Therefore, the phenomenon 
‘paradox of enrichment’ [41,18] can be observed in our model. However, both analytical and numerical 
results suggest that such phenomenon can be ruled out by choosing suitable values of the cost of fear 
and/or carry-over effects. These answer the second and fourth questions listed in the introduction section 
regarding the global dynamical behavior and the phenomenon ‘paradox of enrichment.’

In the present study, we split the logistic dynamics into birth-death to incorporate the cost of fear only in 
the birth rate. However, some theoretical studies showed that due to the complexity of the ecosystem, the 
cost of fear could affect in many ways, like, it may increase the adult death rate, intra-specific competition, 
etc. [54,5,9]. Therefore, one may consider the fear and its carry-over effect directly to the logistic growth 
dynamics when some experimental evidence is available in the future. We consider the simplest type I 
functional response in the presence of a predator population. However, a more complicated functional 
response, like, Holling type II or III functional response, can be a mechanism for generating the Allee 
effect in prey due to their predation satiation properties [17]. Moreover, two or more Allee effects can occur 
simultaneously in the same population, and this is known as double or multiple Allee effects [2]. Therefore, 
it may be interesting to see how multiple Allee effects occur due to fear and its carry-over effects when 
the predator follows Holling type II or III functional response. Furthermore, it may be interesting to study 
how different dynamics can be observed by considering fear and its carry-over effects for other models, for 
example, the Lotka-Volterra model, Beverton-Holt model, etc.
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6. Proofs

Proof of the Theorem (2.1)

Proof. The local stability of x0, x1 and x2 for Model (2.2) can be determined by the sign of

Υ(xi) = Θ(xi) + xiΘ′(xi),

where Θ′(xi) = rcfy
(1+cxi+fy)2 − d2. Now, Υ(x0) = Θ(0) = r

1+fy − d1. Thus, the equilibrium x0 is locally 
asymptotically stable if r < d1(1 + fy).

For the first part of the Theorem (2.1), Φ(x) > 0, ∀x > 0, and consequently, Θ(x) < 0, ∀x > 0. As (2.2)
is a scalar differential equation, x0 attracts every solution, i.e., x0 is globally asymptotically stable.

Moreover, Θ(x) can be written as

Θ(x) = − Φ(x)
1 + cx + fy

= (x1 − x)(x− x2)
1 + cx + fy

.

It is easy to obtain,

Θ′(x1) = − (x1−x2)
1+cx1+fy (< 0) and

Θ′(x2) = (x1−x2)
1+cx2+fy (> 0),

for x1 
= x2 (as x1 > x2 for the case when Φ(x) = 0 has real roots).
Thus, Υ(x1) < 0 and Υ(x2) > 0. Therefore, the equilibrium x1 is always locally asymptotically stable 

when it exists, whereas the equilibrium x2 is always unstable.
For part 2(i), x0 is unstable as r > d1(1 + fy). Moreover, Θ(x) < 0, ∀x > x1 and Θ(x) > 0, ∀x < x1. 

As equation (2.2) is a scalar differential equation, then x1 attracts every solution in R+, i.e., x1 is globally 
asymptotically stable.

For part 2(ii), also the extinction equilibrium x0 is unstable and the positive equilibrium x3 is locally 
asymptotically stable (as Θ′(x3) < 0). Here also we can easily show that Θ(x) < 0, ∀x > x3, and Θ(x) > 0, 
∀x < x3, and therefore x3 attracts every solution in R+.

For part 2(iii), since Δ = 0, then Ω2 must be positive, i.e., r < d1(1 + fy), which is the local stability 
condition of x0. Here, Φ(x) = 0 has an identical real positive root, and Θ′(x4) = 0. Therefore, we can’t 
apply eigenvalue approach for the local stability. However, Φ(x) > 0 for all x > 0 and x 
= x4. Therefore, 
Θ(x) < 0, ∀x > 0 and x 
= x4. Therefore, x0 is locally asymptotically stable as it attracts every solution in 
R+ with x < x4 and x4 is a saddle as it attracts every solution, starting at x > x4, but repels x < x4.

