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Abstract

Given a compact convex set F in R
n, with the origin in its interior, and a

point on its boundary, near which it is given by an implicit equation, we present

a formula to compute the curvature in the direction of any tangent vector.

For this, we consider the intersection curve between the boundary of F and a

suitable plane, but without using the plane equations or the curve expression.

Furthermore, we see that, when we use the equations of the plane and the

equation that define the boundary of F near the fixed point, the formula that

we obtain is equivalent to the existing ones, but it is easier to apply.
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1. Introduction

In [9] the authors proposed some concepts concerning the geometric struc-

ture of a closed convex bounded set F , with zero in its interior, in a Hilbert

space H. Inspired essentially from the geometry of Banach spaces (see [13]),

they introduced three moduli of local rotundity for the set F , one symmetri-5
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an idea of how to prove the main result in R
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cal (using the norm of H) and two asymmetric (using the ”asymmetric norm”

given by the Minkowski functional of F ). Using the symmetrical modulus the

authors defined the concept of strict convexity graduated by some parameter

α > 0. The main numerical characteristic resulting from these considerations is

the curvature (and the respective curvature radius) of F , which shows how ro-10

tund the set F is near a fixed boundary point ξ watching along a given direction

ξ∗. Considering the polar set of F , F o, they defined also the modulus of local

smoothness and the local smoothness of F o. As well-known (see, for example,

[12, 13, 15, 16]) the strict convexity of a convex closed bounded set F with zero

in its interior is strongly related to the smoothness of F o, but in [9] that relation15

was quantified. In particular, a local asymmetric version of the Lindenstrauss

duality theorem [9, Proposition 4.2] was proved there, which quantitatively es-

tablishes the duality between local smoothness and local rotundity. Thus, the

curvature of F can be considered also as a numerical characteristic of F o, show-

ing how sleek F o is in a neighbourhood of a boundary point ξ∗ if you look along20

a direction ξ. Applying this theorem, it was obtained a characterization of the

curvature of F in terms of the second derivative of its dual Minkowski functional

[9, Proposition 4.4]. From what we have just said, and not only (for more results

see [9, 10]), the formula for calculating the curvature proposed in GP1 is, from

a theoretical point of view, very useful, but in practice it is very difficult to use25

even in R
2 as we can see in [9, Example 8.4]. Then, in this paper, we propose,

in some sense and for some kind of convex bodies F (compact convex sets with

interior points) in R
n, n ≥ 2, an equivalent formula to compute its curvature

but easier to use. Namely, in Theorem 1 below, given ξ on the boundary of F ,

∂F , near which it is given by an implicit equation, we present a formula for the30

curvature of F at ξ in the direction of any tangent vector. For this, and for a

fixed tangent vector, we will consider the intersection curve between ∂F and a

suitable plane, but without using the plane equations or the curve expression.

In a few words, we can say that [9] gives us an approximate idea of the shape

of F in a global neighbourhood of ξ, while in this paper the exact shape of F35

near ξ in each tangent direction is obtained.
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Before moving on to the work itself, let us review more precisely what is

already done in this area.

A definition for curvature similar to the formula that will be obtained here,40

and called directional curvature, appears in [1] for a (not necessarily convex)

C 2-manifold embedded in a Hilbert space.

In [5, p.14] (see also [2, 14]), for a convex body F in R
n (n ≥ 2), a smooth

point ξ in ∂F (smooth means that at ξ there exists only one supporting hyper-

plane to F ), an interior unit normal vector ξ∗ of F at ξ, and an unit vector ξ∗∗

orthogonal to ξ∗, H. Busemann considered the 2-dimensional halfplane

H (ξ, ξ∗, ξ∗∗) = {η ∈ R
n : η = ξ + λξ∗ + μξ∗∗ withλ, μ ∈ R and μ ≥ 0} , (1)

which intersects ∂F in a plane convex curve. Denoting by rη, for η ∈ H (ξ, ξ∗, ξ∗∗)∩

∂F near ξ, the radius of the circle with centre on the normal line ξ+R
+ξ∗ con-

taining both ξ and η, the author defined

ρξ
∗∗

l (ξ) := lim inf
η→ξ

rη, ρξ
∗∗

u (ξ) := lim sup
η→ξ

rη

as the lower and upper curvature radius, respectivelly. If the numbers γξ∗∗

l (ξ) :=(
ρξ

∗∗

l (ξ)
)−1

and γξ∗∗

u (ξ) :=
(
ρξ

∗∗

u (ξ)
)−1

(called lower and upper curvature,

respectivelly) are equal and finite, he says that the curvature of F at ξ in45

direction ξ∗∗ exists and is equal to the common value.

Differential geometry of intersection curves of two (or more) surfaces in R
3

(or higher dimension) were studied by many authors (see, for example, [3, 8, 17]

and the bibliography therein). There are studies in which all the surfaces are

defined implicitly, others in which all are parametrically defined, and others in50

which there are surfaces of both types. For this work, we are only interested

in those defined implicitly. At [3, 8, 17] the authors present formulas (or algo-

rithms) for computing differential geometric properties (such as tangent vector,

normal vector, curvatures and torsion) of the intersection curve. In [8, (5.4)]

the author derives a formula for the curvature of the curve defined by the in-55

tersection of n − 1 implicit surfaces in R
n. This formula is laborious to apply
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when the space has dimension n ≥ 4, because we need to do several operations

with the gradients of all functions that implicitly define the surface. But, when

the curve is obtained by the intersection between the surface of a convex body

(given locally by an implicit equation) and a 2-dimensional plane (as defined in60

(1)) that formula can be rewritten in a very simple way, as we will see in Section

6.

This work is organized as follows. In Section 2 we introduce some notations,

definitions, and we present an example where we can only estimate the curvature

value. In Section 3, we present the conditions on F , the tangent hyperplane of65

F at a convenient ξ ∈ ∂F , the definition of directional curvature, some of its

properties and its relation to the definition of [9]. Section 4 is dedicated to the

main result of this paper and its proof. In Section 5 we relate the directional

curvature of F with the radius of a suitable sphere. The relationship between

our formula and Goldman’s, when applied to our case, is proved in Section 6.70

Finally, the Section 7 is dedicated to the examples.

2. Basic notations and definitions

We will consider in the space R
n, n ∈ N, n ≥ 2, with the usual inner

product 〈·, ·〉 and the norm ‖·‖, a compact convex set F with the vector null of

R
n (represented by 0) in its interior, intF . We denote by F o the polar set of

F , i.e.,

F o := {ξ∗ ∈ R
n : 〈ξ, ξ∗〉 ≤ 1 ∀ξ ∈ F} .

Together with the Minkowski functional ρF (·) defined by

ρF (ξ) := inf {λ > 0 : ξ ∈ λF}

we introduce the support function σF : Rn → R
+,

σF (ξ∗) := sup {〈ξ, ξ∗〉 : ξ ∈ F} .

Observe that

ρF (ξ) = σF o (ξ) ,
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and, consequently,

1

‖F‖ ‖ξ‖ ≤ ρF (ξ) ≤ ‖F o‖ ‖ξ‖ , ξ ∈ R
n, (2)

where ‖F‖ := sup {‖ξ‖ : ξ ∈ F}. The inequalities (2) mean that ρF (·) is a

sublinear functional ”equivalent” to the norm ‖·‖. It is not a norm since −F �= F

in general. As usual, we represent by ∂F the boundary of F . In what follows

we will use the so-called duality mapping JF : ∂F o → ∂F that associates the

set

JF (ξ∗) := {ξ ∈ ∂F : 〈ξ, ξ∗〉 = 1}

with each ξ∗ ∈ ∂F o. We say that (ξ, ξ∗) is a dual pair when ξ∗ ∈ ∂F o and

ξ ∈ JF (ξ∗). The normal cone to F at ξ, in the sense of Convex Analysis, is

given by

NF (ξ) := {ζ∗ ∈ R
n : 〈η − ξ, ζ∗〉 ≤ 0 for every η ∈ F} ,

and the proximal normal cone to F at ξ is

NP
F (ξ) :=

{
ζ∗ ∈ R

n : ∃σ ≥ 0 such that 〈η − ξ, ζ∗〉 ≤ σ ‖η − ξ‖2 , ∀η ∈ F
}
.

Since F is closed and convex we have (see [6, Proposition 1.1.10])

NP
F (ξ) = NF (ξ) . (3)

It is easy to show that NF (ξ) ∩ ∂F o is the pre-image of the mapping JF (·),

J
−1
F (·), calculated at ξ. The tangent cone to F at ξ is the polar of NF (ξ), since

NF (ξ) is, in fact, a cone, it is given by

{u ∈ R
n : 〈u, ζ∗〉 ≤ 0 for every ζ∗ ∈ NF (ξ)} .

We will only work with the tangent hyperplane to the set F at the point ξ:

TF (ξ) := {u ∈ R
n : 〈u, ζ∗〉 = 0 for every ζ∗ ∈ NF (ξ)} . (4)

Following [9, Definition 3.2], for each dual pair (ξ, ξ∗) the modulus of strict

convexity of F at ξ with respect to (w.r.t.) ξ∗ is

ĈF (r, ξ, ξ∗) := inf {〈ξ − η, ξ∗〉 : η ∈ F, ‖ξ − η‖ ≥ r} , r > 0, (5)
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and F is said to be strictly convex (or rotund) at ξ w.r.t. ξ∗ if

ĈF (r, ξ, ξ∗) > 0 for all r > 0. (6)

If (6) is fulfilled then ξ is an exposed point of F and the vector ξ∗ exposes ξ

in the sense that the hyperplane {η ∈ R
n : 〈η, ξ∗〉 = σF (ξ∗)} touches F only at

the point ξ, or, in other words, JF (ξ∗) = {ξ}. So, in this case, ξ is well defined75

whenever ξ∗ is fixed.

Definition 1 ([9]). Let us fix ξ∗ ∈ ∂F o, and take the only ξ in JF (ξ∗). The

set F is said to be strictly convex of order 2 ( at the point ξ) w.r.t. ξ∗ if

γ̂F (ξ, ξ∗) = lim inf
(r,η,η∗)→(0+,ξ,ξ∗)
η∈JF (η∗), η∗∈∂F o

2 ĈF (r, η, η∗)

r2
> 0. (7)

The number

κ̂F (ξ, ξ∗) =
1

‖ξ∗‖ γ̂F (ξ, ξ∗)

is said to be the ( square) curvature of F at ξ ∈ ∂F w.r.t. ξ∗.

An Example. Consider the compact convex set

F :=
{
(ξ1, ξ2) ∈ R

2 : |ξ2| ≤ 1− ξ41 , −1 ≤ ξ1 ≤ 1
}
.

For any arbitrary dual pair (ξ, ξ∗), with ξ := (ξ1, ξ2), by the symmetry of F , we

just consider the case ξ1, ξ2 ≥ 0. Using [9, Example 8.3] we obtain:

(i) If ξ2 > 0 then the (unique) normal vector ξ∗ to F at ξ, such that 〈ξ, ξ∗〉 = 1

is given by

ξ∗ =
1

1 + 3ξ41

(
4ξ31 , 1

)
.

After a hard work we obtain

κ̂F (ξ, ξ∗) =
γ̂F (ξ, ξ∗)

‖ξ∗‖ ≤ 12ξ21√
1 + 16ξ61

(8)

and

κ̂F (ξ, ξ∗) ≥ 12ξ21√
1 + 16ξ61 Σ2 (ξ1)

, (9)
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where Σ (ξ1) :=

√
1 +

(
3∑

k=0

|ξ1|k
)2

. Combining the estimates (8) and (9)80

we see that the curvature κ̂ (ξ, ξ∗) is of order O
(
ξ21
)
(as |ξ1| → 0). In

particular, κ̂F is equal to zero at the points (0,±1).

(ii) If ξ := (1, 0) we have

NF (ξ) =
{
(v1, v2) ∈ R

2 : v1 ≤ 4 |v2|
}
.

For ξ∗ ∈ ∂NF (ξ), by the lower semicontinuity of the function (ξ, ξ∗) 
→

γ̂F (ξ, ξ∗), we can apply the same reasoning as above, but not for ξ∗ ∈

intNF (ξ). In this last case we have κ̂F (ξ, ξ∗) = +∞ (see [9, Proposition85

3.8]).

In the previous example we obtained only the estimates (8) and (9), but using

the theory developed in this paper we will obtain an equality (see Example 1 at

Section 7).

3. Directional curvature90

In everything that follows we consider a compact convex set F ⊂ R
n, n ≥ 2,

with 0 ∈ intF . Fixed ξ ∈ ∂F we assume that there are δ > 0 and f : Rn→R of

class C2 at ξ + δB (B ⊂ R
n represents the open unit ball), such that

F ⊂ {x ∈ R
n : f (x) ≤ 0} ,

〈ξ,∇f (ξ)〉 > 0, (10)

where ∇f (ξ) means the gradient vector of f at ξ, and such that, for x ∈ ξ+δB,

we have x ∈ ∂F if and only if f (x) = 0.

Remark 1. Thanks to (10) and the continuity of ∇f (·) at ξ there is 0 < δ′ ≤ δ

such that

inf
η∈ξ+δ′B

〈η,∇f (η)〉 > 0. (11)

In particular, we have ∇f (η) �= 0 for any η ∈ ξ + δ′B.
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Proposition 1. We have

NF (η) =
⋃
λ≥0

λ∇f (η) , η ∈ ∂F ∩ (ξ + δ′B) .

Proof. By (3), for an arbitrary η ∈ ∂F ∩ (ξ + δ′B), it’s enough to prove that

Np
F (η) =

⋃
λ≥0

λ∇f (η) . (12)

Since f is of classe C2 at ξ + δB, by [6, Theorem 1.2.5 and Corolary 1.2.6 ],

there are σ, ρ > 0 such that (η + ρB) ⊂ (ξ + δ′B) and

f (y) ≥ f (η) + 〈∇f (η) , y − η〉 − σ ‖y − η‖2 , ∀y ∈ η + ρB,

and consequently

〈∇f (η) , y − η〉 ≤ σ ‖y − η‖2 , ∀y ∈ (η + ρB) ∩ F.

Thanks to [6, Proposition 1.1.5] ∇f (η) ∈ Np
F (η) . Since Np

F (η) is a cone we

have, in fact, λ∇f (η) ∈ Np
F (η), λ ≥ 0.

To prove the other inclusion at (12) fix ζ ∈ Np
F (η). By [6, Proposition 1.1.5]

there is a constant σ > 0 such that

〈ζ, y − η〉 ≤ σ ‖y − η‖2 ,

whenever y belongs to ∂F ∩ (ξ + δB). Put another way, this is equivalent to say

that the point η minimizes the function y 
→ 〈−ζ, y〉+σ ‖y − η‖2 over all points95

y satisfying f (y) = 0 and ‖y − ξ‖ < δ. The Lagrange Multiplier Rule of classical

calculus provides a scalar λ ≥ 0 such that ζ = λ∇f (η), which completes the

proof.

Consequently, for any η ∈ ∂F ∩ (ξ + δ′B) fixed, J−1
F (η) = NF (η) ∩ ∂F o is

a singleton, and the unique η∗ ∈ J
−1
F (η) is given by

η∗ =
1

〈η,∇f (η)〉∇f (η) . (13)
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This means that η∗ is well defined whenever η is fixed. On the other hand,

∇f (η) �= 0 implies that there is a first i ∈ I := {1, ..., n} such that

fxi (η) :=
∂f

∂xi
(η) �= 0. (14)

Fixed such i the tangent hyperplane to F at η is given by (see (4))100

TF (η) = {v ∈ R
n : 〈v,∇f (η)〉 = 0}

=

⎧
⎨
⎩(v1, ..., vn) ∈ R

n : vi = −
n∑

j=1,j �=i

fxj (η)

fxi (η)
vj

⎫
⎬
⎭ .