For the final part, both the equilibria x0 and x1 are locally asymptotically stable. Here, Θ(x) < 0, 
∀x > x1 and 0 < x < x2, Θ(x) > 0, ∀x2 < x < x1. Thus the basin of attraction of the extinction 
equilibrium x0 is [0, x2), and for the positive equilibrium x1 is R+\[0, x2). �

Proof of the Lemma (3.1)

Proof. As dx
dt

∣∣∣
x=0

= 0 and dy
dt

∣∣∣
y=0

= 0 for any x ≥ 0 and y ≥ 0, then x = 0 and y = 0 are invariant 

manifolds, respectively. Due to the uniqueness of solution the set R2
+ is positively invariant for the Model 

(3.1). Moreover,

dx ≤ rx(1 + cx) − d1x− d2x
2 ≤ rx− d1x− d2x

2.

dt 1 + cx + fy
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By the comparison theory we can prove that

lim
t→∞

supx(t) ≤ r − d1

d2
.

Define w(t) = x(t) + 1
αy(y), then

dw
dt = rx(1+cx)

1+cx+fy − d1x− d2x
2 − m

α y

< rx− d1x− d2x
2 −m(w − x)

= (r − d1 + m)x− d2x
2 −mw.

Then similar to the proof of the theorem (2.1) in [47], our results follow. �
Proof of the Theorem (3.1)

Proof. The characteristic equation at the interior equilibrium E∗ is given by

λ2 − Ψ11λ + Ψ12Ψ21 = 0, (6.1)

whose roots will be real negative or complex conjugate with negative real parts if Ψ11 < 0, where

Ψ11 = x∗
[

rcfy∗
(1+cx∗+fy∗)2 − d2

]

Ψ12 = x∗
[

rf(1+cx∗)
(1+cx∗+fy∗)2 + a

]
(> 0)

Ψ21 = aαy∗(> 0).

Now,

Ψ11 < 0 iff rcfy∗
(1 + cx∗ + fy∗)2

< d2, i.e., iff r <
d2(aα + cm + aαfy∗)2

a2α2cfy∗
.

Therefore, E∗ is locally asymptotically stable if r < d2(aα+cm+aαfy∗)2
a2α2cfy∗

. The local stability of other two 
equilibria is similar, and hence not discussed here.

Moreover,

rcfy∗
(1+cx∗+fy∗)2 − d2 < 0,

⇔ d2a
2α2f2y2

∗ +
[
2d2aαf(aα + cm) − ra2α2cf

]
y∗ + d2(aα + cm)2 > 0,

which is always true if (for any real positive y∗)

[
2d2aαf(aα + cm) − ra2α2cf

]2 − 4d2
2a

2α2f2(aα + cm)2 < 0,

⇒ r < 4d2(aα+cm)
aαc . �

Proof of the Theorem (3.2)
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Proof. We have, rcfy∗
(1+cx∗+fy∗)2 − d2 < rcfy∗ − d2 and

rcfy∗ − d2 < 0,

⇔ frc
[
aαr2c(aα + cm) − rc(aα + cm)(d1aα + d2m) − aαd2(d1aα + d2m)

]
< a2αd2 [aαd2 + rc(aα + cm)] .

(6.2)

Thus, the condition (6.2) is a sufficient condition for the local stability of E∗.
Left hand side of the inequality (6.2) will be positive if

r >
c(aα+cm)(d1aα+d2m)+

√
c(aα+cm)(d1aα+d2m)[c(aα+cm)(d1aα+d2m)+4a2α2d2]

2aαc(aα+cm) = rc. (6.3)

When r > rc, then the sufficient condition for the local stability of E∗ is

f < a2αd2[aαd2+rc(aα+cm)]
rc[aαr2c(aα+cm)−rc(aα+cm)(d1aα+d2m)−aαd2(d1aα+d2m)] = fc. � (6.4)

Proof of the Theorem (3.3)

Proof. We have,

rcfy∗
(1+cx∗+fy∗)2 − d2 < 0,

⇔ d2a
2α2f2y2

∗ +
[
2d2aαf(aα + cm) − ra2α2cf

]
y∗ + d2(aα + cm)2 > 0,

a sufficient condition, that the above inequality holds true for any positive real y∗, is[
2d2aαf(aα + cm) − ra2α2cf

]2 − 4d2
2a

2α2f2(aα + cm)2 < 0,

⇔ c (raα− 4d2m) < 4d2aα.