Denote by uj (η), j ∈ I\ {i}, the vector of Rn with 1 in the jth coordinate,

− fxj
(η)

fxi
(η) in the ith coordinate and 0 in the others. Since f is of class C2 at

ξ + δB, uj (η) will be close to uj (ξ), whenever η is close to ξ.

For our results we need to introduce the following. Given η ∈ ξ + δ′B and

u (η) ∈ TF (η), u (η) �= 0, consider the subset of Rn

P (η, u (η)) := span {∇f (η) , u (η)}+ η,

where span {∇f (η) , u (η)} means the generated space by the vectors∇f (η) and105

u (η). Note that the vectors ∇f (η) and u (η) are linearly independent, so the

set P (η, u (η)) is, in fact, a 2-dimensional plane in R
n (it will simply be called

a plane).

Below we introduce some directional notions, based on the respective notions

presented in [9], and already seen here in Section 2. To simplify the notation,110

in general, we will not refer to the unique ξ∗, given by (13).

Definition 2. The 2-dimensional modulus of strict convexity of F at ξ ∈ ∂F

(with respect to ξ∗) in the direction of the vector u (ξ) ∈ TF (ξ) \ {0} is given

by

ĈF (r, ξ, u (ξ)) = inf {〈ξ − η, ξ∗〉 : η ∈ F ∩ P (ξ, u (ξ)) , ‖ξ − η‖ ≥ r} , r > 0.

The set F is strictly convex at ξ in the direction of u (ξ) if ĈF (r, ξ, u (ξ)) > 0

for all r > 0.
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Remark 2. Since the set F ⊂ R
n is compact and convex we have the equalities

ĈF (r, ξ, u (ξ)) = inf {〈ξ − η, ξ∗〉 : η ∈ F ∩ P (ξ, u (ξ)) , ‖ξ − η‖ = r}

= inf {〈ξ − η, ξ∗〉 : η ∈ ∂F ∩ P (ξ, u (ξ)) , ‖ξ − η‖ = r} ,

for any r > 0 and u (ξ) ∈ TF (ξ) \ {0} .115

Proposition 2. Let ξ ∈ ∂F , ξ∗ ∈ ∂F o given by (13) and u (ξ) ∈ TF (ξ),

u (ξ) �= 0. If ĈF (r, ξ, u (ξ)) > 0 for all r > 0 then JF (ξ∗) ∩ P (ξ, u (ξ)) = {ξ} .

Proof. By construction ξ ∈ JF (ξ∗) ∩ P (ξ, u (ξ)) . If there was ξ ∈ JF (ξ∗) ∩

P (ξ, u (ξ)) with ξ �= ξ, we would have

〈
ξ − ξ, ξ∗

〉
= 0,

and consequently

ĈF (r, ξ, u (ξ)) = 0,

for r :=
∥∥ξ − ξ

∥∥ > 0, which is absurd.

Definition 3. The 2-dimensional curvature of F at ξ ∈ ∂F (w.r.t. ξ∗) in the

direction of uj (ξ) , j ∈ I\ {i}, is given by

κ̂F

(
ξ, uj (ξ)

)
=

1

‖ξ∗‖ γ̂F
(
ξ, uj (ξ)

)
,

where

γ̂F
(
ξ, uj (ξ)

)
= lim inf

(r,η)→(0+,ξ)
η∈∂F

2 ĈF

(
r, η, uj (η)

)
r2

.

The set F is said to be strictly convex of the second order at ξ in the direction

of uj (ξ) when κ̂F

(
ξ, uj (ξ)

)
> 0.120

Such at [9, Proposition 3.7] we may extend the concept of directional strict

convexity for the case of an arbitrary compact convex solid (do not assuming

that 0 ∈ intF ). For this, we need to remember that the interior of any convex

set C in R
n relative to its affine hull (the smallest affine set that includes C) is

the relative interior of C, denoted by rintC.125

10



Proposition 3. Let ξ ∈ ∂F , i ∈ I as above, j ∈ I\ {i}, y1, y2 ∈ rint (F ∩ P (ξ, u (ξ)))

and ξ∗1 ∈ J
−1
F−y1

(ξ − y1). Then there is an unique ξ∗2 ∈ J
−1
F−y2

(ξ − y2) colinear

with ξ∗1 and such that

1

‖ξ∗1‖
γ̂F−y1

(
ξ − y1, u

j (ξ)
)
=

1

‖ξ∗2‖
γ̂F−y2

(
ξ − y2, u

j (ξ)
)
. (15)

Proof. First, notice that ξ∗1 is unique and, by (13), is given by 1
〈ξ−y1,∇f(ξ)〉∇f (ξ) .

As the same reason the unique ξ∗2 ∈ J
−1
F−y2

(ξ − y2) is given by 1
〈ξ−y2,∇f(ξ)〉∇f (ξ),

and it is colinear with ξ∗1 . Now, let us fix η ∈ ∂F close to ξ, and the correspond-

ing vectors η∗1 and η∗2 (which are close to ξ∗1 and ξ∗2 , respectively). Notice that

η∗1 ∈ J
−1
F−y1

(η − y1) implies 〈y − y1, η
∗
1〉 < 1 for any y ∈ intF , and we can write

η∗2 =
1

1 + 〈y1 − y2, η∗1〉
η∗1 .

So, from Definition 2, we obtain

1

‖η∗2‖
ĈF−y2

(
r, η − y2, u

j (η)
)

=
1

‖η∗2‖
inf {〈η − y2 − ζ, η∗2〉 : ζ ∈ (F ∩ P (η, u (η))− y2) , ‖η − y2 − ζ‖ ≥ r}

=
1

‖η∗2‖
inf {〈η − y, η∗2〉 : y ∈ F ∩ P (η, u (η)) , ‖η − y‖ ≥ r}

=
1

‖η∗1‖
inf {〈η − y, η∗1〉 : y ∈ F ∩ P (η, u (η)) , ‖η − y‖ ≥ r}

=
1

‖η∗1‖
ĈF−y1

(
r, η − y1, u

j (η)
)
,

i.e.,
1

‖η∗2‖
ĈF−y2

(
r, η − y2, u

j (η)
)
=

1

‖η∗1‖
ĈF−y1

(
r, η − y1, u

j (η)
)

for all r > 0. Dividing both parts of the last equality by r2 and passing to

lim inf as r → 0+, η → ξ we easily come to (15).

In the last proof we used the known fact that NF−yi (ξ − yi) = NF (ξ).

Remember that u (ξ) ∈ TF (ξ) \ {0} if there are n− 1 real numbers αj , j ∈

I\ {i}, not simultaneously null, such that

u (ξ) =
n∑

j=1, j �=i

αju
j (ξ) .
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This means that u (ξ) is a vector of Rn with

−
n∑

j=1, j �=i

αj

fxj (ξ)

fxi (ξ)

at the ith coordinate and αj , j ∈ I\ {i}, at the jth coordinate. If for any

η ∈ ∂F near ξ we define u (η) as the non-zero vector of Rn corresponding to

u (ξ), i.e., the jth coordinates, j ∈ I\ {i}, are the same in both vectors, and the

ith coordinate of u (η) is given by

−
n∑

j=1, j �=i

αj

fxj (η)

fxi (η)
,

then it will be possible to put

κ̂F (ξ, u (ξ)) =
1

‖ξ∗‖ γ̂F (ξ, u (ξ)) =
1

‖ξ∗‖ lim inf
(r,η)→(0+,ξ)

η∈∂F

2 ĈF (r, η, u (η))

r2
.

Note that such vector u (η) is, in fact, in TF (η) .130

Proposition 4. Let ξ ∈ ∂F . If there is u (ξ) ∈ TF (ξ) \ {0} such that γ̂F (ξ, u (ξ)) >

0, then we will have JF (η∗) ∩ P (η, u (η)) = {η} for every η close enough to ξ

(and respective η∗ given by (13)).

Proof. The condition γ̂F (ξ, u (ξ)) > 0 means that for some θ > 0 and ρ > 0

the inequality

ĈF (r, η, u (η)) ≥ θr2 (16)

takes place whenever ‖ξ − η‖ ≤ ρ, η ∈ ∂F and 0 < r ≤ ρ. Thanks to the

monotony of the function r 
→ ĈF (r, η, u (η)), decreasing if necessary the con-

stant θ > 0, we can assume that (16) is valid for all positive r. In fact,

ĈF (r, η, u (η)) = +∞ whenever r > 2 ‖F‖ and for ρ ≤ r ≤ 2 ‖F‖ we have

ĈF (r, η, u (η)) ≥ ĈF (ρ, η, u (η)) ≥ θ
(ρ
r

)2

r2 ≥ θ

(
ρ

2 ‖F‖

)2

r2.

Hence, ĈF (r, η, u (η)) > 0, for all r > 0, and the conclusion follows from Propo-

sition 2.135

In the next proposition γ̂F (ξ) represents γ̂F (ξ, ξ∗), given by (7), for the

unique ξ∗ = 1
〈ξ,∇f(ξ)〉∇f (ξ) .
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Proposition 5. We have

γ̂F (ξ, u (ξ)) ≥ γ̂F (ξ) , ∀u (ξ) ∈ TF (ξ) \ {0} . (17)

Furthermore, if γ̂F (ξ, u (ξ)) = 0 for some u (ξ) ∈ TF (ξ) \ {0}, we have γ̂F (ξ) =

0 too.

Proof. In fact, by (5),140

lim inf
(r,η)→(0+,ξ)

η∈∂F

ĈF (r, η, u (η))

r2
= lim inf

(r,η)→(0+,ξ)
η∈∂F, η∗= 1

〈η,∇f(η)〉∇f(η)

ĈF (r, η, u (η))

r2

≥ lim inf
(r,η)→(0+,ξ)

η∈∂F, η∗= 1
〈η,∇f(η)〉∇f(η)

ĈF (r, η, η∗)

r2
(18)

≥ lim inf
(r,η,η∗)→(0+,ξ,ξ∗)
η∈JF (η∗), η∗∈∂F o

ĈF (r, η, η∗)

r2
, (19)

which implies (17).

Now, recalling that we always have γ̂F (ξ) ≥ 0, if there is u (ξ) ∈ TF (ξ) \ {0}

such that γ̂F (ξ, u (ξ)) = 0, we will have γ̂F (ξ) = 0.

Since, when n = 2, we have TF (ξ) = span {tF (ξ)} = {λtF (ξ) : λ ∈ R} for145

tF (ξ) := (−fx2 (ξ) , fx1 (ξ)) and P (ξ, λtF (ξ)) = R
2 for every λ ∈ R\ {0}, then

we have the following result.

Proposition 6. For n = 2 the equality holds at (17) if γ̂F (ξ, λtF (ξ)) > 0, for

some λ ∈ R\ {0}.

Proof. If λ ∈ R\ {0} is such that γ̂F (ξ, λtF (ξ)) > 0 then, by Proposition 4,

JF (η∗)∩P (η, λtF (η)) = {η} for every η close enough to ξ (and respective η∗).

Since, for each such η we have P (η, u (η)) = R
2, we obtain the equality at (19).

On the other hand, also for each such η, we have

ĈF (r, η, u (η)) = ĈF (r, η, η∗) , ∀r > 0

13



(see Definition 2 and (5)). Therefore, there is also the equality in (18), and

consequently

γ̂F (ξ, λtF (ξ)) = γ̂F (ξ) . (20)

150

The last proposition together with Proposition 5 imply that γ̂F (ξ) = γ̂F (ξ, u (ξ)),

for every u (ξ) ∈ TF (ξ) \ {0} . This conclusion was already expected, since in

R
2 there is only one tangent direction.

4. The main result

In this section we prove that, under our conditions, the directional curvature

κ̂F

(
ξ, uj (ξ)

)
, j ∈ I\ {i}, can be calculated very easily. For this we need to use

the Hessian matrix of f calculated at ξ, ∇2f (ξ), that is, the n× n matrix with

fxrxs(ξ) :=
∂2f

∂xr∂xs
(ξ) (21)

at the row r and column s, for every r, s ∈ {1, ..., n} .155

Theorem 1. Let a compact convex set F ⊂ R
n, n ≥ 2, with 0 ∈ R

n in its

interior, and a point ξ ∈ ∂F. Assume that there are δ > 0 and f : Rn → R of

class C2 at ξ + δB, such that

F ⊂ {x ∈ R
n : f (x) ≤ 0} , 〈ξ,∇f (ξ)〉 > 0,

and such that, for x ∈ ξ + δB, we have x ∈ ∂F if and only if f (x) = 0. Then

we have

γ̂F
(
ξ, uj (ξ)

)
=

1

〈ξ,∇f (ξ)〉 ‖uj (ξ)‖2
〈
∇2f (ξ)uj (ξ) , uj (ξ)

〉
, j ∈ I\ {i} .

(22)

Proof. By hypothesis 〈ξ,∇f (ξ)〉 > 0, so let us fix the first i ∈ I such that

fxi (ξ) �= 0 (see Remark 1). For any η ∈ R
n, let ηi ∈ R

n−1 the vector η

without the ith coordinate. Thanks to the Implicit Function Theorem there

are a neighbourhood U := ξi + δ1B ⊂ R
n−1, 0 < δ1 ≤ δ, and a C2 function

g : U → R such that:160
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(i) f
(
ηi, g

(
ηi
))

= 0, for any ηi ∈ U ,

(ii) for ηi ∈ U such that f (η) = 0 we have ηi = g
(
ηi
)
, and

(iii) for any ηi ∈ U we have

gxj

(
ηi
)
= −

fxj

(
ηi, g

(
ηi
))

fxi (η
i, g (ηi))

(j ∈ I\ {i}),

where
(
ηi, g

(
ηi
))

∈ R
n represents the vector η with g

(
ηi
)
instead of ηi.

Let j ∈ I\ {i}. By (11) for each ε > 0 there is 0 < δ = δ (ε) ≤ min {δ′, δ1}such

that ∥∥∥∥
1

〈η,∇f (η)〉∇f (η)− 1

〈ξ,∇f (ξ)〉∇f (ξ)

∥∥∥∥ < ε (23)

holds for any η ∈ ξ + δB (by the continuity of ∇f (·) at ξ),
∣∣∣∣∣
〈
∇2f (ζ) v, v

〉
〈η,∇f (η)〉 −

〈
∇2f (ξ) v, v

〉
〈ξ,∇f (ξ)〉

∣∣∣∣∣ <
ε

2
, (24)

for any η, ζ ∈ ξ + δB and any v ∈ R
n, ‖v‖ = 1 (by the continuity of ∇2f (·) at

ξ), and such that

∣∣∣∣
〈
∇2f (ξ)

y − η

‖y − η‖ ,
y − η

‖y − η‖

〉
−

〈
∇2f (ξ)

uj (ξ)

‖uj (ξ)‖ ,
uj (ξ)

‖uj (ξ)‖

〉∣∣∣∣ < 〈ξ,∇f (ξ)〉 ε,

(25)

holds for any η, y ∈ ξ + δB, y ∈ P
(
η, uj (η)

)
, y �= η, with f (y) = f (η) = 0

(using the continuity of ∇g (·) and ∇f (·) at ξi and ξ, respectively, and using165

the Lagrange Mean Value Theorem).

Let us prove the inequality ” ≥ ” in (22), assuming that γ̂F
(
ξ, uj (ξ)

)
< +∞,

because in the other case there is nothing to prove. Let us fix ε > 0, the

corresponding δ > 0, 0 < r < δ
2 and η ∈

(
ξ + δ

2B
)
∩ ∂F . We want to prove

that

ĈF

(
r, η, uj (η)

)
r2

>
1

〈ξ,∇f (ξ)〉 ‖uj (ξ)‖2
〈
∇2f (ξ)uj (ξ) , uj (ξ)

〉
− ε.