(6.5)

Thus, the condition r < 4d2m
aα is a sufficient condition for the local stability of E∗.

Since the left hand side of the inequality (6.5) is positive if r > 4d2m
aα , and the sufficient condition for the 

local stability of E∗ is

c < 4d2aα
raα−4d2m

= cr. � (6.6)

Proof of the Theorem (3.4)

Proof. The global stability of E0 in r ∈ (0, d1) follows from lemma (3.1) and Theorem (3.1). Moreover, 
when r ∈

(
d1, d1 + d2m

aα

)
, there exist only two equilibria E0 and E1 in R2

+, and hence there can not be any 
periodic orbit in R2

+, which implies that every solution will converge to any one of E0 and E1. However, 
when r ∈

(
d1, d1 + d2m

aα

)
then E0 is a saddle (repelling) and every solution will approach to E1. Therefore, 

from local stability condition, E1 exists and is globally asymptotically stable if r ∈
(
d1, d1 + d2m

aα

)
. �

Proof of the Theorem (3.5)

Proof. A sufficient condition for the local stability of the positive equilibrium is r < 4d2(aα+cm)
aαc . Since, 

4d2
c < 4d2(aα+cm)

aαc , from the previous Theorems (3.1) and (3.4), to show the global stability of E∗, it is 
sufficient to prove that for r ∈

(
d1 + d2m , 4d2

)
, there is no periodic orbit in {(x, y)|x > 0, y > 0}.
aα c
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By taking the Dulac function D(x, y) = 1
xy for the System (3.1), we have

div
∣∣∣(

D dx
dt ,D

dy
dt

) = ∂
∂x

(
D(x, y)dxdt (x, y)

)
+ ∂

∂y

(
D(x, y)dydt (x, y)

)

= 1
y

[
rcfy

(1+cx+fy)2 − d2

]
= 1

y(1+cx+fy)2
[
−d2f

2y2 + {rcf − 2d2f(1 + cx)}y − d2(1 + cx)2
]
.

It is easy to see that [rcf − 2d2f(1 + cx)]2 − 4d2
2f

2(1 + cx)2 < 0 if r < 4d2
c .

Therefore, div
∣∣∣(

D dx
dt ,D

dy
dt

) < 0 in {(x, y)|x > 0, y > 0} if r < 4d2
c . Then by the Dulac-Bendixson theorem 

[37], there is no periodic orbit in {(x, y)|x > 0, y > 0} for System (3.1) if r < 4d2
c . Moreover, E∗ is the only 

stable equilibrium in {(x, y)|x > 0, y > 0} if d1 + d2m
aα < r < 4d2

c . Hence every positive solution will tend to 
E∗. �

Proof of the Theorem (3.7)

Proof. To find the stability and direction of Hopf-bifurcation, we calculate the 1st Lyapunov coefficient. Let 
u = x − x∗ and v = y − y∗, then the System (3.1) becomes

du
dt = r(u+x∗)(1+c(u+x∗))

1+c(u+x∗)+f(v+y∗) − d1(u + x∗) − d2(u + x∗)2 − a(u + x∗)(v + y∗) := g(u, v)

dv
dt = aα(u + x∗)(v + y∗) −m(v + y∗) := h(u, v).

Now, considering the Taylor’s series expansion at (u, v) = (0, 0) up to 3rd order, we have

du
dt = guu + gvv + g1(u, v),

dv
dt = huu + hvv + h1(u, v),

(6.7)

g1(u, v) and h1(u, v) are the higher order terms of u and v, given by

g1(u, v) = guuu
2 + guvuv + gvvv

2 + guuuu
3 + guuvu

2v + guvvuv
2 + gvvvv

3,

h1(u, v) = huuu
2 + huvuv + hvvv

2 + huuuu
3 + huuvu

2v + huvvuv
2 + hvvvv

3,

where

gu = −d2x∗ + rcfx∗y∗
(1+cx∗+fy∗)2 , gv = −

[
ax∗ + rfx∗(1+cx∗)