Remember that η∗ = 1
〈η,∇f(η)〉∇f (η). By Remark 2 there is y ∈ ∂F∩P

(
η, uj (η)

)

with ‖η − y‖ = r, such that

ĈF

(
r, η, uj (η)

)
> 〈η − y, η∗〉 − ε

4
r2. (26)
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Notice that ‖η − y‖ = r > 0 implies y �= η. Putting

v :=
y − η

‖y − η‖ , (27)

then η + rv = y. Thanks to the Taylor’s formula (see, e.g., [4, p.75])

f (η + rv) = f (η) + 〈rv,∇f (η)〉+
∫ r

0

〈
∇2f (η + τv) v, v

〉
(r − τ) dτ,

and by the definition of v

f (y) = f (η) + 〈y − η,∇f (η)〉+
∫ r

0

〈
∇2f (η + τv) v, v

〉
(r − τ) dτ.

Hence, by using the Mean Value Theorem for integrals and remembering that

f (η) = f (y) = 0, we obtain

〈η − y,∇f (η)〉 =

∫ r

0

〈
∇2f (η + τv) v, v

〉
(r − τ) dτ

=
r2

2

〈
∇2f (η + τv) v, v

〉
, (28)

for some τ = τ (r, v) ∈ ]0, r[. Let us fix such τ . By (26), (13) and (28),

respectively, we have170

ĈF

(
r, η, uj (η)

)
> 〈η − y, η∗〉 − ε

4
r2

=
1

〈η,∇f (η)〉 〈η − y,∇f (η)〉 − ε

4
r2

≥ r2

2 〈η,∇f (η)〉
〈
∇2f (η + τv) v, v

〉
− ε

4
r2. (29)

Since

‖η + τv − ξ‖ =

∥∥∥∥η + τ
y − η

‖y − η‖ − ξ

∥∥∥∥ ≤ ‖η − ξ‖+ τ < δ, (30)

by (24) we obtain
∣∣∣∣∣
〈
∇2f (η + τv) v, v

〉
〈η,∇f (η)〉 −

〈
∇2f (ξ) v, v

〉
〈ξ,∇f (ξ)〉

∣∣∣∣∣ <
ε

2
,

and using (25) and (29) we conclude

ĈF

(
r, η, uj (η)

)
r2

>
1

2 〈η,∇f (η)〉
〈
∇2f (η + τv) v, v

〉
− ε

4

>
1

2 〈ξ,∇f (ξ)〉
〈
∇2f (ξ) v, v

〉
− ε

2

>
1

2 〈ξ,∇f (ξ)〉

〈
∇2f (ξ)

uj (ξ)

‖uj (ξ)‖ ,
uj (ξ)

‖uj (ξ)‖

〉
− ε.
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Passing to the limit as ε → 0+ we obtain the desired inequality:

γ̂F
(
ξ, uj (ξ)

)
≥ 1

〈ξ,∇f (ξ)〉 ‖uj (ξ)‖2
〈
∇2f (ξ)uj (ξ) , uj (ξ)

〉
.

In order to show the opposite inequality let us assume that γ̂F
(
ξ, uj (ξ)

)
> 0

(the case γ̂F
(
ξ, uj (ξ)

)
= 0 is trivial). Let us fix ε > 0 and 0 < δ = δ (ε) ≤

min {δ′, δ1} such that (23), (24), (25) and

ĈF

(
r, η, uj (η)

)
r2

> γ̂F
(
ξ, uj (ξ)

)
− ε

4
(31)

holds for every 0 < r < δ and η ∈ ∂F with ‖η − ξ‖ < δ. Let us fix 0 < r < δ
2 ,

η ∈
(
ξ + δ

2B
)
∩ ∂F and respective η∗. We have

ĈF

(
r, η, uj (η)

)

= inf
{
〈η − y, η∗〉 : y ∈ ∂F ∩ P

(
η, uj (η)

)
, ‖η − y‖ = r

}

=
1

〈η,∇f (η)〉 inf
{
〈η − y,∇f (η)〉 : y ∈ ∂F ∩ P

(
η, uj (η)

)
, ‖η − y‖ = r

}
.

(32)

Now let us fix y ∈ ∂F ∩ P
(
η, uj (η)

)
with ‖η − y‖ = r and define v as in (27).

Proceeding as above, we obtain (28) for some τ = τ (r, η) ∈ ]0, r[. Let us fix this175

τ . Using (28), (30), (24) and (25), respectively, we obtain

1

r2
1

〈η,∇f (η)〉 〈η − y,∇f (η)〉

=
1

2 〈η,∇f (η)〉
〈
∇2f (η + τv) v, v

〉

<
1

2 〈ξ,∇f (ξ)〉
〈
∇2f (ξ) v, v

〉
+

ε

4

<
1

2 〈ξ,∇f (ξ)〉

〈
∇2f (ξ)

uj (ξ)

‖uj (ξ)‖ ,
uj (ξ)

‖uj (ξ)‖

〉
+

ε

2
+

ε

4

=
1

2 〈ξ,∇f (ξ)〉
1

‖uj (ξ)‖2
〈
∇2f (ξ)uj (ξ) , uj (ξ)

〉
+

3ε

4
.

Consequently (see (32))

ĈF

(
r, η, uj (η)

)
r2

<
1

2 〈ξ,∇f (ξ)〉
1

‖uj (ξ)‖2
〈
∇2f (ξ)uj (ξ) , uj (ξ)

〉
+

3ε

4
,
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and by (31)

γ̂F
(
ξ, uj (ξ)

)
<

1

〈ξ,∇f (ξ)〉
1

‖uj (ξ)‖2
〈
∇2f (ξ)uj (ξ) , uj (ξ)

〉
+ 2ε.

Passing to the limit as ε → 0+ we obtain the inequality ” ≤ ” in (22).

Remembering the Definition 3 we conclude that the 2-dimensional curvature

of F at ξ ∈ ∂F in the direction of uj (ξ), j ∈ I\ {i}, is given by

κ̂F

(
ξ, uj (ξ)

)
=

1

‖∇f (ξ)‖ ‖uj (ξ)‖2
〈
∇2f (ξ)uj (ξ) , uj (ξ)

〉
. (33)

Note that, for a fixed j ∈ I\ {i} and λ ∈ R\ {0} we have

κ̂F

(
ξ, λuj (ξ)

)
=

1

‖∇f (ξ)‖ ‖uj (ξ)‖2
〈
∇2f (ξ)uj (ξ) , uj (ξ)

〉
, (34)

as it would be expected. Moreover, following the proof of Theorem 1 it is

possible to prove that180

Corollary 2. We have

κ̂F (ξ, u (ξ)) =
1

‖∇f (ξ)‖ ‖u (ξ)‖2
〈
∇2f (ξ)u (ξ) , u (ξ)

〉
,

for any u (ξ) ∈ TF (ξ) \ {0}.

Notice that, by (34), for n = 2, to say that κ̂F (ξ, u (ξ)) > 0 for some u (ξ) ∈

TF (ξ) \ {0}, is the same as saying that κ̂F (ξ, (−fx2 (ξ) , fx1 (ξ))) > 0. There-

fore, by Proposition 6, if there is λ ∈ R\ {0} such that κ̂F (ξ, λ (−fx2 (ξ) , fx1 (ξ))) >

0, we will have

κ̂F (ξ, u (ξ)) = κ̂F (ξ) , ∀u (ξ) ∈ TF (ξ) \ {0} .

Since f is of class C2 in ξ + δB, all the conclusions will remain valid if we

replace ξ with any η ∈ ∂F ∩ (ξ + δB) .

Following the idea of G. Crasta and A. Malusa presented in [7, pg.5749], we

have the following result.185
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Theorem 3. Let ξ ∈ ∂F and κ̂F

(
ξ, uj1 (ξ)

)
≤ · · · ≤ κ̂F

(
ξ, ujn−1 (ξ)

)
be the

curvatures of F at ξ in the direction of the n− 1 vectors that generate TF (ξ).

If
∥∥∇2f (ξ)

∥∥ := sup
u,v∈R

n

‖u‖=‖v‖=1

∣∣〈∇2f (ξ)u, v
〉∣∣ < ∞, (35)

then

κ̂F

(
ξ, uj1 (ξ)

)
= min

u∈Uξ

κ̂ (u) and κ̂F

(
ξ, ujn−1 (ξ)

)
= max

u∈Uξ

κ̂ (u) ,

where κ̂ (u) := 1
‖∇f(ξ)‖

〈
∇2f (ξ)u, u

〉
and Uξ := {v ∈ TF (ξ) : ‖v‖ = 1}.

Proof. Assuming (35) it is easy to show that the application u 
→ κ̂ (u) is

continuous in S := {x ∈ R
n : ‖x‖ = 1}, and in particular in Uξ. Hence, it admits

a maximum and a minimum on Uξ. Let u ∈ Uξ be a maximum point. Then, by

(33),

κ̂ (u) = max
u∈Uξ

κ̂ (u) ≥ κ̂

(
ujn−1 (ξ)

‖ujn−1 (ξ)‖

)
= κ̂F

(
ξ, ujn−1 (ξ)

)
.

On the other hand, since u ∈ TF (ξ) , then κ̂F (ξ, u) ≤ κ̂F

(
ξ, ujn−1 (ξ)

)
, and

consequently κ̂ (u) = κ̂F

(
ξ, ujn−1 (ξ)

)
. Reasoning as above, if v is a minimum

on Uξ, we deduce that κ̂ (v) = κ̂F

(
ξ, uj1 (ξ)

)
.

5. Directional curvature radius190

As in [5, p.14] (see also [14, 2]) we also relate the directional curvature to

the radius of some ball.

Definition 4. The 2-dimensional curvature radius ofF at ξ ∈ ∂F (w.r.t. ξ∗)

in the direction of uj (ξ) , j ∈ I\ {i} , is given by

R̂F

(
ξ, uj (ξ)

)
=

1

κ̂F (ξ, uj (ξ))
. (36)

Roughly speaking, the directional curvature κ̂F

(
ξ, uj (ξ)

)
shows how rotund

the boundary ∂F is in a neighbourhood of ξ (watching from the end of the

vector uj (ξ)) when we ”cut” F with the plane P
(
ξ, uj (ξ)

)
. As follows from195

Proposition 3 it does not depend on the position of the origin in intF and can
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be defined also when 0 �∈ intF . By using (36) we give the following geometric

characterization of the directional curvature radius.

Proposition 7. Fixed j ∈ I\ {i}, we have

R̂F

(
ξ, uj (ξ)

)
‖ξ∗‖

= lim sup
(ε,η)→(0+,ξ)

η∈∂F

inf
{
r > 0 : F ∩ P

(
η, uj (η)

)
∩
(
η + εB

)
⊂ η − rη∗ + r ‖η∗‖B

}
.

(37)

Proof. Let us prove first the inequality ” ≤ ” in (37) assuming without loss of

generality that the right-hand side (further denoted by R) is finite. Taking an

arbitrary ρ > R, by the definition of lim sup, we can afirm that for each ε > 0

small enough and for each η ∈ ∂F from a neighbourhood of ξ, the relation

inf
{
r > 0 : F ∩ P

(
η, uj (η)

)
∩
(
η + εB

)
⊂ η − rη∗ + r ‖η∗‖B

}
< ρ

holds. In particular,

F ∩ P
(
η, uj (η)

)
∩
(
η + εB

)
⊂ η − ρη∗ + ρ ‖η∗‖B,

which implies

‖ζ − η + ρη∗‖2 ≤ ρ2 ‖η∗‖2 ,

whenever ζ ∈ F ∩ P
(
η, uj (η)

)
with ‖ζ − η‖ = ε, or, in another form,

〈ζ − η, η∗〉 ≤ − ε2

2ρ
. (38)

If w ∈ F ∩ P
(
η, uj (η)

)
is an arbitrary point with ‖w − η‖ ≥ ε then setting

ζ := λw + (1− λ) η in F ∩ P
(
η, uj (η)

)
, where λ := ε

‖w−η‖ ≤ 1, we have

‖ζ − η‖ = ‖λw + (1− λ) η − η‖ = λ ‖w − η‖ = ε

and

〈η − ζ, η∗〉 = λ 〈η − w, η∗〉 .

20



By (38) we obtain

ε2

2ρ
≤ 〈η − ζ, η∗〉 = λ 〈η − w, η∗〉 ≤ 〈η − w, η∗〉 ,

so
ε2

2ρ
≤ inf

{
〈η − w, η∗〉 : w ∈ F ∩ P

(
η, uj (η)

)
, ‖w − η‖ ≥ ε

}
.

Hence, passing to lim inf as ε → 0+, η → ξ and ρ → R+ we conclude the first

part of the proof.200

In order to show the opposite inequality let us assume that R > 0 (the case

R = 0 is trivial). If 0 < ρ < R then, by the definition of lim sup there are ε > 0

arbitrarily small and η ∈ ∂F arbitrarily closed to ξ, such that

inf
{
r > 0 : F ∩ P

(
η, uj (η)

)
∩
(
η + εB

)
⊂ η − rη∗ + r ‖η∗‖B

}
> ρ.

Then the set F ∩P
(
η, uj (η)

)
∩
(
η + εB

)
is not contained in η−ρη∗+ρ ‖η∗‖B,

or, in other words, there is ζ ∈ F ∩ P
(
η, uj (η)

)
with ‖ζ − η‖ ≤ ε such that

‖ζ − η + ρη∗‖ > ρ ‖η∗‖ .

Consequently, setting, r := ‖ζ − η‖ ≤ ε we have

2ρ 〈η − ζ, η∗〉 < ‖ζ − η‖2 = r2.

So

ĈF

(
r, η, uj (η)

)
= inf

{
〈η − w, η∗〉 : w ∈ F ∩ P

(
η, uj (η)

)
, ‖w − η‖ ≥ r

}

≤ 〈η − ζ, η∗〉 < r2

2ρ
.

Passing to lim inf as r → 0+, η → ξ and then to lim as ρ → R− we conclude

the proof.

6. Relation with the usual curvature formula for implicit space curves

In this section, we see that it’s possible to compute directional curvatures205

using the usual curvature formula for implicit space curves (that is, curves in
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R
n given by the intersection of n − 1 implicit surfaces). In fact, fixed ξ ∈ ∂F ,

i ∈ I (given by (14)) and j ∈ I\ {i} and considering the cases n = 2 and

n ≥ 3 separately, we prove that the formula in (33) coincides with the formula

obtained by R. Goldman in [8] for the curve ∂F ∩ P
(
ξ, uj (ξ)

)
.210

For n = 2, near a fixed ξ ∈ ∂F the curve ∂F ∩ P (ξ, u (ξ)), for any u(ξ) ∈

TF (ξ) \ {0} (where TF (ξ) = {λ (−fx2 (ξ) , fx1 (ξ)) : λ ∈ R} - see before Propo-

sition 6), is given by f (η) = 0. Therefore, by (34), we have

κ̂F (ξ, u (ξ)) =
1

‖∇f (ξ)‖ ‖u (ξ)‖2
〈
∇2f (ξ)u (ξ) , u (ξ)

〉

=
f2
x1

(ξ) fx2x2 (ξ)− 2fx2 (ξ) fx1 (ξ) fx1x2 (ξ) + f2
x2

(ξ) fx1x1 (ξ)(
f2
x1

(ξ) + f2
x2

(ξ)
) 3

2

=

[
−fx2 (ξ) fx1 (ξ)

]
⎡
⎣ fx1x1 (ξ) fx1x2 (ξ)

fx1x2 (ξ) fx2x2 (ξ)

⎤
⎦
⎡
⎣ −fx2 (ξ)

fx1 (ξ)

⎤
⎦

(
f2
x1

(ξ) + f2
x2

(ξ)
) 3

2

= kG (ξ) ,

where kG (ξ) is the curvature given by R. Goldman in [8, (3.4)]. So, when

n = 2, we have κ̂F (ξ, u (ξ)) = kG (ξ), and this means that we can obtain the215

directional curvature κ̂F (ξ, u (ξ)) calculating kG (ξ) for the respective curve

(given implicitly).