(1+cx∗+fy∗)2

]
, guu = −d2 − rcfy∗(−1+cx∗−fy∗)

(1+cx∗+fy∗)3 ,

guv = rcfx∗(1+cx∗−fy∗)
(1+cx∗+fy∗)3 , gvv = −2rx∗(1+cx∗)f2

(1+cx∗+fy∗)3 , guuu = 2rc2fy∗(−2+cx∗−2fy∗)
(1+cx∗+fy∗)4 ,

guuv = − rcf(−1+c2x2
∗+f2y2

∗−4cx∗fy∗)
(1+cx∗+fy∗)4 , guvv = −2rcf2x∗(2+2cx∗−fy∗)

(1+cx∗+fy∗)4 , gvvv = 6rx∗(1+cx∗)f3

(1+cx∗+fy∗)4 ,

and

hu = aαy∗, hv = 0, huu = 0, huv = aα, hvv = 0, huuu = 0, huuv = 0, huvv = 0, hvvv = 0.
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Here all the partial derivatives are calculated at the bifurcation point, i.e., (u, v) = (0, 0). Thus system 
(6.7) can be written as

U̇ =
[
gu gv
hu hv

]
U + F (u),

where U = (u, v)T and F = (f1(u, v), g1(u, v))T =
(
guuu

2 + guvuv + gvvv
2 + guuuu

3 + guuvu
2v + guvvuv

2 +
gvvvv

3, huvuv
)T .

Now, Hopf-bifurcation occurs when gu = 0, i.e., at the Hopf-bifurcation point, the eigenvalue will be 
purely imaginary, which is given by iω, where ω =

√
−gvhu. Eigenvector corresponding to this eigenvalue 

iω is given by v̄ = (gv, iω)T . Now, we define Q = (Re(v̄),−Im(v̄)) =
[
gv 0
0 iω

]
. Now, let U = QZ or 

Z = Q−1U , where Z = (z1, z2)T . Therefore, under this transformation, the system is reduced to

Ż =
(
Q−1

[
gu gv
hu hv

]
Q

)
Z + Q−1F (QZ).

This can be written as

[
ż1
ż2

]
=

[
0 −ω

ω 0

][
z1
z2

]
+
[
F1(z1, z2)
F2(z1, z2)

]
,

where F1(z1, z2) and F2(z1, z2) are given by

F1(z1, z2) = 1
gv

[
guug

2
vz

2
1 − ωguvgvz1z2 − gvhugvvz

2
2 + guuug

3
vz

3
1 − ωguuvg

2
vz

2
1z2

− gvhuguvvgvz1z
2
2 − gvhuωgvvvz

3
2
]

F2(z1, z2) = gvhuvz1z2.

The direction of Hopf-bifurcation is determined by the sign of the 1st Lyapunov coefficient, which is given 
by

L := 1
16

[
∂3F1
∂z3

1
+ ∂3F1

∂z1∂2z2
+ ∂3F2

∂2z1∂z2
+ ∂3F2

∂3z2

]

+ 1
16ω

[
∂2F1

∂z1∂z2

(
∂2F1
∂2z1

+ ∂2F1
∂2z2

)
− ∂2F2

∂z1∂z2

(
∂2F2
∂2z1

+ ∂2F2
∂2z2

)
− ∂2F1

∂2z1
∂2F2
∂2z1

+ ∂2F1
∂2z2

∂2F2
∂2z2

]
.

We use the maple software to simplify the expression of L, which is given as follows:

L := 3g2
vguuu [(1 − guvz1) + 2z1(guvvz2w − guuvz1gv)] + 3wgvvvz2 [2w(huguvvz2 − wguuvz1) + guvhu]

+ guvvw [w(1 − guvz1) + 2z2(gvguu − hugvv) + 2z2w(wguvvz1 − gvz2guuv)]

+ 2guuvz1
[
g2
v(wguuvz2 − guu) − w2(gvv + gvz1guvv)

]
+ guv(hugvv + wgvguuvz2 − gvguu).

Now by [37], Hopf-bifurcation is supercritical if L < 0 and it is subcritical if L > 0. �
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