When n ≥ 3 note that, fixed ξ ∈ ∂F , i ∈ I and j ∈ I\ {i}, the curve

∂F ∩ P
(
ξ, uj (ξ)

)
, near ξ, is given by the intersection of the n − 1 implicit

equations:

f (η) = 0, pk1ξ (η) = 0, ..., pkn−2ξ (η) = 0, (39)

k1, ..., kn−2 ∈ I\ {i, j} and k1 < ... < kn−2. In fact, if we put

akl (ξ) := − fxl
(ξ) fxk

(ξ)

f2
xi
(ξ) + f2

xj
(ξ)

, l = i, j,

pkξ (η1, ..., ηn) := ηk−ξk+aki (ξ) (ηi − ξi)+akj (ξ) (ηj − ξj) , (η1, ..., ηn) ∈ R
n,

and use the definition of generated space, it is easy to show that

P
(
ξ, uj (ξ)

)
=

⋂
k∈I\{i,j}

{η ∈ R
n : pkξ (η) = 0} .
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In order to present the Goldman’s curvature formula for n ≥ 3 we first220

need to introduce the generalization to the cross product from 3-dimensions to

n-dimensions:

Definition 5. ([11, p.165]) The external product between two vectors in an n-

-dimensional space, n ≥ 3, spanned by e1, ..., en is a vector in a space of dimen-

sion n(n−1)
2 spanned by a new collection of vectors denoted by {ei ∧ ej}, where

i < j. Let u = u1e1 + ...+ unen and v = v1e1 + ...+ vnen then

u ∧ v =
∑
i<j

det

⎡
⎣ ui uj

vi vj

⎤
⎦ (ei ∧ ej) .

For the next definition, as well as for the rest of the work, we just need to

compute the magnitude of the external product, which is given by the formula

‖u ∧ v‖2 =
∑
i<j

⎛
⎝det

⎡
⎣ ui uj

vi vj

⎤
⎦
⎞
⎠

2

. (40)

Assuming that ei, i = 1, ..., n, is the vector of R
n with one in the ith position

and zero everywhere else, and that e := (e1, ..., en) is the canonical basis of Rn,

we are in conditions to see the usual curvature formula for implicit space curves225

(see [8, (5.4)]):

Definition 6. The curvature formula for a point ξ on a curve defined by the in-

tersection of n−1 implicit hypersurfaces F1 (x1, ..., xn) = 0, ..., Fn−1 (x1, ..., xn) =

0 is

kG (ξ) =

∥∥(T (
F1, ..., Fn−1

)
(ξ) ∗ ∇

(
T
(
F1, ..., Fn−1

))
(ξ)

)
∧ T

(
F1, ..., Fn−1

)
(ξ)

∥∥
∥∥T (

F1, ..., Fn−1

)
(ξ)

∥∥3 ,

(41)
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where T
(
F1, ..., Fn−1

)
(ξ) is the tangent to the intersection curve at ξ given by

T
(
F1, ..., Fn−1

)
(ξ) = det

⎡
⎢⎢⎢⎢⎢⎢⎣

e

∇F1 (ξ)
...

∇Fn−1 (ξ)

⎤
⎥⎥⎥⎥⎥⎥⎦

= det

⎡
⎢⎢⎢⎢⎢⎢⎣

e1 · · · en

F1x1 (ξ) · · · F1xn (ξ)
...

...
...

Fn−1x1 (ξ) · · · Fn−1xn (ξ)

⎤
⎥⎥⎥⎥⎥⎥⎦
,

∇
(
T
(
F1, ..., Fn−1

))
(ξ) is the n × n matrix in where each column is the gra-

diente of the respective component of the row matrix T
(
F1, ..., Fn−1

)
, with the

derivatives calculated at ξ, and ∗ represents the product between matrices.230

Next we calculate the Goldman’s curvature for the curve ∂F ∩ P
(
ξ, uj (ξ)

)
,

at ξ, using its implicit equations (see (39)). We will denote it by kjG (ξ) to

distinguish it from the curvature of a general (implicit) curve. For that, we

need to remember the notation in (21).

Theorem 4. We have

kjG (ξ) =

∣∣∣fxixi (ξ) f
2
xj

(ξ)− 2fxi (ξ) fxj (ξ) fxixj (ξ) + fxjxj (ξ) f
2
xi
(ξ)

∣∣∣
‖∇f (ξ)‖

(
f2
xi
(ξ) + f2

xj
(ξ)

) .

Proof. For k ∈ I\ {i, j} and x := (x1, ..., xn) ∈ R
n fixed, we have

∂pkξ
∂xm

(x) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

1, if m = k

akm (ξ) , if m = i or m = j

0, otherwise

(42)

So the tangent to the intersection curve ∂F ∩ P
(
ξ, uj (ξ)

)
at η ∈ (ξ + δ′B) ∩235
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∂F ∩ P
(
ξ, uj (ξ)

)
is given by

T
(
f, pk1ξ, ..., pkn−2ξ

)
(η) = det

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

e

∇f (η)

∇pk1ξ (η)
...

∇pkn−2ξ (η)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

n∑
m=1

(−1)
1+m

detAmξ (η) em,

where, for each m ∈ I, Amξ (η) is the matrix obtained from

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

e

∇f (η)

∇pk1ξ (η)
...

∇pkn−2ξ (η)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

eliminating the first line and the mth column. Remembering that we have (42)

for each r ∈ {1, n− 2}, then

(−1)
1+m

detAmξ (η)

= (−1)
i+j

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑n−2
r=1 fxkr

(η) akrj (ξ)− fxj (η) , if i < j and m = i

fxi (η)−
∑n−2

r=1 fxkr
(η) akri (ξ) , if i < j and m = j

fxj (η)−
∑n−2

r=1 fxkr
(η) akrj (ξ) , if i > j and m = i

∑n−2
r=1 fxkr

(η) akri (ξ)− fxi (η) , if i > j and m = j

fxj (η) akmi (ξ)− fxi (η) akmj (ξ) , otherwise.

Let ωj (ξ) ∈ R
n the vector with (−1)

i+j+1
fxj (ξ) in the ith coordinate, (−1)

i+j
fxi (ξ)

at the jth coordinate, if i < j, or with symmetrical values if i > j, and 0 else-

where. It is easy to show that

n∑
m=1

(−1)
1+m

detAm (ξ) em =
‖∇f (ξ)‖2

f2
xi
(ξ) + f2

xj
(ξ)

ωj (ξ)

= (−1)
i+j ‖∇f (ξ)‖2 fxi (ξ)

f2
xi
(ξ) + f2

xj
(ξ)

uj (ξ) ,
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that is

T
(
f, pk1 , ..., pkn−2

)
(ξ) = (−1)

i+j ‖∇f (ξ)‖2 fxi (ξ)

f2
xi
(ξ) + f2

xj
(ξ)

uj (ξ) . (43)

After some calculations, we conclude that

T
(
f, pk1 , ..., pkn−2

)
(ξ) ∗ ∇

(
T
(
f, pk1 , ..., pkn−2

))
(ξ) =

‖∇f (ξ)‖2

f2
xi
(ξ) + f2

xj
(ξ)

M,

where M is a line matrix. Using (40) we obtain

∥∥(T (
f, pk1 , ..., pkn−2

)
(ξ) ∗ ∇

(
T
(
f, pk1 , ..., pkn−2

))
(ξ)

)
∧ T

(
f, pk1 , ..., pkn−2

)
(ξ)

∥∥2

=
‖∇f (ξ)‖10

(
fxixi (ξ) f

2
xj

(ξ)− 2fxi (ξ) fxj (ξ) fxixj (ξ) + fxjxj (ξ) f
2
xi
(ξ)

)2

(
f2
xi
(ξ) + f2

xj
(ξ)

)5 .

Which implies

∥∥(T (
f, pk1 , ..., pkn−2

)
(ξ) ∗ ∇

(
T
(
f, pk1 , ..., pkn−2

))
(ξ)

)
∧ T

(
f, pk1 , ..., pkn−2

)
(ξ)

∥∥

=
‖∇f (ξ)‖5

∣∣∣fxixi (ξ) f
2
xj

(ξ)− 2fxi (ξ) fxj (ξ) fxixj (ξ) + fxjxj (ξ) f
2
xi
(ξ)

∣∣∣
(
f2
xi
(ξ) + f2

xj
(ξ)

) 5
2

,

and consequently (see (43))240

kG (ξ)

=
‖∇f (ξ)‖5

∣∣∣fxixi (ξ) f
2
xj

(ξ)− 2fxi (ξ) fxj (ξ) fxixj (ξ) + fxjxj (ξ) f
2
xi
(ξ)

∣∣∣
(
f2
xi
(ξ) + f2

xj
(ξ)

) 5
2

(
‖∇f(ξ)‖2|fxi

(ξ)|
f2
xi

(ξ)+f2
xj

(ξ) ‖uj (ξ)‖
)3

=

∣∣∣fxixi (ξ) f
2
xj

(ξ)− 2fxi (ξ) fxj (ξ) fxixj (ξ) + fxjxj (ξ) f
2
xi
(ξ)

∣∣∣
‖∇f (ξ)‖

(
f2
xi
(ξ) + f2

xj
(ξ)

) .

Remembering (33), and that κ̂F

(
ξ, uj (ξ)

)
≥ 0 because ĈF

(
r, η, uj (ξ)

)
≥ 0

for every r > 0 and every η ∈ ∂F close enough to ξ, it is easy to show the next

result.245
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Corollary 5. We have

κ̂F

(
ξ, uj (ξ)

)
=

fxixi (ξ) f
2
xj

(ξ)− 2fxi (ξ) fxj (ξ) fxixj (ξ) + fxjxj (ξ) f
2
xi
(ξ)

‖∇f (ξ)‖
(
f2
xi
(ξ) + f2

xj
(ξ)

)

= kjG (ξ) .

So, we have the equality κ̂F

(
ξ, uj (ξ)

)
= kjG (ξ), for every n ∈ N. Therefore,

when we want to calculate directional curvatures of a convex body in R
n at a

point ξ on its boundary, both checking our conditions, we can calculate kG (ξ)

for the respective curve (given implicitly). But, as we can see following the250

proof of Theorem 4, it is faster to use (33) than to use (41), mainly for n ≥ 3.

7. Examples

1. Consider the compact convex set F ⊂ R
2, with (0, 0) in its interior,

F =
{
(x1, x2) ∈ R

2 : |x2| ≤ 1− x4
1, −1 ≤ x1 ≤ 1

}
.

Close to ξ = (ξ1, ξ2) ∈ ∂F with ξ2 > 0 (the case ξ2 < 0 is analogous) we

have f (x1, x2) := x2 − 1 + x4
1,

∇f (ξ) =
(
4ξ31 , 1

)
, ∇2f (ξ) =

⎡
⎣ 12ξ21 0

0 0

⎤
⎦ ,

and

TF (ξ) = span
{(

1,−4ξ31
)}

.

Consequently, for any u (ξ) ∈ TF (ξ) \ {(0, 0)} ,

κ̂F (ξ, u (ξ)) =
12ξ21√

(4ξ31)
2
+ 1

(
(4ξ31)

2
+ 1

) =
12ξ21

(16ξ61 + 1)
3
2

.

Recalling Proposition 6, we can see that Theorem 1 allows us to obtain

the following equality

κ̂F (ξ) =
12ξ21

(16ξ61 + 1)
3
2

,
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whereas in [9, Example 8.3] (or at (8) and (9) above) we obtained only

the inequalities

12ξ21√
1 + 16ξ61 Σ2 (ξ1)

≤ κ̂F (ξ) ≤ 12ξ21√
1 + 16ξ61

,

where Σ (ξ1) :=

√
1 +

(
3∑

k=0

|ξ1|k
)2

.

Note that at ξ = (0,±1) we have κ̂F (ξ, u (ξ)) = 0, as would be expected.

Here we can’t calculate the curvature at ξ = (±1, 0) because there isn’t a255

C2 function f checking our conditions, but in [9, Example 8.3] there is an

estimate for the curvature at such points.

2. Let F a sphere in R
n

{
x = (x1, ..., xn) :

n∑
t=1

x2
t ≤ R2

}
.

Consider f (x) =
∑n

t=1 x
2
t −R2 for x near a fixed ξ ∈ ∂F. We have

∇f (ξ) = 2ξ, ∇2f (ξ) = 2In,

where In is the identity matrix of the order n. Fix the first i ∈ I :=

{1, ..., n} such that fxi (ξ) = 2ξi �= 0, then TF (ξ) is spanned by n − 1

vectors uj (ξ) ∈ R
n, j ∈ I\ {i} , with 1 in the jth coordinate, − ξj

ξi
in the

ith coordinate and 0 in the others. Therefore

κ̂F

(
ξ, uj (ξ)

)
=

((
ξj
ξi

)2

+ 1

)2

‖ξ‖ ‖uj (ξ)‖2
=

1

R
,

which means that the curvature at any point on the boundary of the

sphere, in the direction of any vector of its tangent hyperplane, is equal

to 1
R .260

3. Consider a cylinder

Fa,b =
{
(x1, x2, x3) ∈ R

3 : x2
1 + x2

3 ≤ a2, |x2| ≤ b
}
, a, b ∈ R

+.

Near ξ = (ξ1, ξ2, ξ3) ∈ ∂Fa,b, with ξ21+ξ23 = a2, |ξ2| < b, put f (x1, x2, x3) :=
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x2
1 + x2

3 − a2. We have

∇f (ξ) = 2 (ξ1, 0, ξ3) , ∇2f (ξ) =

⎡
⎢⎢⎢⎣

2 0 0

0 0 0

0 0 2

⎤
⎥⎥⎥⎦ ,

and, fixed the first i ∈ {1, 3} such that fxi (ξ) �= 0, we have

TFa,b
(ξ) =

{
(v1, v2, v3) : vi = −ξj

ξi
vj , j ∈ {1, 3} \ {i} , v2 ∈ R

}
.

Then

〈
∇2f (ξ)uj (ξ) , uj (ξ)

〉
=

⎧
⎪⎨
⎪⎩

0, if j = 2

2
(

ξj
ξi

)2

+ 2, if j ∈ {1, 3} \ {i}

and consequently

κ̂Fa,b

(
ξ, uj (ξ)

)
=

⎧
⎨
⎩

0, if j = 2

1
a , if j ∈ {1, 3} \ {i}

.

If we consider u (ξ) = αu2 (ξ) + βuj (ξ), for any α, β ∈ R we will obtain

κ̂Fa,b
(ξ, u (ξ)) =

β2a

(a2β2 + ξ21α
2)

∈
]
0,

1

a

[
.

Now fix ξ = (ξ1, ξ2, ξ3) ∈ ∂Fa,b with ξ21 + ξ23 < a2 and ξ2 = b (the case

ξ2 = −b is analogous). Near ξ we have f (x1, x2, x3) := x2 − b,

∇f (ξ) = (0, 1, 0) , TFa,b
(ξ) = span {(1, 0, 0) , (0, 0, 1)}

and ∇2f (ξ) is the zero matrix of the order n. So

κ̂Fa,b
(ξ, u (ξ)) = 0, ∀u (ξ) ∈ TFa,b

(ξ) \ {(0, 0, 0)} .
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